Science.gov

Sample records for ac transverse magnetic

  1. Magnetic flux penetration into twisted multifilamentary coated superconductors subjected to ac transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Sato, Susumu; Ito, Takeshi

    2006-12-01

    ac losses in superconductors are generated by the magnetic flux and current penetration into them. To reveal the magnetic flux and current penetration processes in twisted multifilamentary coated superconductors in which the thin superconductor layer is subdivided into filaments and then twisted as a whole for ac loss reduction, a theoretical model for electromagnetic field analysis was developed based on the power law E-J (electric-field-current-density) characteristic for the superconductor and a thin strip approximation of the conductor. The developed theoretical model was implemented into a numerical code using the finite element method to calculate and visualize the current and magnetic flux distributions. The magnetization losses in twisted multifilamentary coated superconductors exposed to ac transverse magnetic fields were calculated from the temporal evolutions of the current distribution to demonstrate the effect of the twisted multifilamentary architecture on ac loss reduction.

  2. Edge pinch instability of liquid metal sheet in a transverse high-frequency ac magnetic field.

    PubMed

    Priede, Jānis; Etay, Jacqueline; Fautrelle, Yves

    2006-06-01

    We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency ac magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds the critical value k(c) = F0/(gamma l0), which is determined by the linear density of the electromagnetic force F0 acting on the edge, the surface tension gamma, and the effective arclength of edge thickness l0. Perturbations with wavelength shorter than critical are stabilized by the surface tension, whereas the growth rate of long-wave perturbations reduces as similar to k for k --> 0. Thus, there is the fastest growing perturbation with the wave number k max = 2/3 k(c). When the layer is arranged vertically, long-wave perturbations are stabilized by the gravity, and the critical perturbation is characterized by the capillary wave number k(c) = square root of (g rho/gamma), where g is the acceleration due to gravity and rho is the density of metal. In this case, the critical linear density of electromagnetic force is F(0,c) = 2k(c)l0 gamma, which corresponds to the critical current amplitude I(0,c) = 4 square root of (pi k(c) l0L gamma/mu 0) when the magnetic field is generated by a straight wire at the distance L directly above the edge. By applying the general approach developed for the semi-infinite sheet, we find that a circular disk of radius R0 placed in a transverse uniform high-frequency ac magnetic field with the induction amplitude B0 becomes linearly unstable with respect to exponentially growing perturbation with the azimuthal wave number m = 2 when the magnetic Bond number exceeds Bm(c) = B(0)2 R(0)2 / (2 mu 0 l0 gamma) = 3 pi. For Bm > Bm(c), the wave number of the fastest growing perturbation is m(max) = [2

  3. Measurements on magnetized GdBCO pellets subjected to small transverse ac magnetic fields at very low frequency: Evidence for a slowdown of the magnetization decay

    NASA Astrophysics Data System (ADS)

    Fagnard, Jean-Francois; Kirsch, Sébastien; Morita, Mitsuru; Teshima, Hidekazu; Vanderheyden, Benoit; Vanderbemden, Philippe

    2015-05-01

    Due to their ability to trap large magnetic inductions, superconducting bulk materials can be used as powerful permanent magnets. The permanent magnetization of such materials, however, can be significantly affected by the application of several cycles of a transverse variable magnetic field. In this work, we study, at T = 77 K, the long term influence of transverse ac magnetic fields of small amplitudes (i.e. much smaller than the full penetration field) on the axial magnetization of a bulk single grain superconducting GdBCO pellet over a wide range of low frequencies (1 mHz-20 Hz). Thermocouples are placed against the pellet surface to probe possible self-heating of the material during the experiments. A high sensitivity cryogenic Hall probe is placed close to the surface to record the local magnetic induction normal to the surface. The results show first that, for a given number of applied triangular transverse cycles, higher values of dBapp/dt induce smaller magnetization decays. An important feature of practical interest is that, after a very large number of cycles which cause the loss of a substantial amount of magnetization (depending on the amplitude and the frequency of the field), the rate of the magnetization decay goes back to its initial value, corresponding to the relaxation of the superconducting currents due to flux creep only. In the amplitude and frequency range investigated, the thermocouples measurements and a 2D magneto-thermal modelling show no evidence of sufficient self-heating to affect the magnetization so that the effect of the transverse magnetic field cycles on the trapped magnetic moment is only attributed to a redistribution of superconducting currents in the volume of the sample and not to a thermal effect.

  4. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  5. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  6. Transverse susceptibility method in nanoparticulate magnetic media.

    PubMed

    Cimpoesu, Dorin; Spinu, Leonard; Stancu, Alexandru

    2008-06-01

    Transverse susceptibility (TS) method is a reliable method for the determination of anisotropy in nanoparticulate media. To correctly evaluate the value of anisotropy in various modern nanostructured materials, a number of theoretical problems related to the method have to be well understood to avoid significant systematic errors. This paper presents the state of the art in the TS method which includes the expression for single domain particles with any type of anisotropy, the theoretical and micromagnetic, using Landau-Lifshitz-Gilbert (LLG) equation and stochastic LLG equation studies of the effects of ac field amplitude, inter-particle interactions, and magnetic relaxation. The problem of both real and imaginary parts of the TS signal is also discussed. PMID:18681012

  7. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  8. Superparamagnetism and dynamic transverse susceptibility in magnetic

    NASA Astrophysics Data System (ADS)

    Spinu, L.; Srikanth, H.; O'Connor, C. J.

    2000-03-01

    Dynamic transverse susceptibility (\\chi _T) measurements yield important information about spin dynamics in magnetic materials. They also provide a very sensitive and unique way to probe the magnetic anisotropy in novel systems like nanoparticles. We have developed a resonant method based on a tunnel-diode oscillator (TDO) operating at around 5 MHz to accurately measure the variation in dynamic transverse susceptibility over a wide range in temperature (5K to 300K) and static magnetic fields (0 to 9 T). Our experiments on magnetic nanoparticles (γ -Fe_2O_3/Ag nanocomposites), synthesized using reverse-micelle technique, reveal singular peaks in the low temperature transverse susceptibility at characteristic anisotropy fields (± 400 Oe). As the temperature is increased, the peaks evolve from being asymmetric to symmetric and eventually disappear at high temperatures well into the superparamagnetic regime. For the first time, we have mapped the complete variation of \\chi T in the H-T plane. We have also theoretically analyzed our results based on coherent rotation and find good agreement with a two-level model developed by us that includes thermal relaxation effects. This work is supported by DARPA through grant No. MDA 972-97-1-003

  9. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  10. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  11. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  12. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  13. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  14. Exchange anisotropy determined by magnetic field dependence of ac susceptibility

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela Leão, L. H.; de Aguiar, F. M.; Rezende, S. M.; Azevedo, A.

    2003-10-01

    ac susceptibility measurements of ferromagnetic/antiferromagnetic (FM/AF) bilayers are usually performed as a function of the temperature. In this work we describe measurements of transverse biased ac susceptibility (χt) of FM/AF bilayers as a function of the applied magnetic field H0. The measurements were carried out at room temperature by means of an ac magneto-optical Kerr effect susceptometer. The χt-1(H0) dependence, at the saturation magnetization regime, exhibits a linear behavior with the applied field parallel and perpendicular to the exchange bias direction. The linear extrapolation of χt-1 versus H0 cuts the abscissa at asymmetrical values of field due to the exchange bias coupling. The inverse susceptibility is calculated in the saturation regime by a model, which takes into account the free energy of both layers plus a term corresponding to the interfacial coupling. The exchange coupling field (HE) and uniaxial anisotropy (HU) are extracted from the best fit to the experimental results. The results obtained are crosschecked by those obtained from ferromagnetic resonance (FMR) and dc magnetometry. The measurements of the exchange bias and the uniaxial field in all of the three analyzed bilayers gave values that are consistently lower when measured by FMR than those obtained by ac and dc magnetometry. It is argued that the apparently discrepant values of HE and HU, obtained by different techniques, might be explained by existence of unstable AF grains at the AF/FM interface.

  15. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    SciTech Connect

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-10-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays.

  16. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2015-12-01

    We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.

  17. AC Loss Reduction in Filamentized YBCO Coated Conductors with Virtual Transverse Cross-cuts

    SciTech Connect

    Zhang, Yifei; Duckworth, Robert C; Ha, Tam T; List III, Frederick Alyious; Gouge, Michael J; Chen, Y; X, Xiong,; Selvamanickam, V.

    2011-01-01

    While the performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO)-based coated conductors under dc currents has improved significantly in recent years, filamentization is being investigated as a technique to reduce ac loss so that the 2nd generation (2G) high temperature superconducting (HTS) wires can also be utilized in various ac power applications such as cables, transformers and fault current limiters. Experimental studies have shown that simply filamentizing the superconducting layer is not effective enough to reduce ac loss because of incomplete flux penetration in between the filaments as the length of the tape increases. To introduce flux penetration in between the filaments more uniformly and further reduce the ac loss, virtual transverse cross-cuts were made in superconducting filaments of the coated conductors fabricated using the metal organic chemical vapor deposition (MOCVD) method. The virtual transverse cross-cuts were formed by making cross-cuts (17 - 120 {micro}m wide) on the IBAD (ion beam assisted deposition)-MgO templates using laser scribing followed by depositing the superconducting layer ({approx} 0.6 {micro}m thick). AC losses were measured and compared for filamentized conductors with and without the cross-cuts under applied peak ac fields up to 100 mT. The results were analyzed to evaluate the efficacy of filament decoupling and the feasibility of using this method to achieve ac loss reduction.

  18. Effect of Transverse Magnetic Fields on Cold-Atom Nonlinear Magneto-Optical Rotation

    NASA Astrophysics Data System (ADS)

    Meyer, David; Kunz, Paul; Fatemi, Fredrik; Quraishi, Qudsia

    2016-05-01

    We investigate nonlinear magneto-optical rotation (NMOR) in cold atoms in the presence of a transverse magnetic field where alignment-to-orientation conversion (AOC) dominates. The AOC mechanism, which relies on AC-Stark shifts generated by a strong, off-resonant probe beam, significantly alters the NMOR resonance. When an additional magnetic field is present, parallel to the electric field of the light, a nested feature within this NMOR resonance manifests. Unlike similar features observed with lower optical power in warm vapors, attributed to optical pumping through nearby hyperfine levels, this feature is due solely to the AOC mechanism. Using numerical simulations, a perturbative solution, and experimental observations we characterize the feature with respect to optical power, optical polarization, magnetic field strength, and magnetic field direction. These results shed further light on the AOC mechanism common to NMOR-based experiments and we demonstrate a potential application to measure transverse DC magnetic fields and spatial gradients.

  19. AC magnetic susceptibility of Bi2223-system

    NASA Astrophysics Data System (ADS)

    Kimishima, Y.; Inagaki, K.; Tanabe, K.; Nagata, N.; Ichiyanagi, Y.

    1998-01-01

    The AC magnetic susceptibilities χ AC of a Bi2223 sintered sample were measured by the Hartshorn bridge method. The linear AC χ' 0 showed the two-steps behavior at T C1 and T C2, where T C1 > T C2. The χ'0-data between T C1 and T C2 has no H AC-dependence and agreed well with those of powder specimen, and they can be regarded as the intragrain magnetic susceptibility. Below the inter-grain transition temperature T C2 the χ″ 0 showed a positive peak. The temperature dependence of χ' 0 and χ″ 0 were analyzed by the Bean's critical-state model. As a result, the temperature dependence of critical current density J C ∝ (1 - T/T C2) β was obtained with β = 2.3-2.6. The non-linear χ' 2 and χ″ 2 below T C2 resemble the behaviors derived from the Bean model, but the negative divergence of χ' 2 may show the evidence of d-wave paring in the present Bi2223-system.

  20. Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-02-01

    A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here we show that when the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Our results should be general to a wide class of systems undergoing nonequilibrium dynamics on

  1. Transverse voltage in superconductors at zero applied magnetic field

    NASA Astrophysics Data System (ADS)

    da Luz, M. S.; dos Santos, C. A. M.; Shigue, C. Y.; de Carvalho, F. J. H.; Machado, A. J. S.

    2009-01-01

    A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance ( RXY) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in RXY( T) curves which are related to the double superconducting transition in the RXX( T) component. In the superconducting ( RXX = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by RXY ∼ d RXX/d T has been confirmed.

  2. Spin wave eigenmodes in transversely magnetized thin film ferromagnetic wires

    NASA Astrophysics Data System (ADS)

    Duan, Zheng; Krivorotov, Ilya N.; Arias, Rodrigo E.; Reckers, Nathalie; Stienen, Sven; Lindner, Jürgen

    2015-09-01

    We report experimental and theoretical studies of spin wave eigenmodes in transversely magnetized thin film Permalloy wires. Using broadband ferromagnetic resonance technique, we measure the spectrum of spin wave eigenmodes in individual wires as a function of magnetic field and wire width. Comparison of the experimental data to our analytical model and micromagnetic simulations shows that the intrinsic dipolar edge pinning of spin waves is negligible in transversely magnetized wires. Our data also quantify the degree of extrinsic edge pinning in Permalloy wires. This work establishes the boundary conditions for dynamic magnetization in transversely magnetized thin film wires for the range of wire widths and thicknesses studied, and provides a quantitative description of the spin wave eigenmode frequencies and spatial profiles in this system as a function of the wire width.

  3. Magnetohydrodynamic channel flows with weak transverse magnetic fields.

    PubMed

    Rothmayer, A P

    2014-07-28

    Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large. PMID:24936018

  4. Transverse electric and transverse magnetic pulsed-beam decomposition of time-dependent aperture fields.

    PubMed

    Melamed, Timor; Abuhasira, Dor; Dayan, David

    2012-06-01

    The present contribution is concerned with applying beam-type expansion to a planar aperture time-dependent (TD) electromagnetic field in which the propagating elements, the electromagnetic pulsed-beams, are a priori decomposed into transverse electric (TE) and transverse magnetic (TM) field polarizations. The propagating field is described as a discrete superposition of tilted, shifted, and delayed TE and TM electromagnetic pulsed-beam propagators over the frame spectral lattice. These waveobjects are evaluated by using TD plane-wave spectral representations. Explicit asymptotic expressions for electromagnetic isodiffracting pulsed-quadratic beam propagators are presented, as well as a numerical example. PMID:22673443

  5. Magnetic deflagration in the molecular magnet manganese-12-ac

    NASA Astrophysics Data System (ADS)

    McHugh, Sean

    In 1995, Paulsen and Park [1, 2] observed abrupt spontaneous reversals of the magnetization in crystals of the molecular magnet Mn12-ac, which they dubbed "magnetic avalanches". They suggested that the magnetic avalanches were a thermal runaway process where the reversing spins release heat stimulating further relaxation. Various exotic phenomena were proposed as an alternative explanations [3]. In 2005, Suzuki et al. [4] established that this spontaneous magnetic relaxation occurs as a "front" separating regions of opposing magnetization that propagates at a constant speed through the crystal. They suggested that this propagating front is analogous to a flame in chemical deflagration and introduced the thermal relaxation process, magnetic deflagration. The analysis presented there was limited by lack of data. A more thorough comparison with the theory would require the ability to trigger avalanches in a more controlled way rather than wait for their spontaneous occurrence. The work presented in this thesis is a continuation of the program initiated by Suzuki [4, 5]. Significant progress experimental progress has been made allowing us to trigger avalanches over a wide range of conditions. The magnetization dynamics and the ignition temperatures are studied in detail using an array of micro-sized Hall sensors and Germanium thermometers. In addition, we report the existence of a new species of avalanches consisting only of the fast-relaxing isomers of Mn12-ac, the so-called "minor species". We explore avalanches of both species, as well as the interaction between them. Finally, a detailed analysis is performed to compare the experiment with the theory of magnetic deflagration [6]. We find the theory of magnetic deflagration to be consistent with the data and extract values for the key physical quantities: the thermal diffusivity and avalanche front temperatures. Agreement between our predicted values and an independent measurement of these quantities would provide

  6. Time-resolved Measurements of Spontaneous Magnetic Deflagration of Mn12 tBuAc

    NASA Astrophysics Data System (ADS)

    Chen, Yizhang; Kent, A. D.; Zhang, Qing; Sarachik, M. P.; Baker, M. L.; Garanin, D. A.; Mhesn, Najah; Lampropoulos, Christos

    Magnetic deflagration in molecular magnets has been triggered by heat pulses and acoustic waves. In this work we report spontaneous magnetic deflagration (i.e. deflagration that occurs without an external trigger) in the axially symmetric single molecule magnet Mn12 tBuAc . Magnetic hysteresis measurements show steps due to resonant quantum tunneling (RQT) below 1K, confirming the spin-Hamiltonian parameters for this material and previous results. Deflagration speeds measured with a newly constructed higher bandwidth (2MHz) setup will be presented as a function of transverse and longitudinal fields Hx ⊗Hz both on and off resonance. A large increase in front velocity near RQT steps is observed in experiments with swept transverse fields and will be discussed in light of models of deflagration. Work supported by NSF-DMR-1309202 (NYU); ARO W911NF-13-1-0125 (CCNY); DMR-1161571(Lehman); Cottrell College Science Award (UNF).

  7. Dispersive effects of transverse magnet displacements in rolled arc achromats

    SciTech Connect

    Fieguth, T.; Kheifets, S.; Murray, J.J.

    1986-09-22

    The effect of transverse displacements of combined function magnets is investigated where the disperion in not matched due to roll. This dispersion function is perturbed by displacement of combined function magnets either singly or coherently. In the latter case the effect of a systematic (or DC) offset of magnets is examined. This type of error can occur due to systematics in the placement or the readout of Beam Position Monitors or equivalently by correcting the orbit of a beam of the wrong momentum with respect to the Arc magnet excitation. 5 refs., 18 figs.

  8. Anisotropic Two-band Transverse Thermoelectrics in Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Tang, Y.; Heinselmann, K.; Grayson, M.; Birner, S.

    2012-02-01

    Narrow gap materials with anisotropic electron and hole band conductance are shown to function as anisotropic two-band transverse (A2T) thermoelectrics, whereby longitudinal electrical currents generate transverse Peltier heat flow. Unlike the Ettingshausen effect which requires external magnetic field, a large transverse Seebeck coefficient in A2T thermoelectric results from the anisotropic electron and hole mass tensors without magnetic field. Compared to synthetic transverse thermoelectrics, A2T thermoelectric coolers can be scaled to nanoscale, and the intrinsic nature of this phenomenon is promising for cryogenic applications. With exponentially tapered coolers, arbitrary δT can be reached with sufficiently thick layers and a small electric field. Equations for A2T thermoelectric transport from an electron-hole band model yield the optimal orientation to achieve maximum transverse figure of merit ZT. The InAs/GaSb type II superlattice is shown to have the appropriate anisotropic band structure, and bandgaps of order kT are calculated to give a competitive δT = 14 K at room temperature. Thermal conductivity of the superlattice is 4 W/m.K at 300 K using 3φ method. Preliminary data on in-plane Seebeck coefficient will also be presented.

  9. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features. PMID:27519096

  10. Dirac oscillator in perpendicular magnetic and transverse electric fields

    SciTech Connect

    Nath, D.; Roy, P.

    2014-12-15

    We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and Bmagnetic as well as electric field. • Exact solutions are found. • Critical cases have been examined.

  11. Finite-element simulations of hysteretic alternating current losses in a magnetically coated superconducting tubular wire subject to an oscillating transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Genenko, Y. A.; Rauh, H.; Kurdi, S.

    2015-06-01

    Numerical simulations of hysteretic ac losses in a tubular superconductor/paramagnet heterostructure subject to an oscillating transverse magnetic field are performed within the quasistatic approach, calling upon the COMSOL finite-element software package and exploiting magnetostatic-electrostatic analogues. It is shown that one-sided magnetic shielding of a thin, type-II superconducting tube by a coaxial paramagnetic support results in a slight increase of hysteretic ac losses as compared to those for a vacuum environment, when the support is placed inside; a spectacular shielding effect with a possible reduction of hysteretic ac losses by orders of magnitude, however, ensues, depending on the magnetic permeability and the amplitude of the applied magnetic field, when the support is placed outside.

  12. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  13. Thermodynamics of the Mn12-ac molecule in a skew magnetic field at T \\gtrsim 21 K

    NASA Astrophysics Data System (ADS)

    Rojas, Onofre; Thomaz, M. T.; Corrêa Silva, E. V.; de Souza, S. M.

    2009-01-01

    We derive the high-temperature expansion of the Helmholtz free energy of the quantum and classical models for the Mn12-ac molecule in the presence of a skew magnetic field, including the transverse term in the Hamiltonians, for T \\gtrsim 21 K. In this region of temperature, we show that the transverse term can give a measurable contribution to the x component of the magnetization. We obtain the specific heat per site of a powder sample of Mn12-ac under a constant magnetic field. For strong skew magnetic fields (h/D>1), the specific heat differs up to 20% from its value of a crystal sample under purely longitudinal magnetic fields. Finally, we obtain that in the limit T \\rightarrow \\infty , the values of the classical and quantum specific heat differ; in particular, for \\vec {h}= \\vec 0 this difference is 0.96%.

