Science.gov

Sample records for ac stark shift

  1. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  2. DC and subcycle-resolved AC Stark shifts in Helium

    NASA Astrophysics Data System (ADS)

    Liu, Aihua; Thumm, Uwe

    2012-06-01

    We are developing a finite element discrete variable representation (FE-DVR) code to model the response of two-electron atoms to ultra-short pulses of EM radiation. Our first numerical results for the DC stark shift of helium deviate significantly from previous [1] single-active-electron (SAE), but are in close agreement with improved SAE calculations that include the effect of core polarization in the external field. For 3x10^14 W/cm^2 infra red fields, we calculate sub-IR-cycle- resolved instantaneous (AC) level shifts of low-lying bound He states that also strongly deviate from the SAE prediction [1]. We plan to apply our code to model recently measured subcycle time-resolved absorption spectra [2].[4pt] [1] F. He, C. Ruiz, A. Becker, and U. Thumm, J. Phys. B 44, 211001 (2011).[0pt] [2] H. Wang, M. Chini, S. Chen, C.-H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, and Z. Chang, Phys. Rev. Lett. 105, 143002 (2010); M. Chini, Z. Chang et al., to be published.

  3. Influence of the ac-Stark shift on GPS atomic clock timekeeping

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Tavella, P.

    2017-01-01

    The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).

  4. Vector AC Stark shift in 133Cs atomic magnetometers with antirelaraxion coated cells

    NASA Astrophysics Data System (ADS)

    Zhivun, Elena

    The main focus of this dissertation is investigation of vector AC Stark shifts (light shifts) in evacuated 133Cs paraffin-coated cells. Although light shifts in alkali atoms have been investigated since 1960s, the effect of laser-induced vector light shifts (VLS) in paraffin-coated cells is little explored in literature. The works considering light shift effects primarily focus on transitions relevant for atomic clocks, or magnetometers using buffer gas cells, or magnetometers using broad-spectrum alkali metal lamps. This work, on the other hand, focuses on light shifts in a setup shared by finite-field optical magnetometers that use paraffin-coated sensor cells, as well as on their impact on sensitivity and accuracy of these devices. Along with describing the light shifts, this work presents several techniques that take advantage of the VLS to improve atomic magnetometers as a tool. The proposed techniques eliminate the need for oscillating radio-frequency magnetic fields and replace them with well contained laser beams. This can benefit applications where non-magnetic sensors are needed and stray fields are highly undesirable, such as the search for a permanent electric dipole moment of the neutron. This dissertation includes two such projects, the all-optical vector magnetometer and the rf magnetometer driven by a fictitious magnetic field. In the first project a finite-field optical magnetometer, which is normally a scalar sensor, is augmented with two power-modulated orthogonal laser beams that provide the directional sensitivity. The sensor exhibits a demonstrated rms noise floor of 50 fT/√Hz in measurement of the field magnitude and 0.5 mrad/√Hz in the field direction. Elimination of technical noise would improve these sensitivities to 12 fT/√Hz and 5 murad/√Hz, respectively. In the second project, the atomic precession in a scalar 133Cs magnetometer is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity

  5. The ac stark shift and space-borne rubidium atomic clocks

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Sesia, I.; Signorile, G.; Galleani, L.; Huang, M.; Tavella, P.

    2016-11-01

    Due to its small size, low weight, and low power consumption, the Rb atomic frequency standard (RAFS) is routinely the first choice for atomic timekeeping in space. Consequently, though the device has very good frequency stability (rivaling passive hydrogen masers), there is interest in uncovering the fundamental processes limiting its long-term performance, with the goal of improving the device for future space systems and missions. The ac Stark shift (i.e., light shift) is one of the more likely processes limiting the RAFS' long-term timekeeping ability, yet its manifestation in the RAFS remains poorly understood. In part, this comes from the fact that light-shift induced frequency fluctuations must be quantified in terms of the RAFS' light-shift coefficient and the output variations in the RAFS' rf-discharge lamp, which is a nonlinear inductively-couple plasma (ICP). Here, we analyze the light-shift effect for a family of 10 on-orbit Block-IIR GPS RAFS, examining decade-long records of their on-orbit frequency and rf-discharge lamp fluctuations. We find that the ICP's light intensity variations can take several forms: deterministic aging, jumps, ramps, and non-stationary noise, each of which affects the RAFS' frequency via the light shift. Correlating these light intensity changes with RAFS frequency changes, we estimate the light-shift coefficient, κLS, for the family of RAFS: κLS = -(1.9 ± 0.3) × 10-12/%. The 16% family-wide variation in κLS indicates that while each RAFS may have its own individual κLS, the variance of κLS among similarly designed RAFS can be relatively small. Combining κLS with our estimate of the ICP light intensity's non-stationary noise, we find evidence that random-walk frequency noise in high-quality space-borne RAFS is strongly influenced by the RAFS' rf-discharge lamp via the light shift effect.

  6. Probing the Sub-cycle AC Stark Shift by means of Attosecond Pulses: An ab initio Study of Transient Absorption

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Telnov, Dmitry A.; Chu, Shih-I.

    2012-06-01

    We report a first fully ab initio theoretical exploration of the sub-cycle dynamical AC Stark shift and broadening of He atoms driven by an attosecond pulse and IR pulse. Since the duration of the UV pulse is much shorter than that of the optical cycle of the IR dressing laser field, the sub-cycle dynamics of the dressed atoms can be unfolded by applying the attosecond pulse at different time delay. A nonperturbative method is developed to calculate the transient absorption spectrum without weak-field limitation. By solving the time-dependent Schr"odinger equation accurately by means of the time-dependent generalized pseudospectral method, we predict novel sub-cycle laser-induced time-dependent AC Stark shift and power broadening of He atoms whose dynamical features are in good agreement with the latest ongoing experiments at UCF. Detailed results will be presented. This work is partially supported by DOE and NSF.

  7. ac Stark shift measurements of the clock transition in cold Cs atoms: Scalar and tensor light shifts of the D2 transition

    NASA Astrophysics Data System (ADS)

    Costanzo, G. A.; Micalizio, S.; Godone, A.; Camparo, J. C.; Levi, F.

    2016-06-01

    The ac Stark shift, or light shift, is a physical phenomenon that plays a fundamental role in many applications ranging from basic atomic physics to applied quantum electronics. Here, we discuss experiments testing light-shift theory in a cold-atom cesium fountain clock for the Cs D2 transition (i.e., 6 2S1 /2→6 2P3 /2 at 852 nm). Cold-atom fountains represent a nearly ideal system for the study of light shifts: (1) The atoms can be perturbed by a field of arbitrary character (e.g., coherent field or nonclassical field); (2) there are no trapping fields to complicate data interpretation; (3) the probed atoms are essentially motionless in their center-of-mass reference frame, T ˜ 1 μK; and (4) the atoms are in an essentially collisionless environment. Moreover, in the present work the resolution of the Cs excited-state hyperfine splittings implies that the D2 ac Stark shift contains a nonzero tensor polarizability contribution, which does not appear in vapor phase experiments due to Doppler broadening. Here, we test the linearity of the ac Stark shift with field intensity, and measure the light shift as a function of field frequency, generating a "light-shift curve." We have improved on the previous best test of theory by a factor of 2, and after subtracting the theoretical scalar light shift from the experimental light-shift curves, we have isolated and tested the tensor light shift for an alkali D2 transition.

  8. Circuit QED with a nonlinear resonator: ac-Stark shift and dephasing.

    PubMed

    Ong, F R; Boissonneault, M; Mallet, F; Palacios-Laloy, A; Dewes, A; Doherty, A C; Blais, A; Bertet, P; Vion, D; Esteve, D

    2011-04-22

    We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.

  9. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  10. Experimental Stark Shift of Some Xe II UV Lines

    SciTech Connect

    Djurovic, S.; Cirisan, M.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2008-10-22

    Stark broadening and shift of Xe II lines have been the subject of many experimental and theoretical studie. Here, the results of Stark shift measurements for six Xe II lines are presented. All given results are here reported for the first time. Two lines belong to 5d-6p, two to 5d-7p and one to 5d-4f transition. In this experiment pulsed arc plasma made of mixture of 95% helium and 5% xenon was used. Measured electron densities and temperatures were in the range of (0.2-1.8)10{sup 23}m{sup -3} and 18300-25500 K respectively.

  11. Graphene mediated Stark shifting of quantum dot energy levels

    NASA Astrophysics Data System (ADS)

    Kinnischtzke, Laura; Goodfellow, Kenneth M.; Chakraborty, Chitraleema; Lai, Yi-Ming; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Vamivakas, A. Nick

    2016-05-01

    We demonstrate an optoelectronic device comprised of single InAs quantum dots in an n-i-Schottky diode where graphene has been used as the Schottky contact. Deterministic electric field tuning is shown using Stark-shifted micro-photoluminescence from single quantum dots. The extracted dipole moments from the Stark shifts are comparable to conventional devices where the Schottky contact is a semi-transparent metal. Neutral and singly charged excitons are also observed in the well-known Coulomb-blockade plateaus. Our results indicate that graphene is a suitable replacement for metal contacts in quantum dot devices which require electric field control.

  12. Experimental Stark widths and shifts of Ti II spectral lines

    NASA Astrophysics Data System (ADS)

    Manrique, J.; Aguilera, J. A.; Aragón, C.

    2016-10-01

    Stark widths and shifts of Ti II lines with wavelengths in the range 2500-4600 Å have been determined by laser-induced breakdown spectroscopy. The temperature and electron density of the plasma vary in the ranges 11 970-15 520 K and (2.0-7.2) × 1017 cm-3, respectively, for the different measurement instants from 0.6 to 1.8 μs. The samples used are fused glass discs with different titanium concentrations, selected to control the self-absorption of the lines. The Stark widths and shifts are compared with the experimental and theoretical data available in the literature.

  13. Engineering large Stark shifts for control of individual clock state qubits

    NASA Astrophysics Data System (ADS)

    Lee, A. C.; Smith, J.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Zhang, J.; Monroe, C.

    2016-10-01

    In quantum information science, the external control of qubits must be balanced with the extreme isolation of the qubits from the environment. Atomic qubit systems typically mitigate this balance through the use of gated laser fields that can create superpositions and entanglement between qubits. Here we propose the use of high-order optical Stark shifts from optical fields to manipulate the splitting of atomic qubits that are insensitive to other types of fields. We demonstrate a fourth-order ac Stark shift in a trapped atomic ion system that does not require extra laser power beyond that needed for other control fields. We individually address a chain of tightly spaced trapped ions and show how these controlled shifts can produce an arbitrary product state of 10 ions as well as generate site-specific magnetic field terms in a simulated spin Hamiltonian.

  14. Stark Shift Measurement of Some Xe III Lines

    SciTech Connect

    Djurovic, S.; Cirisaif, M.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2008-10-22

    Examination of ionized xenon spectrum is of a great interest for plasma diagnostic purposes, theory testing and different applications. In this paper, we present Stark shift data for one blue and five UV Xe III lines. One line belongs to the 5d-6p transition, while all other lines belong to 6s-6p transition. Most of the existing papers are devoted to Stark width measurements and only one paper deals with shift data of the lines studied herein. A low-pressure pulsed arc with 95% of helium and 5% of xenon was used as a plasma source. All measurements were performed under following plasma conditions: electron density (0.2-1.4)10{sup 23}m{sup -3} and electron temperature 18000-23000 K.

  15. Individual Optical Addressing of Atomic Clock Qubits With Stark Shifts

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Smith, Jacob; Richerme, Phillip; Neyenhuis, Brian; Hess, Paul; Zhang, Jiehang; Monroe, Chris

    2016-05-01

    In recent years, trapped ions have proven to be a versatile quantum information platform, enabled by their long lifetimes and high gate fidelities. Some of the most promising trapped ion systems take advantage of groundstate hyperfine ``clock'' qubits, which are insensitive to background fields to first order. This same insensitivity also makes σz manipulations of the qubit impractical, eliminating whole classes of operations. We prove there exists a fourth-order light shift, or four-photon Stark shift, of the clock states derived from two coherent laser beams whose beatnote is close to the qubit splitting. Using a mode-locked source generates a large light shift with only modest laser powers, making it a practical σz operation on a clock qubit. We experimentally verify and measure the four-photon Stark shift and demonstrate its use to coherently individually address qubits in a chain of 10 Yb 171 ions with low crosstalk. We use this individual addressing to prepare arbitrary product states with high fidelity and also to apply independent σz terms transverse to an Ising Hamiltonian. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  16. Stark widths and shifts for spectral lines of Sn IV

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Alonso-Medina, A.; Colón, C.

    2016-01-01

    In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.

  17. Stark-shift based quantum dot-cavity electrometer

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexander V.; Chekmachev, Vadim G.

    2016-12-01

    In this paper we propose the scheme of an optical quantum sensor of external electric field which design based on a double quantum dot (DQD) placed in a high quality optical semiconductor microcavity (MC). The characteristic DQD frequencies of the observed nontrivial single-electron dynamics are determined using spectroscopic simulation in the steady-state regime. Due to Stark shifts of excited energy levels of DQD located at the edge of microdisk the hybrid electron-photon spectrum changes depending on the strength and direction of electric field. Probe laser with tunable wavelength excites the structure in single-photon regime and photon spectrum from MC is detected. We analyze the system's behavior with the use of a standard technique based on solving the Lindblad equation for the density matrix of an electron-phonon system with regard to the escape of photons from the cavity to the continuum and the relaxation of an excited electron with the emission of a photon or phonon. It will be shown that due to the design features, such a device has several advantages: high sensitivity, availability of different channels for excitation and measuring, the ability to accurately detect the spatial distribution of the field.

  18. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks.

    PubMed

    Lodewyck, Jérôme; Zawada, Michal; Lorini, Luca; Gurov, Mikhail; Lemonde, Pierre

    2012-03-01

    We report on the observation of a dc Stark frequency shift at the 10-(13) level by comparing two strontium optical lattice clocks. This frequency shift arises from the presence of electric charges trapped on dielectric surfaces placed under vacuum close to the atomic sample. We show that these charges can be eliminated by shining UV light on the dielectric surfaces, and characterize the residual dc Stark frequency shift on the clock transition at the 10-(18) level by applying an external electric field. This study shows that the dc Stark shift can play an important role in the accuracy budget of lattice clocks, and should be duly taken into account.

  19. On the Stark Widths and Shifts of Ar II 472.68 nm Spectral Line

    SciTech Connect

    Mijatovic, Z.; Gajo, T.; Vujicic, B.; Djurovic, S.; Kobilarov, R.

    2008-10-22

    Stark widths and shifts of Ar II 472.68 nm spectral line were measured from T-tube plasmas. Plasma electron density ranged 1.8-2.210{sup 17} cm{sup -3}, while temperature ranged 20000-43000 K. Obtained results of widths and shifts were compared with measured results of other authors.

  20. Shift and width measurements of the Stark-broadened ionized helium line at 1215 A

    NASA Technical Reports Server (NTRS)

    Van Zandt, J. R.; Adcock, J. C., Jr.; Griem, H. R.

    1976-01-01

    Time-resolved photoelectric measurements were made of the shifts of helium plasma lines at 1640 A and 1215 A and of the Stark profile of the 1215 A line, using an electromagnetic shock tube as a light source. These red shifts are consistent with a plasma polarization shift, where the interaction energy between the radiating ion and the perturbing plasma electrons corresponds to the Coulomb interaction near the excited state Bohr radius. No significant shifts were observed for the 1640 A line, while the 1215 A line underwent a red shift of about 0.5 A. The measured Stark width of the 1215 A line was 10-45% greater than the calculated width based on the measured width of the 4686 A line.

  1. Asymmetric Stark shift in an impurity doped dome-shaped quantum dot with wetting layer

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.; Cristea, M.; Bejan, D.

    2017-02-01

    The effects of vertical electric field and donor impurity on the electronic properties of the dome-shaped InAs/GaAs quantum dot coupled to its wetting layer were investigated. The dependence of the electron density, energy and Stark shift of the S-, P- and WL-states on the applied electric field was studied with and without impurity. The S- and P-states have no significant qualitative changes in the shape of the wave functions with increasing the electric field, except that they become slightly shifted due to the competition between the field action and the quantum confinement. The wave function of the WL-state is strongly modified in polarized structures. Our results reveal that the Stark shift of electron energies can be fitted with a quadratic dependence on the electric field, the linear and quadratic terms corresponding to the dipole moment and static electron polarizability. Their estimated values reasonable agree with those calculated.

  2. Experimental Stark widths, shifts, and transition probabilities of several ArII lines

    SciTech Connect

    Aparicio, J. A.; Gigosos, M. A.; Mar, S.; Gonzalez, V. R.

    1997-01-05

    This paper is an extensive experimental contribution to the knowledge of ArII atomic parameters. This specie, which is very important for many astrophysical and industrial plasma diagnostics, has been extensively studied. However, there are still great differences in the experimental Stark widths and shifts coefficients, as well as a great lack of transition probability data, especially for lines coming from the very highly excited energy levels.

  3. Experimental Stark widths, shifts, and transition probabilities of several ArII lines

    SciTech Connect

    Aparicio, J.A.; Gigosos, M.A.; Mar, S.; Gonzalez, V.R.

    1997-01-01

    This paper is an extensive experimental contribution to the knowledge of ArII atomic parameters. This specie, which is very important for many astrophysical and industrial plasma diagnostics, has been extensively studied. However, there are still great differences in the experimental Stark widths and shifts coefficients, as well as a great lack of transition probability data, especially for lines coming from the very highly excited energy levels. {copyright} {ital 1997 American Institute of Physics.}

  4. Static multipole polarisabilities and second-order Stark shift in francium.

    PubMed

    Khan, F; Khandelwal, G S; Wilson, J W

    1988-01-01

    The multipole polarisability of the ground state of francium is calculated by utilising both the variational technique of Davison and the quantum defect theory underlying the Bates-Damgaard method. This approach is also shown to yield reasonable results for other alkali atoms. Second-order Stark shift for the ground state of francium is presented as a function of field strength for possible future experimental comparison.

  5. Static multipole polarisabilities and second-order Stark shift in francium

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Wilson, J. W.

    1988-01-01

    The multipole polarizability of the ground state of francium is calculated by utilizing both the variational technique of Davison and the quantum defect theory underlying the Bates-Damgaard method. This approach is also shown to yield reasonable results for other alkali atoms. Second-order Stark shift for the ground state of francium is presented as a function of field strength for possible future experimental comparison.

  6. Stark-shift-chirped rapid-adiabatic-passage technique among three states

    SciTech Connect

    Rangelov, A. A.; Vitanov, N. V.; Yatsenko, L. P.; Shore, B. W.; Halfmann, T.; Bergmann, K.

    2005-11-15

    We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), hitherto used for complete population transfer between two quantum states, offers a simple and robust method for complete population transfer amongst three states in atoms and molecules. In this case SCRAP uses three laser pulses: a strong far-off-resonant pulse modifies the transition frequencies by inducing dynamic Stark shifts and thereby creating time-dependent level crossings amongst the three diabatic states, while near-resonant and moderately strong pump and Stokes pulses, appropriately offset in time, drive the population between the initial and final states via adiabatic passage. The population transfer efficiency is robust to variations in the intensities of the lasers, as long as these intensities are sufficiently large to enforce adiabatic evolution. With suitable pulse timings the population in the (possibly decaying) intermediate state can be minimized, as with stimulated Raman adiabatic passage (STIRAP). This technique applies to one-photon as well as multiphoton transitions and it is also applicable to media exhibiting inhomogeneous broadening; these features represent clear advantages over STIRAP by overcoming the inevitable dynamical Stark shifts that accompany multiphoton transitions as well as unwanted detunings, e.g., induced by Doppler shifts.

  7. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions H2+, HD+, and D2+

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Bakalov, D.; Bekbaev, A. K.; Korobov, V. I.

    2014-05-01

    We calculate the dc Stark effect for three molecular hydrogen ions in the nonrelativistic approximation. The effect is calculated both in dependence on the rovibrational state and in dependence on the hyperfine state. We discuss special cases and approximations. We also calculate the ac polarizabilities for several rovibrational levels and therefrom evaluate accurately the blackbody radiation shift, including the effects of excited electronic states. The results enable the detailed evaluation of certain systematic shifts of the transitions frequencies for the purpose of ultrahigh-precision optical, microwave, or radio-frequency spectroscopy in ion traps.

  8. Amplification of multi-gigawatt 3 ps pulses in an atmospheric CO2 laser using ac Stark effect.

    PubMed

    Tochitsky, S Ya; Pigeon, J J; Haberberger, D J; Gong, C; Joshi, C

    2012-06-18

    The 3 ps pulses are amplified to ~20 GW peak power in a TEA CO(2) laser using ac Stark broadening. Demonstration of such broadband coherent amplification of 10 μm pulses opens opportunities for a powerful mid-IR source at a high-repetition rate.

  9. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.

    PubMed

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-12

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  10. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    NASA Astrophysics Data System (ADS)

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  11. High-accuracy time- and space-resolved Stark shift measurements

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1996-07-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.

  12. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  13. The AC-Stark Effect in Nitric Oxide Induced by Rapidly Swept Continuous Wave Quantum Cascade Lasers

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    A large AC Stark effect has been observed when nitric oxide, at low pressure in a long optical path (100 m) Herriot cell, is subjected to infrared radiation from a rapidly swept, continuous wave infrared quantum cascade laser. As the frequency sweep rate of the laser is increased, an emission signal induced by rapid passage, occurs after the laser frequency has passed through the resonance of a molecular absorption line. At very high sweep rates a laser field-induced splitting of the absorptive part of the signal is observed, due to the AC Stark effect. This splitting is related to the Autler-Townes mixing of the hyperfine transitions, which lie within the lambda doublet components of the transition, under the Doppler broadened envelope.

  14. Effects of the Stark Shift on the Evolution of the Field Entropy and Entanglement in the Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Fang, Mao Fa

    1996-01-01

    The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.

  15. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  16. Shift measurements of the stark-broadened ionized helium lines at 1640 and 1215 angstrom. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vanzandt, J. R.

    1976-01-01

    Time-resolved measurements were made of the shifts of the ionized helium lines at 1,640 A (n = 3 approaches 2) and 1,215 A (n = 4 approaches 2), and of the Stark profile of the 1,215 A wavelength line. An electromagnetic shock tube was used as a light source. The plasma conditions corresponded to electron temperatures of approximately 3.5 eV and electron densities of 0.8 to 1.8 x 10 to the 17th power/cubic cm. The measured shifts fell between two previous estimates of plasma polarization shifts. The measured Stark width of the 1,215 A wavelength line was up to 30% greater than the theoretical width.

  17. Experimental transition probabilities and Stark shifts in O III and O IV spectra

    NASA Astrophysics Data System (ADS)

    Djeniže, S.; Bukvić, S.; Srećković, A.; Kalezić, S.

    2003-08-01

    On the basis of the relative line intensity ratio (RLIR) method transition probability values of the spontaneous emission (Einstein's A values) of 41 astrophysically important transitions (in 15 multiplets) in the doubly (O III) and 7 transitions (in 5 multiplets) in triply (O IV) ionized oxygen spectra have been obtained relative to the reference A values related to the 326.085 nm O III and 340.355 nm O IV, most intensive transitions in the O III and O IV spectra. Fourteen of the investigated O III lines belong to the cascades in the astrophysically important Bowen fluorescence mechanism. Most of the O III transition probability values are the first data obtained experimentally using the RLIR method. Stark shift values (d) of the mentioned lines are also measured. Twenty three of them were not known and represent the first data in this field. Our A and d values are compared to available experimental and theoretical data. A linear, low-pressure, pulsed arc was used as an optically thin plasma source operated in oxygen discharge at a 42 000 K electron temperature and 1.65 x 1023 m-3 electron density.

  18. Direct Manifestation of the Band Topology via the Zak Shift of the Wannier-Stark Ladder

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Ram; Park, Kwon

    2015-03-01

    Topological phases of matter have been topics of intense interest in modern condensed matter physics. Numerous efforts have been devoted to investigating various exotic properties of materials with non-trivial band topology. The dissipationless transport via gapless helical edge or surface states is one of the defining properties of such materials, which, however, has been very difficult to realize in experiment due to various backscattering sources induced in the sample boundaries. In this work, we show that there is a fundamental connection between the non-trivial topology of the band structure and the Zak shift of the Wannier-Stark ladder emerging under a static electric field. As an application of this connection, we propose a novel spectroscopic method to directly manifest the band topology by counting the winding number of the Zak phase across the first Brillouin zone, which is shown to be robust against electron-impurity scattering. The authors thank KIAS Center for Advanced Computation (CAC) for providing computing resources.

  19. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  20. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  1. Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

    SciTech Connect

    Arora, Bindiya; Safronova, M. S.; Clark, Charles W.

    2007-11-15

    Stark shifts of potassium and rubidium D1 lines have been measured with high precision by Miller et al. [Phys. Rev. A 49, 5128 (1994)]. In this work, we combine these measurements with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4p{sub j}-3d{sub j{sup '}} transitions in K and the 5p{sub j}-4d{sub j{sup '}} transitions in Rb to high precision. The 4p{sub 1/2}-3d{sub 3/2} and 5p{sub 1/2}-4d{sub 3/2} transitions contribute on the order of 90% to the respective polarizabilities of the np{sub 1/2} states in K and Rb, and the remaining 10% can be accurately calculated using the relativistic all-order method. Therefore, the combination of the experimental data and theoretical calculations allows us to determine the np-(n-1)d matrix elements and their uncertainties. We compare these values with our all-order calculations of the np-(n-1)d matrix elements in K and Rb for a benchmark test of the accuracy of the all-order method for transitions involving nd states. Such matrix elements are of special interest for many applications, such as determination of ''magic'' wavelengths in alkali-metal atoms for state-insensitive cooling and trapping, and determination of blackbody radiation shifts in optical frequency standards with ions.

  2. Nanocathodoluminescence Reveals Mitigation of the Stark Shift in InGaN Quantum Wells by Si Doping

    PubMed Central

    2015-01-01

    Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices. PMID:26488912

  3. Stark shift and field ionization of arsenic donors in {sup 28}Si-silicon-on-insulator structures

    SciTech Connect

    Lo, C. C. Morton, J. J. L.; Simmons, S.; Lo Nardo, R.; Weis, C. D.; Schenkel, T.; Tyryshkin, A. M.; Lyon, S. A.; Meijer, J.; Rogalla, D.; Bokor, J.

    2014-05-12

    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified {sup 28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to 2 V/μm to be applied across the SOI layer. Utilizing this structure, we measure the Stark shift parameters of arsenic donors embedded in the {sup 28}Si-SOI layer and find a contact hyperfine Stark parameter of η{sub a} = −1.9 ± 0.7 × 10{sup −3} μm{sup 2}/V{sup 2}. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.

  4. Dynamical effects of Stark-shifted quantum dots strongly coupled to photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Kaushik; Bose, Ranojoy; Waks, Edo

    2013-03-01

    Single semiconductor quantum-dots (QDs) strongly coupled to photonic crystal cavities are a strong candidate for single photon generation, ultra-fast all optical switching and quantum information processing. Recent experiments on coupled-cavity quantum dot systems show possible manipulation of emission wavelength of the dot through optical Stark effect. Interesting dynamical features arise when the Stark pulse duration is comparable to QD-cavity interaction time. Here, we present a theoretical treatment of these dynamical effects and investigate dynamical emission spectrum, energy transfer and single photon generation. We study these effects through numerical solution of the full master equation. We demonstrate that dynamic Stark effects can be used to generate ultra-fast indistinguishable single photons using rapid Stark tuning of the quantum dot. The theoretical limit for the speed is shown to be faster than adiabatic rapid passage technique used for microwave photon generation in circuit QED. A systematic study of role of device parameters such as pulse-shape, dot-cavity coupling and incoherent losses on the efficiency and speed of single photon generation is also presented for possible experimental realization.

  5. Donor hyperfine Stark shift and the role of central-cell corrections in tight-binding theory

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Rahman, Rajib; Salfi, Joe; Bocquel, Juanita; Voisin, Benoit; Rogge, Sven; Klimeck, Gerhard; Hollenberg, Lloyd L. C.

    2015-04-01

    Atomistic tight-binding (TB) simulations are performed to calculate the Stark shift of the hyperfine coupling for a single arsenic (As) donor in silicon (Si). The role of the central-cell correction is studied by implementing both the static and the non-static dielectric screenings of the donor potential, and by including the effect of the lattice strain close to the donor site. The dielectric screening of the donor potential tunes the value of the quadratic Stark shift parameter (η2) from -1.3 × 10-3 µm2 V-2 for the static dielectric screening to -1.72 × 10-3 µm2 V-2 for the non-static dielectric screening. The effect of lattice strain, implemented by a 3.2% change in the As-Si nearest-neighbour bond length, further shifts the value of η2 to -1.87 × 10-3 µm2 V-2, resulting in an excellent agreement of theory with the experimentally measured value of -1.9 ± 0.2 × 10-3 µm2 V-2. Based on our direct comparison of the calculations with the experiment, we conclude that the previously ignored non-static dielectric screening of the donor potential and the lattice strain significantly influence the donor wave function charge density and thereby leads to a better agreement with the available experimental data sets.

  6. Dynamic Stark effect and forbidden-transition spectrallineshapes

    SciTech Connect

    Stalnaker, Jason E.; Budker, D.; Freedman, S.J.; Guzman, J.S.; Rochester, S.M.; Yashchuk, V.V.

    2005-12-15

    We report on an experimental and theoretical study of thedynamic (ac) Stark effect on a for bidden transition. A general frameworkfor parameterizing and describing off-resonant ac-Stark shifts ispresented. A model is developed to calculate spectral line shapesresulting from resonant excitation of atoms in an intense standinglight-wave in the presence of off-resonant ac-Stark shifts. The model isused in the analysis and interpretation of a measurement of the ac-Starkshifts of the static-electric-field-induced 6s2 1S0 -->5d6s 3D1transition at 408 nm in atomic Yb. The results are in agreement withestimates of the ac-Stark shift of the transition under the assumptionthat the shift is dominated by that of the 6s2 1S0 ground state. Adetailed description of the experiment and analysis is presented. Abi-product of this work is an ind ependent determination (from thesaturation behavior of the 408-nm transition) of the Stark transitionpolarizability, which is found to be in agreement with our earliermeasurement. This work is part of the ongoing effort aimed at a precisionmeasurement of atomic parity-violation effects in Yb.

  7. Large optical Stark shifts in single quantum dots coupled to core-shell GaAs/AlGaAs nanowires.

    PubMed

    Yu, Ying; Wei, Yu-Ming; Wang, Jing; Li, Jia-Hua; Shang, Xiang-Jun; Ni, Hai-Qiao; Niu, Zhi-Chuan; Wang, Xue-Hua; Yu, Si-Yuan

    2017-04-12

    Nanowire quantum dots (NW-QDs) can be used for future compact and efficient optoelectronic devices. Many efforts have been made to control the QD states by inserting the QDs in doped structures and applying an electric field in a nanowire system. In this paper, we use down-conversion and up-conversion photoluminescence excitations to explore the optical and electronic properties of single quantum dots in GaAs/AlGaAs core-shell nanowires. We investigate a large optical Stark shift in this system as a new method to tune the QD states. When the tunable laser lies within the spectral bandwidth of ZB/WZ GaAs (780 nm-860 nm), we observe an extremely large optical Stark shift of 1.3 nm (0.5 nm) with increasing excitation power at a resonant wavelength of 800 nm (840 nm) in GaAs states. The ability to in situ control the energy states of self-catalyzed NW-QDs should open a new way for quantum light sources and nonlinear optics in a nanowire system.

  8. Measurement of the DC Stark shift for visible NeI lines and electric field distribution in the cathode sheath of an abnormal glow discharge

    NASA Astrophysics Data System (ADS)

    Ivanović, N. V.; Šišović, N. M.; Spasojević, Dj; Konjević, N.

    2017-03-01

    We present the results of an experimental study of the DC Stark shift for seven visible NeI lines in the plane cathode sheath region of an abnormal glow discharge operated in neon with a small admixture of hydrogen. The electric field (up to 13.4 kV cm‑1) in the cathode sheath region is measured from the π-polarized profile of the H alpha line of hydrogen using the Stark polarization spectroscopy technique. Within the realized range of the electric field, the NeI lines exhibit a quadratic Stark effect. The values of coefficients, correlating Stark shift and electric field strength, were determined, enabling their future use for unknown electric field strength measurements. Among the studied lines, so far only the Stark effect analysis of the NeI 511.367 nm line has been reported, in which case our results are in good agreement with the best fit formula proposed by Jäger and Windholz (1984 Phys. Scr. 29 344) for one out of three Stark components detected under our experimental conditions.

  9. Solvent-induced infrared frequency shifts in aromatic nitriles are quantitatively described by the vibrational Stark effect.

    PubMed

    Levinson, Nicholas M; Fried, Stephen D; Boxer, Steven G

    2012-09-06

    The physical properties of solvents strongly affect the spectra of dissolved solutes, and this phenomenon can be exploited to gain insight into the solvent-solute interaction. The large solvatochromic shifts observed for many dye molecules in polar solvents are due to variations in the solvent reaction field, and these shifts are widely used to estimate the change in the dye's dipole moment upon photoexcitation, which is typically on the order of ∼1-10 D. In contrast, the change in dipole moment for vibrational transitions is approximately 2 orders of magnitude smaller. Nonetheless, vibrational chromophores display significant solvatochromism, and the relative contributions of specific chemical interactions and electrostatic interactions are debated, complicating the interpretation of vibrational frequency shifts in complex systems such as proteins. Here we present a series of substituted benzonitriles that display widely varying degrees of vibrational solvatochromism. In most cases, this variation can be quantitatively described by the experimentally determined Stark tuning rate, coupled with a simple Onsager-like model of solvation, reinforcing the view that vibrational frequency shifts are largely caused by electrostatic interactions. In addition, we discuss specific cases where continuum solvation models fail to predict solvatochromic shifts, revealing the necessity for more advanced theoretical models that capture local aspects of solute-solvent interactions.

  10. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    SciTech Connect

    List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  11. Application of multipolar charge models and molecular dynamics simulations to study stark shifts in inhomogeneous electric fields.

    PubMed

    Devereux, Michael; Plattner, Nuria; Meuwly, Markus

    2009-11-26

    Atomic multipole moments are used to investigate vibrational frequency shifts of CO and H(2) in uniform and inhomogeneous electric fields using ab initio calculations and Molecular Dynamics (MD) simulations. The importance of using atomic multipole moments that can accurately represent both molecular electrostatics and the vibrational response of the molecule to changes in the local electric field is highlighted. The vibrational response of CO to applied uniform and inhomogeneous electric fields is examined using Density Functional Theory calculations for a range of test fields, and the results are used to assess the performance of different atomic multipole models. In uniform fields, the calculated Stark tuning rates of Deltamu = 0.52 cm(-1)/(MV/cm) (DFT), Deltamu = 0.55 cm(-1)/(MV/cm) (fluctuating three-point charge model), and Deltamu = 0.64 cm(-1)/(MV/cm) (Multipole model up to octupole), compare favorably with the experimentally measured value of 0.67 cm(-1)/(MV/cm). For H(2), which has no permanent dipole moment, CCSD(T) calculations demonstrate the importance of bond-weakening effects in force fields in response to the applied inhomogeneous electric field. Finally, CO in hexagonal ice is considered as a test system to highlight the performance of selected multipolar models in MD simulations. The approach discussed here can be applied to calibrate a range of multipolar charge models for diatomic probes, with applications to interpret Stark spectroscopy measurements in protein active sites.

  12. Molecular quantum mechanical gradients within the polarizable embedding approach--application to the internal vibrational Stark shift of acetophenone.

    PubMed

    List, Nanna Holmgaard; Beerepoot, Maarten T P; Olsen, Jógvan Magnus Haugaard; Gao, Bin; Ruud, Kenneth; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  13. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    NASA Astrophysics Data System (ADS)

    List, Nanna Holmgaard; Beerepoot, Maarten T. P.; Olsen, Jógvan Magnus Haugaard; Gao, Bin; Ruud, Kenneth; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  14. Measuring the Fr Weak Nuclear Charge by Observing a Linear Stark Shift with Small Atomic Samples

    SciTech Connect

    Bouchiat, Marie-Anne

    2008-03-28

    We study the chirality of ground-state alkali atoms in E and B fields, dressed with a circularly-polarized beam near-detuned (< or approx. )1 GHz) from an E-field-assisted forbidden transition such as 7S-8S in Fr. We predict parity violating energy shifts of their sublevels, linear in E and the weak nuclear charge Q{sub W}. A dressing beam of 10 kW/cm{sup 2} at 506 nm produces a shift of {approx}100 {mu}Hz at E=100 V/cm, B > or approx. 50 mG which should be observable with {approx}10{sup 4} Fr atoms confined in an optical dipole trap. We discuss optimal conditions, parameter reversals, and a calibration procedure to measure Q{sub W}.

  15. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy.

    PubMed

    Ma, Fei; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2015-12-01

    Native LH1-RC of photosynthetic purple bacteria Thermochromatium (Tch.) tepidum, B915, has an ultra-red BChl a Qy absorption. Two blue-shifted complexes obtained by chemical modification, B893 and B882, have increasing full widths at half maximum (FWHM) and decreasing transition dipole oscillator strength. 77K Stark absorption spectroscopy studies were employed for the three complexes, trying to understand the origin of the 915 nm absorption. We found that Tr(∆α) and |∆μ| of both Qy and carotenoid (Car) bands are larger than for other purple bacterial LH complexes reported previously. Moreover, the red shifts of the Qy bands are associated with (1) increasing Tr(∆α) and |∆μ| of the Qy band, (2) the red shift of the Car Stark signal and (3) the increasing |∆μ| of the Car band. Based on the results and the crystal structure, a combined effect of exciton-charge transfer (CT) states mixing, and inhomogeneous narrowing of the BChl a site energy is proposed to be the origin of the 915 nm absorption. CT-exciton state mixing has long been found to be the origin of strong Stark signal in LH1 and special pair, and the more extent of the mixing in Tch. tepidum LH1 is mainly the consequence of the shorter BChl-BChl distances. The less flexible protein structure results in a smaller site energy disorder (inhomogeneous narrowing), which was demonstrated to be able to influence |∆μ| and absorption.

  16. Manifestation of anomalous Floquet states with longevity in dynamic fractional Stark ladder with high AC electric fields

    NASA Astrophysics Data System (ADS)

    Nemoto, Yuya; Ohno, Fumitaka; Maeshima, Nobuya; Hino, Ken-ichi

    2016-09-01

    We examine a resonance structure of Floquet state in dynamic fractional Stark ladder (DFSL) realized in biased semiconductor superlattices driven by a terahertz cw laser on the basis of the R-matrix Floquet theory. To do this, we calculate an excess density of state ρ (ex)(E) corresponding to lifetime of the Floquet state with a fractional matching ratio η, where η is the ratio of a Bloch frequency ΩB to a laser frequency ω, namely, η =ΩB / ω. The results for η = 3 / 2 demonstrate the appearance of discernibly large peaks associated with Floquet states with longevity in a region of relatively high laser-intensity. The underlying physics is discussed in terms of an analytical expression of ρ (ex)(E) and the associated Green function in which ponderomotive couplings are included in a non-perturbative way.

  17. Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift.

    PubMed

    Peng, Xiao-Niu; Zhou, Zhang-Kai; Zhang, Wei; Hao, Zhong-Hua

    2011-11-21

    We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

  18. The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles

    NASA Astrophysics Data System (ADS)

    Sahal-Bréchot, S.; Dimitrijević, M. S.; Moreau, N.; Ben Nessib, N.

    2015-05-01

    Accurate spectroscopic diagnostics and modeling require the knowledge of numerous collisional line profiles. Access to such data via an online database has become indispensable. The STARK-B database is aimed at meeting these needs for widths and shifts of isolated lines of neutral and ionized elements due to electron and ion impacts. This database of the Paris Observatory is a result of scientific cooperation between S Sahal-Bréchot (LERMA) and M S Dimitrijević (AOB). Access to it is free, and it was opened online at the end of 2008. STARK-B is a node of the Virtual Atomic and Molecular Data Centre (VAMDC) and thus complies with VAMDC and Virtual Observatory standards. VAMDC is a European Union-funded collaboration among groups involved in the generation and use of interoperable atomic and molecular data. STARK-B now contains all our semiclassical-perturbation (SCP) calculated data for more than 123 neutral or ionized elements as published in international refereed journals. It is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes, laboratory plasmas, laser equipment, and technological plasmas. Hence, the range of temperatures and densities covered by the tables is broad and depends on the ionization degree of the radiating atom. The modified semiempirical (MSE) results of calculations have begun to be implemented. In this paper, we highlight the key points of the method and the assumptions used in the calculations, which have lately been revisited. Then we present the database and its recent developments, as well as our ongoing work and our plans for the future.

  19. Sub-Doppler Spectra of Infrared Hyperfine Transitions of Nitric Oxide Using a Pulse Modulated Quantum Cascade Laser: Rapid Passage, Free Induction Decay and the AC Stark Effect

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.

  20. Sub-Doppler spectra of infrared hyperfine transitions of nitric oxide using a pulse modulated quantum cascade laser: rapid passage, free induction decay, and the ac Stark effect.

    PubMed

    Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel

    2012-05-07

    Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.

  1. Measurement of Isotope Shifts, Hyperfine Splittings and Stark Shift for the Ytterbium (6S)2 SINGLET-S(0) to (6S6P) TRIPLET-P(1) Transition Using AN Acousto-Optically Modulated Laser Beam.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1995-11-01

    Accurate measurements of isotope shifts, hyperfine splittings and Stark shifts are of interest for studying atomic structure. This thesis reports a new method to precisely measure small frequency intervals. This was done using an acousto-optic modulator to frequency shift part of a laser beam. The frequency shifted and unshifted laser beams were then superimposed and excited an atomic beam. The laser frequency was scanned across the transition while fluorescence produced by the radiative decay of the excited state was detected by a photomultiplier. Each transition generated two peaks in the spectrum separated by the acousto-optic modulation frequency, which permitted the frequency to be calibrated. This method was tested by measuring the isotope shifts and hyperfine splittings of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition at 555.6 nm. The shifts (MHz) relative to ^{176} Yb are: ^{173}Yb {it F}=7/2,-1432.1+/-1.2; ^{171}Yb {it F}=1/2, -1176.9+/-1.1; ^{174}Yb, 953.8+/-1.0; ^{172}Yb 1953.9+/-1.6; ^{170}Yb 3240.4+/-2.8; ^{173}Yb {it F}=5/2,3265.8+/-2.8; ^ {168}Yb, 4611.9+/-4.4; ^ {171,173}Yb {it F}=3/2,4760.1 +/-3.7 where the negative sign indicates that the transition occurs at a lower frequency than in ^{176}Yb. The magnetic dipole (a) and electric quadrupole (b) hyperfine coupling constants (MHz) of the (6s6p) ^3P_1 state for ^{171,173}Yb were determined to be a_{171}=3959.1 +/-3.0, a_{173}=-1094.44+/-0.84 and b_{173}=-827.89+/-0.85. These results were in agreement with the most accurate data found in the literature that were obtained by measuring frequency shifts using a Fabry Perot etalon whose length was stabilized with a helium neon laser locked to an iodine line. In contrast, our method uses cheaper and simpler apparatus. Next, the Stark shift of the ytterbium rm (6s)^2 ^1S_0to(6s6p) ^3P_1 transition was measured by passing the atomic beam through a uniform electric field. The Stark shift rate was found to be -15.419+/-0.048 kHz/(kV/cm)^2. No

  2. Entropy squeezing and atomic inversion in the k-photon Jaynes—Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach

    NASA Astrophysics Data System (ADS)

    H, R. Baghshahi; M, K. Tavassoly; A, Behjat

    2014-07-01

    The interaction between a two-level atom and a single-mode field in the k-photon Jaynes—Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).

  3. Observation on Stark-shifts of Lyman Alpha lines of low-Z ions in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Yamaguchi, N.

    1982-07-01

    The red shifts were observed for Lyman alpha lines of Be IV, B V, C VI, and N VII at an electron density of 5 x 10 to the 21st power cm(-3). The high density plasma ws produced by a 0.1 TW and 100 ps laser irradiation onto a plane target. The shift was measured by comparing the position of highly broadened line center with that of spatially resolved unperturbed one in a single shot photograph. The results are compared with simple theoretical estimations.

  4. Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality dispersive cavity

    SciTech Connect

    Gabris, A.; Agarwal, G.S.

    2005-05-15

    A collective system of atoms in a high-quality cavity can be described by a nonlinear interaction which arises due to the Lamb shift of the energy levels due to the cavity vacuum [Agarwal et al., Phys. Rev. A 56, 2249 (1997)]. We show how this collective interaction can be used to perform quantum logic. In particular we produce schemes to realize controlled-NOT gates not only for two-qubit but also for three-qubit systems. We also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as trapped ions or magnetic molecules.

  5. Stark broadening of Kr UV spectral lines

    SciTech Connect

    Cirisan, M.; Djurovic, S.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2011-01-15

    This work reports new data for the Stark parameters of doubly ionized krypton spectral lines. Stark widths and shifts of Kr iii lines belonging to the UV region (245-300 nm) have been measured. A low-pressure pulsed arc, containing a mixture of 8% krypton and 92% helium, was used as a plasma source. Measured electron densities and electron temperatures were in the range (0.7-2.0)x10{sup 23} m{sup -3} and 16 000-20 000 K, respectively. Experimentally obtained data were compared to theoretical results calculated using simplified modified semiempirical formulas.

  6. Stark shift and electric-field-induced dissociation of excitons in monolayer MoS2 and h BN /MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Haastrup, Sten; Latini, Simone; Bolotin, Kirill; Thygesen, Kristian S.

    2016-07-01

    Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field. The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly, encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (h BN ), enhances the dissociation rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is an effective way to control exciton lifetimes in two-dimensional materials.

  7. The Stark Effect in Linear Potentials

    ERIC Educational Resources Information Center

    Robinett, R. W.

    2010-01-01

    We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z greater than 0 and V(z) = [infinity] for z less than 0) and the symmetric linear potential…

  8. Stark Tuning of Donor Electron Spins of Silicon

    SciTech Connect

    Bradbury, Forrest R.; Tyryshkin, Alexei M.; Sabouret, Guillaume; Bokor, Jeff; Schenkel, Thomas; Lyon, Stephen A.

    2006-03-23

    We report Stark shift measurements for {sup 121}Sb donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on top of a Sb-implanted {sup 28}Si epi-layer are used to apply electric fields. Two Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g-factor. The hyperfine term prevails at X-band magnetic fields of 0.35T, while the g-factor term is expected to dominate at higher magnetic fields. A significant linear Stark effect is also resolved presumably arising from strain.

  9. Stark tuning of donor electron spins in silicon

    SciTech Connect

    Bradbury, F.R.; Tyryshkin, A.M.; Sabouret, G.; Bokor, J.; Schenkel, T.; Lyon, S.A.

    2006-03-12

    We report Stark shift measurements for 121Sb donor electronspins in silicon using pulsed electron spin resonance. Interdigitatedmetal gates on top of a Sb-implanted 28Si epi-layer are used to applyelectric fields. Two Stark effects are resolved: a decrease of thehyperfine coupling between electron and nuclear spins of the donor and adecrease in electron Zeeman g-factor. The hyperfine term prevails atX-band magnetic fields of 0.35T, while the g-factor term is expected todominate at higher magnetic fields. A significant linear Stark effect isalso resolved presumably arising from strain.

  10. Stark shift of the absorption spectra in Ge/Ge1-xSnx/Ge type-I single QW cell for mid-wavelength infra-red modulators

    NASA Astrophysics Data System (ADS)

    Yahyaoui, N.; Sfina, N.; Lazzari, J.-L.; Bournel, A.; Said, M.

    2015-09-01

    For mid-wavelength infra-red (MWIR) modulation or detection applications, we propose α-Sn rich Ge/Ge1-xSnx/Ge a type-I single quantum wells (SQW) partially strain compensated on Ge1-ySny relaxed layers grown onto (0 0 1)-oriented Ge substrate. Such elementary cells with W-like potential profiles of conduction and valence bands have been modeled by solving the one-dimensional Schrödinger equation under an applied external electrical field. First, strain effects on electrons, heavy holes (hh) and light holes (lh) energy bands for strained/relaxed Ge1-xSnx/Ge1-ySny heterointerfaces are investigated using the model-solid theory in the whole ranges (0 ⩽ x, y ⩽ 1) of Sn compositions. From the obtained band-discontinuities, band gaps and effective masses, Ge1-ySny/Ge/Ge0.80Sn0.20/Ge/Ge1-ySny cells are computed as a function of the Ge0.80Sn0.20 well width for three compositions of the Ge1-ySny buffer layer (y = 0.05, 0.07 and 0.09) in order to get the optimum quantum confinement of electrons and holes levels while keeping a reasonable amount of averaged strain in the cell. The electric field effect on the absorption spectra is given. An absorption coefficient in the 6× to 3 × 103 cm-1 range is reasonably obtained for a SQW at room temperature with a rather large Stark shift of the direct transition between 0.46 and 0.38 eV (i.e., λ = 3.26-2.70 μm) at large external fields (50 kV/cm). These characteristics are attractive for the design of MWIR optical modulators.

  11. Why an ac magnetic field shifts the irreversibility line in type-II superconductors.

    PubMed

    Brandt, Ernst Helmut; Mikitik, Grigorii P

    2002-07-08

    We show that for a thin superconducting strip placed in a transverse dc magnetic field--the typical geometry of experiments with high-T(c) superconductors--the application of a weak ac magnetic field perpendicular to the dc field generates a dc voltage in the strip. This voltage leads to the decay of the critical currents circulating in the strip, and eventually the equilibrium state of the superconductor is established. This relaxation is not due to thermally activated flux creep but to the "walking" motion of vortices in the two-dimensional critical state of the strip with in-plane ac field. Our theory explains the shaking effect that was used for detecting phase transitions of the vortex lattice in superconductors.

  12. Si 6142 and 6155 Å lines in stellar atmospheres: Stark broadening effect

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Popović, L. Č.; Ryabchikova, T.

    2002-07-01

    We study the influence of Stark broadening effect on Si I lines in the roAp 10 Aql star, where the lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using by the semi-classical method for two Si I lines: 6142.48 Å and 6155.13 Å. We have adopted SYNTH code to include into account both Stark width and shift for these lines. From comparison of our calculation data with observations we found that Stark broadening plus stratification effect can explain the width and the asymmetry of the Si I lines in the atmosphere of roAp 10 Aql star.

  13. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  14. Acoustically induced stark effect for excitons in intrinsic semiconductors.

    PubMed

    Ivanov, A L; Littlewood, P B

    2001-09-24

    A Stark effect for excitons parametrically driven by coherent acoustic phonons is proposed. Our scheme refers to a low-temperature intrinsic semiconductor or semiconductor nanostructure pumped by an acoustic wave (frequency band nu(ac) approximately equal to 1-40 GHz and intensity range I(ac) approximately equal to 10(-2)-10(2) W/cm(2)) and probed by low-intensity light. Tunable optical band gaps, which strongly change the spectral shape of the exciton line, are induced in the polariton spectrum by acoustic pumping. We develop an exactly solvable model of the acoustic Stark effect and apply our results to GaAs driven by bulk or surface acoustic waves.

  15. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  16. THz stark spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feurer, Thomas; Rohwer, Egmont; Akbarimoosavi, Maryam

    2016-09-01

    Stark spectroscopy has been pioneered many decades ago and is a unique tool to extract information on molecular constants such as changes of dipole moments or polarizabilities upon excitation. Here we introduce a new twist, i.e. THz Stark spectroscopy. In THz fields the electric field vector oscillates on time scales of picoseconds and thus much faster than in conventional Stark spectroscopy. It therefore may allow to distinguish between different electric field contributions by analyzing the dynamics of the THz response. We first demonstrate that conventional THz sources can be boosted by combination with field enhancement structures, reaching field strength of GV/m driving several different materials into the nonlinear response regime. Then we discuss THz fields influencing charge transfer in different molecules.

  17. The STARK-B database VAMDC node

    NASA Astrophysics Data System (ADS)

    Sahal-Bréchot, S.; Dimitrijević, M. S.; Moreau, N.; Nessib, N. Ben

    2017-03-01

    Accurate spectroscopic diagnostics and modelling require the knowledge of numerous collisional line profiles. The access to such data via an on line database is essential. The aim of STARK-B is to meet these needs for widths and shifts of "isolated" lines of neutral and ionized atoms due to electron and ion impacts. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes, laboratory plasmas, laser equipments and technological plasmas. So, the range of temperatures and densities covered by the tables is broad and depends on the ionization degree of the radiating atom. STARK-B is a collaborative project between the Astronomical Observatory of Belgrade (AOB) and the laboratory LERMA at Observatory of Paris, which started at the end of 2008. STARK-B is a database of LERMA and a node of VAMDC (Virtual Atomic and Molecular Data Centre) and thus complies with the standards of the Virtual Observatories. This database opened at the end of 2008. Today, the database contains our calculated data for a various number of transitions of neutral or ionized atoms, published in more than 150 papers in international refereed journals. We continue to implement our previously published data, and the new ones as soon as they are published. A summary of the scientific objectives, the key points of the impact-semiclassical-perturbation method used for the calculations, the current state of development of our ongoing work and our plans for the future objectives of the database are presented. Finally, an example of the results of a query is displayed.

  18. Many-body and stark effects in transition metal dichalcogenides monolayers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav; Zutic, Igor; Perebeinos, Vasili

    2016-10-01

    Inversion symmetry breaking combined with strong spin-orbit coupling in transition metal dichalcogenides such as MoS2 offers important opportunities for spintronics. We investigate excitons in MoS2 monolayers in an applied in-plane electric field. Tight-binding and Bethe-Salpeter equation calculations predict a large quadratic Stark shift. The scaling of the Stark shifts with the exciton binding energy and the dielectric environment provides a path to engineering the MoS2 electro-optical response. Our results suggest that the excitonic Stark effect can be observed experimentally in a MoS2 monolayer and we explain its implications for spintronic devices.

  19. On the shift of the electroluminescence spectra of In{sub x}Ga{sub 1−x}N/GaN structures with various indium contents and various substrate materials caused by the stark effect and mechanical stresses

    SciTech Connect

    Veleschuk, V. P. Vlasenko, A. I.; Kisselyuk, M. P.; Vlasenko, Z. K.; Khmil’, D. N.; Borshch, V. V.

    2015-08-15

    The shift between the maxima of the electroluminescence spectra of In{sub x}Ga{sub 1−x}N/GaN structures is measured at forward and reverse bias depending on the indium content x in the quantum well and on the substrate material (SiC, AuSn/Si, and Al{sub 2}O{sub 3}). It is established that this shift increases as the indium concentration in the In{sub x}Ga{sub 1−x}N layer and mechanical stresses from the substrate increase.

  20. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  1. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  2. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-08-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.

  3. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    PubMed Central

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-01-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007

  4. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Zhu, Kai; ...

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less

  5. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    SciTech Connect

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.

  6. Optical Stark Spectroscopy of Gold Chrolride

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Steimle, Timothy

    2014-06-01

    The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects and electron correlation. Hence it is difficult to predict those properties via electron structure calculation, and such calculation are guided by experimental observations. Here we report on the A(Ω=1)-X1Σ+ and B(Ω=0)-X1Σ+ bands of AuCl, which have been previously recorded at Doppler limited resolution. A cold molecular beam sample was generated and the bands were recorded at high resolution (FWHM =35 MHz) using laser excitation spectroscopy, both field-free and in the presence of a static electric field. An improved set of spectroscopic parameters for the A(Ω=1) and B(Ω=0) states were obtained. The Stark induced shifts were analyzed to determine the permanent electric dipole moments for the X, A, and B states. A comparison with AuF and theory will be made. P. Pyykko; Angew Chem. Int {43} 4412, 2004. L. C. O'Brien, A. L. Elliott, and M. Dulick; J. Mol. Spectrosc, 194, 124, 1999.

  7. Enhanced Quantum Confined Stark Effect in a mesoporous hybrid multifunctional system

    NASA Astrophysics Data System (ADS)

    Gogoi, M.; Deb, P.; Sen, D.; Mazumder, S.; Kostka, A.

    2014-06-01

    Quantum Confined Stark Effect in hybrid of CdTe quantum dot with superparamagnetic iron oxide nanoparticles in both nonporous and mesoporous silica matrix has been realized. The observed QCSE is due to the local electric field induced by charge dispersion at SiO2/polar solvent interface. Enhanced Stark shift of 89.5 meV is observed in case of mesoporous hybrid structure and the corresponding local electric field has been evaluated as 4.38×104 V/cm. The enhancement is assumed to be caused by greater density of charge in the mesoporous hybrid. The conjugation of superparamagnetic nanoparticles in this tailored hybrid microstructure has not imparted any alteration to the Stark shift, but has added multifunctional attribute. The present study on the local electric field induced enhanced QCSE with wavelength modulation towards red end paves the way of developing magneto-fluorescent hybrid systems for biomedical imaging application.

  8. Transverse stability in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y. T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2006-02-15

    The concept of phase stability in a Stark decelerator ensures that polar molecules can be accelerated, guided, or decelerated without loss; molecules within a certain position and velocity interval are kept together throughout the deceleration process. In this paper the influence of the transverse motion on phase stability in a Stark decelerator is investigated. For typical deceleration experiments--i.e., for high values of the phase angle {phi}{sub 0}--the transverse motion considerably enhances the region in phase space for which phase stable deceleration occurs. For low values of {phi}{sub 0}, however, the transverse motion reduces the acceptance of a Stark decelerator and unstable regions in phase space appear. These effects are quantitatively explained in terms of a coupling between the longitudinal and transverse motion. The predicted longitudinal acceptance of a Stark decelerator is verified by measurements on a beam of OH (X {sup 2}{pi}{sub 3/2},J=3/2) radicals passing through a Stark decelerator.

  9. Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.

    PubMed

    Waldl, Maria; Oppel, Markus; González, Leticia

    2016-07-14

    Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.

  10. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect

    Thorman, Alex; Michael, Clive; Howard, John

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  11. Measurement of linear stark interference in 199Hg.

    PubMed

    Loftus, T H; Swallows, M D; Griffith, W C; Romalis, M V; Heckel, B R; Fortson, E N

    2011-06-24

    We present measurements of Stark interference in the (61)S(0)→6(3)P(1) transition in (199)Hg, a process whereby a static electric field E mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to E-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, a(SI) = (a(M1) + a(E2)) = (5.8 ± 1.5) × 10(-9) (kV / cm)(-1), agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the (199)Hg EDM search apparatus to resolve nontrivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.

  12. Measurement of Linear Stark Interference in {sup 199}Hg

    SciTech Connect

    Loftus, T. H.; Swallows, M. D.; Griffith, W. C.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2011-06-24

    We present measurements of Stark interference in the 6{sup 1}S{sub 0}{yields}6{sup 3}P{sub 1} transition in {sup 199}Hg, a process whereby a static electric field E mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to E-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, a{sub SI}=(a{sub M1}+a{sub E2})=(5.8{+-}1.5)x10{sup -9} (kV/cm){sup -1}, agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the {sup 199}Hg EDM search apparatus to resolve nontrivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.

  13. Light shift measurements in a Cesium Fountain without the use of mechanical shutters

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Enzer, D. G.; Klipstein, W. M.

    2005-01-01

    We present measurements confirming operation of a cesium fountain frequency standard with light shift below 10^-15 (and with evidence suggesting it is several orders of magnitude below this level) but without the use of mechanical shutters. Suppression of the light shift is realized using a master-slave laser configuration by reducing the overall optical power delivered to the physics package as well as spoiling the injection of the slave, causing it to lase far off resonance (1-2 nm) as proposed by the authors several years ago [l]. In the absence of any mitigation, this (AC Stark) shift, due to near-resonant laser light reaching the atoms during their microwave interrogation period, is the largest shift in such frequency standards (2x10^-11 for Our fountain). Mechanical shutters provided adequate light attenuation but have been prone to failure.

  14. Design of the Tore Supra motional Stark effect diagnostic

    NASA Astrophysics Data System (ADS)

    Lotte, Ph.; Echard, B.; Hess, W.; Migozzi, J. B.

    2006-10-01

    This article describes the overall design of the motional Stark effect diagnostic on Tore Supra (not water cooled in its first version) and the results obtained. The diagnostic is composed of nine viewing lines measuring the plasma every 8cm with a spatial resolution varying from 3to6cm. A tube placed inside the port adjacent to the neutral beam contains a stainless-steel mirror and SFL6 optic lenses that carry the image of the neutral beam towards the optical fibers. On Tore Supra the diagnostics having components inside the machine have to face thermal load difficulties linked with the long shots, and this will be the case for ITER diagnostics. This is why for safety reasons the insulating window is placed at the rear side of the tube, and consequently the optics is under the machine vacuum. For motional Stark effect, before reaching the thermal limits on the components, a first limitation comes from the polarization modifications induced by the temperature gradients on the lenses (birefringence effect). This limitation is estimated in terms of plasma duration. The associated diagnostic neutral beam (60keV, 400kW, 5s) works in hydrogen for a higher velocity and a better plasma penetration. As a consequence the beam spectrum exhibits a large Doppler shift and a clear separation of the Stark components. The detection uses the classical elements of the polarimetry method, wide aperture photoelastic modulators, linear polarizer, narrow interference filters, and photomultipliers. The signal is processed digitally (250kHz) for the extraction of the Fourier components that allow the calculation of the magnetic field pitch angles. The first measurements obtained during Ohmic shots for various plasma currents are in good agreement with the current diffusion calculations done with the CRONOS code.

  15. Laser-assisted Stark deceleration of polar diatomic molecules in the Χ1Σ state

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Xu, Shuwu; Yang, Xiaohua

    2016-07-01

    The traditional Stark deceleration method is difficult to apply in chemically stable polar diatomic molecules in their ground (Χ1Σ) state because the Χ1Σ state normally experiences little Stark shift and the rovibronic ground level is mostly high-field-seeking. To solve this problem, we propose a laser-assisted Stark deceleration scheme to decelerate such molecules in the present paper. Our results show that, owing to the transverse bunching effect of the applied red-detuning laser beam, the molecules of the high-field-seeking level |J = 0, M = 0> in the Χ1Σ state can be effectively decelerated. Furthermore, the present scheme is more effective because the interaction between the molecules and the combined fields can produce the pseudo-first-order Stark effect, and thus increase the depth of the effective potential. Compared to those molecules in the low-field-seeking state |J = 1, MΩ = -1> in the usual electrostatic Stark deceleration, a higher molecular density and lower velocity can be achieved under an equivalent initial phase angle.

  16. Nominees Serve Up Stark Differences on Education

    ERIC Educational Resources Information Center

    Klein, Alyson

    2012-01-01

    During the recently concluded presidential nominating conventions, President Barack Obama and former Massachusetts Gov. Mitt Romney offered stark choices on K-12 policy while downplaying areas of agreement between their two parties--and the tensions within each party on education issues. In Charlotte, North Carolina, last week, the Democrats put a…

  17. Radial Stark Effect in (In,Ga)N Nanowires.

    PubMed

    Lähnemann, Jonas; Corfdir, Pierre; Feix, Felix; Kamimura, Jumpei; Flissikowski, Timur; Grahn, Holger T; Geelhaar, Lutz; Brandt, Oliver

    2016-02-10

    We study the luminescence of unintentionally doped and Si-doped InxGa1-xN nanowires with a low In content (x < 0.2) grown by molecular beam epitaxy on Si substrates. The emission band observed at 300 K from the unintentionally doped samples is centered at much lower energies (800 meV) than expected from the In content measured by X-ray diffractometry and energy dispersive X-ray spectroscopy. This discrepancy arises from the pinning of the Fermi level at the sidewalls of the nanowires, which gives rise to strong radial built-in electric fields. The combination of the built-in electric fields with the compositional fluctuations inherent to (In,Ga)N alloys induces a competition between spatially direct and indirect recombination channels. At elevated temperatures, electrons at the core of the nanowire recombine with holes close to the surface, and the emission from unintentionally doped nanowires exhibits a Stark shift of several hundreds of meV. The competition between spatially direct and indirect transitions is analyzed as a function of temperature for samples with various Si concentrations. We propose that the radial Stark effect is responsible for the broadband absorption of (In,Ga)N nanowires across the entire visible range, which makes these nanostructures a promising platform for solar energy applications.

  18. Stark effect, polarizability, and electroabsorption in silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun; Kulakci, Mustafa; Turan, Raşit

    2010-03-01

    Demonstrating the quantum-confined Stark effect (QCSE) in silicon nanocrystals (NCs) embedded in oxide has been rather elusive, unlike the other materials. Here, the recent experimental data from ion-implanted Si NCs is unambiguously explained within the context of QCSE using an atomistic pseudopotential theory. This further reveals that the majority of the Stark shift comes from the valence states which undergo a level crossing that leads to a nonmonotonic radiative recombination behavior with respect to the applied field. The polarizability of embedded Si NCs including the excitonic effects is extracted over a diameter range of 2.5-6.5 nm, which displays a cubic scaling, α=cDNC3 , with c=2.436×10-11C/(Vm) , where DNC is the NC diameter. Finally, based on intraband electroabsorption analysis, it is predicted that p -doped Si NCs will show substantial voltage tunability, whereas n -doped samples should be almost insensitive. Given the fact that bulk silicon lacks the linear electro-optic effect as being a centrosymmetric crystal, this may offer a viable alternative for electrical modulation using p -doped Si NCs.

  19. Optical Stark Spectroscopy of Chloro-Methylene HCCl

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiujuan; Steimle, Timothy C.; Wang, Zhong

    2011-06-01

    The optical spectrum of chloro-methylene, HCCl, has been studied for more than 40 years by both conventional and laser-based spectroscopy. Surprisingly, numerous visible bands have yet to be characterized, due in part to known perturbations. Furthermore, the permanent electric dipole moment, μEl, for any state has yet to be determined. Here we report on the field-free and optical Stark spectrum of the tilde{A}1A'' (060)- tilde{X}1A '(000) band system. A cold molecular beam sample was produced by skimming the output of a pulsed discharge source and the spectrum recorded at a resolution of approximately 30 MHz via LIF detection. The field-free spectrum was analyzed to produce an improved set of spectroscopic parameters for the tilde{A}1A''(060)state. The Stark induced shifts were analyzed to determine the values of the a-component of μEl for the tilde{X}1A^ {'}(000)state of 0.498(8)D. Small perturbations in the tilde{A}1A''(060)state will be described. A. J. Merer and D.N. Travis Can. J. Phys., 44, 525 1966. M.Kakimoto, S.Saito and E. Hirota J.Mol.Spectrosc., 97, 194 1983. B.-C.Chang and T. Sears J.Mol.Spectrosc., 173, 391 1995. H. Fan, I. Ionescu, C. Annesley, J. Cummins, M. Bowers and S. A. Reid J.Mol.Spectrosc., 225, 43 2004.

  20. Atomic Clock with 1 ×10-18 Room-Temperature Blackbody Stark Uncertainty

    NASA Astrophysics Data System (ADS)

    Beloy, K.; Hinkley, N.; Phillips, N. B.; Sherman, J. A.; Schioppo, M.; Lehman, J.; Feldman, A.; Hanssen, L. M.; Oates, C. W.; Ludlow, A. D.

    2014-12-01

    The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of 5.5 ×10-19 . Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now 1 ×10-18. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.

  1. Full color modulation of firefly luciferase through engineering with unified Stark effect.

    PubMed

    Cai, Duanjun; Marques, Miguel A L; Nogueira, Fernando

    2013-11-07

    The firefly luciferase has been a unique marking tool used in various bioimaging techniques. Extensive color modulation is strongly required to meet special marking demands; however, intentional and accurate wavelength tuning has yet to be achieved. Here, we demonstrate that the color shift of the firefly chromophore (OxyLH2-1) by internal and external fields can be described as a unified Stark shift. Electrostatic microenvironmental effects on fluorescent spectroscopy are modeled in vacuo through effective electric fields by using time-dependent density functional theory. A complete visible fluorescence spectrum of firefly chromophore is depicted, which enables one to control the emission in a specific color. As an application, the widely observed pH-correlated color shift is proved to be associated with the local Stark field generated by the trace water-ions (vicinal hydronium and hydroxide ions) at active sites close to the OxyLH2-1.