  14. Transverse charge and magnetization densities in the nucleon's chiral periphery

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  15. Susceptibility of single molecule magnet Mn12-acetate single crystals as a function of temperature and transverse field

    NASA Astrophysics Data System (ADS)

    Subedi, Pradeep; Wen, Bo; Bo, Lin; Sarachik, Myriam; Yeshurun, Yosi; Kent, Andrew; Lampropoulos, Christos; Christou, George

    2010-03-01

    The longitudinal susceptibility of Mn12-acetate single crystals has been measured in a magnetic field applied transverse to the Ising axis using micro-Hall effect magnetometry in a He^3 cryostat with a 3D vector superconducting magnet. We have investigated the blocking temperature as a function of longitudinal-field-sweep-rate and as a function of the magnitude of the transverse field. We find that the transverse field accelerates the relaxation to equilibrium and lowers the blocking temperature, as expected based on the Mn12-ac spin-Hamiltonian and a classical model of single domain uniaxial nanomagnets. The susceptibility is found to obey a Curie-Weiss law, indicating a low temperature transition to a ferromagnetic phase due to dipolar interactions. We discuss these experiments as well as experiments in which an array of Hall-bars is used to spatially resolve the longitudinal susceptibility above the blocking temperature.

  16. A transverse Kelvin-Helmholtz instability in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P.; Dangelo, N.

    1977-01-01

    An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.

  17. Optimization criteria for standing wave transverse magnetic deflection cavities

    SciTech Connect

    Haimson, J.

    1995-08-01

    An important linear accelerator requirement, in order to demonstrate narrow energy spectra, is the injection of electron bunches of narrow phase spread and negligible inter-bunch current. This can be achieved by r-f transverse modulation and clipping of the beam by an aperture prior to injection into the accelerator waveguide, i.e., chopper operation. By magnetically biasing the beam to one side of the centerline, it is possible to arrange for transmission into the accelerator at a time during each r-f cycle when the radial momentum imparted to the beam by the chopper cavity is passing through zero. The low efficiency of beam utilization normally associated with this type of operation, because of the high ratio of collected to transmitted current, can be considerably improved by combining the transverse chopping action with a suitably phased longitudinal velocity modulating field as obtained from a simple prebunching cavity. Transverse r-f deflection techniques also enable sub-harmonic bunch selection and injection into linear accelerators which are used as injectors for electron synchrotrons. This is achieved by driving the chopper cavity at the same frequency as the synchrotron r-f system (which is maintained at a precise sub-multiple of the linear accelerator fundamental frequency) and then prebunching the chopped beam at the fundamental frequency prior to injection into the linear accelerator.

  18. Simulations of a Detonation Wave in Transverse Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc

    2010-11-01

    Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.

  19. Reentrant ac Magnetic Susceptibility in Josephson-Junction Arrays

    SciTech Connect

    Araujo-Moreira, F.M.; Barbara, P.; Cawthorne, A.B.; Lobb, C.J.

    1997-06-01

    We have measured the complex ac magnetic susceptibility of unshunted Josephson-junction arrays as a function of temperature T , amplitude of the excitation field h{sub ac} , and external magnetic field H{sub dc} . For small h{sub ac} Meissner screening occurs. For larger h{sub ac} , however, the screening is reentrant in T . This reentrance is not thermodynamic but dynamic and arises from the paramagnetic contribution of multijunction loops. This result gives an alternative explanation of the paramagnetic Meissner effect observed in granular superconductors. Experimental results are in agreement with a simplified model based on a single loop containing four junctions. {copyright} {ital 1997} {ital The American Physical Society}

  20. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2011-06-01

    We analysed magnetic nanoparticle biodistribution, before and after cytokine conjugation, in a mouse model by ac susceptibility measurements of the corresponding resected tissues. Mice received repeated intravenous injections of nanoparticle suspension for two weeks and they were euthanized 1 h after the last injection. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues. The rest of the particles may probably be metabolized or excreted by the organism. Our findings indicate that the adsorption of interferon to DMSA-coated magnetic nanoparticles changes their biodistribution, reducing the presence of nanoparticles in lungs and therefore their possible toxicity. The specific targeting of the particles to tumour tissues by the use of an external magnetic field has also been studied. Magnetic nanoparticles were observed by transmission electron microscopy in the targeted tissue and quantified by ac magnetic susceptibility.

  1. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  2. Magnetic Anisotropy of Maghemite Nanoparticles Probed by RF Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Bartolomé, J.; García, L. M.; Bartolomé, F.; Arauzo, A.; Millán, A.; Palacio, F.

    We present radio frequency magnetic transverse susceptibility measurements on γ-Fe2O3 nanoparticles, which yield an estimation of their effective anisotropy constant, Keff as a function of nanoparticle size. The resulting values range from 4 to 8 × 104 erg/cm3, being on the order of the magnetocrystalline anisotropy in bulk maghemite. Keff values increase as the particle diameter increases. Evidences of anisotropy field distribution given by the size distribution in the samples, and interparticle interactions that increase as the particle size increases, are also observed in the TS measurements. The effects of such interparticle interaction overcome those of thermal fluctuations, in contrast with the behavior of other iron oxide particles.

  3. Wide Temperature Magnetization Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.

  4. Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields

    NASA Astrophysics Data System (ADS)

    Titov, Serguey V.; Déjardin, Pierre-Michel; El Mrabti, Halim; Kalmykov, Yuri P.

    2010-09-01

    The nonlinear ac response of the magnetization M(t) of a uniaxially anisotropic superparamagnetic nanoparticle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial particle driven by a strong ac field applied at an angle to the easy axis of the particle (so that the axial symmetry is broken) alters drastically leading to different nonlinear effects due to coupling of the thermally activated magnetization reversal mode with the precessional modes of M(t) via the driving ac field.

  5. Transverse instability of transverse-magnetic solitons and nonlinear surface plasmons.

    PubMed

    Lin, Yuan-Yao; Lee, Ray-Kuang; Kivshar, Yuri S

    2009-10-01

    We analyze stability of the TM polarized optical solitons and nonlinear guided waves localized at a metal-dielectric interface. We demonstrate, both analytically and numerically, that the spatial solitons can experience vectorial transverse modulational instability that leads to the generation of arrays of two-dimensional TM polarized self-trapped localized beams. In a sharp contrast, we reveal that the transverse instability is completely eliminated for nonlinear surface plasmons. PMID:19794789

  6. Measurement of transverse Jc profiles of coated conductors using a magnetic knife of permanent magnets

    SciTech Connect

    Haenisch, J; Mueller, F M; Ashworth, S P; Coulter, J Y; Matias, Vlad

    2008-01-01

    The transverse J{sub c} distribution in YBCO coated conductors was measured non-destructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of J{sub c} in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 {micro}m, and the J{sub c} resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse J{sub c} distribution in the sample. The J{sub c} profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straight-forward and inexpensive design, this J{sub c} imaging technique can be a powerful tool for quality control in coated-conductor production.

  7. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  8. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  9. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  10. Sensorless operation of surface mount permanent magnet AC (PMAC) motors

    SciTech Connect

    Toliyat, H.A.; Rahman, K.M.; Shet, D.S.

    1999-12-01

    A sensorless field oriented control scheme for surface mount permanent magnet ac (PMAC) motor with split phase stator windings is presented. This motor is obtained by splitting the phase windings of a conventional three phase motor. The six-phase motor, however is run as a three-phase motor by connecting the split phase stator windings in series, while the taps are made available for voltage measurements. By measuring the terminal voltages and the line currents, absolute position of the permanent magnet ac motor driven by a current regulated PWM inverter with a hysteresis controller is estimated. The estimated position information is independent of the stator resistance, thus this scheme is even applicable at low speeds. Results are presented to show the effectiveness of the new controller, and it is also shown that the position error is negligible.

  11. A flux-coupled ac/dc magnetizing device

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Liu, H.; Kent, A. D.

    2013-06-01

    We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

  12. Hysteresis of sextupole and ac loss in Energy Doubler dipole magnets

    SciTech Connect

    Ishibashi, K.

    1982-06-18

    A simple model gave utilized for calculation of magnetization effects on ac loss and sextupole for Energy Doubler dipole magnets. The calculation in the simple model gave an underestimation of ac loss by about 30%. Results of computation on ac harmonics were also described.

  13. Statics and field-driven dynamics of transverse domain walls in biaxial nanowires under uniform transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2016-06-01

    In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.

  14. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

    PubMed Central

    Mok, Jinsik

    2014-01-01

    Summary This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated. PMID:25383300

  15. Transverse deflection and dissipation of small plasma beams and clouds in magnetized media

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1987-01-01

    Propagation of a quasi-neutral plasma beam or cloud across a magnetic field is considered for the case where the transverse dimension of the beam or cloud is sufficiently small compared to ion gyroradii. This situation commonly arises for active experiments in near-earth space. Two mechanisms are presented for transverse deflection of a beam or cloud in the -v0 x B0 direction where v0 is the velocity relative to the ambient medium. In the first, asymmetric escape of ions from an electrically polarized beam or cloud causes transverse deflection by means of a rocket effect. The transverse deflection distance is estimated to be a few times the initial transverse dimension of the beam or cloud. Dissipation occurs within a few times the thermal ion transverse crossing time. In the second mechanism, asymmetric charging results from localized accumulation of incident ions from the ambient medium. This excess positive charge distorts electric equipotentials and drives electron Hall currents that maintain an asymmetric compressed magnetic field region. The asymmetry of the magnetic stress contributes to transverse deflection with the same sign as the rocket effect. The asymmetric magnetic field also focuses incident ions to yield the localized charge accumulation. These ideas are qualitatively consistent with observations of the Active Magnetospheric Particle Tracer Explorers artificial comet releases.

  16. Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid

    NASA Astrophysics Data System (ADS)

    L. Raikher, Yu.; Stepanov, V. I.

    2014-11-01

    A uniaxially anisotropic superparamagnetic particle suspended in a viscous fluid and subjected to an ac field is considered. Consistently taking into account both internal (Néel) and external (Brownian) magnetic relaxations, a simple expression for the dynamic susceptibility is obtained. This result, with regard to the ac field energy absorption, is compared to the common heuristic approach. This is done for a model polydisperse colloid containing maghemite nanoparticles, which are assumed to posses either bulk or surface magnetic anisotropy. It is shown that viscous losses caused by the particle motion in a fluid matrix make important contribution to the full magnetic response of a ferrocolloid and, thus, its ability to absorb the ac field energy. The obtained exact expression, which takes in both dissipation mechanisms, paves the way to correct optimization of the nanoparticle-mediated heating effect.

  17. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-06-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  18. New levitation scheme with AC superconducting magnet for EDS MAGLEV system

    SciTech Connect

    Kim, D.H.; Lee, J.K.; Hahn, S.Y.; Cha, G.

    1996-09-01

    This paper proposes a new magnetic levitation scheme which is able to generate levitation force for all speeds including a standstill. Auxiliary wheels which are needed in EDS MAGLEV vehicle can be eliminated. This scheme uses AC superconducting magnets to generate levitation force. In this paper, magnetic fields, forces and power dissipations generated by AC magnets moving above a conducting slab are calculated analytically. Results of calculation show characteristics of EDS system with AC magnet, such as levitation force and loss, are superior to those of EDS system with DC magnets for all speeds.

  19. Thermoelectric power of n-InSb in a transverse quantizing magnetic field

    SciTech Connect

    Gadzhialiev, M. M. Bashirov, R. R.; Pirmagomedov, Z. Sh.; Efendieva, T. N.; Mädge, H.; Filar, K.

    2015-07-15

    The thermoelectric power of electronic InSb is investigated in a transverse magnetic field up to 14 T at 80 K. It is established that the experimental results for a quantizing magnetic field agree with theoretical data obtained without accounting for spin splitting of the Landau levels.

  20. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    SciTech Connect

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-12-04

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation.

  1. ac susceptibility study of a magnetite magnetic fluid

    NASA Astrophysics Data System (ADS)

    Ayala-Valenzuela, O. E.; Matutes-Aquino, J. A.; Galindo, J. T. Elizalde; Botez, C. E.

    2009-04-01

    Magnetite nanometric powder was synthesized from metal salts using a coprecipitation technique. The powders were used to produce magnetic fluid via a peptization method, with hydrocarbon Isopar M as liquid carrier and oleic acid as surfactant. The complex magnetic susceptibility χ =χ'+iχ″ was measured as a function of temperature T in steps of 2.5 K from 3 to 298 K for frequencies ranging from f =10 to 10 000 Hz. The magnetic fluid real and imaginary components of the ac susceptibility show a prominent maximum at temperatures that increase with the measuring frequency, which is attributed to a spin-glass-like behavior. The peak temperature Tp1 of χ″ depends on f following the Vogel-Fulcher law f =f0 exp[E /kB(Tp1-T0)], where f0 and E are positive constants and T0 is a parameter related to particle interactions. There is another kind of peak temperature, Tp2, in the loss factor tan δ =χ″/χ' which is related to a magnetic aftereffect. The peak temperature Tp2 is far less than Tp1 and shows an Arrhenius-type dependence on f.

  2. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  3. Wide Temperature Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1999-01-01

    100 kHz core loss and magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, at B(sub peak) = 0.1 T and 50 C only. A linear permeability model is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials arc reviewed. This linear modeling shows that, due to their high permeabilities, these cores must he gapped in order to make up high Q or high current inductors. However, they should serve well, as is, for high frequency, anti ratcheting transformer applications.

  4. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2014-09-15

    Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the “dose response” in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors’ relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%–1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly

  5. Ac magnetorestriction hysteresis and magnetization direction in grain oriented silicon steels

    SciTech Connect

    Mogi, Hisashi; Matsuo, Yukio; Kumano, Tomoji

    1999-09-01

    A hysteresis curve of ac magnetostriction was measured, magnetizing a grain oriented silicon steel in the direction deviated from rolling direction of a sample. The ac magnetostriction ({lambda} ac) curves were analyzed as harmonics in the interest of noise spectrum of such as a power transformer. The domain structure model in this magnetostriction process was proposed. The hysteresis was large in the magnetization direction inclined at 30 and 90{degree} from the rolling direction.

  6. Richtmyer-Meshkov instability of a stratified fluid in transverse magnetic field

    SciTech Connect

    Cao Jintao; Ren Haijun; Li Ding; Wu Zhengwei

    2009-06-15

    In the present work, the Richtmyer-Meshkov instability is examined in an N-layer stratified fluid which is impulsively accelerated and immersed in a homogeneous transverse magnetic field. By solving the initial value problem and the second-order linear differential perturbation equation, the expressions of interface amplitudes are analytically obtained. Two special cases N=2 and N=3 are discussed, and it is found that the Richtmyer-Meshkov instability is suppressed by the transverse magnetic field. It is also shown for the N=3 case, when a transverse magnetic field is present, that the interfaces oscillate with a high frequency and the oscillations repeat themselves periodically with a low frequency.

  7. AC magnetic field losses in BSCCO-2223 superconducting tapes

    SciTech Connect

    Lelovic, M.; Mench, S.; Deis, T.

    1997-09-01

    The AC magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (BSCCO-2223) tapes with similar transport critical current (I{sub c}) values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular and eddy current losses. Because of BSCCO`s anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by more than one order of magnitude than those applied perpendicular.

  8. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    NASA Astrophysics Data System (ADS)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  9. Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.

  10. Quenching of an electric arc in a vacuum gap with a uniform transverse magnetic field

    SciTech Connect

    Alferov, D. F.; Ahmetgareev, M. R.; Yevsin, D. V.; Ivanov, V. P.

    2010-12-15

    The breaking ability of a vacuum arc interrupter with a uniform transverse magnetic field formed by a system of permanent magnets was investigated experimentally. The vacuum interrupter with a 0.5-{mu}F shunting capacitor switched off a dc current of up to 150 A at magnetic fields of 100-180 mT. At magnetic fields of 120-160 mT, the breaking ability of the vacuum interrupter was increased to 300 A by introducing a nonuniformity in the magnetic field distribution near the contact surface.

  11. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-02-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R2=0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R2=0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R2=0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI.

  12. Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles

    PubMed Central

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2014-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurement to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R2 = 0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R2 = 0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R2 = 0.97, p <0.001). These results demonstrate the concept of ASI and advantages of sASI. PMID:25477704

  13. Spectroscopic AC Susceptibility Imaging (sASI) of Magnetic Nanoparticles.

    PubMed

    Ficko, Bradley W; Nadar, Priyanka M; Diamond, Solomon G

    2015-02-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurement to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R(2) = 0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R(2) = 0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R(2) = 0.97, p <0.001). These results demonstrate the concept of ASI and advantages of sASI. PMID:25477704

  14. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  15. AC magnetic measurements of the ALS Booster Dipole Engineering Model Magnet

    SciTech Connect

    Green, M.I.; Keller, R.; Nelson, D.H.; Hoyer, E.

    1989-03-01

    10 Hz sine wave and 2 Hz sawtooth AC magnetic measurements of he curved ALS Booster Dipole Engineering Model Magnet have been accomplished. Long curved coils were utilized to measure the integral transfer function and uniformity. Point coils and a Hall Probe were used to measure magnetic induction and its uniformity. The data were logged and processed by a Tektronix 11401 digital oscilloscope. The dependence of the effective length on the field was determined from the ratio of the integral coil signals to the point coil signals. Quadrupole and sextupole harmonics were derived from the point and integral uniformity measurements. 5 refs., 4 figs., 2 tabs.

  16. Transverse quantum Stern-Gerlach magnets for electrons

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Bach, Roger; Batelaan, Herman

    2011-06-01

    In the Stern-Gerlach experiment, silver atoms were separated according to their spin state (Gerlach and Stern 1922 Z. Phys. 9 353-355). This experiment demonstrates the quantization of spin and relies on the classical description of motion. However, so far, no design has led to a functional Stern-Gerlach magnet for free electrons. Bohr and Pauli showed in the 1930 Solvay conference that Stern-Gerlach magnets for electrons cannot work, at least if the design is based on classical trajectories (Pauli W 1932 Proc. of the 6th Solvay Conf. 2 (1930) (Brussels: Gauthier-Villars) pp 183-86, 217-20, 275-80 Pauli W 1964 Collected Scientific Papers ed R Kronig and V F Weiskopf, vol 2 (New York: Wiley)). Here, we present ideas for the realization of a Stern-Gerlach magnet for electrons in which spin and motion are treated fully quantum mechanically. We show that a magnetic phase grating composed of a regular array of microscopic current loops can separate electron diffraction peaks according to their spin states. The experimental feasibility of a diffractive approach is compared to that of an interferometric approach. We show that an interferometric arrangement with magnetic phase control is the functional equivalent of an electron Stern-Gerlach magnet.

  17. Transverse Instability of Dust-Acoustic Solitary Waves in Magnetized Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Congbo; Wang, Linxue; Yang, Xue; Shi, Yuren

    2015-04-01

    We theoretically investigated the transverse instability of three-dimensional (3D) dust-acoustic solitary waves in a magnetized dusty plasma. First, a 3D nonlinear Zakharov-Kuznetsov (ZK) equation, which can be used to describe the time-evolution of dust-acoustic solitary waves in magnetized dusty plasmas, is derived by using the reductive perturbation method. Second, we established a numerical scheme to study the transverse instability of the solitary waves described by the ZK equation. It was found that both stable and unstable solitary waves exist. supported by National Natural Science Foundation of China (No. 11047010)

  18. Integrated giant magnetoresistance bridge sensors with transverse permanent magnet biasing

    NASA Astrophysics Data System (ADS)

    Ku, Wanjun; Silva, F.; Bernardo, J.; Freitas, P. P.

    2000-05-01

    Two types of giant magnetoresistance (GMR) multilayer bridge sensors with integrated permanent magnet biasing are demonstrated. These sensors differ from previous designs where external permanent magnets were used. The bridges consist of four active GMR multilayer elements at the first antiferromagnetic coupling peak of a NiFe/[NiFe/CoFe/Cu]10 structure (GMR=18%). Bridge linearization is obtained by creating opposite biasing fields of equal amplitude (±200 Oe) in contiguous GMR elements of the bridge structure. This is achieved either by using pairs of permanent magnets with the same Mrt value (14 memu/cm2) but different coercivities (type I bridge, Hc1=1400 Oe, Hc2=800 Oe), or by using a single type of permanent magnet and placing the GMR sensor either under the magnet, or on its side (type II bridge). Linear ranges of ±200 Oe with field sensitivities of 0.3 mV/(V×Oe) were obtained in these bridges.

  19. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.

    PubMed

    Brown, Keith A; Vassiliou, Christophoros C; Issadore, David; Berezovsky, Jesse; Cima, Michael J; Westervelt, R M

    2010-10-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times. PMID:20689678

  20. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Saville, Steven L.; Woodward, Robert C.; House, Michael J.; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R.; St Pierre, Tim G.; Mefford, O. Thompson

    2013-02-01

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R2 measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to

  1. Nuclear magnetic resonance transverse relaxation in muscle water.

    PubMed Central

    Fung, B M; Puon, P S

    1981-01-01

    The origin of the nonexponentiality of proton spin echoes of skeletal muscle has been carefully examined. It is shown that the slowly decaying part of the proton spin echoes is not due to extracellular water. First, for muscle from mice with in vivo deuteration, the deuteron spin echoes were also nonexponential, but the slowly decaying part had a larger weighing factor. Second, for glycerinated muscle in which cell membranes were disrupted, the proton spin echoes were similar to those in intact muscle. Third, the nonexponentiality of the proton spin echoes in intact muscle increased when postmortem rigor set in. Finally, when the lifetimes of extracellular water and intracellular water were taken into account in the exchange, it was found that the two types of water would not give two resolvable exponentials with the observed decay constants. It is suggested that the unusually short T2's and the nonexponential character of the spin echoes of proton and deuteron in muscle water are mainly due to hydrogen exchange between water and functional groups in the protein filaments. These groups have large dipolar or quadrupolar splittings, and undergo hydrogen exchange with water at intermediate rates. The exchange processes and their effects on the spin echoes are pH-dependent. The dependence of transverse relaxation of pH was observed in glycerinated rabbit psoas muscle fibers. PMID:7272437

  2. Temperature Dependence of AC Magnetic Properties of FeCo-Based Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Xiao, J. Q.; Yu, R. H.; Basu, S.

    1998-03-01

    AC magnetic properties of soft FeCo-based alloys have been studied at different temperatures and frequencies. Samples of Fe_49Co_49V2 (Hiperco50), Fe_49Co_49V_1.7Nb_0.3 (Hiperco 50HS), and Fe_72Co_27Cr_0.5Mn_0.5 (Hiperco 27) were selected and heat-treated to obtain different microstructures. TEM observation reveals that the ordering parameter of the BCC phase in Hiperco 50 series vary with the cooling rate, and a high temperature disordered phase with a high density of defects can be retained through rapid quenching, whereas Hiperco 27 exhibits a disordered structure which is insensitive to the heat treatment. Toroidal laminated samples were used to measure AC magnetic properties. At low frequencies, all the samples either with ordered or disordered phases show low coercivity H_c, high magnetization and initial permeability μ. As the frequency increases, Hc increases and μ decreases due to the damping effect of the magnetic domain walls. In a certain range of frequencies, magnetic permeability spectra show a dispersion zone where the permeability sharply decreases near to zero. This magnetic permeability dispersion zone shifts to lower frequencies with increasing temperature and decreasing ordering parameter. The effect of microstructure, frequency and temperature on core losses will be also presented.

  3. Comparisons of 76Hz transverse and radial magnetic field strength components received in Connecticut

    NASA Astrophysics Data System (ADS)

    Bannister, P. R.

    1986-03-01

    Since June 1970, we have made extremely low frequency (ELF) measurements of the transverse horizontal magnetic field strength, H sub phi, received in Connecticut. Occasionally, we also have measured either the vertical electric field strength, E sub v, or the radial horizontal magnetic field strength, H sub rho. The AN/BSR-1 ELF receivers are located at the Naval Underwater Systems Center (NUSC), at New London, CT. The transmission source for these farfield (1.6-Mm range) measurements is the U.S. Navy's ELF Wisconsin Test Facility (WTF), located in the Chequamegon National Forest in north-central Wisconsin. The results of 136 days of radial magnetic field measurements taken from November 1977 through June 1984 are discussed in this report. The main result is that during disturbed propagation conditions, the radial and transverse magnetic field strength daily plots (versus GMT) are usually dissimilar (in both amplitude and relative phase).

  4. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-01

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications. PMID:23389324

  5. The magnetic susceptibility on the transverse antiferromagnetic Ising model: Analysis of the reentrant behavior

    NASA Astrophysics Data System (ADS)

    Neto, Minos A.; de Sousa, J. Ricardo; Padilha, Igor T.; Rodriguez Salmon, Octavio D.; Roberto Viana, J.; Dinóla Neto, F.

    2016-06-01

    We study the three-dimensional antiferromagnetic Ising model in both uniform longitudinal (H) and transverse (Ω) magnetic fields by using the effective-field theory (EFT) with finite cluster N = 1 spin (EFT-1). We analyzed the behavior of the magnetic susceptibility to investigate the reentrant phenomena that we have seen in the same phase diagram previously obtained in other papers. Our results shows the presence of two divergences in the susceptibility that indicates the existence of a reentrant behavior.

  6. CHARACTERISTICS OF TRANSVERSE ELECTRIC AND MAGNETIC FIELD TRANSMISSION CELLS AT EXTREMELY LOW FREQUENCIES

    EPA Science Inventory

    Transverse electric and magnetic field cells are often designed to subject samples to electromagnetic radiation of intrinsic impedance (E/H) that is the same as in free space, 377 ohms. Earlier work has shown this value to be correct for the RF region. In the study, measurements ...

  7. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire

    NASA Astrophysics Data System (ADS)

    Deviren, Bayram; Ertaş, Mehmet; Keskin, Mustafa

    2012-05-01

    In this paper, we extend the paper of Kaneyoshi (2010 J. Magn. Magn. Mater. 322 3410-5) to investigate the dynamic magnetizations and dynamic phase transitions of a transverse cylindrical Ising nanowire system by using the effective field theory with correlations and the Glauber-type stochastic dynamics under a time-dependent oscillating external magnetic field. The dynamic effective field equations for the average longitudinal and transverse magnetizations on the surface shell and core are derived by using the Glauber transition rates. Temperature dependences of the dynamic longitudinal magnetizations, the transverse magnetizations and the total magnetizations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system is strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, four different types of compensation behaviors in the Néel classification nomenclature exist in the system. The results are compared with some theoretical works and good overall agreement is observed.

  8. Spin-exchange narrowing in a nuclear magnetic transverse oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We demonstrate spin exchange narrowing in synchronously pumped Xe NMR. The Xe NMR is driven by spin exchange with Rb atoms whose polarization is square-wave modulated at the Xe NMR frequency. On resonance, the nuclei precess in phase with the Rb polarization. Off resonance, however, the spin-exchange fields from the Rb cause the Xe to develop a static orthogonal spin component. This induces broadening in the NMR line while also dramatically suppressing the phase shift between the precessing Rb and Xe polarizations. We can compensate for this effect by adding an oscillating magnetic field oriented along the optical pumping axis and 180 degrees out of phase with the Rb polarization. This narrows the NMR line width to approximately the T1 limit, and nearly restores the usual relationship between detuning and phase shift. These results suggest the possibility of using the alkali field with appropriate magnetic field feedback along the bias field direction to narrow the NMR linewidth below the usual T1 limit. Support by the NSF and Northrop Grumman Co.

  9. Thermal effects on transverse domain wall dynamics in magnetic nanowires

    SciTech Connect

    Leliaert, J.; Van de Wiele, B.; Vandermeulen, J.; Coene, A.; Dupré, L.; Vansteenkiste, A.; Waeyenberge, B. Van; Laurson, L.; Durin, G.

    2015-05-18

    Magnetic domain walls are proposed as data carriers in future spintronic devices, whose reliability depends on a complete understanding of the domain wall motion. Applications based on an accurate positioning of domain walls are inevitably influenced by thermal fluctuations. In this letter, we present a micromagnetic study of the thermal effects on this motion. As spin-polarized currents are the most used driving mechanism for domain walls, we have included this in our analysis. Our results show that at finite temperatures, the domain wall velocity has a drift and diffusion component, which are in excellent agreement with the theoretical values obtained from a generalized 1D model. The drift and diffusion component are independent of each other in perfect nanowires, and the mean square displacement scales linearly with time and temperature.

  10. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    NASA Astrophysics Data System (ADS)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  11. Simulation of transverse and longitudinal magnetic ripple structures induced by surface anisotropy

    NASA Astrophysics Data System (ADS)

    Hua, Lu; Bishop, J. E. L.; Tucker, J. W.

    1996-11-01

    Micromagnetic ripple structures on the surfaces of thick specimens of ultra-soft magnetic material having strong surface anisotropy Ks favouring out-of-surface magnetization have been calculated. These ripples have wavelengths of the order of 0.1 μm and extend to a depth ˜ √ A/ Ms, where A is the exchange constant and Ms is the saturation magnetization. The wave-vectors of the ripple structures are either transverse or parallel to the bulk magnetization. Both structures have lower energy than the one-dimensional structure discussed by O'Handley and Woods, and they exhibit stronger normal magnetization. The transverse structure requires a surface anisotropy Ks ≥ 0.80 K0, where K 0 = (2πA) {1}/{2}M s is that required for the one-dimensional structure. The threshold for longitudinal ripples is 0.84 K0. It is suggested that the transverse structure probably constitutes the ground state. The magnitudes of Ks and A should be obtainable from measurements of the ripple wavelength and amplitude, and Ms.

  12. Effect of transverse magnetic fields on a simulated in-line 6 MV linac.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-08-21

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 +/- 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically. PMID:20679699

  13. Transverse instability of ion acoustic solitons in a magnetized plasma including -nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; El-Taibany, W. F.; Mahmood, S.; Behery, E. E.; Khan, S. A.; Ali, S.; Hussain, S.

    2015-10-01

    > . The magnetic field has no effect on the amplitude of the IASW, whereas the obliqueness angle of the wave propagation, the ion-to-electron temperature ratio and positron-to-ion density concentration ratio affect both the amplitude and the width of the solitary wave structures. The transverse instability analysis illustrates that the one soliton solution has a constant growth rate, and it suffers from instability in the transverse direction. The relevance of the present study to astrophysical space plasmas is also discussed.

  14. Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields

    SciTech Connect

    D'Aquino, M.; Perna, S.; Serpico, C.; Bertotti, G.; Mayergoyz, I. D.

    2015-05-07

    The switching process of a magnetic spin-valve nanosystem subject to spin-polarized current pulses is considered. The dependence of the switching probability on the current pulse duration is investigated. The further application of a transverse field along the intermediate anisotropy axis of the particle is used to control the quasi-random relaxation of magnetization to the reversed magnetization state. The critical current amplitudes to realize the switching are determined by studying the phase portrait of the Landau-Lifshtz-Slonczewski dynamics. Macrospin numerical simulations are in good agreement with the theoretical prediction and demonstrate reliable switching even for very short (below 100 ps) current pulses.

  15. Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Zhong, Ming; Zheng, Shi-Han; Qiu, Jian-Ming; Yang, Mou; Wang, Rui-Qiang

    2016-02-01

    We theoretically study thermally driven transport of the Dirac fermions on the surface of a topological insulator capped with a ferromagnet strip. The generation and manipulation of anomalous Hall and Nernst effects are analyzed, in which the in-plane magnetization of the ferromagnet film is found to take a decisive role. This scenario is distinct from that modulated by Berry phase where the in-plane magnetization is independent. We further discuss the thermal spin-transfer torque as a backaction of the thermoelectric transports on the magnetization and calculate the dynamics of the anomalous Hall and Nernst effects self-consistently. It is found that the magnitude of the long-time steady Hall and Nernst conductance is determined by competition between the magnetic anisotropy and current-induced effective anisotropy. These results open up a possibility of magnetically controlling the transverse thermoelectric transports or thermally manipulating the magnet switching.

  16. Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry

    NASA Astrophysics Data System (ADS)

    Corá, L. A.; Andreis, U.; Romeiro, F. G.; Américo, M. F.; Oliveira, R. B.; Baffa, O.; Miranda, J. R. A.

    2005-12-01

    Oral administration of solid dosage forms is usually preferred in drug therapy. Conventional imaging methods are essential tools to investigate the in vivo performance of these formulations. The non-invasive technique of ac biosusceptometry has been introduced as an alternative in studies focusing on gastrointestinal motility and, more recently, to evaluate the behaviour of magnetic tablets in vivo. The aim of this work was to employ a multisensor ac biosusceptometer system to obtain magnetic images of disintegration of tablets in vitro and in the human stomach. The results showed that the transition between the magnetic marker and the magnetic tracer characterized the onset of disintegration (t50) and occurred in a short time interval (1.1 ± 0.4 min). The multisensor ac biosusceptometer was reliable to monitor and analyse the in vivo performance of magnetic tablets showing accuracy to quantify disintegration through the magnetic images and to characterize the profile of this process.

  17. AC loss measurement of superconducting dipole magnets by the calorimetric method

    SciTech Connect

    Morita, Y.; Hara, K.; Higashi, N.; Kabe, A.

    1996-12-31

    AC losses of superconducting dipole magnets were measured by the calorimetric method. The magnets were model dipole magnets designed for the SSC. These were fabricated at KEK with 50-mm aperture and 1.3-m overall length. The magnet was set in a helium cryostat and cooled down to 1.8 K with 130 L of pressurized superfluid helium. Heat dissipated by the magnet during ramp cycles was measured by temperature rise of the superfluid helium. Heat leakage into the helium cryostat was 1.6 W and was subtracted from the measured heat to obtain AC loss of the magnet. An electrical measurement was carried out for calibration. Results of the two methods agreed within the experimental accuracy. The authors present the helium cryostat and measurement system in detail, and discuss the results of AC loss measurement.

  18. The transverse magnetic field effect on steady-state solutions of the Bursian diode

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Ender, A. Ya.; Kuznetsov, V. I.; Chakrabarti, Nikhil

    2015-04-01

    A study of steady-states of a planar vacuum diode driven by a cold electron beam (the Bursian diode) under an external transverse magnetic field is presented. The regime of no electrons turned around by a magnetic field only is under the consideration. The emitter electric field is evaluated as a characteristic function for the existence of solutions depending on the diode length, the applied voltage, and the magnetic field strength. At certain conditions, it is shown that a region of non-unique solutions exists in the Bursian diode when the magnetic field is absent. An expression for the maximum current transmitted through the diode is derived. The external magnetic field is put forth to control fast electronic switches based on the Bursian diode.

  19. The transverse magnetic field effect on steady-state solutions of the Bursian diode

    SciTech Connect

    Pramanik, Sourav; Chakrabarti, Nikhil

    2015-04-15

    A study of steady-states of a planar vacuum diode driven by a cold electron beam (the Bursian diode) under an external transverse magnetic field is presented. The regime of no electrons turned around by a magnetic field only is under the consideration. The emitter electric field is evaluated as a characteristic function for the existence of solutions depending on the diode length, the applied voltage, and the magnetic field strength. At certain conditions, it is shown that a region of non-unique solutions exists in the Bursian diode when the magnetic field is absent. An expression for the maximum current transmitted through the diode is derived. The external magnetic field is put forth to control fast electronic switches based on the Bursian diode.

  20. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordan, Andreas; Scholz, Regina; Wust, Peter; Fähling, Horst; Felix, Roland

    1999-07-01

    The story of hyperthermia with small particles in AC magnetic fields started in the late 1950s, but most of the studies were unfortunately conducted with inadequate animal systems, inexact thermometry and poor AC magnetic field parameters, so that any clinical implication was far behind the horizon. More than three decades later, it was found, that colloidal dispersions of superparamagnetic (subdomain) iron oxide nanoparticles exhibit an extraordinary specific absorption rate (SAR [ W/ g]), which is much higher at clinically tolerable H 0 f combinations in comparison to hysteresis heating of larger multidomain particles. This was the renaissance of a cancer treatment method, which has gained more and more attention in the last few years. Due to the increasing number of randomized clinical trials preferentially in Europe with conventional E-field hyperthermia systems, the general medical and physical experience in hyperthermia application is also rapidly growing. Taking this increasing clinical experience carefully into account together with the huge amount of new biological data on heat response of cells and tissues, the approach of magnetic fluid hyperthermia (MFH) is nowadays more promising than ever before. The present contribution reviews the current state of the art and some of the future perspectives supported by advanced methods of the so-called nanotechnology.

  1. Direction detectable static magnetic field imaging by frequency-modulated magnetic force microscopy with an AC magnetic field driven soft magnetic tip

    NASA Astrophysics Data System (ADS)

    Saito, Hitoshi; Ito, Ryoichi; Egawa, Genta; Li, Zhenghua; Yoshimura, Satoru

    2011-04-01

    Direction detectable static magnetic field imaging, which directly distinguishes the up and down direction of static perpendicular magnetic field from a sample surface and the polarity of magnetic charges on the surface, was demonstrated for CoCrPt-SiO2 perpendicular magnetic recording media based on a frequency-modulated magnetic force microscopy (FM-MFM), which uses a frequency modulation of the cantilever oscillation induced by an alternating force from the tip-sample magnetic interaction. In this study, to generate the alternating force, we used a NiFe soft magnetic tip driven by the ac magnetic field of a soft ferrite core and imaged the direction and the amplitude of the static magnetic field from the recorded bits. This method enables measurement of the static magnetic field near a sample surface, which is masked by short range forces of the surface. The present method will be effective in analyzing the microscopic magnetic domain structure of hard magnetic samples.

  2. First evidence of interaction between longitudinal and transverse waves in solar magnetic elements

    NASA Astrophysics Data System (ADS)

    Stangalini, M.; Solanki, S. K.; Cameron, R.; Martínez Pillet, V.

    2013-06-01

    Small-scale magnetic fields are thought to play an important role in the heating of the outer solar atmosphere. By taking advantage of the unprecedented high-spatial and temporal cadence of the Imaging Magnetograph eXperiment (IMaX), the filter vector polarimeter on board the Sunrise balloon-borne observatory, we study the transversal and longitudinal velocity oscillations in small magnetic elements. The results of this analysis are then compared to magnetohydrodynamic (MHD) simulations, showing excellent agreement. We found buffeting-induced transverse oscillations with velocity amplitudes of the order of 1-2 km s-1 to be common along with longitudinal oscillations with amplitudes ~0.4 km s-1. Moreover, we also found an interaction between transverse oscillations and longitudinal velocity oscillations, showing a ± 90° phase lag at the frequency at which they exhibit the maximum coherence in the power spectrum. Our results are consistent with the theoretical picture in which MHD longitudinal waves are excited inside small magnetic elements as a response of the flux tube to the forcing action of the granular flows.

  3. Stability improvement of AC superconducting magnet by forced-convection cooling

    SciTech Connect

    Ishigohka, T.; Kasuya, A.; Ninomiya, A.

    1996-07-01

    The authors propose a new improved cooling system of an AC(50/60Hz) superconducting magnet introducing a forced-convection flow of liquid helium. In this system, the flow through the cooling channel between the winding layers is generated by a screw rotating in a cylinder surrounding the magnet. A small experimental device composed of an AC superconducting magnet and a rotating screw was manufactured. The screw was rotated by an extended driving shaft. The experimental result shows that the stability of the magnet is improved by the rotation of the screw. That is, the thermal disturbance (heater input power) which generates the quench of the magnet increases as the rotational speed of the screw does. It is expected that this technique can be successfully applied to superconducting AC power apparatuses as transformers or reactors.

  4. Depinning of flux lines and AC losses in magnet-superconductor levitation system

    SciTech Connect

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    1999-11-29

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude {approx}2Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold,dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field, A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  5. Study of effect of AC and DC magnetic fields on growth of Pisum sativum seeds

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Yasaie Mehrjardi, Yasaman; Sojoodi, Jaleh; Bayani, Hosien; Kazem Salem, Mohammad

    2013-08-01

    This paper concentrates on the effect of the AC and DC magnetic fields on plant growth. The effect of AC magnetic field with intensities of 2.25, 1.66 and 1.49 mT and DC magnetic field with intensities of 3.6, 2.41 and 2.05 mT in exposure durations of 2, 4, 6, 8, 10 and 12 min on two groups of dry and wet Pisum sativum seedlings was studied. In each experiment 10 seeds were used; the experiments were repeated three times for each group and there was a sham exposed group for comparison purposes. The light cycle was 12 h light/12 h darkness and the temperature was 25 ± 1° C. The index of growth is considered to be the root and stem elongation on the sixth day. It was observed that AC magnetic field has a positive effect on the growth in all durations and intensities. Moreover, it is highlighted that during the experiments, the mean growth of dry seedlings significantly increased by a factor of 11 in AC magnetic field with the lowest intensity of 1.49 mT (p < 0.05). It was also shown that AC magnetic fields had a more positive effect on the growth of plants in comparison to DC magnetic fields.

  6. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  7. Diamagnetic cavitization of laser-produced barium plasma in transverse magnetic field.