  2. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  3. Excitonic Stark effect in MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav; Žutić, Igor; Perebeinos, Vasili

    2016-12-01

    We theoretically investigate excitons in MoS2 monolayers in an applied in-plane electric field. Tight-binding and Bethe-Salpeter equation calculations predict a quadratic Stark shift, of the order of a few meV for fields of 10 V/μ m , in the linear absorption spectra. The spectral weight of the main exciton peaks decreases by a few percent with an increasing electric field due to the exciton field ionization into free carriers as reflected in the exciton wave functions. Subpicosecond exciton decay lifetimes at fields of a few tens of V/μ m could be utilized in solar energy harvesting and photodetection. We find simple scaling relations of the exciton binding, radius, and oscillator strength with the dielectric environment and an electric field, which provides a path to engineering the MoS2 electro-optical response.

  4. Stark broadening effect and zirconium conflict problem

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Popović, Luka Č.; Milovanović, Nenad

    2001-04-01

    Using the Modified Semiempirical Method we have calculated the electron-impact widths for four singly and doubly ionized zirconium UV lines of astrophysical importance. Using the SYNTH and ATLAS9 codes for stellar atmospheres similar to that of the HgMn star χ Lupi we have synthesized the line profiles and found equivalent widths for these lines. The influence of the Stark broadening effect on abundance determination and its contribution to the so-called ``zirconium conflict'' are discussed. .

  5. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  6. Stark parameters irregularities of Xe II lines obtained by transitions from ({sup 3}P{sub 1})6plevels

    SciTech Connect

    Mar, S.; Pelaez, R. J.; Rodriguez, F.; Aparicio, J. A.

    2008-10-22

    Stark widths and shifts of some Xe II lines belonging to the supermultiplets with upper levels ({sup 3}P{sub 1})6p were measured using a pulsed discharge lamp. Plasma parameters, i.e. electron density and temperature, in this experiment were in the range from 0.2 to 1.4x10{sup 23} m{sup -3} and from 18000 to 23000 K, respectively. Lines obtained by transitions from levels ({sup 3}P{sub 1})6p show some strong intra-supermultiplet irregularities in their Stark widths and shifts. These results and the measurements obtained in previous works were used here to analyse the main irregularities that can appear in the case of Xe II. This study may be very useful for obtaining Stark parameters of non-measured lines, using the known parameters of other lines belonging to similar transitions.

  7. Stark Broadening Of Heavy Metal Spectral Lines In Atmospheres Of Chemically Peculiar Stars

    NASA Astrophysics Data System (ADS)

    Simic, Z.

    2010-07-01

    Data on the Stark broadening of heavy metal spectral lines are of interest not only for laboratory but also for astrophysical plasma research as e.g. for stellar spectra analysis and synthesis. Here, we investigated theoretically the influence of collisions with charged particles on heavy metal spectral line profiles for Te I, Cr II, Mn II, Au II, Cu III, Zn III, Se III, In III and Sn III in spectra of A stars and white dwarfs. We applied semiclassical theory of Sahal-Bréchot since the most of published results in literature until now are determined using this method. When it can not be applied in an adequate way, due to the lack of reliable atomic data, we used modified semiempirical theory of Dimitrijevic & Konjevic, Dimitrijevic & Králjanin. Stark broadening parameters, widths and shifts, were obtained for spectral lines of neutral emitter Te I, singly charged emitters Cr II, Mn II and Au II and doubly charged emitters Cu III, Zn III, Se III, In III and Sn III. We considered as well the contributions of different collision processes to the total Stark width in comparison with Doppler one. In this case we obtained distributions for elastic, strong, inelastic collisions from upper and lower levels. For example, chromium lines are interesting due to their presence in stellar atmospheres, so that they give possibility to determine chromium abundance and investigate chromium stratification in stelar atmospheres and to be used for the diagnostics of stellar plasma and for more rafined synthesis of stellar spectra. We consider the effect of Stark broadening on the shapes of Cr II spectral lines observed in the spectra of stars in the middle part of the main sequence. Stark broadening parameters were calculated by the semic- lassical perturbation approach. For stellar spectra synthesis, the improved version SYNTH3 of the code SYNTH for synthetic spectrum calculations was used. Stark broadening parameters for Cr II spectral lines of seven multiplets belonging to 4s-4p

  8. Stark broadening of heavy metal spectral lines in atmospheres of chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Simić, Zoran

    2010-11-01

    Data on the Stark broadening of heavy metal spectral lines are of interest not only for laboratory but also for astrophysical plasma research as e.g. for stellar spectra analysis and synthesis. Here, we investigated theoretically the influence of collisions with charged particles on heavy metal spectral line profiles for Te I, Cr II, Mn II, Au II, Cu III, Zn III, Se III, In III and Sn III in spectra of A stars and white dwarfs. We applied semiclassical theory of Sahal-Bréchot since the most of published results in literature until now are determined using this method. When it can not be applied in an adequate way, due to the lack of reliable atomic data, we used modified semiempirical theory of Dimitrijević & Konjević, Dimitrijević & Kršljanin. Stark broadening parameters, widths and shifts, were obtained for spectral lines of neutral emitter Te I, singly charged emitters Cr II, Mn II and Au II and doubly charged emitters Cu III, Zn III, Se III, In III and Sn III. We considered as well the contributions of different collision processes to the total Stark width in comparison with Doppler one. In this case we obtained contributions for elastic, strong and inelastic collisions for upper and lower levels. For example, chromium lines are interesting due to their presence in stellar atmospheres, so that they give possibility to determine chromium abundance and investigate chromium stratification in stelar atmospheres and to be used for the diagnostics of stellar plasma and for more refined synthesis of stellar spectra. We consider the effect of Stark broadening on the shapes of Cr II spectral lines observed in the spectra of stars in the middle part of the main sequence. Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version SYNTH3 of the code SYNTH for synthetic spectrum calculations was used. Stark broadening parameters for Cr II spectral lines of seven multiplets belonging to 4s

  9. Electrostatically Shielded Quantum Confined Stark Effect Inside Polar Nanostructures

    PubMed Central

    2009-01-01

    The effect of electrostatic shielding of the polarization fields in nanostructures at high carrier densities is studied. A simplified analytical model, employing screened, exponentially decaying polarization potentials, localized at the edges of a QW, is introduced for the ES-shielded quantum confined Stark effect (QCSE). Wave function trapping within the Debye-length edge-potential causes blue shifting of energy levels and gradual elimination of the QCSE red-shifting with increasing carrier density. The increase in the e−h wave function overlap and the decrease of the radiative emission time are, however, delayed until the “edge-localization” energy exceeds the peak-voltage of the charged layer. Then the wave function center shifts to the middle of the QW, and behavior becomes similar to that of an unbiased square QW. Our theoretical estimates of the radiative emission time show a complete elimination of the QCSE at doping densities ≥1020 cm−3, in quantitative agreement with experimental measurements. PMID:20596407

  10. Engineering Stark Potentials for Precision Measurements: Optical Lattice Clock and Electrodynamic Surface Trap

    SciTech Connect

    Katori, Hidetoshi; Takamoto, Masao; Hachisu, Hidekazu; Fujiki, Jun; Higashi, Ryoichi; Yasuda, Masami; Kishimoto, Tetsuo

    2005-05-05

    Employing the engineered electric fields, we demonstrate novel platforms for precision measurements with neutral atoms. (1) Applying the light shift cancellation technique, atoms trapped in an optical lattice reveal 50-Hz-narrow optical spectrum, yielding nearly an order of magnitude improvement over existing neutral-atom-based clocks. (2) Surface Stark trap has been developed to manipulate scalar atoms that are intrinsically robust to decoherence.

  11. Experimental measurements of Stark widths for Mn I lines in long laser spark

    NASA Astrophysics Data System (ADS)

    Popov, Andrey M.; Akhmetzhanov, Timur F.; Labutin, Timur A.; Zaytsev, Sergey M.; Zorov, Nikita B.; Chekalin, Nikolay V.

    2016-11-01

    We report the experimental Stark widths of Mn I lines belonging to multiplets z6P° → a6S and z6D° → a6D in long spark induced by laser. We have used aluminum alloy containing 80 ppm of manganese as a target to avoid strong self-absorption of Mn I lines. Its absence was proved by the comparison of observed intensities with relative strengths of lines within multiplets. Electron density of plasma estimated by Mg I (5172.68 Å) and Al II (2816.18 Å) lines was within the range of (4-30) × 1016 cm- 3. The shortest possible gate allowed the observation of symmetric atomic and ionic lines. The spatial profiles of plasma temperature and electron density along the axis of long spark demonstrated that both values were lower than for spherical plasma. Measured Stark widths of resonance multiplet z6P° → a6S decrease from 0.075 Å for its first component to 0.055 Å for the last one, while Stark widths of components of multiplet z6D° → a6D increase from 0.095 Å to 0.125 Å. No Stark shifting was observed for the studied multiplets.

  12. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported.

  13. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2

    PubMed Central

    Sim, Sangwan; Lee, Doeon; Noh, Minji; Cha, Soonyoung; Soh, Chan Ho; Sung, Ji Ho; Jo, Moon-Ho; Choi, Hyunyong

    2016-01-01

    The optical Stark effect is a coherent light–matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states. PMID:27857053

  14. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  15. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2

    NASA Astrophysics Data System (ADS)

    Sim, Sangwan; Lee, Doeon; Noh, Minji; Cha, Soonyoung; Soh, Chan Ho; Sung, Ji Ho; Jo, Moon-Ho; Choi, Hyunyong

    2016-11-01

    The optical Stark effect is a coherent light-matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states.

  16. Ro-vibrational Stark effect on H2 and D2 molecules adsorbed in NaA zeolite

    NASA Astrophysics Data System (ADS)

    Bras, N.

    1999-03-01

    In order to explain the induced infrared bands of H2 and D2 adsorbed in NaA zeolites the Stark effect on the ro-vibrational levels of these molecules is considered for electric fields created by various charge distributions. The shift and intensity of the induced ro-vibration transitions are calculated.

  17. The MAST motional Stark effect diagnostic.

    PubMed

    Conway, N J; De Bock, M F M; Michael, C A; Walsh, M J; Carolan, P G; Hawkes, N C; Rachlew, E; McCone, J F G; Shibaev, S; Wearing, G

    2010-10-01

    A motional Stark effect (MSE) diagnostic is now installed and operating routinely on the MAST spherical tokamak, with 35 radial channels, spatial resolution of ∼2.5 cm, and time resolution of ∼1 ms at angular noise levels of ∼0.5°. Conventional (albeit very narrow) interference filters isolate π or σ polarized emission. Avalanche photodiode detectors with digital phase-sensitive detection measure the harmonics of a pair of photoelastic modulators operating at 20 and 23 kHz, and thus the polarization state. The π component is observed to be significantly stronger than σ, in reasonably good agreement with atomic physics calculations, and as a result, almost all channels are now operated on π. Trials with a wide filter that admits the entire Stark pattern (relying on the net polarization of the emission) have demonstrated performance almost as good as the conventional channels. MSE-constrained equilibrium reconstructions can readily be produced between pulses.

  18. Atomic Models for Motional Stark Effects Diagnostics

    SciTech Connect

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  19. Motional Stark effect diagnostics for KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, J.; Ko, J.; Howard, J.; Michael, C.; von Nessi, G.; Thorman, A.; De Bock, M. F. M.

    2014-10-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch-angle profile in neutral-beam-heated plasmas. The diagnostic relies upon the measurement of the polarization direction of Stark-split D-alpha emission from injected fast neutral atoms in a magnetic field. Measurements of the magnetic pitch angle are used with magnetic equilibrium reconstruction codes such as EFIT to calculate the safety factor in shaped plasmas. The MSE diagnostic is important for determining the shape of the q profile to optimize confinement and stability, and it has become a key element in high-performance tokamaks. For the purpose of achieving the high-performance operating region in the Korea Superconducting Tokamak Advanced Research KSTAR device, two types of methods are being studied. In KSTAR, a multichord PEM (photo-elastic modulator)-based MSE system is being developed, and an imaging MSE polarimetry system using the coherence imaging technique has been showing promising initial results during the last two KSTAR experimental campaigns in 2012 and 2013, respectively. In this paper, we describe the progress of the KSTAR MSE diagnostics.

  20. Reframing violence against women as a human rights violation: Evan Stark's Coercive Control.

    PubMed

    Libal, Kathryn; Parekh, Serena

    2009-12-01

    Evan Stark claims that partner-perpetrated physical abuse and other forms of violence against women ought to be understood as a human rights violation. The authors engage Stark's rhetorically powerful political and analytical innovation by outlining one theoretical and one practical challenge to shifting the paradigm that researchers, advocates, and policy makers use to describe, explain, and remedy the harms of coercive control from misdemeanor assault to human rights violation. The theoretical challenge involves overcoming the public/ private dichotomy that underpins liberal conceptions of human rights.The practical challenge involves using the human rights framework in the United States, given public indifference to human rights rhetoric or law, reluctance of U.S. policy makers to submit to scrutiny or justice-oriented processes under international law on issues of human rights and especially war crimes, and the consequent U.S. legacy of refusal to participate meaningfully in the international human rights process. The authors conclude that employing a human rights framework holds potential in the United States, but the paradigm shift Stark advocates will not materialize without widespread mobilization of interest in and understanding of human rights among domestic violence advocates and the society in general.

  1. Significance of decay mechanism into continuum in dynamical Wannier-Stark ladder

    SciTech Connect

    Nemoto, Yuya; Maeshima, Nobuya; Hino, Ken-ichi

    2013-12-04

    We examine the resonance structure of photodressed electron states of laser-driven Wannier-Stark ladder, namely, dynamic Wannier-Stark ladder, in terms of the excess density of states (DOS) closely related to a lifetime of the state of concern. It is revealed that the resonance structure in the strong laser-field region shows clear dependence on the ratio, η, of a Bloch-frequency to a laser frequency. As the laser strength increases, for η = 1, the excess DOS becomes involved with a lot of newly-growing resonance peaks. This result would be understood from the viewpoint of a Fano-like decay-mechanism caused by a multichannel continuum effect, in marked contrast to the cases of larger η’s; for η = 3, the excess DOS just is found to show a pronounced red-shift of a single dominant peak caused by a single-channel continuum effect.

  2. 1. VIEW LOOKING WEST AT STARK MILL WAREHOUSES FROM ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING WEST AT STARK MILL WAREHOUSES FROM ROOF OF MILL. THE WAREHOUSES WERE BUILT USING SLOW-BURNING TIMBER AND BRICK CONSTRUCTION AND INCLUDED THE PICKER ROOM. NOTE ORIGINAL WATER TANK ON LEFT AND BOILER STACK IN RIGHT BACKGROUND. - Stark Mill, Warehouses, 117 Corinth Road, Hogansville, Troup County, GA

  3. 1. VIEW FROM ROOF OF MILL LOOKING SOUTHWEST AT STARK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW FROM ROOF OF MILL LOOKING SOUTHWEST AT STARK MILL HOUSING ON CORINTH ROAD. THESE FRONT GABLE BUNGALOWS WERE BUILT AS OVERSEERS HOUSES FOR NEW ENGLAND SOUTHERN MILLS IN HOGANSVILLE IN 1923-1924. THE MILL ENGINEERS FOR STARK MILL, LOCKWOOD GREENE COMPANY, ALSO BUILT THE NEW WORKER HOUSING. - 110 Corinth Road (House), 110 Corinth Road, Hogansville, Troup County, GA

  4. Real-space pseudopotential method for computing the vibrational Stark effect

    NASA Astrophysics Data System (ADS)

    Garrett, Benjamin F.; Azuri, Ido; Kronik, Leeor; Chelikowsky, James R.

    2016-11-01

    The vibrational Stark shift is an important effect in determining the electrostatic environment for molecular or condensed matter systems. However, accurate ab initio calculations of the vibrational Stark effect are a technically demanding challenge. We make use of density functional theory constructed on a real-space grid to expedite the computation of this effect. Our format is especially advantageous for the investigation of small molecules in finite fields as cluster boundary conditions eliminate spurious supercell interactions and allow for charged systems, while convergence is controlled by a single parameter, the grid spacing. The Stark tuning rate is highly sensitive to the interaction between anharmonicity in a vibrational mode and the applied field. To ensure this subtle interaction is fully captured, we apply three parallel approaches: a direct finite field, a perturbative method, and a molecular dynamics method. We illustrate this method by applying it to several small molecules containing C-O and C-N bonds and show that a consistent result can be obtained.

  5. Real-space pseudopotential method for computing the vibrational Stark effect.

    PubMed

    Garrett, Benjamin F; Azuri, Ido; Kronik, Leeor; Chelikowsky, James R

    2016-11-07

    The vibrational Stark shift is an important effect in determining the electrostatic environment for molecular or condensed matter systems. However, accurate ab initio calculations of the vibrational Stark effect are a technically demanding challenge. We make use of density functional theory constructed on a real-space grid to expedite the computation of this effect. Our format is especially advantageous for the investigation of small molecules in finite fields as cluster boundary conditions eliminate spurious supercell interactions and allow for charged systems, while convergence is controlled by a single parameter, the grid spacing. The Stark tuning rate is highly sensitive to the interaction between anharmonicity in a vibrational mode and the applied field. To ensure this subtle interaction is fully captured, we apply three parallel approaches: a direct finite field, a perturbative method, and a molecular dynamics method. We illustrate this method by applying it to several small molecules containing C-O and C-N bonds and show that a consistent result can be obtained.

  6. Preparations for the motional Stark effect diagnostic on EAST

    SciTech Connect

    Fu, J.; Li, Y. Y.; Lyu, B. Sheng, P.; Wan, B. N.; Zhang, Y.; Yin, X. H.; Yu, Y.; Ye, M. Y.; Shi, Y. J.

    2014-11-15

    Measurement and control of the current profile is essential for high performance and steady state operation of Experimental Advanced Superconducting Tokamak (EAST). For this purpose, a conventional Motional Stark Effect (MSE) diagnostics utilizing photoelastic modulators is proposed and investigated. The pilot experiment includes one channel to verify the feasibility of MSE, whose sightline intersects with Neutral Beam Injection at major radius of R = 2.12 m. A beam splitter is adopted for simultaneous measurements of Stark multiplets and their polarization directions. A simplified simulation code was also developed to explore the Stark splitting spectra. Finally, the filter is optimized based on the viewing geometry and neutral beam parameters.

  7. Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy.

    PubMed

    Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R

    2007-09-28

    A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.

  8. Pressure Shift and Gravitational RedShift of Balmer Lines in White Dwarfs: Rediscussion

    NASA Astrophysics Data System (ADS)

    Halenka, Jacek; Olchawa, Wieslaw; Madej, Jerzy; Grabowski, Boleslaw

    2015-08-01

    The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of Hα and Hβ Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of Hβ) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the Hα line, the present value of Stark-induced shift of the synthetic Hα line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the Hβ line, the present value of Stark-induced shift of the synthetic Hβ line profile is about twice the previous one. The source of this extra shift is the asymmetry of Hβ peaks. In memory of Jan Jerzy Kubikowski (1927-1968)—one of the pioneers of plasma in astrophysics.

  9. Measurements of some ZnII Stark widths

    SciTech Connect

    Mayo, R.; Ortiz, M.

    2008-10-22

    The Stark broadening parameters of six lines of Zn II (4 measured for the first time) have been measured in a plasma produced by ablation of a Cd-Zn alloy with a Nd:YAG laser. The broadening parameters were obtained in molecular Argon at 6 Torr. A Boltzmann plot was used to obtain the plasma temperature and published values of the Stark broadening in Cd II and Saha's equation to obtain the electron density. The Local Thermodynamic Equilibrium condition was checked. Contributions to broadening arising from a mechanism different from the Stark broadening as well as self-absorption influence were estimated for every studied line. A comparison is made with previous experimental values and recent theoretical estimates of the Stark broadening where possible.

  10. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    SciTech Connect

    He Yonglin

    2011-11-15

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  11. Stark Widths Of Ionized Xenon UV Lines Of Low Intensity

    SciTech Connect

    Cirisan, M.; Djurovic, S.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2007-04-23

    Stark width measurements of several low intensity Xe II spectral lines (5d - 4f transitions) in UV region, are presented here for the first time. These measurements were obtained from helium - xenon pulsed arc plasma.

  12. Case studies on recent Stark broadening calculations and STARK-B database development in the framework of the European project VAMDC (Virtual Atomic and Molecular Data Center)

    NASA Astrophysics Data System (ADS)

    Sahal-Bréchot, S.

    2010-11-01

    Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.

  13. 1. VIEW LOOKING NORTHWEST AT MAIN ELEVATION OF STARK MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTHWEST AT MAIN ELEVATION OF STARK MILL, A REINFORCED CONCRETE MILL BUILT BY NEW ENGLAND SOUTHERN MILLS IN 1923-24. THE MILL WAS DESIGNED BY LOCKWOOD GREENE ENGINEERS, AND CONTAINED 35,000 SPINDLES FOR MAKING TIRE FABRICS. PART OF THE WEAVING WOULD TAKE PLACE AT HOGANSVILLE MILL (BUILT c. 1900), ANOTHER NEW ENGLAND SOUTHERN MILL NEARBY, UNTIL THE DEMOLITION OF THAT MILL IN THE 1970s. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA

  14. Stark laws and fair market value exceptions: an introduction.

    PubMed

    Siebrasse, Paul B

    2007-01-01

    This article will focus on one aspect of complexity in modern healthcare, namely the implications of Stark laws and other fraud and abuse provisions, including anti-kickback statutes and HIPAA. Also, this article explores the prevalence of fair market value as an exception in the Stark laws and discusses the meanings of those exceptions. Finally, the article explores basic approaches to assessing fair market value, including cost, income, and marketing approaches.

  15. Solid state optical refrigeration using stark manifold resonances in crystals

    DOEpatents

    Seletskiy, Denis V.; Epstein, Richard; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2017-02-21

    A method and device for cooling electronics is disclosed. The device includes a doped crystal configured to resonate at a Stark manifold resonance capable of cooling the crystal to a temperature of from about 110K to about 170K. The crystal host resonates in response to input from an excitation laser tuned to exploit the Stark manifold resonance corresponding to the cooling of the crystal.

  16. Theoretical and experimental investigation of the light shift in Ramsey coherent population trapping

    NASA Astrophysics Data System (ADS)

    Yano, Yuichiro; Gao, Wujie; Goka, Shigeyoshi; Kajita, Masatoshi

    2014-07-01

    The ac Stark shift (or light shift) of the 62S1/2(F=3↔4) transition in 133Cs, as observed through coherent population trapping under pulsed excitation, is measured using a 133Cs gas cell and the D1-line vertical-cavity surface-emitting laser. This light shift can be calculated using density-matrix analysis. We derive an expression for this shift as a function of light intensity, showing that it varies linearly with respect to light intensity only with intensities higher than 1.0 mW/cm2. For pulsed excitation of high laser intensity, the variation in light shift is 20 times lower than that when using a continuous wave. The differences between the results of theory and experiment are discussed, taking into account the difference in conditions assumed; the results from theoretical analysis, taking the attenuation of the first-order sideband into account, approximately agree with the experimental results. The light shift is reduced by shortening the observation times.

  17. Case Studies On Recent Stark Broadening Calculations And Stark-B Database Development In The Framework Of The European Project Vamdc (Virtual Atomic And Molecular Data Center)

    NASA Astrophysics Data System (ADS)

    Sahal-Bréchot, S.

    2010-07-01

    Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelisation. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous collisional line profiles, especially for very weakly abundant atoms and ions that are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method is indispensable for obtaining numerous results. Ab initio quantum calculations are also a useful domain of development, especially for ion emitters. Nowadays, the access to such data via an on line database becomes indispensable. The Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu) is a European Union funded collaboration between groups involved in the generation and use of atomic and molecular data. VAMDC aims to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. In this framework, the Stark-B (http://starkb.obspm.fr) database, which is a part of VAMDC, is a collaborative project between the Astronomical Observatory of Belgrade and the Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA). It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions (i.e. impacts are separated in time). This database is devoted to modelisation and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to

  18. Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure.

    PubMed

    Chakraborty, Chitraleema; Goodfellow, Kenneth M; Dhara, Sajal; Yoshimura, Anthony; Meunier, Vincent; Vamivakas, A Nick

    2017-03-16

    The optical properties of atomically thin semiconductor materials have been widely studied because of the isolation of monolayer transition metal dichalcogenides (TMDCs). They have rich optoelectronic properties owing to their large direct bandgap, the interplay between the spin and the valley degree of freedom of charge carriers, and the recently discovered localized excitonic states giving rise to single photon emission. In this Letter, we study the quantum-confined Stark effect of these localized emitters present near the edges of monolayer tungsten diselenide (WSe2). By carefully designing sequences of metallic (graphene), insulating (hexagonal boron nitride), and semiconducting (WSe2) two-dimensional materials, we fabricate a van der Waals heterostructure field effect device with WSe2 hosting quantum emitters that is responsive to external static electric field applied to the device. A very efficient spectral tunability up to 21 meV is demonstrated. Further, evaluation of the spectral shift in the photoluminescence signal as a function of the applied voltage enables us to extract the polarizability volume (up to 2000 Å(3)) as well as information on the dipole moment of an individual emitter. The Stark shift can be further modulated on application of an external magnetic field, where we observe a flip in the sign of dipole moment possibly due to rearrangement of the position of electron and hole wave functions within the emitter.

  19. Higher-order resonances in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y.T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2005-05-15

    The motion of polar molecules can be controlled by time-varying inhomogeneous electric fields. In a Stark decelerator, this is exploited to select a fraction of a molecular beam that is accelerated, transported, or decelerated. Phase stability ensures that the selected bunch of molecules is kept together throughout the deceleration process. In this paper an extended description of phase stability in a Stark decelerator is given, including higher-order effects. This analysis predicts a wide variety of resonances that originate from the spatial and temporal periodicity of the electric fields. These resonances are experimentally observed using a beam of OH ({sup 2}{pi}{sub 3/2},v=0,J=3/2) radicals passing through a Stark decelerator.

  20. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  1. Stark broadening of hydrogen lines in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Stamm, R.

    2017-03-01

    We report on a Stark line shape model for the diagnostic of tokamak edge plasmas. In specific scenarios, plasma discharges are carried out at high density regimes, sufficiently so that the spectral lines emitted by the neutral atoms present in the edge and in the divertor region are affected by the plasma microscopic electric field (Stark broadening). We present new line shape calculations, carried out for diagnostic purposes in the context of the MST1 (Medium Sized Tokamak) European campaign. The role of the magnetic field (Zeeman effect) on line spectra is discussed.

  2. On the Stark Broadening of Single Ionized Argon Lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Truong-Bach

    1986-06-01

    Using a semi-classical formalism which includes Debye shielding, Stark broadening parameters of various components within the 4 s 2P - 4 p ´ 2P0 multiplet and the 4 p - 4 d (2P 0 - 2P, 2D0 - 2 P, 2D0 - 2D) supermutiplet of Ar II are computed. We show that when various components of a multiplet (supermultiplet or transition array) are broadened inequally by an embedded closelying perturbing level, use of a perturber param eter cut-off at the Debye length can restrain the calculated differences between Stark widths within the multiplet.

  3. The Stark anomalous dispersion optical filter: The theory

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1994-01-01

    The Stark anomalous dispersion optical filter is a wide-frequency-tunable ultra-narrow-bandwidth optical filter. The first theoretical investigation of this filter matched to the wavelength of a doubled Nd:YAG laser is reported. The calculations show that such a filter may provide above 80 percent transmission, and a noise equivalent bandwidth of 3 GHz.

  4. Stark Broadening Parameters For White Dwarf Atmospheres Research

    NASA Astrophysics Data System (ADS)

    Larbi-Terzi, N.; Sahal-Brechot, S.; Nessib, N. B.; Dimitrijevic, M. S.

    2010-07-01

    Stark broadening parameters of C II lines were determined within 3d-nf series using semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, which were additionally calculated using the method of Bates and Damgaard. The both results were compared and only insignificant differences were found. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e- Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  5. Laser control of the radiationless decay in pyrazine using the dynamic Stark effect.

    PubMed

    Sala, Matthieu; Saab, Mohamad; Lasorne, Benjamin; Gatti, Fabien; Guérin, Stéphane

    2014-05-21

    The laser control of the radiationless decay between the B(3u)(nπ*) and B(2u)(ππ*) states of pyrazine using the dynamic Stark effect has been investigated. A vibronic coupling model Hamiltonian in diabatic representation, including potential energy, transition dipole, and static polarizability surfaces as a function of the four most important vibrational modes of the molecule has been parametrized using multi-reference electronic structure calculations. The interaction of the molecule with a strong non-resonant laser pulse has been analyzed in terms of dressed potential energy surfaces. Because of the large polarizability difference between the vibronically coupled B(3u)(nπ*) and B(2u)(ππ*) states, the Stark effect induced by the non-resonant laser pulse shifts the conical intersection away from the Franck-Condon region. We have shown, by solving the time-dependent Schrödinger equation for the molecule interacting with a relatively weak pump pulse driving the electronic excitation from the ground state to the B(2u)(ππ*) state, and a strong non-resonant control pulse, that this control mechanism can be used to trap the wavepacket on the B(2u)(ππ*) potential energy surface for a much longer time than the natural B(2u)(ππ*) lifetime.

  6. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

    SciTech Connect

    Sazonov, S. V.; Ustinov, N. V.

    2012-11-15

    The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

  7. Calibration and operational experience with the JET motional Stark effect diagnostic

    NASA Astrophysics Data System (ADS)

    Hawkes, N. C.; Brix, M.

    2006-10-01

    Motional Stark effect measurements of the magnetic field pitch angle on JET present several difficulties most serious of which is that the injection systems consist of more than one source, each with a different motional stark effect (MSE) angle. Attempts to describe the net polarization angle, within the EFIT equilibrium code, using the weighted sum of Stokes vectors, have proved inaccurate. Instead we rely on spectrally isolating the emission of a single source. Beam power modulation is helpful in differentiating background polarized light, but this technique fails in the presence of strong edge localized mode (ELMs). Calibration is difficult because of the presence of a mirror in the optical system. The mirror introduces a large optical phase shift which means that the polarimeter has to resolve circular as well as linear polarized components. Basic calibration is carried out off the tokamak using a motorized rotary encoder stage and a six-parameter physical model of the optical and electronic systems. This is readjusted using plasma emission, for mirror operation at 300 °C. Some of the operating experience obtained with the JET MSE diagnostic will be relevant to ITER, although the lack of independent power or voltage control of the ITER injectors is seen as the chief challenge facing the ITER MSE design.

  8. Calibration and operational experience with the JET motional Stark effect diagnostic

    SciTech Connect

    Hawkes, N. C.; Brix, M.

    2006-10-15

    Motional Stark effect measurements of the magnetic field pitch angle on JET present several difficulties most serious of which is that the injection systems consist of more than one source, each with a different motional stark effect (MSE) angle. Attempts to describe the net polarization angle, within the EFIT equilibrium code, using the weighted sum of Stokes vectors, have proved inaccurate. Instead we rely on spectrally isolating the emission of a single source. Beam power modulation is helpful in differentiating background polarized light, but this technique fails in the presence of strong edge localized mode (ELMs). Calibration is difficult because of the presence of a mirror in the optical system. The mirror introduces a large optical phase shift which means that the polarimeter has to resolve circular as well as linear polarized components. Basic calibration is carried out off the tokamak using a motorized rotary encoder stage and a six-parameter physical model of the optical and electronic systems. This is readjusted using plasma emission, for mirror operation at 300 deg. C. Some of the operating experience obtained with the JET MSE diagnostic will be relevant to ITER, although the lack of independent power or voltage control of the ITER injectors is seen as the chief challenge facing the ITER MSE design.

  9. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    NASA Astrophysics Data System (ADS)

    Larbi-Terzi, Neila; Sahal-Bréchot, Sylvie; Ben Nessib, Nebil; Dimitrijević, Milan S.

    2010-11-01

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  10. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    SciTech Connect

    Larbi-Terzi, Neila; Ben Nessib, Nebil; Sahal-Brechot, Sylvie; Dimitrijevic, Milan S.

    2010-11-23

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  11. Stark Broadening Analysis Using Optical Spectroscopy of the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ross, Patrick; Bennett, Nikki; Dutra, Eric; Hagen, E. Chris; Hsu, Scott; Hunt, Gene; Koch, Jeff; Waltman, Tom; NSTec DPF Team

    2015-11-01

    To aid in validating numerical modeling of MA-class dense plasma focus (DPF) devices, spectroscopic measurements of the Gemini Dense Plasma Focus (DPF) were performed using deuterium and deuterium/dopant (argon/krypton) gas. The spectroscopic measurements were made using a fiber-coupled spectrometer and streak camera. Stark line-broadening analysis was applied to the deuterium beta emission (486 nm) in the region near the breakdown of the plasma and during the run-down and run-in phases of the plasma evolution. Densities in the range of 1e17 to low 1e18 cm-3 were obtained. These values are in agreement with models of the DPF performed using the LSP code. The spectra also show a rise and fall with time, indicative of the plasma sheath passing by the view port. Impurity features were also identified in the spectra which grew in intensity as the gas inside the DPF was discharged repeatedly without cycling. Implications of this impurity increase for D-T discharges (without fresh gas fills between every discharge) will be discussed. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2515.

  12. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  13. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of molecules to be determined in the absence of electrolyte in an environment of low dielectric constant.

  14. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less

  15. High Electric Field Quantum Transport: Submillimeter Wave AC Stark Localization in Vertical and Lateral Superlattices.

    DTIC Science & Technology

    2007-11-02

    superlattices. These experiments have opened the arena of photon assisted transport to semiconductor devices and paved the way for future teraherz: electronics based on quantum transport in semiconductor nanostructures.

  16. Large aperture Stark modulated retroreflector at 10.8 microns

    NASA Astrophysics Data System (ADS)

    Klein, M. B.; Sipman, R. H.