    PubMed

    Raju, Makaraju Srinivasa; Singh, R K; Kumar, Ajai; Gopinath, Pramod

    2015-05-15

    Influence of uniform transverse magnetic field and ambient Ar pressure on the plasma plume produced by Nd:YAG laser ablation of barium has been investigated by time-of-flight optical emission spectroscopy. Experiments were carried out with laser pulse energy of 150 mJ and 0.45 Tesla magnetic field. The time-of-flight profiles showed ambient pressure independent behavior at 6-mm distance from the target, which is attributed to the diamagnetic behavior of the laser plasma. A theoretical model is proposed that may explain the compression of temporal profiles of the ionic lines. PMID:26393695

  8. Effect of a transverse magnetic field on solidification structure in directionally solidified Al-Cu-Ag ternary alloys

    NASA Astrophysics Data System (ADS)

    Guan, Guang; Du, Dafan; Fautrelle, Yves; Moreau, Rene; Ren, Zhongming; Li, Xi

    2015-07-01

    The effect of a transverse magnetic field on solidification structure in directionally solidified Al-Cu-Ag ternary alloys was investigated experimentally. The results show that the application of the transverse magnetic field significantly modified the solidification structures. Indeed, the magnetic field caused the formation of macrosegregation and the transformation of the liquid/solid interface from cellular to planar. Moreover, it was found that the magnetic field refined the eutectic cell and decreased the mushy zone length. This may be attributed to the thermoelectric magnetic convection between eutectic cells.

  9. Effect of transverse magnetic field on laser produced plasma expansion into vacuum

    SciTech Connect

    Bennaceur-Doumaz, D.; Djebli, M.

    2011-08-15

    A one-dimensional time-dependent magneto-hydrodynamic ideal model is used to investigate the dynamics of initially magnetized laser produced plasma expansion into vacuum, in the context of inertial fusion. The plasma is assumed to be fully ionized and in local thermodynamic equilibrium (LTE), allowing all charged particles to have the same temperatures. Self-similar solution shows that the density, velocity, and temperature increase with the strength of the magnetic field. The transverse magnetic field causes significant changes in the plasma expansion dynamics, including the plasma confinement. The plasma velocity increasing is also observed and the temperature is found to be larger compared to temperature in un-magnetized case.

  10. Distribution of AC loss in a HTS magnet for SMES with different operating conditions

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tang, Y.; Ren, L.; Jiao, F.; Song, M.; Cao, K.; Wang, D.; Wang, L.; Dong, H.

    2013-11-01

    The AC loss induced in superconducting tape may affect the performance of a superconducting device applied to power system, such as transformer, cable, motor and even Superconducting Magnetic Energy Storage (SMES). The operating condition of SMES is changeable due to the need of compensation to the active or reactive power according to the demand of a power grid. In this paper, it is investigated that the distribution of AC loss for a storage magnet on different operating conditions, which is based on finite element method (FEM) and measured properties of BSCCO/Ag tapes. This analytical method can be used to optimize the SMES magnet.

  11. Distributions of transverse relaxation times for soft-solids measured in strongly inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Chelcea, R. I.; Fechete, R.; Culea, E.; Demco, D. E.; Blümich, B.

    2009-02-01

    The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/ T2,short and 1/ T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/ T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/ T2,eff is derived as a function of the T1/ T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1- T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1- T2 experimental correlations maps were corrected for the T1/ T2 effect using the derived T2/ T2,eff correction factor.

  12. Transverse instability and magnetic structures associated with electron phase space holes

    SciTech Connect

    Du Aimin; Wu Mingyu; Lu Quanming; Huang Can; Wang Shui

    2011-03-15

    Electron phase space holes (electron holes) are found to be unstable to the transverse instability. Two-dimensional (2D) electromagnetic particle-in-cell simulations are performed to investigate the structures of the fluctuating magnetic field associated with electron holes. The combined actions between the transverse instability and the stabilization by the background magnetic field (B{sub 0}=B{sub 0}e-vector{sub x}) lead a one-dimensional electron hole into several 2D electron holes which are isolated in both the x and y directions. The electrons trapped in these 2D electron holes suffer the electric field drift v{sub E}=ExB{sub 0}/B{sub 0}{sup 2} due to the existence of the perpendicular electric field E{sub y}, which generates the current along the z direction. Then, the unipolar and bipolar structures are formed for the parallel cut of the fluctuating magnetic field along the x and y directions, respectively. At the same time, these 2D electron holes move along the x direction, and the unipolar structures are formed for the parallel cut of the fluctuating magnetic field along the z direction.

  13. Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

    NASA Astrophysics Data System (ADS)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.

    2010-09-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s -1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( ˜1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the

  14. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  15. Speed of field-driven domain walls in nanowires with large transverse magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Depassier, M. C.

    2015-07-01

    Recent analytical and numerical work on field-driven domain wall propagation in nanowires and thin films has shown that for large transverse anisotropy and sufficiently large applied fields the Walker profile becomes unstable before the breakdown field, giving way to a domain wall whose speed increases at a slower rate with the applied field. We perform an asymptotic expansion of the Landau-Lifshitz-Gilbert equation for large transverse magnetic anisotropy and show that the asymptotic dynamics reproduces this behavior. The appearance of a different regime in the asymptotic dynamics is due to a transition from a pushed to a pulled front of a reaction diffusion equation in which the speed of the domain wall increases with the square root of the applied field

  16. Development and application of setup for ac magnetic field in neutron scattering experiments.

    PubMed

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P; Zabel, Hartmut

    2010-10-01

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm(3) and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed. PMID:21034083

  17. Development and application of setup for ac magnetic field in neutron scattering experiments

    SciTech Connect

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P.; Zabel, Hartmut

    2010-10-15

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm{sup 3} and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed.

  18. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow

    PubMed Central

    Wald, L.L.; Adalsteinsson, E.; Zahn, M.

    2010-01-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle’s time constant, τ. As the magnetic field frequency is increased, the nanoparticle’s magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid’s temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid’s temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations

  19. AC driven magnetic domain quantification with 5 nm resolution.

    PubMed

    Li, Zhenghua; Li, Xiang; Dong, Dapeng; Liu, Dongping; Saito, H; Ishio, S

    2014-01-01

    As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Moreover, the dynamic magnetism cannot be characterized because MFM is only sensitive to the static magnetic fields. Here, we develop a side-band magnetic force microscopy (MFM) to locally observe the alternating magnetic fields in nanometer length scales at an operating distance of 1 nm. Variations in alternating magnetic fields and their relating time-variable magnetic domain reversals have been demonstrated by the side-band MFM. The magnetic domain wall motions, relating to the periodical rotation of sample magnetization, are quantified via micromagnetics. Based on the side-band MFM, the magnetic moment can be determined locally in a volume as small as 5 nanometers. The present technique can be applied to investigate the microscopic magnetic domain structures in a variety of magnetic materials, and allows a wide range of future applications, for example, in data storage and biomedicine. PMID:25011670

  20. Influence of plasma loss area on transport of charged particles through a transverse magnetic field

    SciTech Connect

    Das, B. K.; Chakraborty, M.; Bandyopadhyay, M.

    2012-01-15

    Plasma transport in a double plasma device from the source region to the target region through a physical window comprising of electrically grounded magnet channels (filled with permanent magnet bars) for transverse magnetic field (TMF) and a pair of stainless steel (SS) plates is studied and presented in this manuscript. The study has relevance in negative ion source research and development where both TMF created by magnet channels and bias plate are used. The experiment is performed in two stages. In the first stage, a TMF is introduced between the two regions along with the SS plates, and corresponding plasma parameter data in the two regions are recorded by changing the distance between the TMF channels. In the second stage, the TMF is withdrawn from the system, and corresponding data are taken by changing the separation between the SS plates. The experimental results are then compared with a theoretical model. In the presence of TMF, where electrons are magnetized and ions are un-magnetized, it is observed that plasma transport perpendicular to the TMF is dominated by the ambipolar diffusion of ions. In the absence of TMF, plasma is un-magnetized, and plasma transport through the SS window aperture is almost independent of open area of the SS window.

  1. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    NASA Astrophysics Data System (ADS)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  2. A two-frequency gas laser in mutually orthogonal transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Gudelev, V. G.; Izmailov, A. Ch.; Iasinskii, V. M.

    1988-02-01

    The characteristics of the radiation from a two-frequency helium-neon laser during the superposition of mutually orthogonal transverse magnetic fields on the active medium are investigated experimentally and theoretically. It is shown that dichroism and birefringence of the active medium are minimized at equal magnetic strengths. As a result, stable two-frequency laser operation is realized with nearly equal wave intensities and a sufficiently low beat frequency which is stable with respect to variations in the resonator length, pump intensity, and magnetic field induction. The influence of the amplitude and phase anisotropy of the resonator, magnetoplasma effects, isotopic composition, and pressure of the working mixture on the energy and frequency characteristics of the laser is analyzed.

  3. Transverse oscillations and stability of prominences in a magnetic field dip

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Nisticò, G.; Nakariakov, V. M.

    2016-05-01

    Aims: We developed an analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip that accounts for the mirror current effect. Methods: The model is based on the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results: Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources.

  4. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field

    PubMed Central

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles. PMID:25993268

  5. Fiber - Optic Devices as Temperature Sensors for Temperature Measurements in AC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Lafrance, Joseph; Sala, Anca

    2007-10-01

    We report on the investigation of several fiber-optic devices as potential sensors for temperature measurements in AC magnetic fields. Common temperature sensors, such as thermocouples, thermistors or diodes, will create random and/or systematic errors when placed in a magnetic field. A DC magnetic field is susceptible to create a systematic offset to the measurement, while in an AC magnetic field of variable frequency random errors which cannot be corrected for can also be introduced. Fiber-Bragg-gratings and thin film filters have an inherent temperature dependence. Detrimental for their primary applications, the same dependence allows one to use such devices as temperature sensors. In an AC magnetic field, they present the advantage of being immune to electromagnetic interference. Moreover, for fiber-Bragg-gratings, the shape factor and small mass of the bare-fiber device make it convenient for temperature measurements on small samples. We studied several thin-film filters and fiber-Bragg-gratings and compared their temperature measurement capabilities in AC magnetic fields of 0 to 150 Gauss, 0 to 20 KHz to the results provided by off-the-shelf thermocouples and thermistor-based temperature measurement systems.

  6. Deflection of a hyperbaric plasma arc in a transverse magnetic field

    SciTech Connect

    Richardson, I.M.

    1993-12-31

    Results are presented concerning the influence of operating parameters on the susceptibility of the plasma arc to deflection by an externally generated transverse magnetic field. Arc deflection susceptibility is found to increase rapidly with rising ambient pressure and is significantly greater for the free burning TIG arc compared with the weakly constricted (soft) plasma arc. In agreement with previously published work, it has been shown that for small amplitude deflections the arc column behaves in a manner analogous to a solid body. However, above a critical field strength the structure of the column undergoes a significant change characterized by a rapid deterioration in stability; mechanisms for this behavior are discussed.

  7. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  8. Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Titov, Serguey V.; Coffey, William T.

    2015-11-01

    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or clusters with spin number S ˜100-104 —in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components arising from the nonlinear response of the magnetization, dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with existing solutions.

  9. Collective modes, ac response, and magnetic properties of the three-dimensional Dirac semimetal in the triplet superconducting state

    NASA Astrophysics Data System (ADS)

    Rosenstein, B.; Shapiro, B. Ya.; Shapiro, I.

    2015-08-01

    It was recently shown that conventional phonon-electron interactions may induce a triplet pairing state in time-reversal invariant three-dimensional Dirac semimetals. Starting from the microscopic model of the isotropic Dirac semimetal, the Ginzburg-Landau equations for the vector order parameter is derived using the Gor'kov technique. The collective modes including gapless Goldstone modes and gapped Higgs modes of various polarizations are identified. They are somewhat analogous to the modes in the B phase of He3, although in the present case quantitatively there is a pronounced difference between longitudinal and transverse components. The difference is caused by the vector nature of the order parameter leading to two different coherence lengths or penetration depths. The system is predicted to be highly dissipative due to the Goldstone modes. The time-dependent Ginzburg-Landau model in the presence of external fields is used to investigate some optical and magnetic properties of such superconductors. The ac conductivity of a clean sample depends on the orientation of the order parameter. It is demonstrated that the difference between the penetration depths results in rotation of the polarization vector of microwave passing a slab made of this material. The upper critical magnetic field Hc 2 was found. It turns out that at fields close to Hc 2 the order parameter orients itself perpendicular to the field direction. In certain range of parameters the triplet superconducting phase persists at arbitrarily high magnetic field like in some p -wave superconductors.

  10. Non-neutral plasma diode in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Kuznetsov, V. I.; Gerasimenko, A. B.; Chakrabarti, Nikhil

    2016-06-01

    An analytical study of the plasma states in non-neutral plasma diodes in the presence of an external transverse magnetic field is presented for an arbitrary neutralization parameter γ. Considerations are restricted to the regime where no electrons are turned around by the magnetic field. The emitter electric field strength E0 is used as a characteristic function to investigate the existence of solutions depending on the diode length, the applied voltage, the neutralization parameter, and the magnetic field strength. The potential distribution has a wave form for small magnitudes of the external magnetic field, as well as for the case when magnetic field is absent. A new family of solutions appears along with the Bursian ones. On the other hand, as the Larmor radius becomes comparable with the beam Debye length, oscillations in the potential disappear, and only the Bursian branches remain. Unlike the vacuum diode, there are steady state solutions for the negative values of the emitter field strength. As the neutralization parameter (γ) increases, the emitter field strength relating to the SCL (space charge limit) bifurcation point diminishes, and at γ > 1, the value of the emitter's electric field strength at the space charge limit (E0,SCL) turns out to be negative.

  11. Transverse gradient diffusion in a polydisperse dilute suspension of magnetic spheres during sedimentation.

    PubMed

    Cunha, F R; Couto, H L G

    2008-05-21

    In this work we investigate the pair interaction of magnetic particles in a dilute polydisperse sedimenting suspension. The suspension is composed of magnetic spherical forms of different radii and densities immersed in a Newtonian fluid, settling due to the gravity. When in close contact, the particles may exert on each other a magnetic force due to a permanent magnetization. We restrict our attention to dispersions of micromagnetic composite with negligible Brownian motion. The calculations of the relative particle trajectories are based on direct computations of the hydrodynamic interactions among rigid spheres in the regime of low particle Reynolds number. Depending on the relative importance of the interparticle forces and gravity, the collisions may result in aggregation or simply in a breaking of the particle relative trajectory time reversibility. After summing over all possible encounters, the transverse self-diffusion and down-gradient diffusion coefficients that describe the cross-flow migration of the particles are calculated. Our calculation shows first evidence and the significance of the diffusion process arising from magnetic interactions in dilute non-Brownian suspensions. PMID:21694258

  12. Magnetic control of transverse electric polarization in BiFeO₃.

    PubMed

    Tokunaga, M; Akaki, M; Ito, T; Miyahara, S; Miyake, A; Kuwahara, H; Furukawa, N

    2015-01-01

    Numerous attempts have been made to realize crossed coupling between ferroelectricity and magnetism in multiferroic materials at room temperature. BiFeO3 is the most extensively studied multiferroic material that shows multiferroicity at temperatures significantly above room temperature. Here we present high-field experiments on high-quality mono-domain BiFeO3 crystals reveal substantial electric polarization orthogonal to the widely recognized one along the trigonal c axis. This novel polarization appears to couple with the domains of the cycloidal spin order and, hence, can be controlled using magnetic fields. The transverse polarization shows the non-volatile memory effect at least up to 300 K. PMID:25575377

  13. Entropy generation during fluid flow in a channel under the effect of transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Damseh, R. A.; Al-Odat, M. Q.; Al-Nimr, M. A.

    2008-06-01

    Entropy generation due to fluid flow and heat transfer inside a horizontal channel made of two parallel plates under the effect of transverse magnetic field is numerically investigated. The flow is assumed to be steady, laminar, hydro-dynamically and thermally fully developed of electrically conducting fluid. Both horizontal walls are maintained at constant temperatures higher than that of the fluid. The governing equations in Cartesian coordinate are solved by an implicit finite difference technique. After the flow field and the temperature distributions are obtained, the entropy generation profiles are computed and presented graphically. The factors, which were found to affect the problem under consideration are the magnetic parameter, Eckert number, Prandtl number, and the temperature parameter (θ∞). It was found that, entropy generation increased as all parameters involved in the present problem increased.

  14. Rigorous analysis of highly tunable cylindrical transverse magnetic mode re-entrant cavities

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Fan, Y.; Aubourg, M.; Cros, D.; Carvalho, N. C.; Shan, Q.; Bourhill, J.; Ivanov, E. N.; Humbert, G.; Madrangeas, V.; Tobar, M. E.

    2013-12-01

    Cylindrical re-entrant cavities are unique three-dimensional structures that resonate with their electric and magnetic fields in separate parts of the cavity. To further understand these devices, we undertake rigorous analysis of the properties of the resonance using "in-house" developed Finite Element Method (FEM) software capable of dealing with small gap structures of extreme aspect ratio. Comparisons between the FEM method and experiments are consistent and we illustrate where predictions using established lumped element models work well and where they are limited. With the aid of the modeling we design a highly tunable cavity that can be tuned from 2 GHz to 22 GHz just by inserting a post into a fixed dimensioned cylindrical cavity. We show this is possible, as the mode structure transforms from a re-entrant mode during the tuning process to a standard cylindrical transverse magnetic mode.

  15. Nonlinear Raman forward scattering of a short laser pulse in a collisional transversely magnetized plasma

    SciTech Connect

    Paknezhad, Alireza

    2013-01-15

    Nonlinear Raman forward scattering (NRFS) of an intense short laser pulse with a duration shorter than the plasma period through a homogenous collisional transversely magnetized plasma is investigated theoretically when ponderomotive, relativistic and collioninal nonlinearities are taken into account. The plasma is embedded in a uniform magnetic field perpendicular to both, the direction of propagation and electric vector of the radiation field. Nonlinear wave equation is set up and Fourier transformation method is used to solve the coupled equations describing NRFS instability. Finally, the growth rate of this instability is obtained. Thermal effects of plasma electrons and effect of the electron-ion collisions are examined. It is found that the growth rate of Raman forward scattering first decreases on increasing electron thermal velocity, minimizes at an optimum value, and then increases. Our results also show that the growth rate increases by increasing the electron-ion collisions.

  16. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  17. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  18. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  19. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac

    SciTech Connect

    St Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-09-15

    Purpose: Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5x10{sup -5} T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. Methods: According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. Results: The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in

  20. Noncollinear spin-fluctuation theory of transition-metal magnetism: Role of transverse spin fluctuations in Fe

    NASA Astrophysics Data System (ADS)

    Garibay-Alonso, R.; Dorantes-Dávila, J.; Pastor, G. M.

    2015-05-01

    A local electronic theory of transition-metal magnetism at finite temperatures is presented, which takes into account longitudinal and transverse spin fluctuations on the same footing. The magnetic properties are determined in the framework of a rotational-invariant d -band model Hamiltonian by applying a four-field Hubbard-Stratonovich functional-integral method in the static approximation. The role of transverse spin excitations on the temperature-dependent magnetic properties is investigated by performing alloy averages in the single-site virtual crystal approximation. Bulk Fe is considered as the representative example for the applications. Results are given for the average magnetization M , for the spin-excitation energies, and for the transverse and longitudinal contributions to the local magnetic moments μl at atom l . The importance of noncollinear spin excitations is quantified by comparison with the corresponding collinear calculations. An important reduction of about 33% of the calculated Curie temperature TC is obtained, which now amounts to 1250 K and is thus relatively close to the experimental value. The longitudinal (transverse) components of μl are found to decrease (increase) as a function of temperature until the full rotational symmetry is reached at TC. This reflects the increasing importance of the transverse spin fluctuations. The origin of the temperature dependence of M and μl is analyzed in terms of the local spin-fluctuation energies.

  1. Propagation of magnetic avalanches in Mn12Ac at high field sweep rates.

    PubMed

    Decelle, W; Vanacken, J; Moshchalkov, V V; Tejada, J; Hernández, J M; Macià, F

    2009-01-16

    Time-resolved measurements of the magnetization reversal in single crystals of Mn12Ac in pulsed magnetic fields, at magnetic field sweep rates from 1.5 kT/s up to 7 kT/s, suggest a new process that cannot be scaled onto a deflagrationlike propagation driven by heat diffusion. The sweep rate dependence of the propagation velocity, increasing from a few 100 m/s up to the speed of sound in Mn12Ac, indicates the existence of two new regimes at the highest sweep rates, with a transition around 4 kT/s that can be understood as a magnetic deflagration-to-detonation transition. PMID:19257315

  2. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    PubMed Central

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2015-01-01

    Sensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer’s magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance. PMID:25729125

  3. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  4. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  5. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  6. SU-E-J-51: Dose Response of Common Solid State Detectors in Homogeneous Transverse and Longitudinal Magnetic Fields

    SciTech Connect

    Reynolds, M; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.5–1% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.

  7. Experimental studies in magnetically induced transverse force-frequency effect in thin quartz microresonators

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Gokhan; Tadigadapa, Srinivas

    2015-07-01

    In this work, the transverse force-frequency sensitivity of magnetostrictive Metglas® (Fe85B5Si10) thin film coated AT-cut thickness shear mode quartz thin plate microresonator (500 μm × 500 μm × 19 μm) is experimentally measured and modeled in Lagrangian formulation by coupling magnetostrictive deformation equations with the basic plate equations from the theory of small deformation. The quartz plate resonator is fabricated by micromachining techniques and released into fixed-free structure using focused ion beam milling. Application of a magnetic field results in the out-of-plane bending of the structure due to elastic coupling between the magnetostrictive Metglas® and quartz resonator layers. As a result of the transverse loading and out-of-plane bending, the admittance characteristics of the resonator shifts, and these shifts are recorded in real time utilizing a network analyzer. The sensitivity is experimentally measured to be 162.3 mdeg/Oe for phase, corresponding to a frequency sensitivity of Δf/H = 11 Hz/Oe. The equivalent force-frequency sensitivity can then be calculated as 2.36 μN/Hz using the developed model. The coupled domain analysis fits well with the experimental data. Further reduction of quartz thickness and optimization of the thickness ratio of the magnetostrictive to quartz layers offers the possibility of exploiting the stress sensitivity of plate microresonators as sensitive magnetic field sensors capable of low nanoTesla to picoTesla level magnetic flux densities.

  8. Experimental studies in magnetically induced transverse force-frequency effect in thin quartz microresonators

    SciTech Connect

    Hatipoglu, Gokhan; Tadigadapa, Srinivas

    2015-07-21

    In this work, the transverse force-frequency sensitivity of magnetostrictive Metglas{sup ®} (Fe{sub 85}B{sub 5}Si{sub 10}) thin film coated AT-cut thickness shear mode quartz thin plate microresonator (500 μm × 500 μm × 19 μm) is experimentally measured and modeled in Lagrangian formulation by coupling magnetostrictive deformation equations with the basic plate equations from the theory of small deformation. The quartz plate resonator is fabricated by micromachining techniques and released into fixed-free structure using focused ion beam milling. Application of a magnetic field results in the out-of-plane bending of the structure due to elastic coupling between the magnetostrictive Metglas{sup ®} and quartz resonator layers. As a result of the transverse loading and out-of-plane bending, the admittance characteristics of the resonator shifts, and these shifts are recorded in real time utilizing a network analyzer. The sensitivity is experimentally measured to be 162.3 mdeg/Oe for phase, corresponding to a frequency sensitivity of Δf/H = 11 Hz/Oe. The equivalent force-frequency sensitivity can then be calculated as 2.36 μN/Hz using the developed model. The coupled domain analysis fits well with the experimental data. Further reduction of quartz thickness and optimization of the thickness ratio of the magnetostrictive to quartz layers offers the possibility of exploiting the stress sensitivity of plate microresonators as sensitive magnetic field sensors capable of low nanoTesla to picoTesla level magnetic flux densities.

  9. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy.

    PubMed

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10(-20) A m(2), respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  10. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    PubMed Central

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10−20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  11. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-03-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10-20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution.

  12. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    NASA Astrophysics Data System (ADS)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  13. Numerical study on AC loss characteristics of superconducting power transmission cables comprising coated conductors with magnetic substrates

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Nakahata, M.

    2007-10-01

    Electromagnetic field analyses were made for mono-layer conductors comprising coated conductors for superconducting power transmission cables in order to evaluate their AC loss characteristics. We focused on the magnetic properties of the substrates of coated conductors. The current distribution in each coated conductor and the magnetic flux profile around each coated conductor were visualized. The influence of relative permeability and the space between coated conductors on the AC loss characteristics of mono-layer conductors were studied based on the visualized current and magnetic flux distributions. The influence of a saturated magnetic property on a calculated AC loss was also discussed.

  14. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  15. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  16. Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field

    SciTech Connect

    Di, K.; Lim, H. S. Zhang, V. L.; Ng, S. C.; Kuok, M. H.; Nguyen, H. T.; Cottam, M. G.

    2014-02-07

    Theoretical studies, based on three independent techniques, of the band structure of a one-dimensional width-modulated magnonic crystal under a transverse magnetic field are reported. The band diagram is found to display distinct behaviors when the transverse field is either larger or smaller than a critical value. The widths and center positions of bandgaps exhibit unusual non-monotonic and large field-tunability through tilting the direction of magnetization. Some bandgaps can be dynamically switched on and off by simply tuning the strength of such a static field. Finally, the impact of the lowered symmetry of the magnetic ground state on the spin-wave excitation efficiency of an oscillating magnetic field is discussed. Our finding reveals that the magnetization direction plays an important role in tailoring magnonic band structures and hence in the design of dynamic spin-wave switches.

  17. GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES

    SciTech Connect

    Routh, S.; Musielak, Z. E.; Hammer, R. E-mail: zmusielak@uta.edu

    2013-01-20

    It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.

  18. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    SciTech Connect

    Kim, Keun Su

    2009-03-23

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field.

  19. AC current distribution and losses in multifilamentary superconductors exposed to longitudinal magnetic field

    SciTech Connect

    Le Naour, S.; Lacaze, A.; Laumond, Y.; Estop, P.; Verhaege, T.

    1996-07-01

    The current distribution and also AC losses, in a multifilamentary superconductor carrying a transport current, are influenced by the self and the external magnetic field. By using the Maxwell equations, a model has been developed in order to calculate the temporal evolution of current distribution in a single wire exposed or not to external magnetic field. This model is based on the actual relationship of electrical field E with current density J and takes into account the twist pitch of the wire. AC losses are calculated by adding all local losses through the cross section. This paper presents calculations of the influence of the cable twist coupled with the longitudinal magnetic field, and also gives some ideas how to decrease losses.

  20. The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements

    SciTech Connect

    Muncaci, S.; Ardelean, I.; Boboia, S.

    2013-11-13

    In the present work we study the internal gradient effects on diffusion attenuation of the echo train appearing in the well-known Carr-Purcell-Meiboom-Gill (CPMG) technique, extensively used for transverse relaxation measurements. Our investigations are carried out on two porous ceramics, prepared with the same amount of magnetic impurities (Fe{sub 2}O{sub 3}) but different pore sizes. It is shown that diffusion effects on the CPMG echo train attenuation are strongly influenced by the pore size for the same magnetic susceptibility of the two samples. The experimental results were compared with a theoretical model taking into account the limit of free or restricted diffusion on echo train attenuation. The NMR experiments were performed on water filled samples using a low-field NMR instrument. The porous ceramics were prepared using both the replica technique and the powder compression technique. Magnetic susceptibility measurements indicated close values of the susceptibility constant for the two samples whereas the SEM images indicated different pore sizes. The results reported here may have impact in the interpretation of NMR relaxation measurements of water in soils or concrete samples.

  1. The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements

    NASA Astrophysics Data System (ADS)

    Muncaci, S.; Boboia, S.; Ardelean, I.

    2013-11-01

    In the present work we study the internal gradient effects on diffusion attenuation of the echo train appearing in the well-known Carr-Purcell-Meiboom-Gill (CPMG) technique, extensively used for transverse relaxation measurements. Our investigations are carried out on two porous ceramics, prepared with the same amount of magnetic impurities (Fe2O3) but different pore sizes. It is shown that diffusion effects on the CPMG echo train attenuation are strongly influenced by the pore size for the same magnetic susceptibility of the two samples. The experimental results were compared with a theoretical model taking into account the limit of free or restricted diffusion on echo train attenuation. The NMR experiments were performed on water filled samples using a low-field NMR instrument. The porous ceramics were prepared using both the replica technique and the powder compression technique. Magnetic susceptibility measurements indicated close values of the susceptibility constant for the two samples whereas the SEM images indicated different pore sizes. The results reported here may have impact in the interpretation of NMR relaxation measurements of water in soils or concrete samples.

  2. Measurement of the true transverse nuclear magnetic resonance relaxation in the presence of field gradients

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Gladden, L. F.

    2013-08-01

    A measure of the nuclear spin transverse relaxation time T2, as determined using the nuclear magnetic resonance Carr-Purcell Meiboom-Gill (CPMG) experiment, provides unique information characterizing the microstructure of porous media which are themselves ubiquitous across fields of petrophysics, biophysics, and chemical engineering. However, the CPMG measurement is sensitive to diffusion in large magnetic field gradients. Under such conditions an effective relaxation time T_{2,eff} is observed instead, described by a combination of relaxation and diffusion exponents. The relaxation exponent always varies as nte (where n is the number, and te is the temporal separation, of spin echoes). The diffusion exponent varies as nt_e^k, where 1 < k ⩽ 3, although the exact analytic form is often unknown. Here we present a general approach to separating the influence of relaxation and diffusion by utilizing a composite diffusion exponent. Any T_{2,eff} component with a power of k > 1 is removed to provide a measure of the true T2 relaxation time distribution from CPMG data acquired in the presence of a strong background gradient. We apply the technique to discriminate between the effects of relaxation and diffusion in porous media using catalysts and rocks as examples. The method is generally applicable to any CPMG measurements conducted in the presence of a static magnetic field gradient.

  3. Compact transverse-magnetic-pass polarizer based on one-dimensional photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Lee, Moon Hyeok; Kim, Yudeuk; Kim, Kyong Hon

    2016-03-01

    We propose a compactly integrated transverse-magnetic (TM)-pass polarizer based on rectangular-shape onedimensional photonic-crystal silicon waveguide with an extremely high polarization extinction ratio of >30 dB and low insertion loss (~1 dB) over a broad wavelength range of 210 nm from 1,460 nm to 1,670 nm. The polarizer has been numerically simulated using three-dimensional finite-difference time-domain (3D FDTD) method. The optimum length of the proposed TM-pass polarizer is about 4 μm. At the 1,550 nm wavelength, the simulated polarization extinction ratio of the polarizer is 36 dB, and its corresponding insertion loss is about 1 dB.

  4. Resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter J.; Albert, Maximilian; Lequeux, Steven; Cros, Vincent; Grollier, Julie; Bortolotti, Paolo; Anane, Abdelmadjid; Fangohr, Hans

    2016-02-01

    We study resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode's sensitivity to notches depends strongly on the mode's characteristics. For example, the frequencies of modes that involve lateral motion of the wall are the most sensitive to changes in the notch intrusion depth, especially at the narrow, more strongly confined end of the domain wall. In contrast, the breathing mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes in the notches' sizes. We also demonstrate a sharp drop in the translational mode's frequency towards zero when approaching depinning which is confirmed, using a harmonic oscillator model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge.

  5. TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY SUNRISE

    SciTech Connect

    Danilovic, S.; Beeck, B.; Pietarila, A.; Schuessler, M.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Domingo, V.; Berkefeld, T.; Schmidt, W.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 x 10{sup -4} s{sup -1} arcsec{sup -2}, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

  6. Transverse Component of the Magnetic Field in the Solar Photosphere Observed by SUNRISE

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Beeck, B.; Pietarila, A.; Schüssler, M.; Solanki, S. K.; Martínez Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M.

    2010-11-01

    We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 × 10-4 s-1 arcsec-2, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

  7. Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements.

    PubMed

    Herrera, Adriana P; Barrera, Carola; Zayas, Yashira; Rinaldi, Carlos

    2010-02-15

    The application of the response of magnetic nanoparticles to oscillating magnetic fields to probe transitions in colloidal state and structure of polymer-coated nanoparticles is demonstrated. Cobalt ferrite nanoparticles with narrow size distribution were prepared and shown to respond to oscillating magnetic fields through a Brownian relaxation mechanism, which is dependent on the mechanical coupling between the particle dipoles and the surrounding matrix. These nanoparticles were coated with covalently-attached poly(N-isopropylacrylamide) (pNIPAM) or poly(N-isopropylmethacrylamide) (pNIPMAM) through free radical polymerization. The temperature induced transitions of colloidal suspensions of these nanoparticles were studied through a combination of differential scanning calorimetry (DSC), dynamic light scattering (DLS), and AC susceptibility measurements. In the pNIPAM coated nanoparticles excellent agreement was found for a transition temperature of approximately 30 degrees C by all three methods, although the AC susceptibility measurements indicated aggregation which was not evident from the DLS results. Small-angle neutron scattering (SANS) results obtained for pNIPAM coated nanoparticles confirmed that aggregation indeed occurs above the lower critical transition temperature of pNIPAM. For the pNIPMAM coated nanoparticles DLS and AC susceptibility measurements indicated aggregation at a temperature of approximately 33-35 degrees C, much lower than the transition temperature peak at 40 degrees C observed by DSC. However, the transition observed by DSC is very broad, hence it is possible that aggregation begins to occur at temperatures lower than the peak, as indicated by the AC susceptibility and DLS results. These experiments and observations demonstrate the possibility of using AC susceptibility measurements to probe transitions in colloidal suspensions induced by external stimuli. Because magnetic measurements do not require optical transparency, these

  8. DC bias immune nanocrystalline magnetic cores made of Fe73Nb3Cu1B7Si16 ribbon with induced transverse magnetic anisotropy.

    PubMed

    Nosenko, Anton; Rudenko, Olexandr; Mika, Taras; Yevlash, Igor; Semyrga, Olexandr; Nosenko, Viktor

    2016-12-01

    The comparative analysis of magnetic properties of cut cores made of nanocrystalline Fe73Nb3Cu1B7Si16 alloy ribbon and cores made of the same ribbon with preliminary tension-induced transverse magnetic anisotropy was carried out. The possibility of improving magnetic properties of cut cores, decreasing loss, and increasing DC bias immunity of reversible magnetic permeability is presented. The influence of induced magnetic anisotropy on DC bias immunity of reversible magnetic permeability was investigated. The advantages and disadvantages of new cores (made of ribbon heated under tensile stress) over cut ones were determined. PMID:26847696

  9. DC bias immune nanocrystalline magnetic cores made of Fe73Nb3Cu1B7Si16 ribbon with induced transverse magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Nosenko, Anton; Rudenko, Olexandr; Mika, Taras; Yevlash, Igor; Semyrga, Olexandr; Nosenko, Viktor

    2016-02-01

    The comparative analysis of magnetic properties of cut cores made of nanocrystalline Fe73Nb3Cu1B7Si16 alloy ribbon and cores made of the same ribbon with preliminary tension-induced transverse magnetic anisotropy was carried out. The possibility of improving magnetic properties of cut cores, decreasing loss, and increasing DC bias immunity of reversible magnetic permeability is presented. The influence of induced magnetic anisotropy on DC bias immunity of reversible magnetic permeability was investigated. The advantages and disadvantages of new cores (made of ribbon heated under tensile stress) over cut ones were determined.

  10. A self-powered AC magnetic sensor based on piezoelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Yu, Aifang; Song, Ming; Zhang, Yan; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin

    2014-11-01

    An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10-7 tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications.

  11. A self-powered AC magnetic sensor based on piezoelectric nanogenerator.

    PubMed

    Yu, Aifang; Song, Ming; Zhang, Yan; Kou, Jinzong; Zhai, Junyi; Lin Wang, Zhong

    2014-11-14

    An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10(-7) tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications. PMID:25333328

  12. Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.

  13. The formation of hysteretic magnetic properties in amorphous alloys of various classes upon thermomagmetic treatment in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2016-06-01

    In this paper, we have studied the effects of the thermomagnetic treatment in a transverse magnetic field (TMaT⊥) on the permeability of the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with such a low saturation magnetostriction ( λ s 10-7) that, in the ribbons of this alloy rolled into a toroid, a sharp longitudinal magnetic texture is observed ( K sq > 0.90). It has been revealed that the permeability μ4 ( H = 4 mOe, f = 1 kHz) as a function of the annealing temperature or time of holding at a temperature is described by a curve with a maximum. This maximum is observed at a coefficient of the squareness of the hysteresis loop K sq,m in the range of 0.2 ≤ K sq,m ≤ 0.4. The regimes of the TMaT have been determined that provide optimum values of the permeability μ4 (15000) without a loss of the ductile state of the ribbons of this alloy. Based on the example of an iron-based alloy of composition Fe57Co31Si2.9B9.1 with λs = 35 × 10-6, it has been shown that the formation of the hysteretic magnetic properties upon the TMaT⊥ depends substantially on the magnitude of the magnetostriction and the Curie temperature of the amorphous alloys.

  14. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  15. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J

    1958-01-01

    The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.

  16. Diamond nitrogen vacancy electronic and nuclear spin-state anti-crossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-05-01

    We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  17. The evolution of recrystallized texture of cold-rolled pure copper annealed with a magnetic field in the transverse direction

    NASA Astrophysics Data System (ADS)

    He, T.; Wang, Y.; Sun, W.; Zhao, X.

    2015-04-01

    In this paper, the effect of magnetic field annealing was investigated on the evolution of recrystallized texture of a cold-rolled pure copper sheet. During magnetic field annealing the transverse direction of the specimen was set to be parallel to the magnetic field. It was found, although, altering the orientation of the specimen to the magnetic field direction during annealing does not change the type of the recrystallized texture component, the intensity of cube texture in the specimen with field is higher than that without field.

  18. Late gadolinium enhanced cardiovascular magnetic resonance of lamin A/C gene mutation related dilated cardiomyopathy

    PubMed Central

    2011-01-01

    Background The purpose of this study was to identify early features of lamin A/C gene mutation related dilated cardiomyopathy (DCM) with cardiovascular magnetic resonance (CMR). We characterise myocardial and functional findings in carriers of lamin A/C mutation to facilitate the recognition of these patients using this method. We also investigated the connection between myocardial fibrosis and conduction abnormalities. Methods Seventeen lamin A/C mutation carriers underwent CMR. Late gadolinium enhancement (LGE) and cine images were performed to evaluate myocardial fibrosis, regional wall motion, longitudinal myocardial function, global function and volumetry of both ventricles. The location, pattern and extent of enhancement in the left ventricle (LV) myocardium were visually estimated. Results Patients had LV myocardial fibrosis in 88% of cases. Segmental wall motion abnormalities correlated strongly with the degree of enhancement. Myocardial enhancement was associated with conduction abnormalities. Sixty-nine percent of our asymptomatic or mildly symptomatic patients showed mild ventricular dilatation, systolic failure or both in global ventricular analysis. Decreased longitudinal systolic LV function was observed in 53% of patients. Conclusions Cardiac conduction abnormalities, mildly dilated LV and depressed systolic dysfunction are common in DCM caused by a lamin A/C gene mutation. However, other cardiac diseases may produce similar symptoms. CMR is an accurate tool to determine the typical cardiac involvement in lamin A/C cardiomyopathy and may help to initiate early treatment in this malignant familiar form of DCM. PMID:21689390

  19. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  20. Super-resolution high sensitivity AC Magnetic Field Imaging with NV Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Jaskula, Jean-Christophe; Trifonov, Alexei; Walsworth, Ronald

    2015-05-01

    The Nitrogen-Vacancy center in diamond (NV center), a defect consisting of a nitrogen atom next to a missing atom, has been successfully applied to sense magnetic field, electric field, temperature and can also be used as fluorescence marker and single photon emitter. We will present super-resolution imaging of NV centers and simultaneous sensing of AC magnetic fields with high sensitivity. To demonstrate the applicability of super-resolution magnetic field imaging, we resolve several NV centers with an optical resolution smaller than 20 nm and probe locally the gradient of a externally applied magnetic field. Additionally, we demonstrate the detection of magnetic field signals from 1H protons with subdiffraction image resolution. We will also show that our super-resolution magnetometer will benefit from a new readout method based on a spin-to-charge mapping that we have developed to increase the readout contrast.

  1. The response of longitudinal and transverse pickup coils to a misaligned magnetic dipole

    SciTech Connect

    Miller, L.L.

    1996-09-01

    The responses of magnetic pickup coils to various orientations and positions of a point dipole are considered. General solutions which describe the response functions are derived and analyses of the results are presented. The apparent magnetic moment, as determined from these functions, contain significant errors when the dipole is misaligned radially or directionally. The errors fall into three categories: radial off-centering of a correctly oriented dipole, angular misalignment of a centered dipole, and angular misalignment of a radially off-centered dipole. One simple experimental test with a commercial magnetometer showed a 34{percent} error in the apparent moment due to radial off-centering. Practical error correction and minimization involve sample centering and rotational orientation about {ital {cflx z}} for transverse measurements, and include an additional adjustable parameter in the fitting function. Modest attention to these factors will reduce errors from {approx_equal}100{percent} difference to {le}1{percent}. The general nature of the calculations indicate that such effects exist for any type of inductive magnetometer. {copyright} {ital 1996 American Institute of Physics.}

  2. Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Bingham, Nicholas S.

    Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases. In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3- xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO 3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8- xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O 6. First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca 0.3-xSrxMnO 3. Polycrystalline, single crystalline, and thin-film La0.7Ca 0.3-xSrxMnO 3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality. Systematic TS and MCE experiments on Pr0.5Sr0.5MnO 3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low

  3. Magnetization AC losses in MgB2 wires made by IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, J.; Šouc, J.; Kováč, P.; Hušek, I.

    2015-01-01

    Magnetization AC losses of MgB2 superconductors with one and four filaments made by an internal magnesium diffusion (IMD) into boron process were measured and analyzed. For AC loss measurement a system based on a calibration-free method was used. Short samples of MgB2 wires were exposed to an external magnetic field with amplitudes up to 0.07 T, frequencies up to 1200 Hz, and a temperature range between 15 K and 40 K. A strong effect of eddy current losses was found in single-core wire containing pure copper sheath, which was proved by the same wire measurement after Cu etching. The impact of coupling current losses in non-twisted four-filament wire and the decoupling effect after twisting were observed. Coupling current losses in a low-frequency region were effectively reduced in agreement with theoretical assumption. The degradation of transport currents due to torsion stress by twisting was taken into account and the normalized AC losses of MgB2 wires made by IMD and powder-in-tube processes were compared. It appears that the IMD process is more perspective for AC applications due to much higher current densities and smaller degradation of current-carrying capability by twisting.

  4. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  5. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by ac biosusceptometry.

    PubMed

    Corá, Luciana A; Romeiro, Fernando G; Américo, Madileine F; Oliveira, Ricardo Brandt; Baffa, Oswaldo; Stelzer, Murilo; Miranda, José Ricardo de Arruda

    2006-01-01

    The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations. PMID:16188432

  6. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Garaio, E.; Collantes, J. M.; Garcia, J. A.; Plazaola, F.; Mornet, S.; Couillaud, F.; Sandre, O.

    2014-11-01

    Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA m-1. In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so-obtained values are compared with the SAR measured by calorimetric methods. Both measurements, by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles.

  7. Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Fritsch, K.; Ehlers, G.; Rule, K. C.; Habicht, K.; Ramazanoglu, M.; Dabkowska, H. A.; Gaulin, B. D.

    2015-11-01

    The application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8 , induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. At least one of the transitions to incommensurate phases at μ0Hc 1˜6.25 T and μ0Hc 2˜7 T is discontinuous, while the final quantum critical point at μ0Hc 3˜13 T is continuous.

  8. Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

    DOE PAGESBeta

    Fritsch, Katharina; Ehlers, G.; Rule, K. C.; Habicht, Klaus; Ramazanoglu, Mehmet K.; Dabkowska, H. A.; Gaulin, Bruce D.

    2015-11-05

    We study the application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. Also, at least one of the transitions to incommensurate phases at μ0Hc1~6.25 T and μ0Hc2~7 T is discontinuous, while the final quantum critical point at μ0Hc3~13 T ismore » continuous.« less

  9. The stability of the dust acoustic waves under transverse perturbations in a magnetized and collisionless dusty plasma

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Ning; Qi, Xin; Hong, Xue-Ren; Yang, Xue; Duan, Wen-Shan; Yang, Lei; Yang

    2014-06-01

    Numerical and theoretical investigations are carried out for the stability of the dust acoustic waves (DAWs) under the transverse perturbation in a two-ion temperature magnetized and collisionless dusty plasma. The Zakharov-Kuznetsov (ZK) equation, modified ZK equation, and Extended ZK (EZK) equation of the DAWs are given by using the reductive perturbation technique. The cut-off frequency is obtained by applying higher-order transverse perturbations to the soliton solution of the EZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher-order perturbation to the solitary wave are obtained.

  10. Calculating transport AC losses in stacks of high temperature superconductor coated conductors with magnetic substrates using FEM

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Flack, Tim J.; Campbell, Archie M.

    2012-01-01

    In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil.

  11. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    NASA Astrophysics Data System (ADS)

    Long, Yongbing; Li, Yuanxing; Su, Runmei

    2014-08-01

    Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE) polarized and transverse-magnetic(TM) polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  12. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media.

    PubMed

    Mitchell, J; Chandrasekera, T C

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ante(k) (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries. PMID:25494741

  13. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    SciTech Connect

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  14. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  15. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging.

    PubMed

    Bogdanov, G; Ludwig, R

    2002-03-01

    The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T). PMID:11870846

  16. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode

    PubMed Central

    Long, Chang; Yin, Sheng; Wang, Wei; Li, Wei; Zhu, Jianfei; Guan, Jianguo

    2016-01-01

    By investigating a square-shaped metamaterial structure we discover that wave diffraction at diagonal corners of such a structure excites transverse magnetic harmonics of 210 mode (TM210 harmonics). Multi-layer overlapping and deliberately regulating period length between adjacent unit cells can significantly enhance TM210 harmonics, leading to a strong absorption waveband. On such a basis, a design strategy is proposed to achieve broadband, thin-thickness multi-layered metamaterial absorbers (MMAs). In this strategy big pyramidal arrays placed in the “white blanks” of a chessboard exhibit two isolated absorption bands due to their fundamental and TM210 harmonics, which are further connected by another absorption band from small pyramidal arrays in the “black blanks” of the chessboard. The as-designed MMA at a total thickness (h) of 4.36 mm shows an absorption of above 0.9 in the whole frequency range of 7–18 GHz, which is 38% broader with respect to previous design methods at the same h. This strategy provides an effective route to extend the absorption bandwidth of MMAs without increasing h. PMID:26888365

  17. Effects of dust contamination on the transverse dynamics of a magnetized electron plasma

    SciTech Connect

    Romé, M.; Cavaliere, F.; Maero, G.; Cavenago, M.; Chen, S.

    2015-06-29

    Complex (dusty) plasmas are characterized by the presence of a fraction of micrometric or sub-micrometric particles which may collect a surface charge up to the order of a few thousand electron charges. The dusty plasmas studied in the experiments generally satisfy a global neutrality condition. By contrast, we present here the investigation of a magnetized nonneutral plasma, i.e., a plasma with a single sign of charge (e.g. electrons) confined in a Penning-Malmberg trap, contaminated by a dust population. We simulate the two-dimensional transverse dynamics of this multi-component plasma with a particle-in-cell code implementing a mass-less fluid (drift-Poisson) approximation for the electrons and a kinetic description for the dust component (including gravity). Simulations with different initial dust distributions and densities have been performed in order to investigate the influence of the dust on the development of the diocotron instability in the electron plasma. In particular, the early stage of the growth of the diocotron modes has been analyzed by Fourier decomposition.

  18. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode

    NASA Astrophysics Data System (ADS)

    Long, Chang; Yin, Sheng; Wang, Wei; Li, Wei; Zhu, Jianfei; Guan, Jianguo

    2016-02-01

    By investigating a square-shaped metamaterial structure we discover that wave diffraction at diagonal corners of such a structure excites transverse magnetic harmonics of 210 mode (TM210 harmonics). Multi-layer overlapping and deliberately regulating period length between adjacent unit cells can significantly enhance TM210 harmonics, leading to a strong absorption waveband. On such a basis, a design strategy is proposed to achieve broadband, thin-thickness multi-layered metamaterial absorbers (MMAs). In this strategy big pyramidal arrays placed in the “white blanks” of a chessboard exhibit two isolated absorption bands due to their fundamental and TM210 harmonics, which are further connected by another absorption band from small pyramidal arrays in the “black blanks” of the chessboard. The as-designed MMA at a total thickness (h) of 4.36 mm shows an absorption of above 0.9 in the whole frequency range of 7-18 GHz, which is 38% broader with respect to previous design methods at the same h. This strategy provides an effective route to extend the absorption bandwidth of MMAs without increasing h.

  19. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging

    PubMed Central

    Pekcevik, Yeliz; Mitchell, Charles H; Mealy, Maureen A; Orman, Gunes; Lee, In H; Newsome, Scott D; Thompson, Carol B; Pardo, Carlos A; Calabresi, Peter A; Levy, Michael; Izbudak, Izlem

    2016-01-01

    Background Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). Objective To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. Methods We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. Results Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord’s cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. Conclusions Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis. PMID:26209588

  20. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  1. Transverse single spin asymmetries at small x and the anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    2014-04-01

    We show that in the McLerran-Venugopalan model an axial asymmetrical valence quark distributions in the transverse plane of a transversely polarized proton can give rise to a spin-dependent odderon. Such polarized odderon is responsible for the transverse single spin asymmetries for jet production in the backward region of pp collisions and open charm production in the semi-inclusive deep inelastic scattering process.

  2. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.

    PubMed

    Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode. PMID:27143621

  3. Longitudinal and transverse right ventricular function in pulmonary hypertension: cardiovascular magnetic resonance imaging study from the ASPIRE registry

    PubMed Central

    Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M.; Kiely, David G.

    2015-01-01

    Abstract Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH. PMID:26401257

  4. Magnetic nanoparticle thermometer: an investigation of minimum error transmission path and AC bias error.

    PubMed

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  5. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  6. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  7. Can commercial ferrofluids be exploited in AC magnetic hyperthermia treatment to address diverse biomedical aspects?

    NASA Astrophysics Data System (ADS)

    Angelakeris, M.; Li, Zi-An; Sakellari, D.; Simeonidis, K.; Spasova, M.; Farle, M.

    2014-07-01

    Multifunctional magnetic nanoparticles are considered as promising candidates for various applications combining diagnosis, imaging and therapy. In the present work, we elaborate on the commercial colloidal solution "FluidMAG" (from Chemicell GmbH) as a possible candidate for magnetic hyperthermia application. The current product is a dispersion of magnetite nanoparticles employed for purification or separation of biotinylated biomolecules from different sources (e.g. blood). Transmission Electron Microscopy showed that the NPs have a spherical shape with mean diameter of 12.3 nm (± 20%), and SQUID magnetometry revealed their superparamagnetic character. Our promising results of the AC hyperthermia efficiency of "FluidMAG" suggest that with the appropriate manipulation it can also be exploited as magnetic hyperthermia agent.

  8. Ac magnetotransport in La 0.7Sr 0.3Mn 0.95Fe 0.05O 3 at low dc magnetic fields

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2011-12-01

    We report the ac electrical response of La 0.7Sr 0.3Mn 1- xFe xO 3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency ( rf) current ( f=0.1-20 MHz). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of ΔZ/Z=-21% for ΔH=500 Oe at f=1 MHz around room temperature when the rf current flows directly through the sample and ΔZ/Z=-65.9% when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.

  9. AC transport in p-Ge/GeSi quantum well in high magnetic fields

    SciTech Connect

    Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.; Golub, L. E.; Tarasenko, S. A.; Suslov, A. V.; Mironov, O. A.; Kummer, M.; Känel, H. von

    2014-08-20

    The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shown that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.

  10. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    PubMed Central

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  11. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-07-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition.

  12. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6.

    PubMed

    Liang, Tian; Koohpayeh, S M; Krizan, J W; McQueen, T M; Cava, R J; Ong, N P

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  13. The influence of large non-magnetic gaps on the transversal end-effect in the linear induction pump

    NASA Astrophysics Data System (ADS)

    Gelfgat, Yu.; Mikelsons, A.; Krumins, J.; Pedchenko, A.

    2007-03-01

    It is usually accepted that in linear induction pumps and chute systems the transversal end-effect manifests itself as a deformation of the current induced in the working medium that results in decreasing the electromagnetic force, affecting the working medium. This is true at small non-magnetic gaps. With large gaps, dissipation fields should be accounted for. This phenomenon is very conspicuous in devices with a single-sided inductor. The paper reports the theoretical and experimental results on the definition of electromagnetic forces, affecting electrically conducting bodies subjected to the field induced by a one-sided inductor with different non-magnetic gaps. Figs 7, Refs 3.

  14. Design of a novel phase-decoupling permanent magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Chau, K. T.; Jiang, J. Z.; Fan, Ying

    2005-05-01

    This paper presents a phase-decoupling permanent magnet brushless ac motor which can offer better controllability, faster response, and smoother torque than its counterparts. The key is due to its different motor configuration and simple scalar control. The motor configuration is so unique that it inherently offers the features of phase decoupling, flux focusing, and flux shaping, hence achieving independent phase control, fast response, and smooth torque. The scalar control is fundamentally different from the complicated vector control. It can achieve direct torque control through independent control of the phase currents. The proposed motor is prototyped and experimentally verified.

  15. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  16. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  17. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  18. Dynamic melting and impurity particle tracking in continuously adjustable AC magnetic field

    NASA Astrophysics Data System (ADS)

    Bojarevics, V.; Pericleous, K.

    2016-07-01

    The analysis of semi-levitation melting is extended to account for the presence of particles (impurities, broken metal dendrite agglomerates, bubbles) during the full melting cycle simulated numerically using the pseudo-spectral schemes. The AC coil is dynamically moving with the melt front progress, while the generated Joule heat serves to enhance the melting rate. The electromagnetic force is decomposed into the time average and the oscillating parts. The time average effects on the particle transport are investigated previously using approximations derived for a locally uniform magnetic field. This paper presents expressions for the skin-layer type of the AC force containing also the pulsating part which contributes to the particle drag by the ‘history’ and ‘added mass’ contributions. The intense turbulence in the bulk of molten metal additionally contributes to the particle dispersion. The paper attempts to demonstrate the importance of each of the mentioned effects onto the particle transport during the melting until the final pouring stage. The method could be extended to similar AC field controlled melting/solidification processes.

  19. Coherence-population-trapping transients induced by an ac magnetic field

    NASA Astrophysics Data System (ADS)

    Margalit, L.; Rosenbluh, M.; Wilson-Gordon, A. D.

    2012-06-01

    Coherent-population-trapping transients induced by an ac magnetic field are investigated theoretically for a realistic three-level Λ system in the D1 line of 87Rb. The contributions to the transient probe absorption from the various subsystems that compose the realistic atomic system are examined and the absorption of each Λ subsystem is compared to that of a simple Λ system. The population redistribution due to optical pumping is shown to be the dominant cause of the difference between the contributions of the various subsystems to the oscillatory character of the probe absorption. We also discuss the series of transients that reappear every half-cycle time of a modulated magnetic field when the system is in two-photon resonance, and we study the transient behavior as a function of the probe detuning. The effect of a buffer gas on the amplitude and shape of the transients is considered.

  20. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  1. Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; García, C.; Zhukov, A.; Domínguez, L.; Blanco, J. M.; González, J.

    2006-05-01

    Experimental and theoretical studies on the influence of ac magnetic field frequency on the axial diagonal (ζzz) and off-diagonal (ζphiz) components of the magnetoimpedance (MI) tensor in (Co0.94Fe0.06)72.5Si12.5B15 amorphous wires have been performed. The frequency (f) of an ac current flowing along the wire was varied from 1 to 20 MHz with the current amplitude less than 15 mA. In order to enhance the ζphiz component, the amorphous wire was submitted to torsion annealing for developing and preserving a helical magnetic anisotropy in the surface of the wire. The experimental measurements show that the value of the impedance is proportional to the square-root of the ac current frequency, \\sqrt f , in the vicinity of Hex < HK and this increase is due to the contribution of the resistance (real part of the impedance). The measurements also indicate that the peaks of the MI curve shift slightly towards higher field values with increasing f. In a theoretical study the magnetoimpedance expressions ζzz and ζphiz have been deduced using the Faraday law in combination with the solutions of the Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. By analysing quantitatively the spectra of ζzz and ζphiz, the phenomenon of the shift in the peaks of the MI curve with f has been considered as a characteristic of the helical anisotropy in the domain structure of the wire surface.

  2. Creep Void Detection for Low Alloy Steel Using AC Magnetic Method

    SciTech Connect

    Shiwa, M.; Cheng, W.; Kume, R.

    2004-02-26

    Nondestructive detection of creep void was developed for low alloy steel by using AC magnetic method. Two types of 2.25Cr-1Mo steel specimens, base metal (BM) and simulated heat affected zone (HAZ) under aging and creep damage, were prepared for the tests. A differential type probe was used to detect AC magnetic signals. The exciting and detecting coils were coaxially arranged with a ferrite core. Signals were recorded using a 2-channel waveform recorder. The equivalent hysteresis loss (HL) was analyzed. It was observed that the HL of BM and HAZ changed in opposite direction, that is, HL of BM increased and HL of HAZ decreased with aging time. On the other hand, the HLs of both BM and HAZ decreased with creep time. The HL of creep samples was affected by both aging and stress-induced damage. In order to evaluate creep damage, stress-induced damage (SID) parameter was proposed to remove aging factor of materials from HL. Creep void were observed by scanning electron microscope (SEM) for all creep damage samples of SID value under 0.8.

  3. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Dehghan, M.; Ellahi, R.; Riaz, M.; Jamal-Abad, M. T.

    2015-03-01

    A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy-Brinkman-Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made.

  4. Initial tests of an AC dipole for the Tevatron

    SciTech Connect

    Miyamoto, R.; Jansson, A.; Kopp, S.; Syphers, M.; /Fermilab

    2006-06-01

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2{sigma} at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  5. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  6. Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.

    PubMed

    Stewart, P; Kadirkamanathan, V

    2004-01-01

    Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance. PMID:15000141

  7. Design and analysis of a transverse flux permanent-magnet machine using three-dimensional scalar magnetic potential finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Jiankuan; Chau, K. T.; Jiang, J. Z.; Yu, Chuang

    2008-04-01

    In this paper, a new transverse flux permanent-magnet machine is proposed and implemented. It features a unique configuration that it is composed of assembled stators and flux-concentrating rotor, hence offering low manufacturing cost while retaining high torque density and low cogging torque. Because of its unique configuration, the proposed machine is analyzed by a newly developed three-dimensional scalar magnetic potential finite element method. Both calculated and experimental results are given to support the validity of the proposed design and analysis.

  8. dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots

    NASA Astrophysics Data System (ADS)

    Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.

    2016-06-01

    dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above 0.66{{T}\\text{c}} and 0.78{{T}\\text{c}} the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.

  9. An investigation into the role that a transverse magnetic field plays in the formation of large anode sheath potentials

    NASA Astrophysics Data System (ADS)

    Foster, J. E.; Gallimore, A. D.

    1996-11-01

    A 9.25 A low-pressure (45-55 mTorr) hollow cathode arc discharge has been used to simulate plasma processes that occur at the anode of magnetoplasmadynamic accelerators used for space propulsion applications. The interest in the near-anode region is related to findings of past research, which indicate that large anode sheath potentials can drive as much as 70% of the input electrical power into the anode, thus degrading thrust efficiency. Presented here are results that essentially characterize the behavior of the near-anode plasma as a function of a transverse magnetic field. Plasma diagnostics included single Langmuir probe techniques, emission spectroscopy, and water calorimetry for anode heat flux measurements. Phenomenological arguments based on measurements taken suggest that observed changes in anode fall voltage are related to variations in the measured local electron number density as the magnetic field is varied. This behavior is attributed to the variations in the measured ionization rate, which is shown to be a nonlinear function of transverse magnetic field.

  10. Kink and Sausage Modes in Nonuniform Magnetic Slabs with Continuous Transverse Density Distributions

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe

    2015-11-01

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.

  11. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.

    2015-03-01

    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  12. Unified drift-diffusion theory for transverse spin currents in spin valves, domain walls, and other textured magnets.

    PubMed

    Petitjean, Cyril; Luc, David; Waintal, Xavier

    2012-09-14

    Spins transverse to the magnetization of a ferromagnet only survive over a short distance. We develop a drift-diffusion approach that captures the main features of transverse spin effects in systems with arbitrary spin textures (e.g., vortices and domain walls) and generalizes the Valet-Fert theory. In addition to the standard characteristic lengths (mean free path for majority and minority electrons, and spin diffusion length), the theory introduces two length scales, the transverse spin coherence length ℓ(⊥) and the (Larmor) spin precession length ℓ(L). We show how ℓ(L) and ℓ(⊥) can be extracted from ab initio calculations or measured with giant magnetoresistance experiments. In long (adiabatic) domain walls, we provide an analytic formula that expresses the so-called "nonadiabatic" (or fieldlike) torque in terms of these length scales. However, this nonadiabatic torque is no longer a simple material parameter but depends on the actual spin texture: in thin (<10  nm) domain walls, we observe very significant deviations from the adiabatic limit. PMID:23005670

  13. ac magnetic trackers for biomedical application: now and in the near future

    NASA Astrophysics Data System (ADS)

    Murry, Herschell F.