    1980-12-01

    The Stark effect was used to construct a longitudinal field amplitude modulator with a large aperture and a wide field of view. Important features of the modulator are its insensitivity to polarization and its incorporation of multiple interaction regions to increase the modulation depth. The Stark interaction which was employed makes use of a (C-13)O2 laser source (so that atmospheric absorption should be low) and a molecule (NH3) with a particularly large absorption cross section. The modulator is mounted directly on a corner cube reflector, which allows the remote modulation of a beacon laser. The device has an aperture of 5.5 cm, a field of view of 38 deg, and a measured modulation depth of 25% at 1.4 MHz.

  17. A Newtonian Description of the Linear Stark Effect

    NASA Astrophysics Data System (ADS)

    Woodyard, James; Espinosa, James

    2010-10-01

    After the discovery of the magnetic effect on spectral lines by Zeeman, it was only natural that physicists should look for a similar effect when an electric field was applied. A nonlinear model of the hydrogen atom developed by Woldemar Voigt was investigated and predicted a second order effect that would require huge electric fields in the ten of millions of volts per centimeter. Fortunately, Johannes Stark ignored this ominous prediction by a leading theoretician and discovered a linear electric effect that would quickly be named after himself. Soon after Bohr introduced his quantum theory of the Hydrogen Atom, Schwarzschild and Epstein independently utilized Sommerfeld's extension of Bohr's theory to arrive at an empirically correct formula. We will show how our classical theory of the hydrogen atom can account for the linear Stark effect.

  18. Some properties of Stark states of hydrogenic atoms and ions

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2007-10-01

    The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.

  19. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  20. Exceptional points in bichromatic Wannier-Stark systems

    NASA Astrophysics Data System (ADS)

    Elsen, C.; Rapedius, K.; Witthaut, D.; Korsch, H. J.

    2011-11-01

    The resonance spectrum of a tilted periodic quantum system for a bichromatic periodic potential is investigated. For such a bichromatic Wannier-Stark system, exceptional points, degeneracies of the spectrum, can be localized in parameter space by means of an efficient method for computing resonances. Berry phases and Petermann factors are analysed. Finally, the influence of a nonlinearity of the Gross-Pitaevskii type on the resonance crossing scenario is briefly discussed.

  1. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, Franz-Keldysh, and Stark effects.

    PubMed

    Li, Dehui; Zhang, Jun; Zhang, Qing; Xiong, Qihua

    2012-06-13

    We report on the electric-field-dependent photoconductivity (PC) near the band-edge region of individual CdS nanowires and nanobelts. The quasi-periodic oscillations above the band edge in nanowires and nanobelts have been attributed to a Franz-Keldesh effect. The exciton peaks in PC spectra of the nanowires and thinner nanobelts show pronounced red-shifting due to the Stark effect as the electric field increases, while the exciton ionization is mainly facilitated by strong electron-longitudinal optical (LO) phonon coupling. However, the band-edge transition of thick nanobelts blue-shifts due to the field-enhanced exciton ionization, suggesting partial exciton ionization as the electron-LO phonon coupling is suppressed in the thicker belts. Large Stark shifts, up to 48 meV in the nanowire and 12 meV in the thinner nanobelts, have been achieved with a moderate electric field on the order of kV/cm, indicating a strong size and dimensionality implication due to confinement and surface depletion.

  2. Stark cell optoacoustic detection of constituent gases in sample

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Shumate, M. S. (Inventor)

    1980-01-01

    An optoacoustic detector for gas analysis is implemented with Stark effect cell modulation for switching a beam in and out of coincidence with a spectral line of a constituent gas in order to eliminate the heating effect of laser energy in the cell as a source of background noise. By using a multiline laser, and linearly sweeping the DC bias voltage while exciting the cell with a multiline laser, it is possible to obtain a spectrum from which to determine the combinations of excited constituents and determine their concentrations in parts per million.

  3. Imaging motional Stark effect measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C.

    2016-11-01

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  4. Pedestal magnetic field measurements using a motional Stark effect polarimeter.

    PubMed

    Lanctot, M J; Holcomb, C T; Allen, S L; Fenstermacher, M E; Luce, T C

    2012-10-01

    Temperature-controlled, 0.15 nm interference filters were installed on an edge-viewing system of the motional Stark effect (MSE) polarimeter on the DIII-D tokamak. The upgraded system provides a factor of two reduction in the bandpass compared to the previous design, and linear control of the bandpass, which is unaltered by wavelength tuning. With the new system, there is a reduced dependence of the inferred polarization angle on the filter wavelength calibration. Recent measurements from the calibrated edge-viewing system show increased agreement with other MSE arrays.

  5. Stark broadening experiments on a vacuum arc discharge in tin vapor.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Kroesen, G M W; Banine, V; Koshelev, K N

    2004-12-01

    Pinched discharge plasmas in tin vapor are candidates for application in future semiconductor lithography tools. This paper presents time-resolved measurements of Stark broadened linewidths in a pulsed tin discharge. Stark broadening parameters have been determined for four lines of the Sn III spectrum in the range from 522 to 538 nm, based on a cross-calibration to a Sn II line with a previously known Stark width. The influence of the electron temperature on the Stark widths is discussed. Results for the electron densities in the discharge are presented and compared to Thomson scattering results.

  6. The Stark effect in atomic Rydberg states through a quantum defect approach

    NASA Astrophysics Data System (ADS)

    Menéndez, J. M.; Martín, I.; Velasco, A. M.

    A basis set of quantum defect orbitals (QDOs) has been adopted for the diagonalization of the Hamiltonian matrix of nonhydrogenic atoms in the presence of an external electric field, so that the Stark structure of the Rydberg states has been possible to determine. The presently obtained Stark maps are in excellent agreement with those resulting from theory and experiment, as reported in the literature for a few representative atoms. The adequacy of the Stark quantum defect orbital (SQDO) procedure for accurately dealing with properties related to the Stark effect in atoms is suggested.

  7. Development of the B-Stark motional Stark effect diagnostic for measurements of the internal magnetic field in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir Antoniuk

    A new diagnostic, B⃗ -Stark, has been developed at the DIII-D tokamak for measurements of the magnitude and direction of the internal magnetic field. The B⃗ -Stark system is a version of a motional Stark effect (MSE) diagnostic based on the Stark split Dalpha emission from injected neutral beams. This diagnostic uses the spacing of the Stark lines to measure the magnitude of the magnetic field, and the intensities of the pi3 and sigma1 lines to measure the magnetic pitch angle. These lines originate from the same upper level, and are therefore not dependent on the n = 3 level populations. The measurement of the magnetic pitch angle requires a specific viewing geometry with respect to the neutral beams, which is provided by the B⃗ -Stark diagnostic installation. The B⃗ -Stark technique may have advantages over motional Stark effect polarimetry (MSE polarimetry) diagnostics in future devices with high densities and temperatures, such as ITER. Under these conditions coatings on the plasma facing mirrors are expected, which can cause changes in the polarization state of the reflected light. The B⃗ -Stark technique is insensitive to the polarization direction, and can calibrate for polarization dependent transmission by using an in-situ beam-into-gas calibration. This dissertation describes the development and characterization of the B⃗ -Stark diagnostic. The hardware design and spectral fitting techniques are discussed in detail. Calibration procedures are described including the in-situ determination of the beam emission line profiles, viewing geometry and properties of the collection optics. The performance of the system is evaluated over the range of plasma conditions accessible at DIII-D. Measurements of the magnetic field have been made with toroidal fields in the range 1.2--2.1T, plasma currents in the range 0.5--2.0MA, densities between 1.7--9.0 x 1019m -3, and neutral beam voltages between 50--81keV. These results are compared to values found from

  8. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR.

    PubMed

    Chung, J; Ko, J; De Bock, M F M; Jaspers, R J E

    2014-11-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1-3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  9. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, J.; Ko, J.; De Bock, M. F. M.; Jaspers, R. J. E.

    2014-11-01

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1-3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  10. Instrumentation for a multichord motional Stark effect diagnostic in KSTAR

    SciTech Connect

    Chung, J. Ko, J.; De Bock, M. F. M.; Jaspers, R. J. E.

    2014-11-15

    The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch angle profile in neutral beam heated plasmas. This information is used to calculate the safety factor, q, with magnetic equilibrium reconstruction codes such as EFIT. The MSE diagnostic is important during active shaping of the q profile to optimize confinement and stability, and it has become a key diagnostic in high performance tokamaks. A multichord photo-elastic modulator (PEM) based MSE system is being developed for a real-time plasma current profile control in Korea Superconducting Tokamak Advanced Research (KSTAR). The PEM-based approach is a standard method that measures the polarization direction of a single Stark line with narrow tunable bandpass filters. A tangential view of the heating beam provides good spatial resolution of 1–3 cm, which provides an opportunity to install 25 spatial channels spanning the major radius from 1.74 m to 2.84 m. Application of real-time control is a long-term technical goal after commissioning the diagnostic in KSTAR, which is expected in 2015. In this paper, we describe the design of this newly-constructed multichord MSE diagnostic in KSTAR.

  11. Three-phase-to-two-phase direct AC-AC converter with three leg structure

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2014-05-01

    A three-phase-to-two-phase ac-ac converter is, along with a modulation strategy based on the space vector scheme, introduced to directly drive two-phase output ac systems with high input power quality. The converter is capable of synthesising two sinusoidal output voltages with variable output frequency and arbitrary magnitude in quadrature phase-shift as well as sinusoidal input currents.

  12. Stark Spectroscopy of Rubrene. II. Stark Fluorescence Spectroscopy and Fluorescence Quenching Induced by an External Electric Field.

    PubMed

    Iimori, Toshifumi; Ito, Ryuichi; Ohta, Nobuhiro

    2016-07-21

    We report Stark fluorescence spectroscopy investigation of rubrene dispersed in a poly(methyl methacrylate) film. The features of the fluorescence spectrum are analogous to those in solutions. In the Stark fluorescence spectrum, the decrease of the fluorescence quantum yield in the presence of an external electric field is observed. This result shows that the yield of nonradiative decay processes is increased by the application of an external electric field. It is known that the fluorescence quantum yield for rubrene, which is nearly unity at room temperature, depends on temperature, and a major nonradiative decay process in photoexcited rubrene is ascribed to a thermally activated intersystem crossing (ISC). Equations that express the field-induced fluorescence quenching in terms of the molecular parameters are derived from the ensemble average of electric field effects on the activation energy of the reaction rate constant in random orientation systems. The molecular parameters are then extracted from the observed data. It is inferred that the field-induced increase in the yield of other intramolecular and intermolecular photophysical processes in addition to the ISC should be taken into account.

  13. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  14. Identification of ion-pair structures in solution by vibrational stark effects

    DOE PAGES

    Hack, John; Mani, Tomoyasu; Grills, David C.; ...

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  15. Identification of ion-pair structures in solution by vibrational stark effects

    SciTech Connect

    Hack, John; Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  16. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  17. Quantum-confined Stark effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z.

    1995-08-01

    Quantum-confined Stark effects (QCSE) on excitons, i.e., the influence of a uniform electric field on the confined excitons in semiconductor quantum dots (QD's), have been studied by using a numerical matrix-diagonalization scheme. The energy levels and the wave functions of the ground and several excited states of excitons in CdS and CdS1-xSex quantum dots as functions of the size of the quantum dot and the applied electric field have been obtained. The electron and hole distributions and wave function overlap inside the QD's have also been calculated for different QD sizes and electric fields. It is found that the electron and hole wave function overlap decreases under an electric field, which implies an increased exciton recombination lifetime due to QCSE. The energy level redshift and the enhancement of the exciton recombination lifetime are due to the polarization of the electron-hole pair under the applied electric field.

  18. Stark ladder in a one-dimensional quasiperiodic system

    NASA Astrophysics Data System (ADS)

    Niizeki, K.; Matsumura, A.

    1993-08-01

    We have investigated the effect of a uniform field F on the energy spectrum of the Harper model, which includes an irrational ω and the phase variable cphi as parameters. The energy levels Ei(cphi), iEopenZ, are periodic on cphi, Ei(cphi+1)=Ei(cphi), and form a two-dimensional (2D) pattern in the cphi-E plane. The pattern which we term a 2D Wannier-Stark ladder (2DWSL) has 2D periodicity because of the equalities Ei(cphi)=iF+E0(cphi+iω), i∈openZ . The energy spectrum is a vertical section of the 2DWSL through the specified cphi and represents a quasiperiodic WSL.

  19. The influence of Stark broadening on Cr II spectral line shapes in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Ryabchikova, T.; Simić, Z.; Popović, L. Č.; Dačić, M.

    2007-07-01

    Aims:We consider the effect of Stark broadening on the shapes of Cr ii spectral lines observed in stellar atmospheres of the middle part of the main sequence. Methods: Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version synth3 of the code synth for synthetic spectrum calculations was used. Results: Stark broadening parameters for Cr ii spectral lines of seven multiplets belonging to 4s-4p transitions were calculated. New calculated Stark parameters were applied to the analysis of Cr ii line profiles observed in the spectrum of Cr-rich star HD 133792. Conclusions: We found that Stark broadening mechanism is very important and should be taken into account, especially in the study of Cr abundance stratification.

  20. PRESSURE SHIFT AND GRAVITATIONAL REDSHIFT OF BALMER LINES IN WHITE DWARFS: REDISCUSSION

    SciTech Connect

    Halenka, Jacek; Olchawa, Wieslaw; Madej, Jerzy; Grabowski, Boleslaw E-mail: wolch@uni.opole.pl E-mail: bgrab@uni.opole.pl

    2015-08-01

    The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of H{sub α} and H{sub β} Balmer lines in spectra of DA white dwarfs (WDs), have been examined in detail as masking effects in measurements of the gravitational redshift in WDs. The results are compared with our earlier ones from a quarter of a century ago. In these earlier papers, the standard, symmetrical Stark line profiles, as a dominant constituent of the Balmer line profiles but shifted as a whole by the PS effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark line profiles (especially of H{sub β}) are inherently asymmetrical and shifted due to the effects of strong inhomogeneity of the perturbing fields in plasma. To calculate the Stark line profiles in successive layers of the WD atmosphere we used the modified Full Computer Simulation Method, able to take adequately into account the complexity of local elementary quantum processes in plasma. In the case of the H{sub α} line, the present value of Stark-induced shift of the synthetic H{sub α} line profile is about half the previous one and it is negligible in comparison with the gravitational redshift. In the case of the H{sub β} line, the present value of Stark-induced shift of the synthetic H{sub β} line profile is about twice the previous one. The source of this extra shift is the asymmetry of H{sub β} peaks.

  1. Instrumentation for the joint European torus motional Stark effect diagnostic

    SciTech Connect

    Stratton, B.C.; Long, D.; Palladino, R.; Hawkes, N.C.

    1999-01-01

    A motional Stark effect magnetic field pitch angle diagnostic has been implemented on the joint European torus (JET) tokamak. The instrumentation designed following the study by Hawkes {ital et al.} (these proceedings) is described. D{sub {alpha}} emission from the Octant 4 neutral beams is collected by optics which transport the plasma image outside the vacuum vessel and through a pair of photoelastic modulators (PEMs) and a linear polarizer. The light is fiber-optically coupled to interference filter spectrometers, which incorporate a remotely controlled filter tilting mechanism. This allows the center wavelength of the filter bandpass to be tuned over a range sufficient for observation of the {sigma} and {pi} lines of the Stark spectrum emitted by the full- and half-energy components of the beam, providing flexibility to make measurements with a variety of beam configurations. The detectors are low-noise avalanche photodiode modules. Fast digital signal processing techniques are used to extract the Fourier components of the signal at the PEM first and second harmonic frequencies. Analysis of these signals will yield the magnetic field pitch angle, which will be used as a constraint on EFIT equilibrium reconstruction modeling to obtain the q(r) profile. The system has 25 spatial channels covering the outer-half of a JET plasma with spatial resolution of 0.03{endash}0.07 m per channel with {approximately}0.05 m channel-to-channel separation. Time resolution is expected to be 1{endash}10 ms. {copyright} {ital 1999 American Institute of Physics.}

  2. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2.

    PubMed

    Sie, Edbert J; Lui, Chun Hung; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh

    2017-03-10

    Coherent interaction with off-resonance light can be used to shift the energy levels of atoms, molecules, and solids. The dominant effect is the optical Stark shift, but there is an additional contribution from the so-called Bloch-Siegert shift that has eluded direct and exclusive observation in solids. We observed an exceptionally large Bloch-Siegert shift in monolayer tungsten disulfide (WS2) under infrared optical driving. By controlling the light helicity, we could confine the Bloch-Siegert shift to occur only at one valley, and the optical Stark shift at the other valley, because the two effects obey opposite selection rules at different valleys. Such a large and valley-exclusive Bloch-Siegert shift allows for enhanced control over the valleytronic properties of two-dimensional materials.

  3. Static Properties and Stark Effect of the Ground State of the HD Molecular Ion

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1999-01-01

    We have calculated static properties of the ground state of the HD(+) ion and its lowest-lying P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2(+) and D2(+) [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary to include high powers of the internuclear distance to localize the nuclear motion. We obtain good values of the energies of the ground S-state and lowest P-state and compare them with earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability was then calculated using second-order perturbation theory with intermediate P pseudostates. Since the nuclei in HD(+) are not of equal mass there is dipole coupling between the lowest two rotational states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is calculated variationally as a function of the applied electric field.

  4. Development of the Motional Stark Effect with Laser-Induced Fluorescence (MSE-LIF) Diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, Elizabeth L.

    2005-10-01

    The motional Stark effect with laser-induced fluorescence (MSE- LIF) diagnostic is under development to extend the MSE magnetic pitch angle diagnostic to lower fields ( < 0.5 T) and enable measurement of magnetic field magnitude as well as direction. The technique involves injecting a low energy-spread neutral hydrogen beam (30 kV, 30 mA) into plasma, and using a collinear laser to excite transitions from the n=2 to n=3 atomic states in the beam atoms. The subsequent fluorescence from the same transition (Balmer-alpha, near 650 nm for the Doppler-shifted beam) is observed, and its splitting and polarization due to the E = v X B electric field in the beam frame is used to determine the background magnetic field magnitude and direction. This poster will present recent results from MSE-LIF development, including magnetic field measurements at very low field (< 0.01 T) in neutral gas based on an enhanced LIF phenomenon, a comprehensive collisional-radiative model which determines the population fractions in the n=1, 2 and 3 states of the beam as the states mix in applied magnetic and electric fields, as well as upgrades to the experimental apparatus that will enable measurements in intermediate fields (0.01 - 0.2 T) in plasma.

  5. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  6. Asymmetries in the motional Stark effect emission on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Victor, B. S.; Holcomb, C. T.; Allen, S. L.; Meyer, W. H.; Makowski, M. A.; Thorman, A.

    2016-11-01

    Spectrometer measurements and filter upgrades to a motional Stark effect polarimeter measuring the outer half-radius of the DIII-D tokamak helped to identify asymmetries in the polarization angle of Stark-split emission. The measured polarization angle of the π components differs and is not orthogonal to the σ component. These differences persist over a range of densities and with low levels of background light. It is suggested that the difference in the polarization angle between components is from a change in the ellipticity of the emitted light across the Stark components coupled with imperfect polarization preservation from an in-vessel mirror.

  7. Asymmetries in the motional Stark effect emission on the DIII-D tokamak.

    PubMed

    Victor, B S; Holcomb, C T; Allen, S L; Meyer, W H; Makowski, M A; Thorman, A

    2016-11-01

    Spectrometer measurements and filter upgrades to a motional Stark effect polarimeter measuring the outer half-radius of the DIII-D tokamak helped to identify asymmetries in the polarization angle of Stark-split emission. The measured polarization angle of the π components differs and is not orthogonal to the σ component. These differences persist over a range of densities and with low levels of background light. It is suggested that the difference in the polarization angle between components is from a change in the ellipticity of the emitted light across the Stark components coupled with imperfect polarization preservation from an in-vessel mirror.

  8. Phonon assisted carrier motion on the Wannier-Stark ladder

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred; Berciu, Mona

    2014-03-01

    It is well known that at zero temperature and in the absence of electron-phonon coupling, the presence of an electric field leads to localization of carriers residing in a single band of finite bandwidth. In this talk, we will present an implementation of the self-consistent Born approximation (SCBA) to study the effect of weak electron-phonon coupling on the motion of a carrier in a biased system. At moderate and strong electron-phonon coupling, we supplement the SCBA, describing the string of phonons left behind by the carrier, with the momentum average approximation to describe the phonon cloud that accompanies the resulting polaron. We find that coupling to the lattice delocalizes the carrier, as expected, although long-lived resonances resulting from the Wannier-Stark states of the polaron may appear in certain regions of the parameter space. We end with a discussion of how our method can be improved to model disorder, other types of electron-phonon coupling, and electron-hole pair dissociation in a biased system.

  9. Nanoscale spin rectifiers controlled by the Stark effect

    NASA Astrophysics Data System (ADS)

    Rossella, Francesco; Bertoni, Andrea; Ercolani, Daniele; Rontani, Massimo; Sorba, Lucia; Beltram, Fabio; Roddaro, Stefano

    2014-12-01

    The control of orbitals and spin states of single electrons is a key ingredient for quantum information processing and novel detection schemes and is, more generally, of great relevance for spintronics. Coulomb and spin blockade in double quantum dots enable advanced single-spin operations that would be available even for room-temperature applications with sufficiently small devices. To date, however, spin operations in double quantum dots have typically been observed at sub-kelvin temperatures, a key reason being that it is very challenging to scale a double quantum dot system while retaining independent field-effect control of individual dots. Here, we show that the quantum-confined Stark effect allows two dots only 5 nm apart to be independently addressed without the requirement for aligned nanometre-sized local gating. We thus demonstrate a scalable method to fully control a double quantum dot device, regardless of its physical size. In the present implementation we present InAs/InP nanowire double quantum dots that display an experimentally detectable spin blockade up to 10 K. We also report and discuss an unexpected re-entrant spin blockade lifting as a function of the magnetic field intensity.

  10. The prototype imaging motional Stark effect diagnostic for ASDEX upgrade.

    PubMed

    Ford, O P; Howard, J; Wolf, R C

    2015-09-01

    This paper presents the development and testing of the prototype Imaging Motional Stark-Effect (IMSE) diagnostic, designed for ASDEX upgrade. A detailed description of the core hardware, theory of operation, and application to complex MSE spectra are presented and analytical evaluation methods suitable for the required accuracy are developed. The diagnostic is tested with a MSE-like polarised spectrum to assess the accuracy of different modulation modes suggested in previous works. Each is found to have small systematic errors due to non-ideal effects of the components, which must be carefully examined. In particular, the effect of intrinsic contrast that results from imperfect parallelism of the birefringent plates is found to have a strong effect. Methods to mitigate and correct for this are discussed. With the necessary corrections and calibrations, the accuracy of polarisation orientation is shown to be within ±0.2°. The effect of finite ellipticity is examined and the possibility to measure this to an accuracy of ±2.0° is demonstrated. The system is shown to be insensitive to broadband polarised background light, temperature variations, and critically to variations in the details of the MSE spectrum.

  11. Giant Stark effect in double-stranded porphyrin ladder polymers

    NASA Astrophysics Data System (ADS)

    Pramanik, Anup; Kang, Hong Seok

    2011-03-01

    Using the first-principles calculations, we have investigated the stability and the electronic structure of two types of recently synthesized one-dimensional nanoribbons, i.e., double-stranded zinc(II) porphyrin ladder polymer (LADDER) arrays. First, electronic structure calculations were used to show that the LADDER is a semiconductor. Most importantly, the application of a transverse electric field significantly reduces the band gap of the LADDER, ultimately converting the LADDER to a metal at a field strength of 0.1 V/Å. The giant Stark effect in this case is almost as strong as that in boron nitride nanotubes and nanoribbons. In the presence of an electric field, hole conduction and electronic conduction will occur entirely through spatially separated strands, rendering these materials useful for nanoelectronic devices. Second, the substitution of hydrogen atoms in the porphyrin units or that of zinc ions with other kinds of chemical species is found to increase the binding strength of the LADDER and reduce the band gap.

  12. Examining the impact of the new Stark rules on joint ventures.

    PubMed

    Washlick, John R

    2008-11-01

    The new Stark rules will affect joint ventures involving physicians and hospitals in four primary areas: Services provided "under arrangement". "Per click" lease arrangements. Percentage-based compensation. "Stand-in-the-shoes" provisions.

  13. DLTS study of the Wannier-Stark effect in Ge/Si QD superlattices

    NASA Astrophysics Data System (ADS)

    Sobolev, Mikhail M.; Cirlin, Georgii E.; Tonkikh, Alexander A.

    2007-12-01

    Deep-level transient spectroscopy (DLTS) has been applied to study the emission of electrons from quantum states in a 20-layer quantum-dot superlattice (QDSL) of Ge in a Ge/Si p-n heterostructure. Changes in the DLTS spectra of this structure strongly depend on the applied bias Ur. There are three bias ranges corresponding to three modes of the Wannier-Stark effect: Wannier-Stark ladder mode, Wannier-Stark localization and non-resonant Zener tunneling. The DLTS peaks for all the three modes are associated with emission of electrons from deep-level defects into the Wannier-Stark localized states resulting from the splitting of the electron miniband of the Ge/Si QDSL.

  14. A study of Stark broadening for the diagnostic of runaway electrons in ITER

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Pandya, S. P.; Logeais, Ch.; Meireni, M.; Hannachi, I.; Reichle, R.; Barnsley, R.; Marandet, Y.; Stamm, R.

    2017-03-01

    We investigate the Stark broadening of hydrogen lines in tokamak edge plasma conditions in the presence of a beam of relativistic "runaway" electrons. The possibility for a diagnostic involving passive spectroscopy is discussed.

  15. Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    SciTech Connect

    Gilijamse, Joop J.; Kuepper, Jochen; Hoekstra, Steven; Vanhaecke, Nicolas; Meerakker, Sebastiaan Y. T. van de; Meijer, Gerard

    2006-06-15

    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline, pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40% of the number of trapped OH radicals.

  16. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  17. Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues

    PubMed Central

    Léonard, Jérémie; Portuondo-Campa, Erwin; Cannizzo, Andrea; van Mourik, Frank; van der Zwan, Gert; Tittor, Jörg; Haacke, Stefan; Chergui, Majed

    2009-01-01

    Ultrafast transient absorption spectroscopy of wild-type bacteriorhodopsin (WT bR) and 2 tryptophan mutants (W86F and W182F) is performed with visible light excitation (pump) and UV probe. The aim is to investigate the photoinduced change in the charge distribution with 50-fs time resolution by probing the effects on the tryptophan absorption bands. A systematic, quantitative comparison of the transient absorption of the 3 samples is carried out. The main result is the absence in the W86F mutant of a transient induced absorption band observed at ≈300–310 nm in WT bR and W182F. A simple model describing the dipolar interaction of the retinal moiety with the 2 tryptophan residues of interest allows us to reproduce the dominant features of the transient signals observed in the 3 samples at ultrashort pump-probe delays. In particular, we show that Trp86 undergoes a significant Stark shift induced by the transient retinal dipole moment. The corresponding transient signal can be isolated by direct subtraction of experimental data obtained for WT bR and W86F. It shows an instantaneous rise, followed by a decay over ≈500 fs corresponding to the isomerization time. Interestingly, it does not decay back to zero, thus revealing a change in the local electrostatic environment that remains long after isomerization, in the K intermediate state of the protein cycle. The comparison of WT bR and W86F also leads to a revised interpretation of the overall transient UV absorption of bR. PMID:19416877

  18. Improved Spectral Fitting Models for the B-Stark Diagnostic at DIII-D

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Grierson, B. A.; Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Holcomb, C. T.

    2010-11-01

    Recent results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split Dα emission from injected neutral beams. Improvements to the spectral fitting model are presented, including the addition of an analytical model for Dα emission from the fast-ion distribution. We discuss the accuracy of using in-situ beam-into-gas calibrations to find the beam emission line profiles, the viewing direction and the transmission properties of the collection optics. We also present results of efforts to improve the determination of the beam emission line profiles. Finally, the magnetic field measured with the B-Stark system is compared to values found from plasma equilibrium reconstructions (EFIT) and the MSE polarimetry system on DIII-D.

  19. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  20. Virtual Atomic and Molecular Data Center (VAMDC) and Stark-B Database

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.; VAMDC Consortium; Dubernet, Marie-Lise

    2012-01-01

    Virtual Atomic and Molecular Data Center (VAMDC) is an European FP7 project with aims to build a flexible and interoperable e-science environment based interface to the existing Atomic and Molecular data. The VAMDC will be built upon the expertise of existing Atomic and Molecular databases, data producers and service providers with the specific aim of creating an infrastructure that is easily tuned to the requirements of a wide variety of users in academic, governmental, industrial or public communities. In VAMDC will enter also STARK-B database, containing Stark broadening parameters for a large number of lines, obtained by the semiclassical perturbation method during more than 30 years of collaboration of authors of this work (MSD and SSB) and their co-workers. In this contribution we will review the VAMDC project, STARK-B database and discuss the benefits of both for the corresponding data users.

  1. New and rapid analytical procedure for water content determination: microwave accelerated Dean-Stark.

    PubMed

    Veillet, Sébastien; Tomao, Valérie; Visinoni, Franco; Chemat, Farid

    2009-01-26

    Development of new procedures in analytical chemistry is currently increasingly focussed on reducing the time, cost and energy to carry out routine analyses. The conventional Dean-Stark (CDS) distillation to determine the water content is one of the most commonly used analytical methods and uses large amounts of solvent and energy. A new microwave accelerated Dean-Stark (MADS) distillation is presented as an alternative procedure. Microwaves were applied to a mixture of toluene, Weflon stir bar and olives, and the corresponding water was collected in a Dean-Stark receiver. This procedure permits fast and efficient determination of the water content of olives. Reliability and reproducibility were evaluated using statistical analyses. Different matrices were then used with MADS and the results were compared to CDS. Water determination from olives with MADS was better than that with CDS in terms of energy saving, rapidity (10 min versus 120 min), reproducibility, and cleanliness.

  2. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  3. On spectral line Stark broadening parameters needed for stellar and laboratory plasma investigations.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1995-03-01

    This paper presents a review of semiclassical calculations of Stark broadening parameters and a comparison of different semiclassical procedures is discussed, as well as the agreement with critically selected experimental data and more sophisticated, close coupling calculations. Approximate methods for the calculation of Stark broadening parameters, useful especially in such astrophysical problems where large scale calculations and analyses must be performed and where a good average accuracy is expected, have also been discussed. The beginning and development of line shapes investigations in Yugoslavia has been described as well.

  4. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  5. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    NASA Astrophysics Data System (ADS)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  6. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  7. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  9. Electron Capture from Linear Stark Rydberg States above the Matching Velocity

    NASA Astrophysics Data System (ADS)

    Ciocca, M.; Creasey, C.; MacAdam, K. B.

    1998-05-01

    The relative cross section for electron capture by singly charged ions from linear Stark Rydberg states of Na has been measured, both as a function of the angle of impact and of projectile velocity. The target, the topmost state of the n = 24 Stark manifold, was prepared by two-step laser excitation from the Na ground state, via 3p_3/2, in an electric field F_Stark= 160 V/cm. By means of a device perfected in our laboratory (the "Stark Barrel"), we aligned the target by adiabatically switching the electric field, after excitation, down to a preset low value and a desired direction in the plane determined by the ion and Na beams. Thermionic emission ion sources of Li and Na were operated at accelerating voltages 400-2000 V to allow study of electron capture in the reduced velocity range v = 1.0 - 2.5. This augments an earlier study by Homan footnote D. M. Homan, Ph. D. Dissertation, University of Kentucky 1997, unpublished. at lower velocities.

  10. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    SciTech Connect

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  11. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  12. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  13. Stark spectroscopy of a probe lithium beam excited with two dye lasers as a technique to study a high-power ion-beam diode.

    PubMed

    Knyazev, B A; An, W; Bluhm, H

    2012-03-01

    A non-disturbing measurement of electric field distributions is a subject of special interest in plasma physics and high-voltage devices. In this paper we describe a diagnostic technique for remote sensing of electric fields via injection of a probe beam of lithium atoms and cascade excitation of resonance fluorescence with two broadband dye lasers. The fluorescence spectrum was recorded using a monochromator equipped with an optical multi-channel analyser. The magnitude of the local electric field was retrieved from the Stark-shifted components of the 3d-2p lithium spectral line. The technique was applied to measurements of the electric field in the applied-B-field high-voltage diode of the 1 TW KALIF ion-beam accelerator.

  14. Shifting sugars and shifting paradigms.

    PubMed

    Siegal, Mark L

    2015-02-01

    No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face.

  15. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  16. AC losses in a HTS coil carrying DC current in AC external magnetic field

    NASA Astrophysics Data System (ADS)

    Ogawa, J.; Zushi, Y.; Fukushima, M.; Tsukamoto, O.; Suzuki, E.; Hirakawa, M.; Kikukawa, K.

    2003-10-01

    We electrically measured AC losses in a Bi2223/Ag-sheathed pancake coil excited by a DC current in AC external magnetic field. Losses in the coil contain two kinds of loss components that are the magnetization losses and dynamic resistance losses. In the measurement, current leads to supply a current to the coil were specially arranged to suppress electromagnetic coupling between the coil current and the AC external magnetic field. A double pick-up coils method was used to suppress a large inductive voltage component contained in voltage signal for measuring the magnetization losses. It was observed that the magnetization losses were dependent on the coil current and that a peak of a curve of the loss factor vs. amplitude of the AC external magnetic field shifted to lower amplitude of the AC magnetic field as the coil current increased. This result suggests the full penetration magnetic field of the coil tape decreases as the coil current increases. The dynamic resistance losses were measured by measuring a DC voltage appearing between the coil terminals. It was observed that the DC voltage appearing in the coil subject to the AC external magnetic field was much larger than that in the coil subject to DC magnetic field.

  17. Psychosocial response to disaster: the attacks on the Stark and the Cole.

    PubMed

    Kootte, Anton F

    2002-01-01

    The terrorist attack on the USS Cole on 12 October 2000 was remarkably similar to the 1987 attack on the USS Stark. This article discusses the psychosocial consequences of the attacks on the families and crews of the ships and the community response of the Navy to the attacks, particularly that of the Navy Family Service Centers. The impact of the attacks is compared to the impact of natural and man-made disasters on communities while the impact on the crew is examined in light of combat psychiatry and post-traumatic stress disorder (PTSD). Events such as these are very likely to produce PTSD despite early intervention efforts. Following the attack on the Stark greater attention was given to the grief of family members than to the trauma of the crew, while the crew of the Cole has received longer-term psychiatric assistance than in previous similar episodes.