    1996-04-01

    A number of ac magnetic trackers have been, and are now being, used in the medical community for varied applications from describing electronically the exact shape of a subject to tracking movement of objects. A good reason for using this technology is that the magnetic fields pass through the body without occlusions and without ionizing radiation. This paper commences with descriptions of several such tools readily available, including our 3D input stylus and 3DRAW tablet defining object dimensions to 0.01' accuracy and our close-in Short Ranger transmitter operating precisely between 2' - 12' over the subject. For the future, R&D and military electronics sponsored topics such as a metal distortion insensitive magnetic source, a high performance 240 Hz (or up to eight sensors each operating at 30 Hz) tracker with the processing power to virtually eliminate metal distortion effects and an approach for building a biologically insertible tracker are discussed to indicate the potential for new tracking tools. Discussion of needs from the medical community is encouraged in order to better guide efforts in applying our specialty technology to biomedical applications where ewe are neophytes.

  14. Generation of liquid metal structures of high aspect ratio by application of an ac magnetic field

    NASA Astrophysics Data System (ADS)

    Andreev, Oleg; Pothérat, Alban; Thess, André

    2010-06-01

    We study how the shape of parts obtained through the LASER cladding process can be controlled by application of an ac magnetic field by means of two simple physical models: a numerical and an experimental one. More specifically, we show that straight metallic joints of high aspect ratio can be obtained by using inductors of triangular cross-section that concentrate electromagnetic forces at the bottom of the joint. The effect is first demonstrated on a numerical model for an infinitely long joint such as: we illustrate how the joint shape can be controlled by varying the inclination of the inductor and for a magnetic Bond number Bom=60 (which measures the ratio of electromagnetic to capillary forces), we obtain a joint of aspect ratio up to 7.2. We further find that inductor angles in the range 15°-25° lead to joint side faces that are close to vertical. These findings are then verified experimentally by placing a liquid metal drop in a purpose built inductor of triangular cross-section. We find a good agreement between the theoretical prediction of our two-dimensional model and the real three-dimensional drop. For the highest magnetic Bond number our generator could deliver, Bom=20.19, we achieved a drop aspect ratio of 2.73.

  15. Modified MgFe2O4 Ferrimagnetic Nanoparticles to Improve Magnetic and AC Magnetically-Induced Heating Characteristics for Hyperthermia.

    PubMed

    Lee, Sanghoon; Jeun, Minhong

    2015-12-01

    A ferrimagnetic nanoparticle with a smaller size, a narrower size distribution, and a higher ac heat generation ability has been still studied for intra-arterial or intra-tumoral hyperthermia. In this study, we manipulate the calcining temperature in the range of 400-600 degrees C to modify MgFe2O4 ferrimagnetic nanoparticles (FMNPs) during modified sol-gel process. The modified MgFe2O4 FMNPs have well controlled with small size and narrow size distribution, so that their magnetic and ac magnetically-induced heating characteristics are significantly improved. In particular, MgFe2O4 nanoparticles synthesized at the calcining temperature of 600 degrees C and sintering temperature of 700 degrees C show the most suitable size (58 nm ± 13 nm) and its distribution (22%) resulting in the highest ac magnetically-induced heating temperature (T(AC,mag), ΔT = 93 degrees C) and SLP (Specific Loss Power, 600 W/g) at the biologically tolerable range of magnetic field (H(appl) = 140 Oe) and frequency (f(appl) = 110 kHz). It is found to be due to the improvement of magnetic softness and saturation magnetization resulting in the largest hysteresis loss power. All the results in this work clearly demonstrate that calcining process is one of the key parameters to control the proper size and size distribution for improving magnetic and ac magnetically-induced heating characteristics of MgFe2O4 FMNPs, which can be applicable to hyperthermia agents in nanomedicine. PMID:26682384

  16. Use of an advanced composite material in construction of a high pressure cell for magnetic ac susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Wang, X.; Misek, M.; Jacobsen, M. K.; Kamenev, K. V.

    2014-10-01

    The applicability of fibre-reinforced polymers for fabrication of high pressure cells was assessed using finite element analysis and experimental testing. Performance and failure modes for the key components of the cell working in tension and in compression were evaluated and the ways for optimising the designs were established. These models were used in construction of a miniature fully non-metallic diamond anvil cell for magnetic ac susceptibility measurements in a magnetic property measurement system. The cell is approximately 14 mm long, 8.5 mm in diameter and was demonstrated to reach a pressure of 5.6 GPa. AC susceptibility data collected on Dy2O3 demonstrate the performance of the cell in magnetic property measurements and confirm that there is no screening of the sample by the environment which typically accompanies the use of conventional metallic high pressure cells in oscillating magnetic fields.

  17. Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh Kumar; Bansal, Kuldip; Bansal, Seema

    2012-09-01

    The periodic nature of the cardiac cycle induces a pulsatile, unsteady flow within the circulatory system. The pulsatile model of blood flow provides data to analyse the physiological situation in close proximity. The distribution of fatty cholesterol and artery-clogging blood clots in the lumen of the coronary artery is assumed as a porous medium. A mathematical model for pulsatile flow through an stenosed artery filled with porous medium in the presence of transverse static magnetic field has been formulated under the consideration of hematocrit dependent viscosity of blood that governed by Einstein equation. The velocity profile, volume flux, pressure gradient and wall shear stress are obtained and the effects of magnetic number, Darcy number, Womersely number are computed and represented through graphs.

  18. CORONAL ALFVEN SPEED DETERMINATION: CONSISTENCY BETWEEN SEISMOLOGY USING AIA/SDO TRANSVERSE LOOP OSCILLATIONS AND MAGNETIC EXTRAPOLATION

    SciTech Connect

    Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.

    2013-04-10

    Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.

  19. Production Of Multi-magnetron Plasma By Using Polyphase Ac Glow Discharge In An Improved Multi-pole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro

    1998-10-01

    Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.

  20. Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Wang, X. R.

    2014-11-01

    Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed.

  1. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  2. Second VAMAS a.c. loss measurement intercomparison: a.c. magnetization measurement of hysteresis and coupling losses in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Itoh, K.; Wada, H.

    The article summarizes results of part of the second VAMAS a.c. loss measurement intercomparison. This program was carried out at 17 participating laboratories on two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diam. between 0.5 and 12 μm; Set No. 2: cupronickel matrix, fil. diam. between 0.4 and 1.2 μm). The results reported here were measured by means of a.c. magnetization methods and separated into hysteresis and coupling losses. One laboratory used a calorimetric method. The data scatter in measured hysteresis losses among the participating laboratories was reasonably small for different measuring methods adopted and experimental arrangements used. On the other hand, the data scatter in coupling losses was large, mainly because in most laboratories a.c. losses were measured only at low frequencies (below 1 Hz), where the separation of coupling losses from total losses tends to be inaccurate. The comparison of measured hysteresis losses with the critical state model showed a large disagreement, which is assumed to be due to proximity effect coupling between filaments. 1997 Elsevier Science Limited

  3. The magnetisation profiles and ac magnetisation losses in a single layer YBCO thin film caused by travelling magnetic field waves

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Timothy

    2015-05-01

    This paper studies the magnetisation and ac magnetisation losses caused by a travelling magnetic wave on a single-layer YBCO thin film. This work provides thorough investigations on how the critical magnetic field gradient has been changed by the application of a travelling wave. Several conditions were studied such as zero-field cooling (ZFC), field cooling (FC) and a delta-shaped trapped field. It was found that the travelling wave tends to attenuate the existing critical magnetic field gradients in all these conditions. This interesting magnetic behaviour can be well predicted by the finite element (FEM) software with the E-J power law and Maxwell’s equations. The numerical simulations show that the existing critical current density has been compromised after applying the travelling wave. The magnetisation profile caused by the travelling wave is very different from the standing wave, while the magnetisation based on the standing wave can be interpreted by the Bean model and constant current density assumption. Based on the numerical method, which has reliability that has been solidly proven in the study, we have extended the study to the ac magnetisation losses. Comparisons were made between the travelling wave and the standing wave for this specific YBCO sample. It was found that by applying the magnetic wave of the same amplitude, the ac magnetisation loss caused by the travelling wave is about 1/3 of that caused by the standing wave. These results are helpful in understanding the general magnetism problems and ac magnetisation loss in the travelling magnetic wave conditions such as inside a high temperature superconducting (HTS) rotating machine, etc.

  4. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Bol, G. H.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field, one of the most prominent phenomena occurs around air cavities: the electron return effect (ERE). For stationary, spherical air cavities which are centrally located in the phantom, the ERE can be compensated by using opposing beams configurations in combination with IMRT. In this paper we investigate the effects of non-stationary spherical air cavities, centrally located within the target in a phantom containing no organs at risk, on IMRT dose delivery in 0.35 T and 1.5 T transverse magnetic fields by using Monte Carlo simulations. We show that IMRT can be used for compensating ERE around those air cavities, except for intrafraction appearing or disappearing air cavities. For these cases, gating or plan re-optimization should be used. We also analyzed the option of using IMRT plans optimized at 0 T to be delivered in the presence of 0.35 T and 1.5 T magnetic field. When delivering dose at 0.35 T, IMRT plans optimized at 0 T and 0.35 T perform equally well regarding ERE compensation. Within a 1.5 T environment, the 1.5 T optimized plans perform slightly better for the static and random intra- and interfraction air cavity movement cases than the 0 T optimized plans. For non-stationary spherical air cavities with a baseline shift (intra- and interfraction) the 0 T optimized plans perform better. These observations show the intrinsic ERE compensation by equidistant and opposing beam configurations for spherical air cavities within the target area. IMRT gives some additional compensation, but only in case of correct positioning of the air cavity according to the IMRT compensation. For intrafraction appearing or disappearing air cavities this correct positioning is absent

  5. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  6. An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Kumar, Ajai; Chaudhari, Vishnu; Patel, Kiran; George, Sony; Sunil, S.; Singh, R. K.; Singh, Ranjeet

    2009-03-01

    In the present work we report generation of uniform and variable pulsed magnetic field in synchronization with pulsed plasma for the study of the expansion dynamics of laser blow-off (LBO) plasma plume. The experimental procedure for optimizing various parameters of the setup, e.g., the production of pulsed field and its synchronization with pulsed plasma and diagnostics system, is also reported. Until now the effect of magnetic field was studied using fixed field. The present setup, however, provides variable and uniform field in synchronization with the setup. A low cost time sequencing control module has been developed for the above purpose. Although the main emphasis is on the technical aspect of the setup, salient features of the effect of transverse magnetic field on the evolution features of the neutral and ionic species are also reported briefly. It is observed that LBO generated plume have a stronger correlation with the magnetic field in comparison to the conventional laser produced plasma experiments as reported earlier.

  7. Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field

    SciTech Connect

    Londer, Ya. I.; Ul'yanov, K. N.

    2011-10-15

    The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampere force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.

  8. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Wang, Yan

    2012-01-01

    In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  9. Analysis and comparison for rotor eddy current losses of permanent magnet synchronous generator according to dc and ac load conditions

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Hyun-Kyu; Choi, Jang-Young; Ko, Kyoung-Jin

    2009-04-01

    This paper presents an analytical procedure for the calculation of the eddy current losses of permanent magnet synchronous generator (PMSG). The dc and ac loading effects on the eddy current is examined through the suggested analytical procedure that considers the radial and tangential flux density waveform through a phase current harmonic analysis. The corresponding test results are also presented to quantify and compare those loading effects on the eddy current. The results verified the suggested analytical procedures and show that the rotor eddy current losses for PMSG with the dc loads turned out to be more significant than those with the ac loads.

  10. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.25–1.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%–58.6%) and 26.0% (20.2%–38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%–77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  11. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Yao; Tian, Jing; Li, Zhijun

    2015-10-01

    Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just

  12. Vortex activation energy in the AC magnetic response of superconducting YBa2Cu3O7 thin films with complex pinning structures

    NASA Astrophysics Data System (ADS)

    Ivan, I.; Ionescu, A. M.; Miu, D.; Mele, P.; Miu, L.

    2016-09-01

    The vortex activation energy U AC in the AC magnetic response of superconductors exhibits a logarithmic variation with the screening current density J (regardless of the pinning structure details), and takes surprisingly high values in the vicinity of the DC irreversibility line, especially at low external DC magnetic fields, as often reported. This is essentially different from the behaviour of the vortex-creep activation energy at long relaxation time scales in DC magnetic measurements, and is not completely understood. We investigated the DC relaxation and the AC response for YBa2Cu3O7 films containing nanorods and nanoparticles, with the DC and AC fields oriented perpendicular to the film surface. It is shown that the large U AC values in the vicinity of the DC irreversibility line, where the critical-state-related AC signal occurs, are generated by a non-diffusive vortex motion during the AC cycle, with the mean vortex hopping length longer than the average distance between the pinning centres. In these conditions, the smearing of the vortex pinning potential by thermally induced vortex fluctuations is weak, and U AC mainly results from the strong influence of the pinning-enhanced viscous drag on the vortex hopping process. The logarithmic U AC(J) dependence is consistent with a high U AC.

  13. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  14. Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Lu, Yiyun; Wang, Suyu; Ma, Guangtong

    2011-04-01

    The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.

  15. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  16. Directional solidification of HgCdTe and HgZnTe in a transverse magnetic field

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1991-01-01

    Hg(0.80)Cd(0.20)Te crystals were grown vertically in a transverse magnetic field by directional solidification. The effect of a magnetic field on the nature of fluid flow in the melts was investigated by measuring compositional variations along the axial and radial directions of the grown ingots. Magnetic field effects were shown to be significant over the entire field range employed (i.e., 2 to 5 kG). The axial compositional profiles (determined by precision density measurements) showed an abrupt decrease in the mole fraction of CdTe when the field was applied. Radial compositional mapping by IR transmission and X-ray energy dispersion spectrometry indicated that the solid-liquid interface evolved through three stages when the field was applied (i.e., from a radially symmetric concave interface to an off-center concave shape when the field was initially applied, then to a tilted plane, and, finally, to an off-center concave interface). The axial compositional profile of an Hg(0.84)Zn(0.16)Te ingot showed similar field effects.

  17. Two strongly contrasting Λ-systems in the D 1 line of 87Rb in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Margalit, L.; Wilson-Gordon, A. D.

    2016-06-01

    Four different types of spectroscopic cells that cover all possible existing versions of sealed-off cells (containing alkali atomic vapor) characterized by drastically different relaxation rates γrel are used to study the electromagnetically induced transparency spectra of two Λ-systems in the D 1 line of 87Rb in the presence of transverse magnetic field. Two cw narrowband diode-lasers are used to form the coupling laser radiation (with a fixed frequency) and the probe radiation with a tunable frequency. Two strongly contrasting Λ-systems are found: the first shows resonances that are transformed from dark resonances to bright resonances in all cases apart from nanocells, whereas the second shows four dark resonances in all four different types of cell. The theoretical simulations are in good agreement with the experimental results.

  18. Modulation-free laser frequency stabilization to a saturated sub-Doppler spectral line in a transversal magnetic field

    NASA Astrophysics Data System (ADS)

    Okubo, Sho; Iwakuni, Kana; Hasegawa, Taro

    2012-09-01

    We demonstrate frequency stabilization of a modulation-free laser to a saturated absorption spectral line of atoms in a transversal magnetic field. This stabilization scheme has been proposed for wide capture range in comparison with the dichroic atomic vapor laser lock (DAVLL) scheme and demonstrated for a Doppler-broadened spectral line in J. Opt. Soc. Am. B, 26, 1216 (2009). In this paper, a 1083-nm external-cavity laser diode is frequency-stabilized to the sub-Doppler spectral line of helium transition (23S1,mJ=0↔23P0). Even though the error signal shape strongly depends on the pump beam polarization, the stabilized frequency is expected to be insensitive to the pump beam polarization.

  19. Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.

    PubMed

    Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555

  20. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Vanka, Surya Pratap; Jin, Kai; Kumar, Purushotam; Thomas, Brian

    2015-11-01

    In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid (VOF) method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong is implemented, validated and used in present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units (GPU) with high parallel efficiency. The motion and the terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The circulation inside of the bubble is seen to be affected by the magnetic field indirectly. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented.

  1. AC magnetic response of superconducting YBa2Cu3O7/PrBa2Cu3O7 superlattices

    NASA Astrophysics Data System (ADS)

    Miu, L.; Ivan, I.; Ionescu, A. M.; Miu, D.

    2016-06-01

    Vortex activation energy UAC in the critical-state related AC magnetic response of superconductors (appearing in the vicinity of the DC irreversibility line) takes large values, as often reported, which is not yet understood. This behavior is essentially different from that of the vortex-creep activation energy at long relaxation time scales, and may become important for AC applications of superconductors. To elucidate this aspect, we investigated the AC signal of almost decoupled [Y Ba2Cu3O7]n/[PrBa2Cu3O7]4 superlattices (with n = 11 or 4 units cells) in perpendicular DC and AC magnetic fields. In these model samples, the length of the hopping vortex segment is fixed by the thickness of superconducting layers and vortices are disentangled, at least at low DC fields. It is shown that the high UAC values result from the large contribution of the pinning enhanced viscous drag in the conditions of thermally activated, non-diffusive vortex motion at short time scales, where the influence of thermally induced vortex fluctuations on pinning is weak.

  2. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  3. Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy

    SciTech Connect

    Vazquez, M.; Kurlyandskaya, G.V.; Garcia-Beneytez, J.M.; Sinnecker, J.P.; Barandiaran, J.M.; Lukshina, V.A.; Potapov, A.P.

    1999-09-01

    Stress-annealed nanocrystalline FeCuNbSiB ribbons show correlation between induced magnetic anisotropy and magnetoimpedance. Two types of crystallization process were used in order to induce a transverse magnetic anisotropy: the first one was performed submitting the original amorphous samples to an applied tensile stress of {sigma} = 150 MPa. In the second one, samples are nanocrystallized in a first stage and submitted to stress annealing at {sigma} = 290 MPa afterwards. The maximum of the magnetoimpedance can be obtained for dc fields larger than the anisotropy field of the sample of close to the irreversibility field. This behavior can be explained based in the simultaneous switching of two different magnetization processes taking place in the samples with high transverse magnetic anisotropy.

  4. One-dimensional edge transport on the surface of cylindrical BixTe3-ySey nanowires in transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Bäßler, Svenja; Hamdou, Bacel; Sergelius, Philip; Michel, Ann-Kathrin; Zierold, Robert; Reith, Heiko; Gooth, Johannes; Nielsch, Kornelius

    2015-11-01

    The geometry of topological insulators (TIs) has a major impact on the magnetoelectric band structure of their surface states. Here, we investigate the surface states of cylindrical TI bismuth telluride selenide nanowires with three different diameters, by parallel and transverse magnetoresistance (MR) measurements. In parallel configuration, we observe Aharonov-Bohm oscillations as well as weak antilocalization, indicating two-dimensional TI surface states. In transverse magnetic fields, we observed MR oscillations that are non-linear against the reciprocal of the magnetic field and thus cannot be explained by two- or three-dimensional states. Instead, our transport data analysis reveals that these MR oscillations are the consequence of one-dimensional edge channels at the nanowire surface that form due to the projection of the external magnetic field on the cylindrically curved surface plane in high magnetic fields. Our observation provides an exotic class of surface states that might be used for electronic and spintronic devices.