  18. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    PubMed

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon.

  19. Initial operation of a newly developed multichord motional Stark effect diagnostic in KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, J.; Ko, J.; Wi, H.; Messmer, M.; Schenkelaars, S.; Scheffer, M.; Jaspers, R. J. E.

    2016-11-01

    A photo-elastic modulator based 25-chord motional Stark effect (MSE) diagnostic has been successfully developed and commissioned in Korea Superconducting Tokamak Advanced Research. The diagnostic measures the radial magnetic pitch angle profile of the Stark splitting of a D-alpha line at 656.1 nm by the electric field associated with the neutral deuterium heating beam. A tangential view of the neutral beam provides a good spatial resolution of 1-3 cm for covering the major radius from 1.74 m to 2.28 m, and the time resolution is achieved at 10 ms. An in-vessel calibration before the vacuum closing as well as an in situ calibration during the tokamak operation was performed by means of specially designed polarized lighting sources. In this work, we present the final design of the installed MSE diagnostic and the first results of the commissioning.

  20. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    NASA Astrophysics Data System (ADS)

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; Stanton, John F.; Douberly, Gary E.

    2015-04-01

    Singlet dihydroxycarbene ( HO C ̈ OH ) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μa, μb) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO C ̈ OH torsional interconversion and tautomerization barriers.

  1. Exact expression of the impact broadening operator for hydrogen Stark broadening

    NASA Astrophysics Data System (ADS)

    Gigosos, M. A.; González, M. Á.; Talin, B.; Calisti, A.

    2007-05-01

    Aims:Recent measurements on the Stark broadening of radio recombination lines show values and trends in disagreement with conventional theories. Different attemps to explain those disagreements have not been successfull for any of the employed theoretical models. In particular, the impact model that describes well the physical conditions at which the studied broadenings occur, shows a functional trend upon the principal quantum number of the studied transitions that does not correspond to the experimental observations. Methods: High values of the principal quantum number require computable formulas for the calculation of transition probabilities. Some of those expressions have been published, leading to approximate formulas on the dependence of the line width versus the principal quantum number of the upper level of the transition. Results: In this work an exact expression for the hydrogen Stark width in the frame of impact approximation is given.

  2. Reactive intermediates in {sup 4}He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    SciTech Connect

    Broderick, Bernadette M.; Moradi, Christopher P.; Douberly, Gary E.; McCaslin, Laura; Stanton, John F.

    2015-04-14

    Singlet dihydroxycarbene (HOC{sup ¨}OH) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μ{sub a}, μ{sub b}) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HOC{sup ¨}OH torsional interconversion and tautomerization barriers.

  3. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  4. Atomic Landau-Zener tunneling and Wannier-Stark ladders in optical potentials

    SciTech Connect

    Niu, Q.; Zhao, X.; Georgakis, G.; Raizen, M.

    1996-06-01

    We calculate the quantum motion of ultracold atoms in an accelerating optical potential, and show how they may be used to observe Landau-Zener tunneling and Wannier-Stark ladders, two fundamental quantum effects in solid state physics. The optical potential is spatially periodic, yielding an energy spectrum of Bloch bands for the atoms. The acceleration provides an inertial force in the moving frame, emulating an electric force on Bloch electrons. {copyright} {ital 1996 The American Physical Society.}

  5. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo

    NASA Astrophysics Data System (ADS)

    Leone, Matteo; Paoletti, Alessandro; Robotti, Nadia

    2004-09-01

    In 1913 the German physicist Johannes Stark (1874 1957) and the Italian physicist Antonino Lo Surdo (1880 1949)discovered virtually simultaneously and independently that hydrogen spectral lines are split into components by an external electric field. Both of their discoveries ensued from studies on the same phenomenon, the Doppler effect in canal rays, but they arose in different theoretical contexts. Stark had been working within the context of the emerging quantum theory, following a research program aimed at studying the effect of an electric field on spectral lines. Lo Surdo had been working within the context of the classical theory, and his was an accidental discovery. Both discoveries, however, played important roles in the history of physics: Stark’s discovery contributed to the establishment of both the old and the new quantum theories; Lo Surdo’s discovery led Antonio Garbasso (1871 1933)to introduce research on the quantum theory into Italian physics. Ironically, soon after their discoveries, both Stark and Lo Surdo rejected developments in modern physics and allied themselves with the political and racial programs of Hitler and Mussolini.

  6. Stark effect modeling in the detailed opacity code SCO-RCG

    NASA Astrophysics Data System (ADS)

    Pain, J.-C.; Gilleron, F.; Gilles, D.

    2016-05-01

    The broadening of lines by Stark effect is an important tool for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,...) not always exhaustive and/or valid for isolated atoms. We present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy (hydrogen- and helium-like ions). This approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates within SO(4) symmetry. The relativistic fine-structure of Lyman lines is included by diagonalizing the hamiltonian matrix associated to quantum states having the same principal quantum number n. The resulting code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn'ℓ' — 1s 2 nℓ, Be-like, etc.). Comparisons with simpler and widely-used semi-empirical models are presented.

  7. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Screening influence on the Stark effect of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions under pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Ban, Shi-Liang

    2009-12-01

    The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/AlxGa1-xN heterojunctions under hydrostatic pressure and an external electric field is investigated by using a variational method and a simplified coherent potential approximation. The variations of Stark energy shift with electric field, impurity position, Al component and areal electron density are discussed. Our results show that the screening dramatically reduces both the blue and red shifts as well as the binding energies of impurity states. For a given impurity position, the change in binding energy is more sensitive to the increase in hydrostatic pressure in the presence of the screening effect than that in the absence of the screening effect. The weakening of the blue and red shifts, induced by the screening effect, strengthens gradually with the increase of electric field. Furthermore, the screening effect weakens the mixture crystal effect, thereby influencing the Stark effect. The screening effect strengthens the influence of energy band bending on binding energy due to the areal electron density.

  8. Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas.

    PubMed

    Stambulchik, E; Maron, Y

    2013-05-01

    We present an analytical method for the calculation of shapes of Stark-broadened spectral lines in plasmas, applicable to hydrogen and hydrogenlike transitions (including Rydberg ones) with Δn>1. The method is based on the recently suggested quasicontiguous approximation of the static Stark line shapes, while the dynamical effects are accounted for using the frequency-fluctuation-model approach. Comparisons with accurate computer simulations show excellent agreement.

  9. Measurement scheme for the Lamb shift in a superconducting circuit with broadband environment

    SciTech Connect

    Gramich, V.; Ankerhold, J.; Solinas, P.; Moettoenen, M.; Pekola, J. P.

    2011-11-15

    Motivated by recent experiments on quantum mechanical charge pumping in a Cooper pair sluice, we present a measurement scheme for observing shifts of transition frequencies in two-level quantum systems induced by broadband environmental fluctuations. In contrast to quantum optical and related setups based on cavities, the impact of a thermal phase reservoir is considered. A thorough analysis of Lamb and Stark shifts within weak-coupling master equations is complemented by nonperturbative results for the model of an exactly solvable harmonic system. The experimental protocol to measure the Lamb shift in experimentally feasible superconducting circuits is analyzed in detail and supported by numerical simulations.

  10. Calculation of the shifts of argon spectral lines

    SciTech Connect

    Christova, M.; Andreev, N.; Christov, L.; Dimitrijevic, M. S.

    2008-10-22

    Shifts due to collisions with charged particles (Stark broadening ) and neutral atoms, were determined for nine argon spectral lines corresponding to the transitions 3p{sup 5}nd-3p{sup 5}4p for n = 4-7, 3p{sup 5}6s-3p{sup 5}4d and 3p{sup 5}4p'-3p{sup 5}4s in order to estimate their usability for the research and diagnostics of a plasma in a surface-wave discharge at atmospheric pressure.

  11. Measurements of the Internal Magnetic Field on DIII-D Using Intensity and Spacing of the Motional Stark Multiplet

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Burrell, K. H.; Gu, M. F.; Holcomb, C. T.

    2008-11-01

    We describe a version of a motional Stark effect diagnostic based on the relative line intensities and spacing of Stark split Dα emission from the neutral beams. Using this technique both the magnitude and direction of the internal magnetic field can be measured, in contrast to motional Stark effect (MSE) polarimetry, which can only measure the direction. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the π3 and σ1 lines. These lines originate from the same upper level, and so are not dependent on the population levels. The magnitude of the internal B-field is determined from the wavelength separation of the various Stark components. We fit the spectra using a simple Stark model in which the upper level populations of the Dα transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  12. Lamb Shift Measurements

    NASA Astrophysics Data System (ADS)

    Pipkin, Francis M.

    The following sections are included: * INTRODUCTION * SUMMARY OF THEORY * CALCULATION OF SIGNALS * SLOW BEAM MEASUREMENTS * BOTTLE EXPERIMENTS * FAST BEAM EXPERIMENTS * Stark Quenching * Anisotropy of Quench Radiation * Quantum Beat Experiments * Atomic Interferometer * Fast Beam Radiofrequency Experiments * Single Field * Separated Oscillatory Fields * Fast Beam Laser Resonance * LASER SPECTROSCOPY * DIRECT MEASUREMENT OF LYMAN-a RADIATION * EXOTIC ATOMS * TWO ELECTRON ATOMS * COMPARISON OF THEORY AND EXPERIMENT * Hydrogne * Helium * High Z Atoms * PROSPECTS * ACKNOWLEDGEMENTS * References

  13. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  14. ACS CCDs daily monitor

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco

    2006-07-01

    This program consists of a set of basic tests to monitor, the read noise, thedevelopment of hot pixels and test for any source of noise in ACS CCDdetectors. The files, biases and dark will be used to create referencefiles for science calibration. This programme will be for the entire lifetime of ACS.For cycle 15 the program will cover 18 months 12.1.06->05.31.08and it has been divied into three different proposal each covering six months.The three poroposal are 11041-11042-11043.

  15. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  16. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  17. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  18. K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    NASA Astrophysics Data System (ADS)

    Pain, J.-C.; Gilleron, F.; Comet, M.; Gilles, D.

    2017-03-01

    The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn'ℓ' - 1s2nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).

  19. Stark spectroscopy of charge-transfer transitions in catechol-sensitized TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nawrocka, Agnieszka; Zdyb, Agata; Krawczyk, Stanisław

    2009-06-01

    Electronic excited states of catechol bound to titanium dioxide nanoparticles were investigated using electroabsorption (Stark effect) spectroscopy. The electronic transition at about 400 nm, characteristic for catechol bound to TiO 2 is associated with a change in permanent dipole moment by f · |Δ μ| = 15.7 D (where f is the local field correction factor), and a small negative change in the polarizability. Electron transfer distance points to the strong charge-transfer character of this transition. The electroabsorption spectra show also another electronic transition 7000 cm -1 higher energy, partially masked by the TiO 2 absorption.

  20. Revisiting the Stark Broadening by fluctuating electric fields using the Continuous Time Random Walk Theory

    NASA Astrophysics Data System (ADS)

    Capes, H.; Christova, M.; Boland, D.; Catoire, F.; Godbert-Mouret, L.; Koubiti, M.; Mekkaoui, A.; Rosato, J.; Marandet, Y.; Stamm, R.

    2010-10-01

    Stark broadening of atomic lines in plasmas is calculated by modelling the plasma stochastic electric field using the CTRW approach [1,2]. This allows retaining non Markovian terms in the Schrödinger equation averaged over the electric field fluctuations. As an application we consider a special case of a non separable CTRW process, the so called Kangaroo process [3]. An analytic expression for the line profile is presented for arbitrary waiting time distribution functions. A preliminary application to the hydrogen Lyman α line is discussed.

  1. Manipulation of ferromagnets via the spin-selective optical Stark effect

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, Alireza; Bauer, Gerrit E. W.; Brataas, Arne

    2013-08-01

    We investigate the nonresonant all-optical switching of magnetization. We treat the inverse Faraday effect (IFE) theoretically in terms of the spin-selective optical Stark effect for linearly or circularly polarized light. In the dilute magnetic semiconductors (Ga,Mn)As, strong laser pulses below the band gap induce effective magnetic fields of several teslas in a direction which depends on the magnetization direction as well as the light polarization and direction. Our theory demonstrates that the polarized light catalyzes the angular momentum transfer between the lattice and the magnetization.

  2. Stark broadening of halogen atom lines from (1 D) n p levels

    NASA Astrophysics Data System (ADS)

    Djurović, S.; Konjević, N.; Dimitrijević, M. S.

    1990-12-01

    We report results of a study of the Stark broadening of halogen atom lines from (1 D) n p levels. Wall stabilized arc is used as a plasma source. Electron densities 2.2 3.2×1022 m-3 are determined from the width of H α line and electron temperature 9300 10000 K from plasma composition data. The agreement with the results of simple semiclassical calculations is within the limits of the estimated errors of both experiment and theory. An explanation for the large discrepancy between theory and experiment detected for three BrI lines is offered.

  3. VizieR Online Data Catalog: Stark broadening of H lines (Stehle 1995)

    NASA Astrophysics Data System (ADS)

    Stehle, C.

    1995-09-01

    Tables of Stark broadened hydrogen lines of the Lyman, Balmer and Paschen series are presented under the conditions of stellar envelopes. The formalism is based on the Model Microfield Method (MMM) (Brissaud and Frisch, Frisch and Brissaud 1971) for both the electronic and ionic contributions to the line shape. The range of temperatures is 10000 to 80000 K, and electronic densities between 3.2E+14 and 3.2E+16 cm-3. Lyman and Balmer results were published in A&AS 104, 509, whereas Paschen results were presented at the 1995 July Workshop in Vienna. (3 data files).

  4. Supersymmetric factorization yields exact solutions to the molecular Stark-effect problem for stretched states

    SciTech Connect

    Lemeshko, Mikhail; Mustafa, Mustafa; Kais, Sabre; Friedrich, Bretislav

    2011-04-15

    By invoking supersymmetry, we found a condition under which the Stark-effect problem for a polar and polarizable molecule subject to nonresonant electric fields becomes exactly solvable for the |J-tilde=m,m> family of stretched states. The analytic expressions for the wave function and eigenenergy and other expectation values allow one to readily reverse-engineer the problem of finding the values of the interaction parameters required for creating quantum states with preordained characteristics. The method also allows the construction of families of isospectral potentials, realizable with combined fields.

  5. Linewidth-modulated motional Stark effect measurements of internal field structure in low-field configurations

    SciTech Connect

    Reinecke, E. A.; Fonck, R. J.; Thorson, T. A.

    2001-01-01

    Motional Stark effect measurements of internal field structure in low-field magnetic confinement configurations are considered for both magnitude and direction of the local magnetic field. The amplitude and phase delay of an oscillating spectral linewidth driven by a rotating polarizer provides a means of determining the magnitude and direction of the total field simultaneously while avoiding difficulties of neutral beam energy drift. Photon-noise limit estimates for a diagnostic beam on the low-field PEGASUS toroidal experiment indicate sensitivities of roughly 20 G and 0.2{sup o} for the magnitude and direction angle. These values are sufficient to provide significant constraints on magnetic equilibrium reconstructions.

  6. From molecular control to quantum technology with the dynamic Stark effect.

    PubMed

    Bustard, Philip J; Wu, Guorong; Lausten, Rune; Townsend, Dave; Walmsley, Lan A; Stolow, Albert; Sussman, Benjamin J

    2011-01-01

    The non-resonant dynamic Stark effect is a powerful and general way of manipulating ultrafast processes in atoms, molecules, and solids with exquisite precision. We discuss the physics behind this effect, and demonstrate its efficacy as a method of control in a variety of systems. These applications range from the control of molecular rotational dynamics to the manipulation of chemical reaction dynamics, and from the suppression of vacuum fluctuation effects in coherent preparation of matter, to the dynamic generation of bandwidth for storage of broadband quantum states of light.

  7. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Satoshi, Nodomi; Shuichi, Sato; Mikio, Ohuchi

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  8. The motional Stark effect polarimeter in the HL-2A tokamak.

    PubMed

    Yu, D L; Wei, Y L; Xia, F; Cao, J Y; Chen, C Y; Liu, L; Chen, W J; Ji, X Q; Liu, Y; Yan, L W; Yang, Q W; Duan, X R

    2014-05-01

    A 7-channel motional Stark effect polarimeter based on four polarizers and a spectrometer has been developed in the HL-2A tokamak, which is the first time successful utilizing this kind of polarimeter on a tokamak. The accuracy of the angle can reach ±0.25° in the calibration experiments. Pilot experiments of measuring the magnetic pitch angle have been successfully carried out in the weak motional Stark effect plasma discharge with toroidal magnetic field of ~1.3 T and beam energy of ~25 keV/amu. The pitch angles of magnetic field are obtained for 7 spatial points covering 24 cm along major radius with time resolution of 40 ms; the profiles of safety factor are obtained by combining with the Equilibrium and Reconstruction Fitting Code. The core value of safety factor (q) is less than 1 during the sawtooth oscillation and the position of q = 1 surface is well consistent with the results measured by soft X-ray array.

  9. High Temporal and Spatial Resolution Electron Density Diagnostic for the Edge Plasma based on Stark Broadening

    NASA Astrophysics Data System (ADS)

    Zafar, Abdullah; Martin, Elijah; Shannon, Steve; Isler, Ralph; Caughman, John

    2016-10-01

    Passive spectroscopic measurements of Stark broadening have been reliably used to determine electron density for decades. However, a low-density limit ( 1014 cm-3) exists due to Doppler and instrument broadening of the spectral line profile. A synthetic electron density diagnostic capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free, spectral line profile of a Balmar series transition by using an active laser based technique. The diagnostic approach outlined here greatly reduces both of these broadening contributions using Doppler-free saturation spectroscopy (DFSS), allowing access to lower density regimes. The measured profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The modeling and experimental results for this active spectroscopic technique are presented for a magnetized (<=5 T), low-density (1011-1013 cm-3) plasma. Details of applying DFSS to the plasma edge are also discussed.

  10. Laser-induced plasma electron number density: Stark broadening method versus the Saha-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Arnab, Sarkar; Manjeet, Singh

    2017-02-01

    We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the Al emission line and Mg emission lines. It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method, but within the experimental uncertainty range. Comparisons of N e determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for N e determination, especially when the system does not have any pure emission lines whose electron impact factor is known. Also use of Mg lines gives superior results than Al lines.

  11. The motional Stark effect polarimeter in the HL-2A tokamak

    SciTech Connect

    Yu, D. L. Wei, Y. L.; Xia, F.; Cao, J. Y.; Chen, C. Y.; Liu, L.; Chen, W. J.; Ji, X. Q.; Liu, Y.; Yan, L. W.; Yang, Q. W.; Duan, X. R.

    2014-05-15

    A 7-channel motional Stark effect polarimeter based on four polarizers and a spectrometer has been developed in the HL-2A tokamak, which is the first time successful utilizing this kind of polarimeter on a tokamak. The accuracy of the angle can reach ±0.25° in the calibration experiments. Pilot experiments of measuring the magnetic pitch angle have been successfully carried out in the weak motional Stark effect plasma discharge with toroidal magnetic field of ∼1.3 T and beam energy of ∼25 keV/amu. The pitch angles of magnetic field are obtained for 7 spatial points covering 24 cm along major radius with time resolution of 40 ms; the profiles of safety factor are obtained by combining with the Equilibrium and Reconstruction Fitting Code. The core value of safety factor (q) is less than 1 during the sawtooth oscillation and the position of q = 1 surface is well consistent with the results measured by soft X-ray array.

  12. Full-dimensional control of the radiationless decay in pyrazine using the dynamic Stark effect

    SciTech Connect

    Saab, Mohamad Lasorne, Benjamin Gatti, Fabien; Sala, Matthieu; Guérin, Stéphane

    2014-10-07

    We present a full quantum-mechanical study of the laser control of the radiationless decay between the B{sub 3u}(nπ{sup *}) and B{sub 2u}(ππ{sup *}) states of pyrazine using the dynamic Stark effect. In contrast to our previous study [Sala et al., J. Chem. Phys. 140, 194309 (2014)], where a four-dimensional model was used, all the 24 degrees of freedom are now included in order to test the robustness of the strategy of control. Using a vibronic coupling Hamiltonian model in a diabatic representation, the multi-layer version of the multi-configuration time-dependent Hartree method is exploited to propagate the corresponding wave packets. We still observe a trapping of the wavepacket on the B{sub 2u}(ππ{sup *}) potential energy surface due to the Stark effect for a longer time than the “non-resonant field-free” B{sub 2u}(ππ{sup *}) lifetime.

  13. Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus.

    PubMed

    Liu, Yanpeng; Qiu, Zhizhan; Carvalho, Alexandra; Bao, Yang; Xu, Hai; Tan, Sherman J R; Liu, Wei; Castro Neto, A H; Loh, Kian Ping; Lu, Jiong

    2017-03-08

    Two-dimensional black phosphorus (BP) has sparked enormous research interest due to its high carrier mobility, layer-dependent direct bandgap and outstanding in-plane anisotropic properties. BP is one of the few two-dimensional materials where it is possible to tune the bandgap over a wide energy range from the visible up to the infrared. In this article, we report the observation of a giant Stark effect in electrostatically gated few-layer BP. Using low-temperature scanning tunnelling microscopy, we observed that in few-layer BP, when electrons are injected, a monotonic reduction of the bandgap occurs. The injected electrons compensate the existing defect-induced holes and achieve up to 35.5% bandgap modulation in the light-doping regime. When probed by tunnelling spectroscopy, the local density of states in few-layer BP shows characteristic resonance features arising from layer-dependent sub-band structures due to quantum confinement effects. The demonstration of an electrical gate-controlled giant Stark effect in BP paves the way to designing electro-optic modulators and photodetector devices that can be operated in a wide electromagnetic spectral range.

  14. Theoretical study of the Stark broadening for Mg IV spectral lines of astrophysical interest

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; You, C.; Alonso-Medina, A.; Colón, C.

    2016-11-01

    Emission lines of Mg IV have been detected in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of LS V +46°21 star and in the Space Telescope Imaging Spectrograph (STIS) spectrum of BD +28°4211 star. This fact justifies our interest in providing spectroscopic parameters of Mg IV. Stark broadening parameters for 169 spectral lines of Mg IV have been calculated by using the Griem semi-empirical approach. The matrix elements used in these calculations has been determined from 13 configurations of Mg IV: 2s12p6, 2s22p4ns (n = 3-5), 2s22p4nd (n = 3-5) and 2s22p45g for even parity and 2s22p5, 2s22p4np (n = 3, 4) and 2s22p4nf (n = 4, 5) for odd parity. Our calculations were made by using the Cowan code. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.0-10.0 (104 K). Also we present calculated values of transition probabilities for 30 spectral lines and radiative lifetimes corresponding to its upper levels. These values were analysed using the data found in the literature. Theoretical trends of the Stark broadening parameters versus the temperature for several lines of astrophysical interest are presented.

  15. A Bichromator for High Time Resolution Measurements of Stark Broadened Pellet Ablation Light

    NASA Astrophysics Data System (ADS)

    Schmidt, G. L.; Baylor, L. R.; Fehling, D. T.; Jernigan, T. C.; Brooks, N. H.; Parks, P. B.

    2004-11-01

    Details of the pellet/plasma interaction are important for modeling of local pellet source rates and cross field transport of pellet mass. Understanding these processes is critical for projection of current fueling experiments to future devices such as ITER. Measurement of the Stark broadened deuterium emission lines provides the electron density and temperature of the pellet cloud for comparison with modeling details. Stark broadening measurements on JET for low field launch pellets at moderate time resolution indicate a slow variation in the cloud parameters. Observations of ablation light suggest changes in cloud parameters may occur on faster time scales. We report on the possible application of a multiple interference filter technique[1]to allow monitoring of cloud parameters at time resolution sufficient to study both the slow and rapid variations in cloud parameters. Application of the bichromator to line widths and temporal evolution typical of DIII-D pellet injection cases will be discussed.[1]McNeill,D.H.,RSI 73 (2002) 3193.

  16. Islam and the "universal" gender difference in religious commitment: a brief report in response to Stark (2002).

    PubMed

    Schumm, Walter R

    2004-06-01

    Stark (2002) demonstrated across 57 nations that men were less likely to report being religiously oriented than were women. He concluded that a physiological difference in risk-taking among younger males might account for disinterest in religion among such males, although he would prefer to explain the gender difference as a consequence of socialization. One socialization hypothesis overlooked by Stark was that Islam as a religion might have been developed, in a small part, as a response to the gender differential observed in earlier religions. Reanalysis of Stark's 2002 data indicates that Islamic nations were more likely to yield smaller gender differences on religious questions, although the effect ranged from p<.06 to a significant p<.005, depending on the method of analysis.

  17. The application of weak electric field pulses to measure the pseudo-Stark split by photon echo beating

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2016-07-01

    A novel scheme for determining the pseudo-Stark splitting of optical lines has been suggested and tested in experiment. The scheme allows one to observe the beating of a photon echo waveform under conditions of overlap in time between a weak electric pulse and its echo-pulse. The pseudo-Stark splitting is equal to the inverse average modulation period of the echo waveform. The photon echo beating of the R1-line in Ruby has been observed. The dependence of the inverse average modulation period of the echo waveform on the average value of the electric field over the optically excited volume has been found. The obtained values of the pseudo-Stark parameter are in good agreement with known literature data.

  18. Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings

    SciTech Connect

    Vorob'ev, Nikolai S; Glebov, L B

    2009-01-31

    Generation of Stark spectral components in free-running Q-switched Nd:YAP (1064 nm and 1073 nm) and Nd:YAG (1062 nm) lasers is obtained. For this purpose reflecting volume Bragg gratings placed into the laser resonator and permitting to tune the laser emission spectrum were used. Stable generation of Stark components in both lasers is obtained. The possibility of obtaining two-frequency generation in an Nd-glass laser with the help of these gratings is shown. (control of laser radiation parameters)

  19. Surface acoustic BLOCH oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling in a solid.

    PubMed

    de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A

    2010-04-23

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  20. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender…

  1. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  2. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    NASA Astrophysics Data System (ADS)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  3. Definition of Shifts of Optical Transitions Frequencies due to Pulse Perturbation Action by the Photon Echo Signal Form

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.

    2015-09-01

    A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.

  4. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  5. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  6. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  7. AC Optimal Power Flow

    SciTech Connect

    2016-10-04

    In this work, we have implemented and developed the simulation software to implement the mathematical model of an AC Optimal Power Flow (OPF) problem. The objective function is to minimize the total cost of generation subject to constraints of node power balance (both real and reactive) and line power flow limits (MW, MVAr, and MVA). We have currently implemented the polar coordinate version of the problem. In the present work, we have used the optimization solver, Knitro (proprietary and not included in this software) to solve the problem and we have kept option for both the native numerical derivative evaluation (working satisfactorily now) as well as for analytical formulas corresponding to the derivatives being provided to Knitro (currently, in the debugging stage). Since the AC OPF is a highly non-convex optimization problem, we have also kept the option for a multistart solution. All of these can be decided by the user during run-time in an interactive manner. The software has been developed in C++ programming language, running with GCC compiler on a Linux machine. We have tested for satisfactory results against Matpower for the IEEE 14 bus system.

  8. Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature

    PubMed Central

    2012-01-01

    We measured the quantum-confined Stark effect (QCSE) of several types of fluorescent colloidal semiconductor quantum dots and nanorods at the single molecule level at room temperature. These measurements demonstrate the possible utility of these nanoparticles for local electric field (voltage) sensing on the nanoscale. Here we show that charge separation across one (or more) heterostructure interface(s) with type-II band alignment (and the associated induced dipole) is crucial for an enhanced QCSE. To further gain insight into the experimental results, we numerically solved the Schrödinger and Poisson equations under self-consistent field approximation, including dielectric inhomogeneities. Both calculations and experiments suggest that the degree of initial charge separation (and the associated exciton binding energy) determines the magnitude of the QCSE in these structures. PMID:23075136

  9. Direct manifestation of topological order in the winding number of the Wannier-Stark ladder

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Ram; Park, Kwon

    2015-11-01

    Topological quantum phases of matter have been a topic of intense interest in contemporary condensed matter physics. Extensive efforts are devoted to investigate various exotic properties of topological matter including topological insulators, topological superconductors, and topological semimetals. For topological insulators, the dissipationless transport via gapless helical edge or surface states is supposed to play a defining role, which unfortunately has proved difficult to realize in experiments due to inevitable backscattering induced in the sample boundary. Motivated by the fundamental connection between topological invariants and the Zak phase, here, we show that the nontrivial band topologies of both two- and three-dimensional topological insulators, characterized by the Chern numbers and the Z2 invariants, respectively, are directly manifested in the winding numbers of the Wannier-Stark ladder (WSL) emerging under an electric field. We use the Floquet Green's function formalism to show that the winding number of the WSL is robust against interband interference as well as nonmagnetic impurity scattering.

  10. Computation of the Stark effect in P impurity states in silicon

    NASA Astrophysics Data System (ADS)

    Debernardi, A.; Baldereschi, A.; Fanciulli, M.

    2006-07-01

    We compute within the effective-mass theory and without adjustable parameters the Stark effect for shallow P donors in Si with anisotropic band structure. Valley-orbit coupling is taken into account in a nonperturbative way and scattering effects of the impurity core are included to properly describe low-lying impurity states. The ground-state energy slightly decreases with increasing electric field up to a critical value Ecr˜25keV/cm , at which the donor can be ionized by tunneling due to a field-induced mixing of the “ 1s -like” singlet ground state with a “ 2p0 -like” excited state in zero field. The resulting ground-state wave function at high field extends significantly outside the potential barrier surrounding the impurity. Calculations of the hyperfine splitting and of the A -shell superhyperfine coupling constants as a function of the electric field complete the work.

  11. Modulation-assisted tunneling in laser-fabricated photonic Wannier-Stark ladders

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sebabrata; Spracklen, Alexander; Choudhury, Debaditya; Goldman, Nathan; Öhberg, Patrik; Andersson, Erika; Thomson, Robert R.

    2015-11-01

    We observe Wannier-Stark (W-S) localization in curved photonic lattices, realized using arrays of evanescently coupled optical waveguides. By correctly tuning the strength of inter-site coupling in the lattice, we observe that W-S states become increasingly localized, and eventually fully localized to one site, as the curvature of the lattice is increased. We then demonstrate that tunneling can be successfully restored in the lattice by applying a resonant sinusoidal modulation to the lattice position, an effect that is a direct analogue of photon-assisted tunneling. This precise tuning of the tunneling matrix elements, through resonant modulation-assisted tunneling, opens a novel route for the creation of gauge fields in laser-fabricated photonic lattices.

  12. Status of motional Stark effect and Zeeman effect diagnostics for KSTAR

    NASA Astrophysics Data System (ADS)

    Ko, Jinseok; Chung, Jinil; de Bock, Maarten; KSTAR Team

    2014-10-01

    The motional Stark effect (MSE) diagnostic system is under development aiming at commissioning in 2015. The design and fabrication of the polarization preserving front optics has been complete, including the multi-layer dielectric coated mirror and beam splitter, the latter being required to split the incident light into that above 600 nm for MSE and that below 600 nm for the Charge Exchange Spectroscopy (CES) that shares the front optics with MSE. The bandpass filters with a sharp transmission function and a minimum distortion against tilting have been procured. Both the analog lock-in and the post-processing numerical Fourier transform will be exploited. The Li-beam based Zeeman effect (ZE) diagnostic system is under conceptual design. Its details on the design are introduced in this work including the radial resolution and sensitivity to the change of the magnetic field pitch near the pedestal region. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  13. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  14. A simple formula for estimating Stark widths of neutral lines. [of stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Freudenstein, S. A.; Cooper, J.

    1978-01-01

    A simple formula for the prediction of Stark widths of neutral lines similar to the semiempirical method of Griem (1968) for ion lines is presented. This formula is a simplification of the quantum-mechanical classical path impact theory and can be used for complicated atoms for which detailed calculations are not readily available, provided that the effective position of the closest interacting level is known. The expression does not require the use of a computer. The formula has been applied to a limited number of neutral lines of interest, and the width obtained is compared with the much more complete calculations of Bennett and Griem (1971). The agreement generally is well within 50% of the published value for the lines investigated. Comparisons with other formulas are also made. In addition, a simple estimate for the ion-broadening parameter is given.

  15. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  16. Full Stark control of polariton states on a spin-orbit hypersphere

    NASA Astrophysics Data System (ADS)

    Li, Feng; Cancellieri, E.; Buonaiuto, G.; Skolnick, M. S.; Krizhanovskii, D. N.; Whittaker, D. M.

    2016-11-01

    The orbital angular momentum and the polarization of light are physical quantities widely investigated for classical and quantum information processing. In this work we propose to take advantage of strong light-matter coupling, circular-symmetric confinement, and transverse-electric transverse-magnetic splitting to exploit states where these two degrees of freedom are combined. To this end we develop a model based on a spin-orbit Poincaré hypersphere. Then we consider the example of semiconductor polariton systems and demonstrate full ultrafast Stark control of spin-orbit states. Moreover, by controlling states on three different spin-orbit spheres and switching from one sphere to another we demonstrate the control of different logic bits within one single physical system.

  17. Stark spectroscopy of CuPc organic semiconductor with a submicron metal-electrode grating

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Palto, S. P.

    2016-02-01

    The optical and electro-optical properties of organic copper phthalocyanine semiconductor (α- CuPc) have been investigated by Stark (electroabsorption) spectroscopy using a metal electrode grating with a submicron (0.88 μm) interelectrode distance. Differences between dipole moments (Δμ) and polarizabilities (Δα) in the excited and ground states of α-CuPc are measured for a nanoscale semiconductor film. It is concluded that the extremely high values of Δμ and Δα are in principle not parameters of individual α-CuPc molecules: they are determined by exciton effects specifically in the polycrystalline medium with a characteristic morphology of hyperfine films, which depends on the structure of the samples and their fabrication technology.

  18. Surface-modified Wannier-Stark states in a one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Maury, A.; Donaire, M.; Gorza, M.-P.; Lambrecht, A.; Guérout, R.

    2016-11-01

    We study the energy spectrum of atoms trapped in a vertical one-dimensional optical lattice in close proximity to a reflective surface. We propose an effective model to describe the interaction between the atoms and the surface at any distance. Our model includes the long-range Casimir-Polder potential together with a short-range Lennard-Jones potential, which are considered nonperturbatively with respect to the optical lattice potential. We find an intricate energy spectrum which contains a pair of loosely bound states localized close to the surface in addition to a surface-modified Wannier-Stark ladder at long distances. Atomic interferometry involving those loosely bound atom-surface states is proposed to probe the adsorption dynamics of atoms on mirrors.

  19. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  20. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  1. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  2. Gear shift control mechanism

    SciTech Connect

    Janson, D.A.

    1987-03-10

    A gear shift control mechanism is described comprising: multiple shift rods directed substantially parallel to one another, each rod carrying a shift fork for axial movement; a shift lever supported for pivotal movement about a first axis directed parallel to the axes of the shift rods and for pivotal movement about a second axis directed substantially perpendicular to the axes of the shift rods. The lever is moveable about the first axis and the second axis into engagement with a selected shift fork; interlock means located on each lateral side of the shift lever and mounted for pivotal movement about the first axis for blocking engagement with the shift forks; detent means for holding the shift lever in multiple predetermined angular positions about the second axis; and spring means located on a lateral side of the shift lever and mounted for pivotal movement about the first axis into interference contact with the shift forks for producing a force tending to resiliently bias the shift lever out of engagement with the selected shift fork.

  3. The trouble with orbits: The Stark effect in the old and the new quantum theory

    NASA Astrophysics Data System (ADS)

    Duncan, Anthony; Janssen, Michel

    2014-11-01

    The old quantum theory and Schrödinger's wave mechanics (and other forms of quantum mechanics) give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine the account of the effect in the old quantum theory, which was hailed as a major success of that theory, from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a fundamental problem that one runs into in the old quantum theory with the Stark effect. It turns out that, even without an external field, it depends on the coordinates in which the quantum conditions are imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not. In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocuous non-uniqueness of bases in Hilbert space. Second, we review how the so-called WKB (Wentzel-Kramers-Brillouin) approximation method for solving the Schrödinger equation reproduces the quantum conditions of the old quantum theory amended by some additional half-integer terms. These extra terms remove the need for some arbitrary extra restrictions on the allowed orbits that the old quantum theory required over and above the basic quantum conditions.

  4. Motional Stark Effect Diagnostic Expansion for the DIII-D Tokamak

    SciTech Connect

    Holcomb, C. T.; Allen, S.; Ellis, R. F.; Geer, R.; Jayakumar, R. J.; Morris, K.; Makowski, M. A.; Moller, J. M.; Seppala, L.

    2005-08-01

    A repositioning of a heating neutral beam on the DIII-D tokamak provides an opportunity to expand and improve the Motional Stark Effect diagnostic (MSE) used to constrain the current profile. Dα emission from the neutral beam is split into components parallel (π) and perpendicular (σ) to the total electric field ETotal = vxB + Eplasma. The MSE diagnostic measures the polarization of the σ component to determine the local magnetic field pitch angle Bz/Bφ and the local radial plasma electric field ER. This is typically done using the EFIT current profile reconstruction code. Two independent measurements of the pitch angle γ at each radius are required to differentiate the contributions from the Stark and plasma electric fields. Presently, three MSE diagnostics provide multiple views of a single neutral beam. Our ability to accurately differentiate Bz and ER is limited because these views do not overlap with sufficient radial resolution in some locations, and this limits the accuracy of the current profile reconstructions. The beam rearrangement allows us to build a fourth MSE view of a second beam injected counter to the plasma current. The combination of the new view with the old will improve radial resolution about a factor of 3, reduce ER uncertainty by a factor of 2 in the core and 5-6 in the edge, and reduce Bz uncertainty by 20-30%. The design of the new system is presented in this paper, focusing on the mechanical and optical details at the tokamak port on which it will be installed.

  5. Polarimetry of motional Stark effect and determination of current profiles in DIII-D

    SciTech Connect

    Wroblewski, D. ); Lao, L.L. )

    1992-05-01

    The motional electric field E = v {times} B, where v is the velocity and B is the tokamak magnetic field, produces a strong Stark effect in spectral lines emitted by hydrogenic neutral beams. The tilt angle of the magnetic field line, a quantity related directly to the distribution of the plasma toroidal current, is deduced from a measurement of the direction of polarization of the Stark components. In the DIII-D tokamak, the Balmer-{alpha} line of deuterium emitted by one of the high-power heating beams is analyzed. A multichord polarimeter measures the magnetic field pitch angle at eight spatial locations covering {approximately}0.6 of the nominal plasma diameter at the midplane outboard side. The diagnostic offers 2 to 8 cm resolution in the major radius and 1 ms integration time. The accuracy of the measurement of the polarization direction necessary for an adequate reconstruction of the current profiles is obtained with the use of active polarizing elements which produce high frequency intensity modulation with an amplitude related to the direction of linear polarization of the plasma radiation. The current profiles in highly shaped (non-circular) plasmas cannot be determined solely from the tilt angle measurements because they do not provide any information about the shape of magnetic surfaces. Thus, the polarization measurement are used in conjunction with a large set of external magnetic measurements (magnetic field and flux probes, diamagnetic loops, and Rogowski coils) by the magnetic field equilibrium code EFIT, and provide a constraint on the possible solutions for the current profile.

  6. Polarimetry of motional Stark effect and determination of current profiles in DIII-D (invited)

    SciTech Connect

    Wroblewski, D. ); Lao, L.L. )

    1992-10-01

    The motional electric field {ital E}={ital v}{times}{ital B}, where {ital v} is the velocity and {ital B} is the tokamak magnetic field, produces a strong Stark effect in spectral lines emitted by hydrogenic neutral beams. The tilt angle of the magnetic field line, a quantity related directly to the distribution of the plasma toroidal current, is deduced from a measurement of the direction of polarization of the Stark components. In the DIII-D tokamak, the Balmer-{alpha} line of deuterium emitted by one of the high-power heating beams is analyzed. A multichord polarimeter measures the magnetic field pitch angle at eight spatial locations covering {similar to}0.6 of the nominal plasma diameter at the midplane outboard side. The diagnostic offers 2--8-cm resolution in the major radius and 1-ms integration time. The accuracy of the measurement of the polarization direction necessary for an adequate reconstruction of the current profiles is obtained with the use of active polarizing elements which produce high-frequency intensity modulation with an amplitude related to the direction of linear polarization of the plasma radiation. The current profiles in highly shaped (noncircular) plasmas cannot be determined solely from the tilt angle measurements because they do not provide any information about the shape of magnetic surfaces. Thus, the polarization measurements are used in conjunction with a large set of external magnetic measurements (magnetic field and flux probes, diamagnetic loops, and Rogowski coils) by the magnetic field equilibrium code EFIT, and provide a constraint on the possible solutions for the current profile.

  7. Expanding College Opportunity: An Annual Report on Dual Credit and Other Post Secondary Opportunities for Stark County High School Students

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.; Ughrin, Tina

    2014-01-01

    This is the eighth annual report by the Stark Education Partnership on dual enrollment and other post secondary opportunities (PSOs) for the county's high school students. In addition to dual enrollment, this report looks at a portfolio of the county's PSOs that includes Canton Early College High School, and the opportunity to bank future college…

  8. Reaching for 80%: How Post Secondary Opportunities in High Schools Are Changing the College Going Culture in Stark County, Ohio

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.

    2011-01-01

    In 2002, the Stark County Preschool through College (P-16) Compact set the goal of achieving an 80% college going rate. Such a goal seemed both audacious and daunting for a community where in 2001 only 17.9% of the adults held a Bachelor's Degree, or higher, and where only 49% of all high school graduates went directly to college. Nine years have…

  9. Advancing College Opportunity: An Impact Evaluation of the Growth of Dual Credit in Stark and Wayne Counties, Ohio

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele

    2009-01-01

    This impact evaluation looks at three years of growth for "high school-based dual credit" courses exclusive of Canton's Early College High School in Stark and Wayne Counties. As "high school based dual credit" is increasingly implemented in low wealth and urban districts, accompanied by an increase in high school teachers…

  10. To Bind Ties between the School and Tribal Life: Educational Policy for Africans under George Stark in Zimbabwe.

    ERIC Educational Resources Information Center

    Mungazi, Dickson A.

    1989-01-01

    Contends that educational policy in Zimbabwe from 1934 to 1954 served the political purposes of the colonial government and neglected genuine educational development of the colonized Africans. During George Stark's tenure as Director of Native Education, Zimbabweans were consigned to "practical training" programs and were denied access…

  11. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multipleta)

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Holcomb, C. T.

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split Dα emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the π3 and σ1 lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6° from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the Dα transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  12. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet.

    PubMed

    Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  13. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet

    SciTech Connect

    Pablant, N. A.; Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Holcomb, C. T.

    2008-10-15

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D{sub {alpha}} emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the {pi}{sub 3} and {sigma}{sub 1} lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 deg. from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D{sub {alpha}} transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  14. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  15. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  16. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  17. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  18. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  19. Slowing and cooling of heavy or light (even with a tiny electric dipole moment) polar molecules using a novel, versatile electrostatic Stark decelerator.

    PubMed

    Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping

    2016-02-21

    To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide

  20. Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy.

    PubMed

    Moore, L J; Zhou, H; Boxer, S G

    1999-09-14

    The electronic absorption line shape and Stark spectrum of the lowest energy Q(y)() transition of the special pair in bacterial reaction centers contain a wealth of information on mixing with charge transfer states and electronic asymmetry. Both vary greatly in mutants that perturb the chemical composition of the special pair, such as the heterodimer mutants, and in mutants that alter interactions between the special pair and the surrounding reaction center protein, such as those that add or remove hydrogen bonds. The conventional and higher-order Stark spectra of a series of mutants are presented with the aim of developing a systematic description of the electronic structure of the excited state of the special pair that initiates photosynthetic charge separation. The mutants L168HF, M197FH, L131LH and L131LH/M160LH/M197FH are known to have different hydrogen-bonding patterns to the special pair; however, they exhibit Stark effects that are very similar to wild type. By contrast, the addition of a hydrogen bond to the M-side keto carbonyl group of the special pair in M160LH greatly affects both the absorption and Stark spectra. The heterodimer special pairs, L173HL and M202HL, exhibit much larger Stark effects than wild type, with the greatest effect in the M-side mutant. Double mutants that combine the M-side heterodimer and a hydrogen-bond addition to the L-side of the special pair decrease the magnitude of the Stark effect. These results suggest that the electronic asymmetry of the dimer can be perturbed either by the formation of a heterodimer or by adding or deleting a hydrogen bond to a keto carbonyl group. From the pattern observed, it is concluded that the charge transfer state P(L)(+)P(M)(-) has a larger influence on the excited state of the dimer in wild type than the P(L)(-)P(M)(+)charge transfer state. Furthermore, asymmetry can be varied continuously, from extreme cases in which the heterodimer and hydrogen-bond effects work together, to cases in which

  1. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Babuchowska, Paulina; Frąckowiak, Elżbieta; Béguin, François

    2016-09-01

    A high energy hybrid AC/AC electrochemical capacitor has been realized in aqueous Li2SO4+KI electrolyte mixture. Owing to the redox processes associated with the 2I-/I2 system, the positive electrode operates in narrow potential range and displays high capacity. During prolonged potentiostatic floating at 1.6 V, the hybrid cell demonstrates remarkably stable capacitance and resistance. Analyses by temperature programmed desorption after floating at 1.6 V proved that oxidation of the positive AC electrode is prevented by the use of Li2SO4+KI, which enables the maximum potential of this electrode to be shifted below the water oxidation potential. When charged at 0.2 A g-1 up to U = 1.6 V, the hybrid cell displays a high capacitance of 75 F g-1 (300 F g-1 per mass of one electrode) compared to 47 F g-1 (188 F g-1 per mass of one electrode) for a symmetric cell in Li2SO4. At 0.2 A g-1 up to 1.6 V, the hybrid capacitor in Li2SO4+KI displays an energy density of 26 Wh kg-1 which approaches the energy density of 30.9 Wh kg-1 measured when the same carbon is implemented in a capacitor using TEABF4/ACN electrolyte and charged up to 2.5 V.

  2. Layoff Handling Still Lags ACS Standards.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    Reviews termination procedures of professional chemists and the compliance of these terminations to the American Chemical Society's (ACS's) Professional Employment Guidelines. Provides the ACS guidelines. (DS)

  3. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  4. Comment on "Test of the Stark-effect theory using photoionization microscopy"

    NASA Astrophysics Data System (ADS)

    Giannakeas, P.; Robicheaux, F.; Greene, Chris H.

    2015-06-01

    An article by Zhao et al. [Phys. Rev. A 86, 053413 (2012), 10.1103/PhysRevA.86.053413] tests the local frame transformation (LFT) theory by comparing it with benchmark coupled-channel calculations. The system under consideration is an alkali-metal atom that is two-photon ionized in the presence of a static external electric field. Zhao et al. state that the differential cross sections computed in the LFT theory disagree with their supposedly more accurate coupled-channel calculations. They went on to diagnose the discrepancy and claimed that it originates in an inaccurate correspondence between the irregular functions in spherical and parabolic-cylindrical coordinates, a correspondence that lies at the heart of LFT theory. We have repeated the same tests and find that our calculations rule out the discrepancies that were claimed in Zhao et al. [Phys. Rev. A 86, 053413 (2012), 10.1103/PhysRevA.86.053413] to exist between the LFT approximation and the exact calculations. This Comment thus helps to clarify the accuracy of the Harmin-Fano theory and demonstrates that it is in fact remarkably accurate not only for the total photoionization cross section in the Stark effect, but also for the differential cross section in photoionization microscopy.

  5. Dynamic Stark effect, light emission, and entanglement generation in a laser-driven quantum optical system

    NASA Astrophysics Data System (ADS)

    Pagel, D.; Alvermann, A.; Fehske, H.

    2017-01-01

    We calculate the emission spectra, the Glauber g(2 ) function, and the entanglement of formation for two-level emitters coupled to a single cavity mode and subject to an external laser excitation. To evaluate these quantities we couple the system to environmental degrees of freedom, which leads to dissipative dynamics. Because of the periodic time dependence of the system Hamiltonian, the coefficients of the Markovian master equation are constant only if Floquet states are used as the computational basis. Studying the emission spectra, we show that the dynamic Stark effect first appears in second order of the laser intensity. For the Glauber function, we find clearly distinguished parameter regimes of super- and sub-Poissonian light emission and explain the additional features appearing for finite laser intensity in terms of the quasienergy spectrum of the driven emitter-cavity system. Finally, we analyze the temperature and emitter-cavity-coupling regimes where entanglement among the emitters is generated and show that the laser excitation leads to a decrease of entanglement.

  6. Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D

    SciTech Connect

    King, J. D.; Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Hill, D. N.; Meyer, W. H.; Geer, R.; La Haye, R. J.; Petty, C. C.; Van Zeeland, M. A.; Turco, F.; Rhodes, T. L.; Morse, E. C.

    2011-03-15

    Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at {rho}{>=} 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

  7. Note: Spectral motional Stark effect diagnostic for measurement of magnetic fields below 0.3 T

    SciTech Connect

    Lizunov, A.; Donin, A.; Savkin, V.

    2013-08-15

    The paper reports on development of the spectral motional Stark effect (MSE) diagnostic in the midplane of the gas dynamic trap (GDT) linear system for magnetic confinement of anisotropic hot-ion plasma. The axially symmetric GDT vacuum magnetic field has a minimum value in the midplane, which varies from 0.2 to 0.35 T in different regimes of operation. Buildup of 15 keV ion population generates a diamagnetic reduction of magnetic field in the plasma core of up to 30% in the maximum density region, as measured by the existing eight-line MSE diagnostic. Commissioning of the midplane MSE provided first direct measurements of diamagnetic modifications in the minimum magnetic field GDT section, a necessary complement to the understanding of equilibrium and self-organization of high-β plasmas in GDT. Making use of the stable short-pulse diagnostic beam and calibration of the apparent spectral width of beam emission lines allow for the measurement of the plasma magnetic field of 0.29 ± 0.007 T with the integration time of 200 μs.

  8. Electron Stark Broadening Database for Atomic N, O, and C Lines

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.

    2012-01-01

    A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.

  9. A digital lock-in upgrade of the motional Stark effect diagnostic on DIII-D.

    PubMed

    King, J D; Makowski, M A; Holcomb, C T; Allen, S L; Geer, R; Meyer, W H; Hill, D N; Pham, D; Morse, E C

    2010-10-01

    The use of lock-in amplifiers for phase sensitive detection of motional Stark effect (MSE) diagnostic signals is of critical importance to real-time internal current profile measurements in tokamak plasmas. A digital lock-in (DLI) upgrade utilizing field programable gate array firmware has been installed on the MSE system of the DIII-D tokamak for the eventual replacement of largely obsolete analog units. While the new digital system has shown a small reduction in electronic noise over the analog, the main advantages are reduced cost, hardware simplicity, compact size, and phase tracking during plasma operations. DLI recovery of MSE polarization angles was accomplished through use of reference processing to produce only photoelastic modulator (PEM) second harmonic frequencies and electronic signal processing to maximize the fidelity of the recovered signal. A simplified discrete analytical solution was found that accurately describes the new DLI hardware. The DLI algorithm was found to cause a prohibitively large oscillating artifact atop the demodulated signal. The artifact was caused by the accumulator interval not containing an exact integer number of PEM multiplier periods. Successful MSE measurements require the minimization of this oscillating artifact amplitude. The analytical solution was used to select an appropriate accumulator interval that both reduces the artifact and maintains the greatest temporal resolution possible. Sample EFIT equilibria reconstructions and corresponding safety factor profiles showed very close agreement between the analog and digital lock-ins.

  10. A digital lock-in upgrade of the motional Stark effect diagnostic on DIII-Da)

    NASA Astrophysics Data System (ADS)

    King, J. D.; Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Geer, R.; Meyer, W. H.; Hill, D. N.; Pham, D.; Morse, E. C.

    2010-10-01

    The use of lock-in amplifiers for phase sensitive detection of motional Stark effect (MSE) diagnostic signals is of critical importance to real-time internal current profile measurements in tokamak plasmas. A digital lock-in (DLI) upgrade utilizing field programable gate array firmware has been installed on the MSE system of the DIII-D tokamak for the eventual replacement of largely obsolete analog units. While the new digital system has shown a small reduction in electronic noise over the analog, the main advantages are reduced cost, hardware simplicity, compact size, and phase tracking during plasma operations. DLI recovery of MSE polarization angles was accomplished through use of reference processing to produce only photoelastic modulator (PEM) second harmonic frequencies and electronic signal processing to maximize the fidelity of the recovered signal. A simplified discrete analytical solution was found that accurately describes the new DLI hardware. The DLI algorithm was found to cause a prohibitively large oscillating artifact atop the demodulated signal. The artifact was caused by the accumulator interval not containing an exact integer number of PEM multiplier periods. Successful MSE measurements require the minimization of this oscillating artifact amplitude. The analytical solution was used to select an appropriate accumulator interval that both reduces the artifact and maintains the greatest temporal resolution possible. Sample EFIT equilibria reconstructions and corresponding safety factor profiles showed very close agreement between the analog and digital lock-ins.

  11. Excited electronic state mixing in 7-azaindole. Quantitative measurements using the Stark effect.

    PubMed

    Young, Justin W; Pozun, Zachary D; Jordan, Kenneth D; Pratt, David W

    2013-12-12

    Stark effect measurements of the +280 cm(-1) vibronic band at ∼286 nm in the high resolution S1-S0 fluorescence excitation spectrum of 7-azaindole (7AI) in a molecular beam show that the permanent (electric) dipole moment (PDM) of the upper state vibrational level reached in this transition is 4.6 D, twice as large as the PDM of the zero-point level of the S1 state. This large difference is attributed to state mixing with a more polar state. EOM-CSSD calculations suggest that this more polar state is σπ* in nature and that it crosses the ππ* state in energy along the coordinate connecting the two potential energy minima. Such state mixing apparently provides more facile access to conical intersections with the ground state, and subsequent hydrogen atom detachment reactions, since independent studies by Sakota and Sekiya have shown that the N-H stretching frequency of 7AI is significantly reduced when it is excited to the +280 cm(-1) vibrational level of the S1 state.

  12. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    PubMed

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  13. Density fluctuation measurement using motional Stark effect optics in JT-60U

    SciTech Connect

    Suzuki, T.; Fujita, T.; Oyama, N.; Isayama, A.; Matsunaga, G.; Oikawa, T.; Asakura, N.; Takechi, M.

    2006-10-15

    The multichannel motional Stark effect (MSE) diagnostic system in JT-60U has been upgraded to measure density fluctuation profile. A 16-channel fast-sampling digitizer has been added in order to measure photomultiplier-tube signals at measurement frequency of 0.5-1 MHz. The new system works as a MSE and beam emission spectroscopy diagnostic. Spatially resolved electron density fluctuation profile measurement in various operation regimes is presented. In the core plasma, density fluctuation induced by rotation of tearing mode islands was observed. Temporal evolution of the fluctuation frequency agrees with that measured by Mirnov coils (poloidal and toroidal mode numbers: 2 and 1, respectively). The phases of the fluctuations on either side of the q=2 surface are inverted, which is consistent with electron cyclotron emission. These measurements show that the density fluctuation is caused by a rotating magnetic island structure induced by the tearing mode. In the scrape-off layer of a H-mode plasma with edge-localized-mode (ELM), i. e., ELMy H-mode outward propagation of strong intermittent emission corresponding to ELM crash was also observed. The propagation velocity is 0.69-2.2 km/s along the MSE measurement points, the time lag and distance between adjacent channels being 67{+-}35 {mu}s and 70 mm, respectively.

  14. Magnetic fluctuation profile measurement using optics of motional Stark effect diagnostics in JT-60U

    SciTech Connect

    Suzuki, T.; Isayama, A.; Matsunaga, G.; Oyama, N.; Fujita, T.; Oikawa, T.

    2008-10-15

    Motional Stark effect (MSE) diagnostics in JT-60U works as polarimeter to measure the pitch angle of magnetic field as well as beam-emission-spectroscopy (BES) monochromator simultaneously at 30 spatial channels. Fluctuation in the BES signal using MSE optics (MSE/BES) contains fluctuations in not only the density but also the pitch angle (or the magnetic field). Correlation analysis of the magnetic fluctuation between two spatial channels is applied to high-beta plasma with a magnetohydrodynamic activity at frequency of about 0.9 kHz. It has been found that the magnetic fluctuation measured by the MSE/BES is spatially localized near the magnetic flux surface having safety factor and that the phase of the fluctuation is inverted at about the surface, suggesting magnetic island structure by tearing mode. The phase of the magnetic fluctuation measured by the MSE/BES at outside of the q=2 surface is consistent with that by the pickup coil placed outside the plasma.

  15. Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes

    SciTech Connect

    Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D. A.; Jacobs, V. L.; Seely, J. F.; Oliver, B. V.; Fisher, A.

    2011-09-15

    A recently suggested spectroscopic approach for magnetic-field determination in plasma is employed to measure magnetic fields in an expanding laser-produced plasma plume in an externally applied magnetic field. The approach enables the field determination in a diagnostically difficult regime for which the Zeeman-split patterns are not resolvable, as is often encountered under the conditions characteristic of high-energy-density plasmas. Here, such conditions occur in the high-density plasma near the laser target, due to the dominance of Stark broadening. A pulsed-power system is used to generate magnetic fields with a peak magnitude of 25 T at the inner-electrode surface in a coaxial configuration. An aluminum target attached to the inner electrode surface is then irradiated by a laser beam to produce the expanding plasma that interacts with the applied azimuthal magnetic field. A line-shape analysis of the Al III 4s-4p doublet (5696 and 5722 A) enables the simultaneous determination of the magnetic field and the electron density. The measured magnetic fields are generally found to agree with those expected in a vacuum based on the pulsed-power system current. Examples of other transitions that can be used to diagnose a wide range of plasma and magnetic field parameters are presented.

  16. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions

    SciTech Connect

    Schmidt, Burkhard; Friedrich, Bretislav

    2014-02-14

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables – such as alignment and orientation cosines – in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  17. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Friedrich, Bretislav

    2014-02-01

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  18. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  19. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.

  20. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.

    2016-05-01

    We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.

  1. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.

  2. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

    PubMed Central

    Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.

    2016-01-01

    We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area. PMID:27170026

  3. Thermal Line Shift and Broadening of Ho(3+) in Y3AI5O12 and Lu3AIO12

    NASA Technical Reports Server (NTRS)

    Snoke, Elizabeth R.; Armagan, Guzin; Grew, Gary W.; Barnes, Norman P.; Walsh, Brian M.

    1995-01-01

    The interaction between the active ion and the host lattice manifests itself in two distinct ways: the static interaction with the crystal field that causes the splitting of the free ion energy levels and the active interaction through the surrounding phonon system that produces temperature dependent characteristics in the optical spectrum of the ion (e.g. line broadening and line shift). The strength of the splitting depends heavily on the electronic configuration of the atom. The model give by McCumber and Sturge describes the thermal effects on line width and position above 77 K with Raman scattering of Debye model phonons. These processes predict a Lorentzian line shape. However, below 77 K the principal contributions are from crystal inhomogeneities that result in a Gaussian line shape. We have investigated the experimental Stark levels as well as the thermal effects on the line width and the position of trivalent holmium ions in both yttrium aluminum garnet, Y3Al5O12 (YAG) and lutetium aluminum garnet, Lu3Al5O12 (LuAG) crystals. We have compared the Stark levels of the (5)I(6) state, and the thermal line shift and broadening of an isolated transition (Z2 to X13) between the (5)I(8) and (5)I(6) stark levels in these crystals. This transition occurs in the near infrared region at approximately 1117 nm.

  4. Two-step phase-shifting SPIDER

    PubMed Central

    Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang

    2016-01-01

    Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths. PMID:27666528

  5. Two-step phase-shifting SPIDER

    NASA Astrophysics Data System (ADS)

    Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang

    2016-09-01

    Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

  6. CONTROL OF LASER RADIATION PARAMETERS: Generation of Stark spectral components in Nd:YAP and Nd:YAG lasers by using volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Vorob'ev, Nikolai S.; Glebov, L. B.; Smirnov, V. I.; Chapurin, I. V.

    2009-01-01

    Generation of Stark spectral components in free-running Q-switched Nd:YAP (1064 nm and 1073 nm) and Nd:YAG (1062 nm) lasers is obtained. For this purpose reflecting volume Bragg gratings placed into the laser resonator and permitting to tune the laser emission spectrum were used. Stable generation of Stark components in both lasers is obtained. The possibility of obtaining two-frequency generation in an Nd-glass laser with the help of these gratings is shown.

  7. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  8. Total AC loss study of 2G HTS coils for fully HTS machine applications

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yuan, Weijia; Kvitkovic, Jozef; Pamidi, Sastry

    2015-11-01

    The application of HTS coils for fully HTS machines has become a new research focus. In the stator of an electrical machine, HTS coils are subjected to a combination of an AC applied current and AC external magnetic field. There is a phase shift between the AC current and AC magnetic field. In order to understand and estimate the total AC loss of HTS coils for electrical machines, we designed and performed a calorimetric measurement for a 2G HTS racetrack coil. Our measurement indicates that the total AC loss is greatly influenced by the phase shift between the applied current and the external magnetic field when the magnetic field is perpendicular to the tape surface. When the applied current and the external magnetic field are in phase, the total AC loss is the highest. When there is a 90 degree phase difference, the total AC loss is the lowest. In order to explain this phenomenon, we employ H formulation and finite element method to model the 2G HTS racetrack coil. Our calculation agrees well with experimental measurements. Two parameters are defined to describe the modulation of the total AC loss in terms of phase difference. The calculation further reveals that the influence of phase difference varies with magnetic field direction. The greatest influence of phase difference is in the perpendicular direction. The study provides key information for large-scale 2G HTS applications, e.g. fully HTS machines and superconducting magnetic energy storage, where the total AC loss subjected to both applied currents and external magnetic fields is a critical parameter for the design.

  9. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  10. Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    PubMed Central

    2011-01-01

    The electronic structure of terpyrimidinethiols is investigated by means of density-functional theory calculations for isolated molecules and monolayers. In the transition from molecule to self-assembled monolayer (SAM), we observe that the band gap is substantially reduced, frontier states increasingly localize on opposite sides of the SAM, and this polarization in several instances is in the direction opposite to the polarization of the overall charge density. This behavior can be analyzed by analogy to inorganic semiconductor quantum-wells, which, as the SAMs studied here, can be regarded as semiperiodic systems. There, similar observations are made under the influence of a, typically external, electric field and are known as the quantum-confined Stark effect. Without any external perturbation, in oligopyrimidine SAMs one encounters an energy gradient that is generated by the dipole moments of the pyrimidine repeat units. It is particularly strong, reaching values of about 1.6 eV/nm, which corresponds to a substantial electric field of 1.6 × 107 V/cm. Close-lying σ- and π-states turn out to be a particular complication for a reliable description of the present systems, as their order is influenced not only by the docking groups and bonding to the metal, but also by the chosen computational approach. In the latter context we demonstrate that deliberately picking a hybrid functional allows avoiding pitfalls due to the infamous self-interaction error. Our results show that when aiming to build a monolayer with a specific electronic structure one can not only resort to the traditional technique of modifying the molecular structure of the constituents, but also try to exploit collective electronic effects. PMID:21955058

  11. Linear response of the hydrogen atom in Stark states to a harmonic uniform electric field

    SciTech Connect

    Marian, T.A.

    1989-04-15

    The influence of a weak harmonic uniform electric field, switched on adiabatically, on a nonrelativistic hydrogenlike atom is examined. Each of the phi- and A-gauge first-order corrections to the wave function of a stationary state chemically bondN> is determined by a vector function that we denote v/sub N/ and w/sub N/, respectively. The absolute starting point of our calculations is Schwinger's formula for the Coulomb Green's function in momentum space. In the case of a bound state with definite angular momentum, we report a compact integral representation and also an explicit expression of the phi-gauge vector v/sub n//sub l//sub m/, which are analogous to those of the corresponding A-gauge vector w/sub n//sub l//sub m/ studied previously. We have derived compact analytic expressions of the linear-response vectors v/sub n//sub >//sub xi/n/sub eta/m$ and w/sub n//sub >//sub xi/n/sub eta/m$ associated to an arbitrary Stark state. These are written first as contour integrals, and then explicitly in terms of a new generalized hypergeometric function with five variables, /sub 2/phi/sub H/, which is a finite sum of Humbert functions phi/sub 1/. We have calculated the static limit of the regular part of the vector v/sub n//sub >//sub xi/n/sub eta/m$. Also discussed are the Sturmian-function expansions of the linear-response vectors for angular momentum states.

  12. Effect of higher-order multipole moments on the Stark line shape

    NASA Astrophysics Data System (ADS)

    Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.

    2016-08-01

    Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.

  13. Laser-induced fluorescence and Optical/Stark spectroscopy of PtC

    SciTech Connect

    Beaton, S. A.; Steimle, T. C.

    1999-12-22

    Optical/Stark measurements have been performed on the (0,0) bands of both the A{sup ''} {sup 1}{sigma}{sup +}-X {sup 1}{sigma}{sup +} system ({nu}{sub 0}{approx_equal}12 643 cm{sup -1}) and the A{sup '} {sup 1}{pi}-X {sigma}{sup +} system ({nu}{sub 0}{approx_equal}13 196 cm{sup -1}) of platinum monocarbide. The PtC molecules were produced in a pulsed supersonic molecular beam source following the reaction of laser ablated platinum vapor with a mixture of a few percent of methane in argon. The newly determined permanent electric dipole moments obtained are 1.94(2)D (A{sup ''} {sup 1}{sigma}{sup +}) and 1.919(9)D (A{sup '} {sup 1}{pi}). These results are discussed in terms of a proposed molecular orbital correlation diagram for platinum containing diatomics. The laser-induced fluorescence spectrum of the (0,0)A{sup ''} {sup 1}{sigma}{sup +}-X {sup 1}{sigma}{sup +} transition of PtC has been re-recorded at high resolution (full width of half-maximum {approx}40 MHz) and analyzed to yield rotational constants for the four most abundant isotopomers of PtC, extending the previous analysis [Appelblad, Nilsson, and Scullman, Phys. Scr. 7, 65 (1973)]. The anomalously large value ({approx}15 MHz) for the newly derived nuclear-spin rotation parameter, C{sub I}({sup 195}Pt), for the A{sup ''} {sup 1}{sigma}{sup +} state is discussed. (c) 1999 American Institute of Physics.

  14. Refinement of the semiclassical theory of the Stark broadening of hydrogen spectral lines in plasmas

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-02-01

    Stark broadening (SB) of hydrogen, deuterium, and tritium lines (H-lines) is an important diagnostic tool for many applications. The most "user-friendly" are semiclassical theories of the SB of H-lines: their results can be expressed analytically in a relatively simple form for any H-line. The simplest semiclassical theory is the so-called Conventional Theory (CT), which is frequently referred to as Griem's theory. While by now there are several significantly more advanced semiclassical "non-CT" theories of the SB, Griem's CT is still used by a number of groups performing laboratory experiments or astrophysical observations for the comparison with their experimental or observational results. In the present study we engage unexplored capabilities of the CT for creating analytically a more accurate CT. First, we take into account that the perturbing electrons actually do not move as free particles: rather they move in a dipole potential V=·r/r3, where r is the radius-vector of the perturbing electrons and is the mean value of the radius vector of the atomic electron. Second, Griem's definition of the so-called Weisskopf radius was not quite accurate. Third, in his book of year 1974, Griem suggested changing so-called strong collision constant without changing the Weisskopf radius, while in reality the choices of the Weisskopf radius and of the strong collision constant are interrelated. We show that the above refinements of the CT increase the electron broadening - especially for warm dense plasmas emitting H-lines. By comparison with benchmark experiments concerning the Hα line we demonstrate that the effect of the ion dynamics (neglected in any CT) might be slightly smaller than previously thought, while the effect of the acceleration of perturbing electrons by the ion field in the vicinity of the radiating atom (neglected in any CT) might be greater than previously thought.

  15. Blackbody radiation shift in the {sup 87}Rb frequency standard

    SciTech Connect

    Safronova, M. S.; Jiang Dansha; Safronova, U. I.

    2010-08-15

    The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature, of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in {sup 87}Rb using the relativistic all-order method and carried out a detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly excited states. Our predicted value for the Stark coefficient, k{sub S}=-1.240(4)x10{sup -10} Hz/(V/m){sup 2}, is three times more accurate than the previous calculation [E. J. Angstman, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 74, 023405 (2006)].

  16. Local photo-excitation of shift current in noncentrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Nagaosa, Naoto

    2017-03-01

    Photocurrent in solids is an important phenomenon with many applications including the solar cells. In conventional photoconductors, the electrons and holes created by light irradiation are separated by the external electric field, resulting in a current flowing into electrodes. Shift current in noncentrosymmetric systems is distinct from this conventional photocurrent in the sense that no external electric field is needed and, more remarkably, is driven by the Berry phase inherent to the Bloch wavefunction. It is analogous to the polarization current in the ground state but is a dc current continuously supported by the nonequilibrium steady state under the pumping by light. Here we show theoretically, by employing Keldysh–Floquet formalism applied to a simple one-dimensional model, that the local photo excitation can induce the shift current which is independent of the position and width of the excited region and also the length of the system. This feature is in stark contrast to the conventional photocurrent, which is suppressed when the sample is excited locally at the middle and increases towards the electrodes. This finding reveals the unconventional nature of shift current and will pave a way to design a highly efficient photovoltaic effect in solids.

  17. Blackbody radiation shift in the Rb87 frequency standard

    NASA Astrophysics Data System (ADS)

    Safronova, M. S.; Jiang, Dansha; Safronova, U. I.

    2010-08-01

    The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature, of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in Rb87 using the relativistic all-order method and carried out a detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly excited states. Our predicted value for the Stark coefficient, kS=-1.240(4)×10-10Hz/(V/m)2, is three times more accurate than the previous calculation [E. J. Angstman, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.74.023405 74, 023405 (2006)].

  18. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  19. Instantaneous phase shifting deflectometry.

    PubMed

    Trumper, Isaac; Choi, Heejoo; Kim, Dae Wook

    2016-11-28

    An instantaneous phase shifting deflectometry measurement method is presented and implemented by measuring a time varying deformable mirror with an iPhone ® 6. The instantaneous method is based on multiplexing phase shifted fringe patterns with color, and decomposing them in x and y using Fourier techniques. Along with experimental data showing the capabilities of the instantaneous deflectometry system, a quantitative comparison with the Fourier transform profilometry method, which is a distinct phase measuring method from the phase shifting approach, is presented. Sources of error, nonlinear color-multiplexing induced error correction, and hardware limitations are discussed.

  20. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  1. Improved feedback shift register

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1972-01-01

    Design of feedback shift register with three tap feedback decoding scheme is described. Application for obtaining sequence synchronization patterns is examined. Operation of the circuitry is described and drawings of the systems are included.

  2. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  3. Our World: Fluid Shift

    NASA Video Gallery

    Learn about the circulatory system and how gravity aids blood flow in our bodies here on Earth. Find out how NASA flight surgeons help the astronauts deal with the fluid shift that happens during s...

  4. Shift Verification and Validation

    SciTech Connect

    Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G; Johnson, Seth R.; Godfrey, Andrew T.

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  5. Straddling a paradigm shift

    SciTech Connect

    Landgren, D.

    1995-05-01

    Paul Meagher made a big mistake when he asked me about my speech. I asked him what I should talk about. He reiterated the title of the conference {open_quotes}Forecasting and DSM: Organizing for Success,{close_quotes} and said that whatever issues I wanted to cover were fine with him. As a result I will cover those areas I`ve been thinking about recently. It is hard for me to extract either Forecasting or Demand-Side Management out from the broader issues unwinding in the industry today. I`ve been around long enough to be involved in two major shifts in the industry. I call these paradigm shifts because as a planner I tend to build models in my mind to represent business or regulatory structure. Since a paradigm is defined as a clear model of something, I tend to talk about structural shifts in the industry as paradigm shifts. The first paradigm shift was brought about by the rapid escalation of energy prices in the 1970s. The second paradigm shift, brought about in part because of the first and because of growing concerns about the environment, ushered in the era of utility conservation and load management programs (components of a broader DSM concept - unfortunately today many people limit DSM to only these two pieces). The third paradigm shift is just starting, driven by partial deregulation and the subsequent increase in competition. My talk today will focus on issues related to the second paradigm, particularly in terms of utility planners getting more organized to deal with the synergies in the fields of forecasting, demand-side planning, and evaluation. I will also reflect on two new issues within the existing paradigm that influence these functional areas, namely beneficial electrification and integration of DSM into T&D planning. Finally I will talk about what I see coming as we go through another paradigm shift, particularly as it impacts forecasting and DSM.

  6. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  7. AC-coupled front-end for biopotential measurements.

    PubMed

    Spinelli, Enrique Mario; Pallàs-Areny, Ramon; Mayosky, Miguel Angel

    2003-03-01

    AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 Hz.

  8. Precise measurement of the Stark shift within the 5P1/2 -->6S1/2 transition in 115In

    NASA Astrophysics Data System (ADS)

    Lorenzo, A. T.; Ranjit, G.; Majumder, P. K.

    2011-05-01

    We are pursuing a series of precise atomic structure measurements in Group IIIA elements--currently thallium and indium--designed to test recent ab initio theoretical calculations in these systems. In indium, a two-step, two-color vapor cell hyperfine spectroscopy experiment was recently completed in our laboratory. Previously, an atomic beam system in conjunction with a thallium oven source and high-voltage field plates was used to complete a precise scalar polarizability measurement in thallium. In our current work, we have designed a new indium atomic beam source, and are pursuing a precision measurement of the indium atomic polarizability within the 410 nm 5P 1/2 --> 6S1/2 transition. The new source is capable of reaching 1100 °C and contains a series of parallel effusive slits to produce a dense, collimated beam of indium. We intersect the laser transversely with the atomic beam in the presence of a precisely calibrated electric field of 30 kV/cm. Frequency modulation of the laser, and simultaneous piezoelectric modulation of the atomic beam allows a dual-frequency lock-in detection scheme. This produces a zero-background atomic absorption spectrum of high signal-to-noise ratio. Our goal is to achieve a polarizability measurement at the 1% level of accuracy or better, which will provide a stringent new test of the atomic theory calculations.

  9. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect

    Yang, Lin; Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang; Li, Gongping

    2014-04-28

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500 ± 100 K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13 000 ± 400 K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM = FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10 ± 0.08) × 10{sup 21} m{sup −3}, the reference reduced mass μ{sub 0} pair of (3.30 ± 0.82 and 1.65 ± 0.41), and the ion kinetic temperature of 7900 ± 1800 K.

  10. A new species of Neoperla from China, with a redescription of the female of N. mnong Stark, 1987 (Plecoptera, Perlidae)

    PubMed Central

    Chen, Zhi-Teng; Du, Yu-Zhou

    2016-01-01

    Abstract A new species of the Neoperla clymene group (Plecoptera, Perlidae), Neoperla chebalinga sp. n. from Guangdong Province of southern China is described, illustrated, and compared with related taxa. The new species is characterized by the slender aedeagal tube, strongly sclerotized dorsally, and weakly sclerotized ventrally with an upcurved, medial, finger-like membranous lobe. Additionally the aedeagal sac gradually tapers to a blunt apex with a dorsoapical patch of spines. A supplementary description of the female of Neoperla mnong Stark, 1987 from Guangdong Province, China is also given. PMID:27667948

  11. ACS from development to operations

    NASA Astrophysics Data System (ADS)

    Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.

    2016-08-01

    The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.

  12. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  13. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  14. A driving scheme to reduce AC LED flicker

    NASA Astrophysics Data System (ADS)

    Tan, Jianchuan; Narendran, Nadarajah

    2013-09-01

    Light flicker is a common but unwelcome phenomenon in conventional lighting applications. In solid-state lighting, driving or dimming methods also give rise to light flicker. AC LED products in today's marketplace suffer from flicker, which stems from the arrangement of the micro-LEDs and the driving method. Research has shown that light flicker can be a health hazard to humans. Several solutions have been proposed to reduce light flicker in solid-state lighting applications; however, most have drawbacks in terms of power and other performance. This paper proposes a circuit design to reduce light flicker from AC LEDs while maintaining a normal power factor and high power efficiency. The circuit is composed of one resistive branch and one capacitive branch, and each branch drives a load which is made up of high-voltage LEDs. Percent flicker, power factor, and power efficiency were selected as three metrics, and their benchmarks were set to evaluate the performance of this circuit. Phase shift between the two branches was selected as a factor that could determine the circuit performance. The variations of percent flicker, power factor, and power efficiency as a function of phase shift were identified by theoretical analysis and were verified by experiments. The experimental results show that an optimal solution can be achieved for this circuit design at proper phase shift, where the benchmarks of the three metrics are reached.

  15. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E.

    2016-04-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2.

  16. Molecular-beam optical Stark and Zeeman study of the A {sup 2}{Pi}--X {sup 2}{Sigma}{sup +} (0,0) band system of BaF

    SciTech Connect

    Steimle, Timothy C.; Frey, Sarah; Le, Anh; DeMille, David; Rahmlow, David A.; Linton, Colan

    2011-07-15

    The A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} (0,0) band system of barium monofluoride (BaF) has been recorded using high-resolution laser-induced fluorescence spectroscopy both field-free and in the presence of static magnetic and electric fields. The field-free spectra for the {sup 135}BaF, {sup 137}BaF, and {sup 138}BaF isotopologues were modeled to generate an improved set of spectroscopic constants for the A {sup 2}{Pi}({upsilon} = 0) and X {sup 2}{Sigma}{sup +}({upsilon} = 0) states. The observed optical Stark shifts for the {sup 138}BaF isotopologue were analyzed to produce the permanent electric dipole moments of 1.50(2) and 1.31(2) D for the A {sup 2}{Pi}{sub 1/2}({upsilon} = 0) and A {sup 2}{Pi}{sub 3/2} ({upsilon} = 0) states, respectively. The observed optical Zeeman shifts for the {sup 138}BaF isotopologue were analyzed to produce a set of magnetic g factors for the A {sup 2}{Pi}({upsilon} = 0) and X {sup 2}{Sigma}{sup +}({upsilon} = 0) states.

  17. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Corfdir, Pierre; Brandt, Oliver; Riechert, Henning; Geelhaar, Lutz

    2016-12-21

    The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm(2) at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

  18. Experimental Measurements of the Lower Hybrid Electric Field on Alcator C-Mod by Stark Effect Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillis, D. L.; Mumgaard, R.; Lau, C.; Wallace, G.; Shiraiwa, S.

    2016-10-01

    A new diagnostic was installed on Alcator C-Mod capable of determining both the magnitude and direction of the lower hybrid wave electric field, ELH . The diagnostic, named SELHF (Stark Effect Lower Hybrid Field), simultaneously measures the two orthogonal polarization states of the Dβ spectra by passive optical emission spectroscopy. The ELH vector is then determined by systematically fitting the spectrum to the EZSSS (Explicit Zeeman-Stark Spectra Simulator) code which incorporates a fully quantum mechanical model comprising of the appropriate dynamic electric field and magnetic field operators. The SELHF diagnostic has 27 unique views of the LH launcher and surrounding space, each integrating over a 3 cm in diameter sightline, which is comparable to the waveguide dimension. Two sightlines are simultaneously viewed, yielding four spectra per discharge. In this presentation the diagnostic setup will be given. The methodology behind the spectral modeling and the results of the associated error analysis, yielding the accuracy of the ELH vector information, will be presented. The initial experimental results compared against a 2D cold-plasma model in COMSOL will be discussed. Work supported by DoE Contract No. DE-FC02-99ER54512 on Alcator C-Mod, a Department of Energy Office of Science user facility.

  19. An Overview Of The Motional Stark Effect Diagnostic On DIII-D And Design Work For An ITER MSE

    SciTech Connect

    Holcomb, C T; Allen, S L; Makowski, M A; Jayakumar, R J; Gu, M F; Lerner, S; Morris, K L; Latkowski, J; Moller, J M; Meyer, W; Ellis, R; Geer, R; Behne, D; Chipman, R; Smith, P; McClain, S

    2007-09-20

    The advanced tokamak research program at DIII-D relies critically on the measurement of the current density profile. This was made possible by the development of a Motional Stark Effect (MSE) polarimeter that was first installed in 1992. Three major upgrades have since occurred, and improvements in our understanding of critical performance issues and calibration techniques are ongoing. In parallel with these improvements, we have drawn on our DIII-D experience to begin studies and design work for MSE on burning plasmas and ITER. This paper first reviews how Motional Stark Effect polarimetry (MSE) is used to determine the tokamak current profile. It uses the DIII-D MSE system as an example, and shows results from the latest upgrade that incorporates an array of channels from a new counter-Ip injected neutral beam. The various calibration techniques presently used are reviewed. High-leverage or unresolved issues affecting MSE performance and reliability in ITER are discussed. Next, we show a four-mirror collection optics design for the two ITER MSE views. Finally, we discuss measurements of the polarization properties of a few candidate mirrors for the ITER MSE.

  20. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  1. Eluding catastrophic shifts.

    PubMed

    Villa Martín, Paula; Bonachela, Juan A; Levin, Simon A; Muñoz, Miguel A

    2015-04-14

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences.

  2. Eluding catastrophic shifts

    PubMed Central

    Villa Martín, Paula; Bonachela, Juan A.; Levin, Simon A.; Muñoz, Miguel A.

    2015-01-01

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences. PMID:25825772

  3. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  4. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  5. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  6. Dipole moment of benzonitrile in its excited S 1 state from thermochromic shifts of fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-02-01

    The effect of temperature T ranging from 293 to 393 K on absorption and fluorescence spectra of benzonitrile (BN) in ethyl acetate is studied. The absorption spectra of BN remain unchanged with increasing T. The analysis of fluorescence band shift by the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621], for the known dipole moment value in the ground state μg = 4.18 D and α/ a3 = 0.5 ( α is the polarizability and a is the Onsager interaction radius of the solute), yield the average value of excited state dipole moment μe = 4.42 D. This value is in satisfactory agreement with 4.45, 4.51 and 4.57 D obtained previously from the Stark shift of rotational lines.

  7. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  8. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  9. New shifted hybrid inflation

    NASA Astrophysics Data System (ADS)

    Jeannerot, Rachel; Khalil, Shaaban; Lazarides, George

    2002-07-01

    A new shifted hybrid inflationary scenario is introduced which, in contrast to the older one, relies only on renormalizable superpotential terms. This scenario is automatically realized in a concrete extension of the `minimal' supersymmetric Pati-Salam model which naturally leads to a moderate violation of Yukawa unification so that, for μ>0, the predicted b-quark mass is acceptable even with universal boundary conditions. It is shown that this extended model possesses a classically flat `shifted' trajectory which acquires a slope via one-loop radiative corrections and can be used as inflationary path. The constraints from the cosmic background explorer can be met with natural values of the relevant parameters. Also, there is no disastrous production of magnetic monopoles after inflation since the Pati-Salam gauge group is already broken on the `shifted' path. The relevant part of inflation takes place at values of the inflaton field which are not much smaller than the `reduced' Planck scale and, thus, supergravity corrections could easily invalidate inflation. It is, however, shown that inflation can be kept intact provided that an extra gauge singlet with a superheavy vacuum expectation value, which originates from D-terms, is introduced and a specific form of the Kähler potential is used. Moreover, it is found that, although the supergravity corrections are sizable, the constraints from the cosmic background explorer can again be met by readjusting the values of the parameters which were obtained with global supersymmetry.

  10. Extensión del Formalismo de Orbitales de Defecto Cuántico al tratamiento del efecto Stark (SQDO).

    NASA Astrophysics Data System (ADS)

    Menéndez, J. M.; Martín, I.; Velasco, A. M.

    El estudio experimental de las interacciones de átomos Rydberg altamente excitados con campos eléctricos ha experimentado un creciente interés durante las dos últimas décadas debido, en gran medida, al desarrollo de nuevas técnicas para crear y estudiar átomos Rydberg en el laboratorio. Acompañando a estas nuevas técnicas experimentales, es necesario el desarrollo de modelos teóricos que nos permitan contrastar sus medidas y conocer mejor los fundamentos de los mismos. Desde el punto de vista teórico el conocimiento del desdoblamiento de los niveles energéticos de un átomo en función de la magnitud del campo eléctrico aplicado (lo que se conoce como mapa Stark) es el mejor punto de partida para la descripción del sistema y un prerrequisito fundamental para el cálculo de distintas propiedades atómicas en presencia del campo eléctrico tales como intensidades de transición, umbrales de ionización de campo eléctrico, tiempos de vida, posición y anchura de cruces evitados, etc. En este trabajo presentamos la adaptación del método de orbitales de defecto cuántico [1,2,3] al tratamiento del efecto Stark (SQDO) [4] y su aplicación al cálculo de los desdoblamientos energéticos y fuerzas de oscilador de estados Rydberg en los átomos de Li, Na y K. El propósito de este estudio es, por un lado, desarrollar métodos fiables para la determinación de propiedades atómicas en presencia de campos eléctricos y, por otro, mostrar la fiabilidad de las funciones de onda QDO en la descripción del efecto Stark en sistemas atómicos.

  11. A theoretical study of the optical Stark effect in InGaAs/InAlAs quantum dots

    NASA Astrophysics Data System (ADS)

    Nhu Thao, Dinh; Bao, Le Thi Ngoc; Dinh Phuoc, Duong; Quang, Nguyen Hong

    2017-02-01

    In this paper, we examine the three-level optical Stark effect of excitons in InGaAs/InAlAs quantum dots using renormalized wavefunction formulation. The system was assumed to be irradiated by two lasers in which a strong laser dynamically couples electron-quantized levels, while a weaker laser probes interband absorption. Our results show that, in the presence of the resonant strong laser, two new absorption peaks of excitons appear in the absorption spectrum as a clear indication of the effect. In addition, we propose that the formation of the effect in low-dimensional structures could have connection to the splitting of electron levels. Furthermore, we seek to explain the essential dependence of the amplitude and position of two peaks on pump field detuning.

  12. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic.

    PubMed

    Holcomb, C T; Makowski, M A; Allen, S L; Meyer, W H; Van Zeeland, M A

    2008-10-01

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E(R) profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on the toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array.

  13. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    NASA Astrophysics Data System (ADS)

    Zafar, A.; Martin, E. H.; Shannon, S. C.; Isler, R. C.; Caughman, J. B. O.

    2016-11-01

    An electron density diagnostic (≥1010 cm-3) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6-2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 1010-1013 cm-3. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  14. A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface

    SciTech Connect

    Engelhart, Daniel P.; Grätz, Fabian; Wagner, Roman J. V.; Wodtke, Alec M.; Schäfer, Tim; Haak, Henrik; Meijer, Gerard

    2015-04-15

    We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface.

  15. Real-time Magnetic Field Pitch Angle Estimation With a Motional Stark Effect Diagnostic Using Kalman Filtering

    SciTech Connect

    Coelho, R.; Alves, D.

    2008-03-12

    The real-time amplitude estimation of selective harmonics from an Avalanche Photo Diode (APD) signal of a Motion Stark Effect diagnostic is addressed using a Kalman filter. The proposed technique is shown to be much more robust and provide less noisy estimates than a lock-in amplifier scheme. In addition, the negative impact of Edge Localised Modes (ELMs) is minimized, reducing significantly the biasing in the amplitude estimation and ultimately allowing for the pitch angle estimation in the vicinity of the ELM. The inherent biasing in the amplitude estimation due to the 50Hz modulation in the NBI power grid is also easily circumvented with such a technique, rendering dispensable any further filtering of the data.

  16. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  17. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostica)

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Makowski, M. A.; Allen, S. L.; Meyer, W. H.; Van Zeeland, M. A.

    2008-10-01

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and ER profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on the toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array.

  18. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic

    SciTech Connect

    Holcomb, C. T.; Makowski, M. A.; Allen, S. L.; Meyer, W. H.; Van Zeeland, M. A.

    2008-10-15

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E{sub R} profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on the toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array.

  19. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic

    SciTech Connect

    Holcomb, C; Makowski, M; Allen, S; Meyer, W; Van Zeeland, M

    2008-05-02

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E{sub R} profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array.

  20. Dynamic Stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna.

    PubMed

    Klepper, C C; Isler, R C; Hillairet, J; Martin, E H; Colas, L; Ekedahl, A; Goniche, M; Harris, J H; Hillis, D L; Panayotis, S; Pegourié, B; Lotte, Ph; Colledani, G; Martin, V

    2013-05-24

    Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local rf electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near field of a 1–3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local rf electric field amplitude (as low as 1–2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.

  1. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  2. Shifting seasons, climate change and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Thackeray, Stephen; Henrys, Peter; Hemming, Deborah; Huntingford, Chris; Bell, James; Leech, David; Wanless, Sarah

    2014-05-01

    In recent decades, the seasonal timing of many biological events (e.g. flowering, breeding, migration) has shifted. These phenological changes are believed to be one of the most conspicuous biological indicators of climate change. Rates and directions of phenological change have differed markedly among species, potentially threatening the seasonal synchrony of key species interactions and ultimately ecosystem functioning. Differences in phenological change among-species at different trophic levels, and with respect to other broad species traits, are likely to be driven by variations in the climatic sensitivity of phenological events. However, as yet, inconsistencies in analytical methods have hampered broad-scale assessments of variation in climate sensitivity among taxonomic and functional groups of organisms. In this presentation, results will be presented from a current collaborative project (http://www.ceh.ac.uk/sci_programmes/shifting-seasons-uk.html) in which many UK long-term data sets are being integrated in order to assess relationships between temperature/precipitation, and the timing of seasonal events for a wide range of plants and animals. Our aim is to assess which organism groups (in which locations/habitats) are most sensitive to climate. Furthermore, the role of anthropogenic climate change as a driver of phenological change is being assessed.

  3. Transmission shift control assembly

    SciTech Connect

    Dzioba, D.L.

    1989-04-18

    This patent describes a transmission shift control assembly mounted on a steering column having a longitudinal axis comprising: bracket means secured to the steering column; transmission shift cable means having a portion secured to the bracket means and a portion linearly movable relative to the secured portion; mounting means on the bracket cable drive arm means having an axis and being rotatably mounted on the rotary axis on the mounting means oblique to the longitudinal axis and including a cable connecting portion secured to the movable portion of the cable means and lever mounting means adjacent the mounting means; operator control means including lever means, pin means for pivotally mounting the lever means on the lever mounting means on an axis substantially perpendicular to the rotary axis and positioning arm means formed on the lever means and extending from the pin means; and detent gate means disposed on the bracket means in position to abut the positioning arm means for limiting the extent of pivotal movement of the lever means.

  4. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  5. ACS PSF Variations with Temperatures

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.; Lallo, Matt; Makidon, Russ

    2007-09-01

    We have used the HST ACS/WFC observations of a Galactic bulge field taken over a continuous interval of 7 days (Prop 9750) to investigate the possible dependence of the ACS focus with the external temperatures. This dataset allows us to investigate possible focus variations over timescales of a few hours to a few days. The engineering data related to the external temperatures for this duration show that the maximum temperature change occurred over the first 1.5 days. Among all the different temperatures recorded, the truss diametric differential and the truss axial temperatures are the only two temperatures which have the same timescale of variation as the PSFwidth variations. The PSF-widths also strongly correlate with these two temperatures during this time interval. We empirically fit the PSF-width variations with these 2 temperature sensor values. This suggests that the focus has a similar dependence, and we recommend that this finding be followed up with the determination of actual focus values to check if the focus values indeed have the same correlation. If so, the temperature data can be useful in estimating the focus values, which can then be used to predict the PSFs to a first order.

  6. ac electroosmosis in rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-01

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Hückel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  7. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  8. An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals

    PubMed Central

    Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.

    2016-01-01

    Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062

  9. Shift Work: Improving Daytime Sleep

    MedlinePlus

    Healthy Lifestyle Adult health I just started working the night shift, and I'm having trouble sleeping during ... as long as you work the shift. Make healthy lifestyle choices. Eat a healthy diet and include physical ...

  10. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  11. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  12. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  13. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  14. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  15. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH-H2O and OH(D2O)n (n = 1-3)

    NASA Astrophysics Data System (ADS)

    Hernandez, Federico J.; Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Raston, Paul L.; Pino, Gustavo A.; Douberly, Gary E.

    2015-10-01

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH-H2O and OH(D2O)n clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH-H2O and OH-D2O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D2O)2, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for "up-up" and "up-down" structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D2O molecules are observed shifted approximately 300 cm-1 to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D2O)3.

  16. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    SciTech Connect

    Hernandez, Federico J.; Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E.; Raston, Paul L.; Pino, Gustavo A.

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  17. Multidecadal wind-driven shifts in northwest Pacific temperature, salinity, O2, and PO4

    NASA Astrophysics Data System (ADS)

    Kwon, Eun Young; Kim, Young Ho; Park, Young-Gyu; Park, Young-Hyang; Dunne, John; Chang, Kyung-Il

    2016-11-01

    The North Pacific gyre boundaries are characterized by stark contrasts in physical and biogeochemical properties. Meridional movement of gyre boundaries, influenced by climate change, can therefore exert a large influence not only on marine ecosystems but also on climate. We examine the evidence for wind-driven southward shifts in subsurface temperature, salinity, PO4, and O2 within the northwest Pacific from the 1950s to the 2000s. Gyre boundary shifts can explain 30-60% of temperature and salinity trends zonally averaged in the northwest Pacific and observed PO4 and O2 trends along the 137°E and 144°E meridians. The close tie between the wind-driven shifts in gyre boundaries and the tracer distributions is further supported by results from an eddy-resolving (0.1° × 0.1°) Geophysical Fluid Dynamics Laboratory climate model, suggesting that the physical and biogeochemical properties averaged within the northwest Pacific gyre boundaries closely follow the latitude changes of the zero Sverdrup stream function with lags of 0 to 3 years. The gyre shift effect on tracer distribution is poorly represented in a coarse resolution (1° × 1°) model due partly to poor representations of fronts and eddies. This study suggests that future changes in northwest Pacific PO4 and O2 content may depend not only on ocean temperature and stratification but also on the ocean gyre response to winds.

  18. Antiretroviral therapy: Shifting sands

    PubMed Central

    Sashindran, V.K.; Chauhan, Rajeev

    2016-01-01

    HIV/AIDS has been an extremely difficult pandemic to control. However, with the advent of antiretroviral therapy (ART), HIV has now been transformed into a chronic illness in patients who have continued treatment access and excellent long-term adherence. Existing indications for ART initiation in asymptomatic patients were based on CD4 levels; however, recent evidence has broken the shackles of CD4 levels. Early initiation of ART in HIV patients irrespective of CD4 counts can have profound positive impact on morbidity and mortality. Early initiation of ART has been found not only beneficial for patients but also to community as it reduces the risk of transmission. There have been few financial concerns about providing ART to all HIV-positive people but various studies have proven that early initiation of ART not only proves to be cost-effective but also contributes to economic and social growth of community. A novel multidisciplinary approach with early initiation and availability of ART at its heart can turn the tide in our favor in future. Effective preexposure prophylaxis and postexposure prophylaxis can also lower transmission risk of HIV in community. New understanding of HIV pathogenesis is opening new vistas to cure and prevention. Various promising candidate vaccines and drugs are undergoing aggressive clinical trials, raising optimism for an ever-elusive cure for HIV. This review describes various facets of tectonic shift in management of HIV. PMID:26900224

  19. Measurement of the blackbody radiation shift of the {sup 133}Cs hyperfine transition in an atomic fountain

    SciTech Connect

    Levi, Filippo; Calonico, Davide; Lorini, Luca; Micalizio, Salvatore; Godone, Aldo

    2004-09-01

    We used a Cs fountain to measure the Stark shift of the ground-state hyperfine transition frequency in cesium (9.2 GHz) due to the electric field of the blackbody radiation. The relative shift at 300 K deduced from our measurements, including the leading and the second-order term in temperature, is (-1.45{+-}0.09)x10{sup -14} and agrees with our recent theoretical evaluation (-1.51{+-}0.07)x10{sup -14} [Micalizio et al. Phys. Rev. A 69, 053401 (2004)]. These values differ from that currently used (-1.735{+-}0.003)x10{sup -14}, with significant implications on frequency standards accuracy, on clocks comparison and on a variety of high-precision physics tests, such as the time stability of fundamental constants.

  20. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  1. Infrared Laser Stark Spectroscopy of the OH\\cdot\\cdot\\cdotCH3OH Complex Isolated in Superfluid Helium Droplets

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Brice, Joseph T.; Douberly, Gary E.; Hernandez, Federico J.; Pino, Gustavo A.

    2015-06-01

    The elimination of volatile organic compounds (VOCs) from the atmosphere is initiated by reactions with OH, NO3 and O3. For oxygenated VOCs, such as alcohols, ketones, ethers, etc., reactions occur nearly exclusively with the hydroxyl radical. Furthermore, the potential energy surfaces associated with reactions between OH and oxygenated VOCs generally feature a pre-reactive complex, stabilized by hydrogen bonding, which results in rate constants that exhibit large negative temperature dependencies. This was explicitly demonstrated recently for the OH + methanol (MeOH) reaction, where the rate constant increased by nearly two orders of magnitude when the temperature decreased from 200 K to below 70 K, highlighting the potential impact of this reaction in the interstellar medium (ISM). In this study, we trap this postulated pre-reactive complex formed between OH and MeOH using He nanodroplet isolation (HENDI) techniques, and probe this species using a combination of mass spectrometry and infrared laser Stark spectroscopy. Atkinson, R.; Arey, J., Chem. Rev. 2003, 103, 4605-4638. Mellouki, A.; Le Bras, G.; Sidebottom, H., Chem. Rev. 2003, 103, 5077-5096. Smith, I. W. M.; Ravishankara, A. R., J. Phys. Chem. A 2002, 106, 4798-4807 Shannon, R. J.; Blitz, M. A.; Goddard, A.; Heard, D. E., Nat. Chem. 2013, 5, 745-749. Martin, J. C. G.; Caravan, R. L.; Blitz, M. A.; Heard, D. E.; Plane, J. M. C., J. Phys. Chem. A 2014, 118, 2693-2701.

  2. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.

    PubMed

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-06-01

    Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.

  3. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

    PubMed Central

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-01-01

    Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength. PMID:27386583

  4. Dynamic Stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna

    SciTech Connect

    Klepper, C Christopher; Isler, Ralph C; Hillairet, J.; Martin, E. H.

    2013-01-01

    Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local RF electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near-field of a 1-3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local RF electric field amplitude (as low as 1-2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.

  5. Phase-shift coherence holography.

    PubMed

    Naik, Dinesh N; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2010-05-15

    We propose and experimentally demonstrate a new reconstruction scheme for coherence holography using computer-generated phase-shift coherence holograms. A 3D object encoded into the spatial coherence function is reconstructed directly from a set of incoherently illuminated computer-generated holograms with numerically introduced phase shifts. Although a rotating ground glass is used to introduce spatially incoherent illumination, the phase-shifting portion of the system is simple and free from mechanically moving components.

  6. Zero-shifted accelerometer outputs

    NASA Astrophysics Data System (ADS)

    Galef, Arnold

    1986-08-01

    It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.

  7. VIS-NIR-SWIR multicolor avalanche photodetector originating from quantum-confined Stark effect in Si/β-FeSi2/Si structure

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Galkin, N. G.

    2016-10-01

    A Si n-i-p avalanche photodetector with embedded β-FeSi2 nanocrystals was developed. The device showed an ultrabroadband photoresponse from the visible (400 nm) to short-wavelength infrared (1800 nm) ranges. Specific detectivity at zero bias conditions reaches 2 × 109 cmHz1/2/W at 1300 nm and 2 × 108 cmHz1/2/W above 1400 nm at room temperature. Observed quantum-confined Stark effect together with avalanche multiplication resulted in a simultaneous two orders of magnitude increase in the photoresponse and spectral sensitivity expanding to 1800 nm when the device is operated in avalanche mode. The application fields of the proposed photodetector potentially include integrated Si photonics and multicolor photodetection; the quantum-confined Stark effect gives grounds for the development of fast-operated electro-optical modulators.

  8. The Wannier-Stark effects in the 6H-SiC planar junction field-effect transistors with a p-n junction as the gate

    SciTech Connect

    Sankin, V. I. Shkrebii, P. P.; Lebedev, A. A.

    2006-10-15

    Dependence of the short-circuit photocurrent on the voltage V{sub g} applied to the gate of the 6H-SiC planar field-effect transistor is studied. The negative differential photoconductivity appeared at a certain value of V{sub g}; the parameters of this photoconductivity corresponded to those of the Wannier-Stark ladders in the natural 6H-SiC super lattice. At the same value of V{sub g}, a fairly abrupt decrease to zero of the source-drain current I{sub sd} is observed, which is indicative of cutoff at the voltage that is much lower than the expected cutoff voltage for this structure. The effect is attributed to a decrease in mobility in the mode of the Wannier-Stark ladders, a decrease in the rate of ionization of the donor atoms, and a reduction in the screening of the field.

  9. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  10. Thermochromic shifts in supercritical fluids

    SciTech Connect

    Yonker, C.R.; Smith, R.D. )

    1989-02-23

    Thermochromic shifts of organic solute molecules in supercritical CO{sub 2} under conditions of both constant pressure and density are compared to previous studies of solvatochromic shifts at isothermal conditions. Similar solvatochromic and thermochromic shifts are seen as a function of density for supercritical CO{sub 2}. At constant density a small thermochromic shift ({approx}400 cm{sup {minus}1}) for supercritical CO{sub 2} was seen for both 2-nitroanisole and 4-ethylnitrobenzene. The excited-state dipole moments for 2-nitroanisole, as calculated from the thermochromic and solvatochromic data, were in agreement.

  11. Local Electric Field Strength in a Hollow Cathode Determined by Stark Splitting of the 2S Level of Hydrogen Isotopes by Optogalvanic Spectroscopy

    SciTech Connect

    Perez, C.; Rosa, M. I. de la; Gruetzmacher, K.; Fuentes, L. M.; Gonzalo, A. B.

    2008-10-22

    In this work we present Doppler-free two-photon optogalvanic spectroscopy as a tool to measure the electric field strength in the cathode fall region of a hollow cathode discharge via the Stark splitting of the 2S level of atomic deuterium. The strong electric field strength present in the hollow cathode is determined for various discharge conditions which allows studying the corresponding variations of the cathode fall, and its changes with discharge operation time.

  12. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  13. Shifts in fisheries management: adapting to regime shifts

    PubMed Central

    King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.

    2015-01-01

    For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.

  14. Memory effect in ac plasma displays

    NASA Astrophysics Data System (ADS)

    Szlenk, K.; Obuchowicz, E.

    1993-10-01

    The bistable or `memory' mode of operation of an ac plasma display panel is presented. The difference between dc and ac plasma panel operation from the point of view of memory function is discussed. The graphic ac plasma display with thin film Cr-Cu-Cr electrodes was developed in OBREP and its basic parameters are described. It consists of 36 X 59 picture elements, its outer dimensions are: 76 X 52 mm2 and the screen size is: 49 X 30 mm2. The different dielectric glass materials were applied as dielectric layers and the influence of the properties of these materials on display parameters and memory function was investigated.

  15. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  16. Exenatide: AC 2993, AC002993, AC2993A, exendin 4, LY2148568.

    PubMed

    2004-01-01

    Exenatide [AC002993, AC2993A, AC 2993, LY2148568, exendin 4], a glucagon-like peptide-1 (GLP-1) agonist, is a synthetic exendin 4 compound under development with Amylin Pharmaceuticals for the treatment of type 2 diabetes. Both exendin 4 and its analogue, exendin 3, are 39-amino acid peptides isolated from Heloderma horridum lizard venom that have different amino acids at positions 2 and 3, respectively. Exendins are able to stimulate insulin secretion in response to rising blood glucose levels, and modulate gastric emptying to slow the entry of ingested sugars into the bloodstream. Amylin Pharmaceuticals acquired exclusive patent rights for the two exendin compounds (exendin 3 and exendin 4) from the originator, Dr John Eng (Bronx, NY, US). On 20 September 2002, Amylin and Eli Lilly signed a collaborative agreement for the development and commercialisation of exenatide for type 2 diabetes. Under the terms of the agreement, Eli Lilly has paid Amylin a licensing fee of 80 million US dollars and bought Amylin's stock worth 30 million US dollars at 18.69 US dollars a share. After the initial payment, Eli Lilly will pay Amylin up to 85 US dollars million upon reaching certain milestones and also make an additional payment of up to 130 million US dollars upon global commercialisation of exenatide. Both companies will share the US development and commercialisation costs, while Eli Lilly will pick up up to 80% of development costs and all commercialisation costs outside the US. Amylin and Eli Lilly will equally share profit from sales in the US, while Eli Lilly will get 80% of the profit outside the US and Amylin will get the rest. This agreement has also enabled Amylin to train its sales force to co-promote Lilly's human growth hormone Humatrope. Alkermes will receive research and development funding and milestone payments, and also a combination of royalty payments and manufacturing fees based on product sales. Alkermes undertakes the responsibility for the development

  17. Polarization angle dependence of stark absorption spectra of spirilloxanthin bound to the reconstituted LH1 complexes using LH1-subunits isolated from the purple photosynthetic bacterium Rhodospirillum rubrum.

    PubMed

    Horibe, Tomoko; Nakagawa, Katsunori; Kusumoto, Toshiyuki; Fujii, Ritsuko; Cogdell, Richard J; Nango, Mamoru; Hashimoto, Hideki

    2012-01-01

    Reconstituted LH1 complexes were prepared using the LH1 subunit-type complexes, isolated from the purple photosynthetic bacterium Rhodospirillum (Rs.) rubrum, and purified all-trans spirilloxanthin. Stark absorption spectra of spirilloxanthin bound to both the native and reconstituted LH1 complexes were compared in different polarization angles (χ) against the external electric field. From the polarization angle dependence of the Stark absorption spectra, two angles were determined in reference to the direction of transition dipole moment (m) of spirilloxanthin: one is the change in polarizability upon photoexcitation (Δα), θ(Δα) and the other is the change in static dipole moment upon photoexcitation (Δμ), θ(Δμ). Despite the symmetric molecular structure of all-trans spirilloxanthin, its Stark absorption spectra show pronounced values of Δμ. This large Δμ values essentially caused by the effect of induced dipole moment through Δα both in the cases for native and reconstituted LH1 complexes. However, slightly different values of θ(Δα) and θ(Δμ) observed for the native LH1 complex suggest that spirilloxanthin is asymmetrically distorted when bound to the native LH1 complex and gives rise to intrinsic Δμ value.

  18. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2015-12-01

    We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.

  19. High School Teachers Win ACS Prizes

    NASA Astrophysics Data System (ADS)

    Editorial Staff, Jce

    2009-07-01

    William E. Snyder is the 2009 winner of the ACS Division of Chemical Education Central Region Award for Excellence in High School Teaching; Sally Mitchell is the winner of the 2009 James Bryant Conant Award in High School Chemistry Teaching.

  20. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  1. Metabolic impact of shift work.

    PubMed

    Zimberg, Ioná Zalcman; Fernandes Junior, Silvio A; Crispim, Cibele Aparecida; Tufik, Sergio; de Mello, Marco Tulio

    2012-01-01

    In developing countries, shift work represents a considerable contingent workforce. Recently, studies have shown that overweight and obesity are more prevalent in shift workers than day workers. In addition, shift work has been associated with a higher propensity for the development of many metabolic disorders, such as insulin resistance, diabetes, dislipidemias and metabolic syndrome. Recent data have pointed that decrease of the sleep time, desynchronization of circadian rhythm and alteration of environmental aspects are the main factors related to such problems. Shortened or disturbed sleep is among the most common health-related effects of shift work. The plausible physiological and biological mechanisms are related to the activation of the autonomic nervous system, inflammation, changes in lipid and glucose metabolism, and related changes in the risk for atherosclerosis, metabolic syndrome, and type II diabetes. The present review will discuss the impact of shift work on obesity and metabolic disorders and how disruption of sleep and circadian misalignment may contribute to these metabolic dysfunctions.

  2. Phase protection system for ac power lines

    NASA Technical Reports Server (NTRS)

    Wong, W. J. (Inventor)

    1974-01-01

    The system described provides protection for phase sensitive loads from being or remaining connected to ac power lines whenever a phase reversal occurs. It comprises a solid state phase detection circuit, a dc power relay circuit, an ac-to-dc converter for energizing the relay circuit, and a bistable four terminal transducer coupled between the phase detection circuit and the power relay circuit, for controlling both circuits.

  3. Microtubule alignment and manipulation using AC electrokinetics.

    PubMed

    Uppalapati, Maruti; Huang, Ying-Ming; Jackson, Thomas N; Hancock, William O

    2008-09-01

    The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.

  4. Role of Lorentz-Stark broadening of hydrogen spectral lines in magnetized plasmas: Applications to magnetic fusion and solar physics

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-05-01

    Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.

  5. Method for correction of measured polarization angles from motional Stark effect spectroscopy for the effects of electric fields

    NASA Astrophysics Data System (ADS)

    Luce, T. C.; Petty, C. C.; Meyer, W. H.; Holcomb, C. T.; Burrell, K. H.; Bergsten, L. J.

    2016-12-01

    An approximate method to correct the motional Stark effect (MSE) spectroscopy for the effects of intrinsic plasma electric fields has been developed. The motivation for using an approximate method is to incorporate electric field effects for between-pulse or real-time analysis of the current density or safety factor profile. The toroidal velocity term in the momentum balance equation is normally the dominant contribution to the electric field orthogonal to the flux surface over most of the plasma. When this approximation is valid, the correction to the MSE data can be included in a form like that used when electric field effects are neglected. This allows measurements of the toroidal velocity to be integrated into the interpretation of the MSE polarization angles without changing how the data is treated in existing codes. In some cases, such as the DIII-D system, the correction is especially simple, due to the details of the neutral beam and MSE viewing geometry. The correction method is compared using DIII-D data in a variety of plasma conditions to analysis that assumes no radial electric field is present and to analysis that uses the standard correction method, which involves significant human intervention for profile fitting. The comparison shows that the new correction method is close to the standard one, and in all cases appears to offer a better result than use of the uncorrected data. The method has been integrated into the standard DIII-D equilibrium reconstruction code in use for analysis between plasma pulses and is sufficiently fast that it will be implemented in real-time equilibrium analysis for control applications.

  6. Health Effects of Shift Work

    PubMed Central

    LaDou, Joseph

    1982-01-01

    More than 13.5 million American workers, close to 20 percent of the work force, are assigned to evening or night shifts. In some industries such as automobile, petrochemical and textile manufacturing the proportion of shift workers is greater than 50 percent. As the popularity of shift work and other “alternative work schedules” grows, concern is increasing over the disturbance created in the lives of workers and their families by these economically and socially useful innovations. Twenty percent of workers are unable to tolerate shift work. Daily physiologic variations termed circadian rhythms are interactive and require a high degree of phase relationship to produce subjective feelings of wellbeing. Disturbance of these activities, circadian desynchronization, whether from passage over time zones or from shift rotation, results in health effects such as disturbance of the quantity and quality of sleep, disturbance of gastrointestinal and other organ system activities, and aggravation of diseases such as diabetes mellitus, epilepsy and thyrotoxicosis. Worker selection can reduce the number of health problems resulting from shift work. The periodic examination of shift workers is recommended. PMID:6962577

  7. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  8. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  9. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  10. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  11. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  12. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  13. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  14. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  15. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  16. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  17. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  18. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  19. AC Electrokinetics of Physiological Fluids for Biomedical Applications

    PubMed Central

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C.; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2016-01-01

    AC electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration and separation, makes it possible to develop integrated systems for clinical diagnostics in non-traditional healthcare settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented. PMID:25487557

  20. Hydrogen bonding between acetate-based ionic liquids and water: Three types of IR absorption peaks and NMR chemical shifts change upon dilution

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Cao, Yuanyuan; Zhang, Yuwei; Mu, Tiancheng

    2014-01-01

    The hydrogen-bonding interaction between acetate-based ionic liquids (AcIL) and water was investigated by attenuated total reflection infrared (ATR-IR) and 1H NMR. Interestingly, the relative change of chemical shift δ of 1H NMR upon dilution could be divided into three regions. All the H show an upfield shift in Regions 1 and 2 while a different tendency in Region 3 (upfield, no, and downfield shift classified as Types 1, 2, 3, respectively). For ATR-IR, the red, no, or blue shift of νOD (IR absorption peak of OD in D2O) and ν± (IR absorption peak of AcILs) also have three types, respectively. Two-Times Explosion Mechanism (TTEM) was proposed to interpret the dynamic processes of AcILs upon dilution macroscopically, meanwhile an Inferior Spring Model (ISM) was proposed to help to understand the TTEM microscopically, All those indicate that AcILs present the state of network, sub-network, cluster, sub-cluster, ion pairs and sub-ion pairs in sequence upon dilution by water and the elongation of hydrogen bonding between AcILs-water, between cation-anion of AcILs is plastic deformation rather than elastic deformation.

  1. 78 FR 49318 - Availability of Draft Advisory Circular (AC) 90-106A and AC 20-167A

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Federal Aviation Administration Availability of Draft Advisory Circular (AC) 90-106A and AC 20- 167A...: This notice announces the availability of draft Advisory Circular (AC) 90-106A, Enhanced Flight Vision Systems and draft AC 20- 167A, Airworthiness Approval of Enhanced Vision System, Synthetic Vision...

  2. Refining the shifted topological vertex

    SciTech Connect

    Drissi, L. B.; Jehjouh, H.; Saidi, E. H.

    2009-01-15

    We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.

  3. Goos-Hänchen shift.

    PubMed

    Snyder, A W; Love, J D

    1976-01-01

    An extremely simple derivation of the Goos-Hänchen shift is presented for total internal reflection at a plane interface between two semiinfinite dielectric media, as well as for optical waveguides of plane arid circular cross section. The derivation is based on energy considerations, requires knowledge of Fresnel's equation only, and shows explicitly that the shift is due to the flow of energy across the dielectric boundary.

  4. Design and synthesis of 225Ac radioimmunopharmaceuticals.

    PubMed

    McDevitt, Michael R; Ma, Dangshe; Simon, Jim; Frank, R Keith; Scheinberg, David A

    2002-12-01

    The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  5. From Beamline to Scanner with 225Ac

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (< 1 mCi) quantities for in-house chemistry and imaging research that aims to improve and assess 225Ac radiopharmaceutical targeting. This presentation provides an overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  6. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime.

    PubMed

    Ido, Tetsuya; Katori, Hidetoshi

    2003-08-01

    Recoil-free as well as Doppler-free spectroscopy was demonstrated on the 1S0-3P1 transition of Sr atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0 and 3P1(m(J)=0) states, we determined the wavelength where the Stark shifts for both states coincide. This Stark-free optical lattice, allowing the purturbation-free spectroscopy of trapped atoms, may keep neutral-atom based optical standards competitive with single-ion standards.

  7. Blue shifts vs red shifts in sigma-hole bonding.

    PubMed

    Murray, Jane S; Concha, Monica C; Lane, Pat; Hobza, Pavel; Politzer, Peter

    2008-08-01

    Sigma-hole bonding is a noncovalent interaction between a region of positive electrostatic potential on the outer surface of a Group V, VI, or VII covalently-bonded atom (a sigma-hole) and a region of negative potential on another molecule, e.g., a lone pair of a Lewis base. We have investigated computationally the occurrence of increased vibration frequencies (blue shifts) and bond shortening vs decreased frequencies (red shifts) and bond lengthening for the covalent bonds to the atoms having the sigma-holes (the sigma-hole donors). Both are possible, depending upon the properties of the donor and the acceptor. Our results are consistent with models that were developed earlier by Hermansson and by Qian and Krimm in relation to blue vs red shifting in hydrogen bond formation. These models invoke the derivatives of the permanent and the induced dipole moments of the donor molecule.

  8. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    NASA Astrophysics Data System (ADS)

    Hille, P.; Müßener, J.; Becker, P.; de la Mata, M.; Rosemann, N.; Magén, C.; Arbiol, J.; Teubert, J.; Chatterjee, S.; Schörmann, J.; Eickhoff, M.

    2014-03-01

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 1020 cm-3 shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  9. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    SciTech Connect

    Hille, P. Müßener, J.; Becker, P.; Teubert, J.; Schörmann, J.; Eickhoff, M.; Mata, M. de la; Rosemann, N.; Chatterjee, S.; Magén, C.; Arbiol, J.

    2014-03-10

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 10{sup 20} cm{sup –3} shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  10. Numerical simulation of ac plasma arc thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequnecy range of 10-10(exp 2) Hz which includes most industry ac arc frequencies.

  11. Numerical Simulation of AC Plasma Arc Thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-102 Hz which includes most industry ac arc frequencies.

  12. Real-time data processing and magnetic field pitch angle estimation of the JET motional Stark effect diagnostic based on Kalman filtering

    SciTech Connect

    Coelho, R.; Alves, D. [Instituto de Plasmas e Fusao Nuclear, Associacao Euratom Hawkes, N.; Brix, M. [Euratom Collaboration: JET EFDA Contributors

    2009-06-15

    A novel technique for the real-time measurement of the magnetic field pitch angle in JET discharges using the motional Stark effect diagnostic is presented. Kalman filtering techniques are adopted to estimate the amplitude of the avalanche photodiode signals' harmonics that are relevant for the pitch angle calculation. The proposed technique {l_brace}for extended technical details of the generic algorithm see [R. Coelho and D. Alves, IEEE Trans. Plasma Sci. 37, 164 (2009)]{r_brace} is shown to be much more robust and provides less noisy estimates than an equivalent lock-in amplifier scheme, in particular when dealing with edge localized modes.

  13. Real-time data processing and magnetic field pitch angle estimation of the JET motional Stark effect diagnostic based on Kalman filtering.

    PubMed

    Coelho, R; Alves, D; Hawkes, N; Brix, M

    2009-06-01

    A novel technique for the real-time measurement of the magnetic field pitch angle in JET discharges using the motional Stark effect diagnostic is presented. Kalman filtering techniques are adopted to estimate the amplitude of the avalanche photodiode signals' harmonics that are relevant for the pitch angle calculation. The proposed technique {for extended technical details of the generic algorithm see [R. Coelho and D. Alves, IEEE Trans. Plasma Sci. 37, 164 (2009)]} is shown to be much more robust and provides less noisy estimates than an equivalent lock-in amplifier scheme, in particular when dealing with edge localized modes.

  14. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  15. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  16. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-06-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  17. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    PubMed

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  18. Paradigm Shifts in Ophthalmic Diagnostics*

    PubMed Central

    Sebag, J.; Sadun, Alfredo A.; Pierce, Eric A.

    2016-01-01

    Purpose Future advances in ophthalmology will see a paradigm shift in diagnostics from a focus on dysfunction and disease to better measures of psychophysical function and health. Practical methods to define genotypes will be increasingly important and non-invasive nanotechnologies are needed to detect molecular changes that predate histopathology. Methods This is not a review nor meant to be comprehensive. Specific topics have been selected to illustrate the principles of important paradigm shifts that will influence the future of ophthalmic diagnostics. It is our impression that future evaluation of vision will go beyond visual acuity to assess ocular health in terms of psychophysical function. The definition of disease will incorporate genotype into what has historically been a phenotype-centric discipline. Non-invasive nanotechnologies will enable a paradigm shift from disease detection on a cellular level to a sub-cellular molecular level. Results Vision can be evaluated beyond visual acuity by measuring contrast sensitivity, color vision, and macular function, as these provide better insights into the impact of aging and disease. Distortions can be quantified and the psychophysical basis of vision can be better evaluated than in the past by designing tests that assess particular macular cell function(s). Advances in our understanding of the genetic basis of eye diseases will enable better characterization of ocular health and disease. Non-invasive nanotechnologies can assess molecular changes in the lens, vitreous, and macula that predate visible pathology. Oxygen metabolism and circulatory physiology are measurable indices of ocular health that can detect variations of physiology and early disease. Conclusions This overview of paradigm shifts in ophthalmology suggests that the future will see significant improvements in ophthalmic diagnostics. The selected topics illustrate the principles of these paradigm shifts and should serve as a guide to further

  19. AC Losses of Prototype HTS Transmission Cables

    SciTech Connect

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  20. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  1. Organic magnetoresistance under resonant ac drive

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Raikh, M. E.

    2013-09-01

    Motivated by a recent experiment, we develop a theory of organic magnetoresistance (OMAR) in the presence of a resonant ac drive. To this end, we perform a thorough analysis of the dynamics of ac-driven electron-hole polaron pair in magnetic field, which is a sum of external and random hyperfine fields. Resonant ac drive affects the OMAR by modifying the singlet content of the eigenmodes. This, in turn, leads to the change of recombination rate, and ultimately, to the change of the spin-blocking that controls the current. Our analysis demonstrates that, upon increasing the drive amplitude, the blocking eigenmodes of the triplet type acquire a singlet admixture and become unblocking. Most surprisingly, the opposite process goes in parallel: new blocking modes emerge from nonblocking precursors as the drive increases. These emergent blocking modes are similar to subradiant modes in the Dicke effect. A nontrivial evolution of eigenmodes translates into a nontrivial behavior of OMAR with the amplitude of the ac drive: it is initially linear, then passes through a maximum, drops, and finally saturates.

  2. A dry-cooled AC quantum voltmeter

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.

    2016-10-01

    The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.

  3. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  4. Electron Density Measurements in the National Spherical Torus Experiment Detached Divertor Region Using Stark Broadening of Deuterium Infrared Paschen Emission Lines

    SciTech Connect

    Soukhanovskii, V A; Johnson, D W; Kaita, R; Roquemore, A L

    2007-04-27

    Spatially resolved measurements of deuterium Balmer and Paschen line emission have been performed in the divertor region of the National Spherical Torus Experiment using a commercial 0.5 m Czerny-Turner spectrometer. While the Balmer emission lines, Balmer and Paschen continua in the ultraviolet and visible regions have been extensively used for tokamak divertor plasma temperature and density measurements, the diagnostic potential of infrared Paschen lines has been largely overlooked. We analyze Stark broadening of the lines corresponding to 2-n and 3-m transitions with principle quantum numbers n = 7-12 and m = 10-12 using recent Model Microfield Method calculations (C. Stehle and R. Hutcheon, Astron. Astrophys. Supl. Ser. 140, 93 (1999)). Densities in the range (5-50) x 10{sup 19} m{sup -3} are obtained in the recombining inner divertor plasma in 2-6 MW NBI H-mode discharges. The measured Paschen line profiles show good sensitivity to Stark effects, and low sensitivity to instrumental and Doppler broadening. The lines are situated in the near-infrared wavelength domain, where optical signal extraction schemes for harsh nuclear environments are practically realizable, and where a recombining divertor plasma is optically thin. These properties make them an attractive recombining divertor density diagnostic for a burning plasma experiment.

  5. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  6. Leadership Shifts in Changing Field

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2013-01-01

    As groups representing local and state education players struggle to remain relevant in a policy conversation often dominated by foundations, think tanks, new advocacy groups, and political and business figures, a shift in leadership has been under way at major associations. Most of the changes have come as part of the natural churn; former…

  7. Anthropometric changes and fluid shifts

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1974-01-01

    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.

  8. Illinois Shifting Gears Policy Evaluation

    ERIC Educational Resources Information Center

    Weitzel, Peter C.

    2009-01-01

    Illinois Shifting Gears is a multilevel initiative that has simultaneously created bridge programs in the field and altered state policy to facilitate the creation of more programs in the future. These efforts have informed each other, giving policymakers the opportunity to interact with practitioners, troubleshoot bridge programs, and make…

  9. Technology Counts 2012: Virtual Shift

    ERIC Educational Resources Information Center

    Education Week, 2012

    2012-01-01

    Virtual education is moving into that intersection where rising popularity meets calls for greater accountability. How the virtual education movement responds to those calls will have a significant impact on how it evolves in K-12 over the next five to 10 years. This report tackles this shift in the virtual education landscape. It examines the…

  10. The Shift Needed for Sustainability

    ERIC Educational Resources Information Center

    Smith, Peter A. C.; Sharicz, Carol

    2011-01-01

    Purpose: The purpose of this action research is to begin to assess to what extent organizations have in practice begun to make the shift towards triple bottom line (TBL) sustainability. Design/methodology/approach: A definition of TBL sustainability is provided, and key elements of TBL sustainability considered necessary to success are identified…

  11. Lamb shift in muonic hydrogen

    SciTech Connect

    Borie, E.

    2005-03-01

    The Lamb shift in muonic hydrogen continues to be a subject of experimental and theoretical investigation. Here my older work on the subject is updated to provide a complementary calculation of the energies of the 2p-2s transitions in muonic hydrogen.

  12. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    NASA Technical Reports Server (NTRS)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  13. Size-Dependent Raman Shifts for nanocrystals

    PubMed Central

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-01-01

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size. PMID:27102066

  14. Temperature Dependencies of Linewidths, Positions, and Line Shifts of Spectral Transitions of Trivalent Neodymium Ions in Ceramic Nd3+:Y2O3

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco; Khachatryan, Edward; Dennis, Robert; Nash, Kelly; Sardar, Dhiraj

    2010-10-01

    Effects of temperature on widths and shifts of the spectral lines of Nd^3+ in Y2O3 polycrystalline ceramic have been investigated. The spectral lines corresponding to the inter-Stark transitions R1 -> Y1 (1074 nm) and R1-> X3 (914 nm) within the ^4F3/2 -> ^4I11/2 and ^4F3/2 -> ^4I9/2 transitions, respectively, have been studied. The widths of these lines and their shifts have been measured as a function of temperature in 10K- 300K range. The spectral linewidths of both transitions are found to increase with increasing temperature. This research was supported by the National Science Foundation Grant No. DMR-0934218.

  15. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  16. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  17. Doppler phase shifting using dual, switched phase shifting devices

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2002-01-01

    A system of inducing a phase shift using moving reflector elements. The moving reflectors can be moving mirrors or an acousto-optical filter. The moving reflectors oscillate i.e. the move first in a first direction and then in a second direction. Two different reflectors are used so that the light can be switched between the reflectors. During a first portion of the cycle the light is coupled to the first modulator which moves the reflector in the first direction. The second modulator is out of phase with the first modulator, and the light is switched to that second modulator during a second portion of the cycle. The second modulator is also moving in the first direction when the light is applied thereto. In this way, the light obtains a constant direction Doppler shift.

  18. Evaluation of modern IGBT-modules for hard-switched AC/DC/AC converters

    SciTech Connect

    Blaabjerg, F.; Pedersen, J.K.; Jaeger, U.

    1995-12-31

    The development of IGBT devices is still producing faster devices with lower losses. The applications become more advanced like a complete hard-switched AC/DC/AC converter with almost clean input current and regenerating capabilities. This paper will first focus on a detailed characterization and comparison of eight different IGBT-modules representing state-of-the-art for both PT and NPT technologies. The voltage level of the devices is 1,200V and 1,600V/1,700V. The characterization is done on an advanced measurement system which is briefly described. The characterization is based on static and dynamic tests for both IGBT and the diodes in the IGBT-modules at a junction temperature at 125 C. The comparison is first done directly based on conduction losses and switching losses, and later the measurements are used in a loss model for a complete AC/DC/AC converter application. In the AC/DC/AC converter the power losses are modelled, and different operating conditions are compared like different voltage levels in the DC-link. It is concluded dependent on operation conditions different devices will be preferable, but the high voltage devices have the highest losses even at a high operating voltage.

  19. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  20. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  1. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  2. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  3. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  4. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered patient lift. 880.5500 Section 880.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an...

  5. Methods for Addressing Missing Data with Applications from ACS Exams

    ERIC Educational Resources Information Center

    Brandriet, Alexandra; Holme, Thomas

    2015-01-01

    As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…

  6. Anthropometric changes and fluid shifts

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1977-01-01

    In an effort to obtain the most comprehensive and coherent picture of changes under weightlessness, a set of measurements on Skylab 2 was initiated and at every opportunity, additional studies were added. All pertinent information from ancillary sources were gleaned and collated. On Skylab 2, the initial anthropometric studies were scheduled in conjunction with muscle study. A single set of facial photographs was made in-flight. Additional measurements were made on Skylab 3, with photographs and truncal and limb girth measurements in-flight. Prior to Skylab 4, it was felt there was considerable evidence for large and rapid fluid shifts, so a series of in-flight volume and center of mass measurements and infrared photographs were scheduled to be conducted in the Skylab 4 mission. A number of changes were properly documented for the first time, most important of which were the fluid shifts. The following description of Skylab anthropometrics address work done on Skylab 4 primarily.

  7. Lamb shift in muonic deuterium

    SciTech Connect

    Gorchtein, Mikhail; Vanderhaeghen, Marc; Carlson, Carl E.

    2013-11-07

    We consider the two-photon exchange contribution to the 2P-2S Lamb shift in muonic deuterium in the framework of forward dispersion relations. The dispersion integrals are evaluated with minimal model dependence using experimental data on elastic deuteron form factors and inelastic electron-deuteron scattering, both in the quasielastic and hadronic range. The subtraction constant that is required to ensure convergence of the dispersion relation for the forward Compton amplitude T{sub 1} (ν,Q{sup 2}) is related to the deuteron magnetic polarizability β(Q{sup 2}) and represents the main source of uncertainty in our analysis. We obtain for the Lamb shift ΔE{sub 2P-2S} = 1.620±0.190 meV and discuss ways to further reduce this uncertainty.

  8. Looping through the Lamb Shift

    SciTech Connect

    Hazi, A U

    2007-02-06

    Sometimes in science, a small measurement can have big ramifications. For a team of Livermore scientists, such was the case when they measured a small shift in the spectrum of extremely ionized atoms of uranium. The measurement involves the Lamb shift, a subtle change in the energy of an electron orbiting an atom's nucleus. The precision of the Livermore result was 10 times greater than that of existing measurements, making it the best measurement to date of a complicated correction to the simplest quantum description of how atoms behave. The measurement introduces a new realm in the search for deviations between the theory of quantum electrodynamics (QED), which is an extension of quantum mechanics, and the real world. Such deviations, if discovered, would have far-reaching consequences, indicating that QED is not a fundamental theory of nature.

  9. KVI Lamb-shift polarimeter

    SciTech Connect

    Beijers, J.P.M.; Kremers, H.R.; Kalantar-Nayestanaki, N.

    2006-03-15

    The design and operation of a Lamb-shift polarimeter is discussed. This polarimeter is used to measure the polarization of proton and deuteron beams extracted from the KVI polarized-ion source. The major components of the Lamb-shift polarimeter (LSP) are described in some detail. These include the deceleration lens system, cesium neutralization oven, spin filter, metastable-atom detection system, and the solenoid. Typical operating parameters of the LSP will be given together with some representative spin-polarization measurements. The design criterion of measuring the polarization of a H{sup +} or D{sup +} beam within 60 s and with a statistical uncertainty smaller than 2% has been met.

  10. Multicolor Holography With Phase Shifting

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  11. Shift and Scale Invariant Preprocessor.

    DTIC Science & Technology

    1981-12-01

    1982 THESIS D V SHIFT AND SCALE INVARIANT ?PREPROCESSOR by Norman E. Huston, Jr. December 1981 0 Thesis Advisor: L. A. Wilson Approved for public...SCHOOL December 1981 Author: - . 4 ,/ A pp ro0ved by: rYY. ( Thesis Advisor Co-Ad isor Chairman, De artment of 4n n eing Dean of Science and...large range of problems/disciplines. Fields where it is particularly common include optical imagery, acoustic signal processing , radiology, radio

  12. In vivo pharmacological characterization of AC-3933, a benzodiazepine receptor partial inverse agonist for the treatment of Alzheimer's disease.

    PubMed

    Hatayama, Y; Hashimoto, T; Kohayakawa, H; Kiyoshi, T; Nakamichi, K; Kinoshita, T; Yoshida, N

    2014-04-18

    GABAergic neurons are known to inhibit neural transduction and therefore negatively affect excitatory neural circuits in the brain. We have previously reported that 5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one (AC-3933), a partial inverse agonist for the benzodiazepine receptor (BzR), reverses GABAergic inhibitory effect on cholinergic neurons, and thus enhances acetylcholine release from these neurons in rat hippocampal slices. In this study, we evaluated AC-3933 potential for the treatment of Alzheimer's disease, a disorder characterized by progressive decline mainly in cholinergic function. Oral administration of AC-3933 (0.01-0.03mg/kg) resulted in the amelioration of scopolamine-induced amnesia, as well as a shift in electroencephalogram (EEG) relative power characteristic of pro-cognitive cholinergic activators, such as donepezil. In addition, treatment with AC-3933 even at the high dose of 100mg/kg p.o. produced no seizure or anxiety, two major adverse effects of BzR inverse agonists developed in the past. These findings indicate that AC-3933 with its low risk for side effects may be useful in the treatment of Alzheimer's disease.

  13. Generalized phase-shifting color digital holography

    NASA Astrophysics Data System (ADS)

    Nomura, Takanori; Kawakami, Takaaki; Shinomura, Kazuma

    2016-06-01

    Two methods to apply the generalized phase-shifting digital holography to color digital holography are proposed. One is wave-splitting generalized phase-shifting color digital holography. This is realized by using a color Bayer camera. Another is multiple exposure generalized phase-shifting color digital holography. This is realized by the wavelength-dependent phase-shifting devices. Experimental results for both generalized phase-shifting color digital holography are presented to confirm the proposed methods.

  14. Frequency shifts in gravitational resonance spectroscopy

    DOE PAGES

    Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; ...

    2015-02-25

    Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. Lastly, these shifts have to be taken into account in precision experiments.

  15. Strategies for brain shift evaluation.

    PubMed

    Hastreiter, Peter; Rezk-Salama, Christof; Soza, Grzegorz; Bauer, Michael; Greiner, Günther; Fahlbusch, Rudolf; Ganslandt, Oliver; Nimsky, Christopher

    2004-12-01

    For the analysis of the brain shift phenomenon different strategies were applied. In 32 glioma cases pre- and intraoperative MR datasets were acquired in order to evaluate the maximum displacement of the brain surface and the deep tumor margin. After rigid registration using the software of the neuronavigation system, a direct comparison was made with 2D- and 3D visualizations. As a result, a great variability of the brain shift was observed ranging up to 24 mm for cortical displacement and exceeding 3 mm for the deep tumor margin in 66% of all cases. Following intraoperative imaging the neuronavigation system was updated in eight cases providing reliable guidance. For a more comprehensive analysis a voxel-based nonlinear registration was applied. Aiming at improved speed of alignment we performed all interpolation operations with 3D texture mapping based on OpenGL functions supported in graphics hardware. Further acceleration was achieved with an adaptive refinement of the underlying control point grid focusing on the main deformation areas. For a quick overview the registered datasets were evaluated with different 3D visualization approaches. Finally, the results were compared to the initial measurements contributing to a better understanding of the brain shift phenomenon. Overall, the experiments clearly demonstrate that deformations of the brain surface and deeper brain structures are uncorrelated.

  16. Shift work and endocrine disorders.

    PubMed

    Ulhôa, M A; Marqueze, E C; Burgos, L G A; Moreno, C R C

    2015-01-01

    The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.

  17. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal.

  18. YBCO Coated Conductors with Reduced AC Losses

    DTIC Science & Technology

    2008-01-30

    application such as turbo- generators and gyrotron magnets . The major reason is the enhanced in-field performance at 50-65 K and the proven...transformers, current limiters and the stators of rotating equipment. Low AC-loss in 2G HTS requires wire components with low magnetism , and an YBCO...layer with low transport and low hysteretic losses in an alternating magnetic field. The latter loss type requires a suitable filamentization technique

  19. AC plasma anemometer—characteristics and design

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2015-08-01

    The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.

  20. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.