  5. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    High-temperature superconductors are developed for use in power-transmission cables, transformers and motors. The alternating magnetic field in these devices causes AC loss, which is a critical factor in the design. The study focuses on multi-filament Bi-2223/Ag tapes exposed to a 50-Hz magnetic field at 77 K. The AC loss is measured with magnetic, electric and calorimetric methods. The results are compared to theoretical predictions based mainly on the Critical-State Model. The loss in high- temperature superconductors is affected by their characteristic properties: increased flux creep, high aspect ratio and inhomogeneties. Filament intergrowths and a low matrix resistivity cause a high coupling-current loss especially when the filaments are fully coupled. When the wide side of the tape is parallel to the external magnetic field, the filaments are decoupled by twisting. In a perpendicular field the filaments can be decoupled only by combining a short twist pitch with a transverse resistivity much higher than that of silver. The arrangement of the inner filaments determines the transverse resistivity. Ceramic barriers around the filaments cause partial decoupling in perpendicular magnetic fields at power frequencies. The resultant decrease in AC loss is greater than the accompanying decrease in critical current. With direct transport current in alternating magnetic field, the transport-current loss is well described with a new model for the dynamic resistance. The Critical- State Model describes well the magnetisation and total AC loss in parallel magnetic fields, at transport currents up to 0.7 times the critical current. When tapes are stacked face-to-face in a winding, the AC-loss density in perpendicular fields is greatly decreased due to the mutual shielding of the tapes. Coupling currents between the tapes in a cable cause an extra AC loss, which is reduced by a careful cable design. The total AC loss in complex devices with many tapes is generally well

  6. The Transverse Asymmetry A{sub T}, from Quasi-elastic {sup 3}{ovr He}({rvec e}, e{prime}) Process and the Neutron Magnetic Form Factor

    SciTech Connect

    Wang Xu; Dipangkar Dutta; Feng Xiong; Brian Anderson; Leonard Auerbach; Todd Averett; William Bertozzi; Tim Black; John Calarco; Lawrence Cardman; Gordon Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G.S. Corrado; C. Crawford; Daniel Dale; Alexandre Deur; Pibero Djawotho; Bradley Filippone; John Finn; Haiyan Gao; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Walter Gloeckle; J. Golak; Javier Gomez; Viktor Gorbenko; Jens-ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Calvin Howell; Emlyn Hughes; Thomas Humensky; Sebastien Incerti; Cornelis De Jager; John Jensen; Xiaodong Jiang; C.E. Jones; Mark Jones; R. Kahl; H. Kamada; A. Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; Enkeleida Lakuriqi; Meihua Liang; Nilanga Liyanage; John Lerose; Sergey Malov; Demetrius Margaziotis; J.W. Martin; Kathy Mccormick; Robert Mckeown; Kevin Mcilhany; Zein-eddine Meziani; Robert Michaels; G.W. Miller; Joseph Mitchell; Sirish Nanda; E. Pace; Tina Pavlin; Gerassimos Petratos; Roman Pomatsalyuk; D. Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Arunava Saha; G. Salme; Michael Schnee; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; Mark Sutter; Bryan Tipton; Luminita Todor; Michele Viviani; Branislav Vlahovic; J. Watson; Claude Williamson; H. Witala; Bogdan Wojtsekhowski; Jen-chuan Yeh; Piotr Zolnierczuk

    2000-10-01

    We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized {sup 3}He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2%.

  7. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    SciTech Connect

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, J. Alejandro

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  8. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia.

    PubMed

    Zhao, Dong-Lin; Zhang, Hai-Long; Zeng, Xian-Wei; Xia, Qi-Sheng; Tang, Jin-Tian

    2006-12-01

    The magnetite (Fe(3)O(4)) nanoparticles were prepared by coprecipitation of Fe(3+) and Fe(2+) with an aqueous NaOH solution. The Fe(3)O(4)/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe(3)O(4) magnetic fluid. The inductive heat property of Fe(3)O(4)/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe(3)O(4)/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, M(s), and coercivity, H(c), are 50.05 emu g(-1) and 137 Oe for Fe(3)O(4) nanoparticles and 26.34 emu g(-1) and 0 Oe for Fe(3)O(4)/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe(3)O(4) nanoparticles or Fe(3)O(4)/PANI composite nanoparticles are 63.6 degrees C and 52.4 degrees C, respectively. The Fe(3)O(4)/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers. PMID:18458406

  9. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Aminfar, H.; Mohammadpourfard, M.; Ahangar Zonouzi, S.

    2013-02-01

    This paper investigates numerically the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a vertical rectangular duct which is exposed to a non-uniform transverse magnetic field generated by an electric current going through a wire located parallelly under the duct. The two phase mixture model and the control volume technique have been used to study the flow. The results show that applying the aforementioned magnetic field increases the Nusselt number and friction factor and also creates a pair of vortices that enhances heat transfer and prevents sedimentation of nano-particles. Furthermore, unlike the axial non-uniform magnetic field, the increase of the Nusselt number for the transverse magnetic field is considerable in all length along the duct and it is also concluded that with increasing the Reynolds number, the effect of the transverse non-uniform magnetic field on the Nusselt number is more than that of the axial non-uniform magnetic field.

  10. Transverse spin relaxation and diffusion-constant measurements of spin-polarized 129Xe nuclei in the presence of a magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-04-01

    The presence of a magnetic field gradient in a sample cell containing spin-polarized 129Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of 129Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon (129Xe and 131Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of 129Xe could be increased 2–7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of 129Xe in H2 and N2 to be 0.4 ± 0.26 cm2/sec and 0.12 ± 0.02 cm2/sec. The results are close with theoretical calculation.

  11. Transverse spin relaxation and diffusion-constant measurements of spin-polarized 129Xe nuclei in the presence of a magnetic field gradient.

    PubMed

    Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The presence of a magnetic field gradient in a sample cell containing spin-polarized (129)Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of (129)Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon ((129)Xe and (131)Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of (129)Xe could be increased 2-7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of (129)Xe in H2 and N2 to be 0.4 ± 0.26 cm(2)/sec and 0.12 ± 0.02 cm(2)/sec. The results are close with theoretical calculation. PMID:27049237

  12. Transverse spin relaxation and diffusion-constant measurements of spin-polarized 129Xe nuclei in the presence of a magnetic field gradient

    PubMed Central

    Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The presence of a magnetic field gradient in a sample cell containing spin-polarized 129Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of 129Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon (129Xe and 131Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of 129Xe could be increased 2–7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of 129Xe in H2 and N2 to be 0.4 ± 0.26 cm2/sec and 0.12 ± 0.02 cm2/sec. The results are close with theoretical calculation. PMID:27049237

  13. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  14. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    SciTech Connect

    Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  15. Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry

    NASA Astrophysics Data System (ADS)

    Bejhed, Rebecca S.; Strømme, Maria; Svedlindh, Peter; Ahlford, Annika; Strömberg, Mattias

    2015-12-01

    Magnetic biosensors are promising candidates for low-cost point-of-care biodiagnostic devices. For optimal efficiency it is crucial to minimize the time and complexity of the assay protocol including target recognition, amplification, labeling and read-out. In this work, possibilities for protocol simplifications for a DNA biodetection principle relying on hybridization of magnetic nanobeads to rolling circle amplification (RCA) products are investigated. The target DNA is recognized through a padlock ligation assay resulting in DNA circles serving as templates for the RCA process. It is found that beads can be present during amplification without noticeably interfering with the enzyme used for RCA (phi29 polymerase). As a result, the bead-coil hybridization can be performed immediately after amplification in a one-step manner at elevated temperature within a few minutes prior to read-out in an AC susceptometer setup, i.e. a combined protocol approach. Moreover, by recording the phase angle ξ = arctan(χ″/χ'), where χ and χ″ are the in-phase and out-of-phase components of the AC susceptibility, respectively, at one single frequency the total assay time for the optimized combined protocol would be no more than 1.5 hours, often a relevant time frame for diagnosis of cancer and infectious disease. Also, applying the phase angle method normalization of AC susceptibility data is not needed. These findings are useful for the development of point-of-care biodiagnostic devices relying on bead-coil binding and magnetic AC susceptometry.

  16. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  17. ERRATUM: Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2014-01-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Halpha lines), Sac Peak (in Ha, Hß, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  18. PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE

    SciTech Connect

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2013-11-10

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ({sup T}élescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires{sup )} with the MTR (MulTi-Raies) spectropolarimeter (in He D{sub 3} line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s{sup –1}, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  19. Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2013-11-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s-1, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  20. Critical Current of Superconducting Rutherford Cable in High Magnetic Fields with Transverse Pressure

    SciTech Connect

    Dietderich, D.R.; Scanlan, R.M.; Walsh, R.P.; Miller, J.R.

    1998-09-01

    For high energy physics applications superconducting cables are subjected to large stresses and high magnetic fields during service. It is essential to know how these cables perform in these operating conditions. A loading fixture capable of applying loads of up to 700 kN has been developed by NHMFL for LBNL. This fixture permits uniform loading of straight cables over a 122 mm length in a split-pair solenoid in fields up to 12 T at 4.2 K. The first results from this system for Rutherford cables of internal-tin and modified jelly roll strand of Nb{sub 3}Sn produced by IGC and TWC showed that little permanent degradation occurs up to 210 MPa. However, the cable made from internal-tin strand showed a 40% reduction in K{sub c} at 11T and 210 MPa while a dable made from modified jelly roll material showed only a 15% reduction in I{sub c} at 11T and 185 MPa.

  1. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  2. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430

  3. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution

    SciTech Connect

    Uilkema, Sander Heide, Uulke van der; Sonke, Jan-Jakob; Triest, Baukelien van; Nijkamp, Jasper; Moreau, Michel

    2015-12-15

    Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluate the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and

  4. Standing striations as a series of double layers induced in a positive column by a transverse magnetic field

    SciTech Connect

    Toma, M.; Biborosch, L.; Curteanu, M.

    1995-12-31

    It was experimentally proved that the action of a static transverse magnetic field (TMF) on a cylindrical positive column (PC) can change its internal structure. As a result, a succession of luminous structures known as standing striations are observed. The excitation of striations in a PC (frequently in molecular gases) is usually explained taking into account the periodic changes in ionised rate. It is known that the ionization rate is a strong function of the electron temperature (more precisely, kinetic energy). Thus, the standing striations being the spatial periodic change in the ionization rate, are affected by electron velocity. It can easily observed that in a striated PC there is a periodic change in light intensity. This means that beside ionization processes there is also a periodic change in excitation processes. It was showed that standing striations are, in fact spatial sequences of space charge structures known as double layers (Dls). In the last time it was proved that there is a direct connection between the excitation processes and the ordered spatial arrangement of the electric charges inside the DLs. The aim of this paper is to emphasize that the appearance of standing striations can be adequately described by the model of DL generation in a collisional plasma, that takes into account the electron-neutral excitation processes.

  5. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.

  6. Time-resolved magnetic flux and AC-current distributions in superconducting yttrium barium copper oxide thin films and multifilaments

    NASA Astrophysics Data System (ADS)

    Yang, Ran

    Time-resolved magneto-optical imaging (TRMOI) technique allows dynamic ac transport measurements on superconductors. The high time and spatial resolutions of the measurements also offer good quantitative data analysis of the MO images. YBa2Cu 3O7-delta (YBCO) was discovered as a high-temperature superconductor (HTSC) which has wide applications due to its high critical temperature of Tc = 91 K, and high critical current density Jc in the order of 106-7 Acm-2. Many of the applications require high ac current load and a high magnetic field. We study the interaction behavior of YBCO thin films in an ac transport current and a dc magnetic field by the TRMOI technique. In this dissertation, I first introduce the applications of high-temperature superconductors with focus on YBCO and describe the advantages of the TRMOI technique we developed over other methods to map the magnetic flux distribution of superconductors. The theories to understand the magnetic properties of HTSC are presented, followed by theoretical models. I also introduce a newly developed finite elemental method (FEM) simulation which is proved to be a better theoretical guideline to our data analysis. The TRMOI experimental setup and the procedures are discussed in detail. I show step-by-step the calibration of light intensity profiles averaged from MO images to determine magnetic field distribution, and a numerical inversion of the Biot-Savart law to calculate the current density distributions. The current density evolution in YBCO thin films is studied by TRMOI as a function of the phase of an ac current applied simultaneously with a perpendicular dc magnetic field. The measurements show that an ac current enables the vortex matter in YBCO thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics. To study the transport current effects in YBCO thin films, we present a new empirical method to separate the total current distribution into a

  7. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  8. Simultaneous ac and dc magnetic field measurements in residential areas: Implications for resonance theories of biological effects

    SciTech Connect

    Wong, P.S.; Sastre, A.

    1995-10-01

    The goal of this study was to obtain data that could be used to evaluate the applicability of ``resonance`` theories of biological effects in residential settings. The authors first describe a measurement system which allows the study of ac and dc magnetic fields simultaneously in space and in time. Sample measurements were taken near two power lines, two objects and in two residential homes. The results show that the earth`s (dc) magnetic field was unaffected near power lines. The compass orientation of the power line influenced the relative values of the ac components parallel and perpendicular to the dc field. The electric heating system greatly affected the ac field levels in the home, causing the levels to increase from less than 1 mG to a maximum of 7.5 mG during heating. The magnitudes of the dc field in the two homes varied from about 380 to 650 mG, with the larger variations near metallic or magnetic objects such as the refrigerator or a metallic air duct. The earth`s field was elevated above its natural level within a distance of 8 feet from a subcompact passenger car, e.g., the level changed from about 540 to 1,100 mG beside the headlight. A steel chair changed the earth`s field by up to 60 mG within a distance of one foot. These results suggest that some of the narrow ``resonances`` described in laboratory studies may be difficult to observe against the variations in do field amplitude and direction resulting from the presence of everyday metallic objects.

  9. Early detection of colonic dysplasia by magnetic resonance molecular imaging with a contrast agent raised against the colon cancer marker MUC5AC.

    PubMed

    Rossez, Yannick; Burtea, Carmen; Laurent, Sophie; Gosset, Pierre; Léonard, Renaud; Gonzalez, Walter; Ballet, Sébastien; Raynal, Isabelle; Rousseaux, Olivier; Dugué, Timothée; Vander Elst, Luce; Michalski, Jean-Claude; Muller, Robert N; Robbe-Masselot, Catherine

    2016-05-01

    Human gastric mucin MUC5AC is secreted in the colonic mucus of cancer patients and is a specific marker of precancerous lesions called aberrant crypt foci. Using MUC5AC as a specific marker can improve sensitivity in the detection of early colorectal cancer. Here we demonstrated that the accumulation of MUC5AC in xenograft and mouse stomach can be detected by magnetic resonance imaging (MRI). We used ultrasmall particles of iron oxide (USPIOs) conjugated with disulfide constrained heptapeptide that were identified using a screening phage display. To accomplish this, we employed positive selection of the phage display library on MUC5AC purified from fresh human colonic adenomas in combination with negative selection of the phage library on purified human MUC2, which is predominantly found in normal colorectal tissues. This conjugate was tested on human colorectal cancer cell lines that were either able or unable to secrete MUC5AC, both in vitro and in vivo. MUC5AC-USPIO contrast agent and USPIOs alone were not detected in cell lines unable to secrete MUC5AC. A combination of MRI and microscopy studies was performed to detect a specific accumulation of the contrast agent in vivo. Thus, the MUC5AC contrast agent enabled non-invasive detection of precancerous lesions and colorectal cancer, highlighting its potential use in diagnostics, in the early detection of colorectal cancer recurrences after treatment and in mechanistic studies implicating MUC5AC. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26762591

  10. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-06-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  11. Effect of transverse magnetic fields on dose distribution and RBE of photon beams: comparing PENELOPE and EGS4 Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Nettelbeck, H.; Takacs, G. J.; Rosenfeld, A. B.

    2008-09-01

    The application of a strong transverse magnetic field to a volume undergoing irradiation by a photon beam can produce localized regions of dose enhancement and dose reduction. This study uses the PENELOPE Monte Carlo code to investigate the effect of a slice of uniform transverse magnetic field on a photon beam using different magnetic field strengths and photon beam energies. The maximum and minimum dose yields obtained in the regions of dose enhancement and dose reduction are compared to those obtained with the EGS4 Monte Carlo code in a study by Li et al (2001), who investigated the effect of a slice of uniform transverse magnetic field (1 to 20 Tesla) applied to high-energy photon beams. PENELOPE simulations yielded maximum dose enhancements and dose reductions as much as 111% and 77%, respectively, where most results were within 6% of the EGS4 result. Further PENELOPE simulations were performed with the Sheikh-Bagheri and Rogers (2002) input spectra for 6, 10 and 15 MV photon beams, yielding results within 4% of those obtained with the Mohan et al (1985) spectra. Small discrepancies between a few of the EGS4 and PENELOPE results prompted an investigation into the influence of the PENELOPE elastic scattering parameters C1 and C2 and low-energy electron and photon transport cut-offs. Repeating the simulations with smaller scoring bins improved the resolution of the regions of dose enhancement and dose reduction, especially near the magnetic field boundaries where the dose deposition can abruptly increase or decrease. This study also investigates the effect of a magnetic field on the low-energy electron spectrum that may correspond to a change in the radiobiological effectiveness (RBE). Simulations show that the increase in dose is achieved predominantly through the lower energy electron population.

  12. AC driven magnetic domain quantification with 5 nm resolution

    PubMed Central

    Li, Zhenghua; Li, Xiang; Dong, Dapeng; Liu, Dongping; Saito, H.; Ishio, S.

    2014-01-01

    As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Moreover, the dynamic magnetism cannot be characterized because MFM is only sensitive to the static magnetic fields. Here, we develop a side-band magnetic force microscopy (MFM) to locally observe the alternating magnetic fields in nanometer length scales at an operating distance of 1 nm. Variations in alternating magnetic fields and their relating time-variable magnetic domain reversals have been demonstrated by the side-band MFM. The magnetic domain wall motions, relating to the periodical rotation of sample magnetization, are quantified via micromagnetics. Based on the side-band MFM, the magnetic moment can be determined locally in a volume as small as 5 nanometers. The present technique can be applied to investigate the microscopic magnetic domain structures in a variety of magnetic materials, and allows a wide range of future applications, for example, in data storage and biomedicine. PMID:25011670

  13. Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

    SciTech Connect

    Fritsch, Katharina; Ehlers, G.; Rule, K. C.; Habicht, Klaus; Ramazanoglu, Mehmet K.; Dabkowska, H. A.; Gaulin, Bruce D.

    2015-11-05

    We study the application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. Also, at least one of the transitions to incommensurate phases at μ0Hc1~6.25 T and μ0Hc2~7 T is discontinuous, while the final quantum critical point at μ0Hc3~13 T is continuous.

  14. Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius

    2016-05-01

    In this paper we use three-dimensional electromagnetic particle-in-cell simulations to investigate the interaction of a small Larmor radius plasma cloud/jet with a transverse nonuniform magnetic field typical to a tangential discontinuity in a parallel geometry. The simulation setup corresponds to an idealized, yet relevant, magnetospheric configuration likely to be observed at the magnetopause during northward orientation of the interplanetary magnetic field. The numerical simulations are adapted to study the kinetic effects and their role on the transport and entry of localized plasma jets similar to those identified inside the Earth's magnetosheath propagating toward the magnetopause. The simulations reveal the formation of a perpendicular polarization electric field inside the main bulk of the plasma cloud that enables its forward transport and entry across the transverse magnetic field. The jet is able to penetrate the transition region when the height of the magnetic barrier does not exceed a certain critical threshold. Otherwise, the forward transport along the injection direction is stopped before full penetration of the magnetopause. Moreover, the jet is pushed back and simultaneously deflected in the perpendicular plane to the magnetic field. Our simulations evidence physical processes advocated previously by the theoretical model of impulsive penetration and revealed in laboratory experiments.

  15. Tools and Setups for Experiments with AC and Rotating Magnetic Fields

    ERIC Educational Resources Information Center

    Ponikvar, D.

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…

  16. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    SciTech Connect

    Madami, M. Carlotti, G.; Gubbiotti, G.; Tacchi, S.; Siracusano, G.; Finocchio, G.; Carpentieri, M.

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  17. Effective method to measure back emfs and their harmonics of permanent magnet ac motors

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Bi, C.; Lin, S.

    2006-04-01

    As the HDD spindle motors become smaller and smaller, the back electromotive forces (emfs) measurement faces the new challenges due to their low inertias and small sizes. This article proposes a novel method to measure the back emfs and their harmonic components of PM ac motors only through a freewheeling procedure. To eliminate the influence of the freewheeling deceleration, the phase flux linkages are employed to obtain the back emf amplitudes and phases of the fundamental and harmonic components by using finite Fourier series analysis. The proposed method makes the freewheeling measurement of the back emfs and their harmonics accurate and fast. It is especially useful for the low inertia PM ac motors, such as spindle motors for small form factor HDDs.

  18. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  19. Diagnostics of the Fermilab Tevatron using an AC dipole

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoichi

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f˜20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  20. Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields

    NASA Astrophysics Data System (ADS)

    Sánchez, Jorge H.; Rinaldi, Carlos

    2009-10-01

    The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.

  1. Transverse Field and Random-Field Ising Ferromagnetism in Mn12-acetates

    NASA Astrophysics Data System (ADS)

    Subedi, Pradeep

    2013-03-01

    Single molecule magnets (SMMs) single crystals can exhibit long range ferromagnetic order associated with intermolecular interactions, principally magnetic dipole interactions. With their high spin (S ~ 10) and strong Ising-like magnetic anisotropy, they are model materials to the study of physics associated with Transverse-Field Ising Ferromagnet Model (TFIFM). We have measured magnetic susceptibility of single crystals of the prototype SMM, Mn12-acetate, and of a new high-symmetry variant, Mn12-ac-MeOH. At zero transverse field the inverse susceptibility of both SMMs is found to accurately follow a Curie-Weiss law with an intercept at a non-zero temperature Tcw ~ 0.9 K, indicating a transition to a ferromagnetic phase due to dipolar interactions. With increasing transverse field, the susceptibility and the Curie-Weiss temperature decreases due to increase in spin fluctuations but the nature of the decrease is very different in the two materials. We find that in Mn12-ac-MeOH, the suppression of ferromagnetism by the transverse field is consistent with TFIFM, while the suppression of ferromagnetism by the transverse field is considerably more rapid in Mn12-acetate. Previous studies show that due to solvent disorder Mn12-acetate has an intrinsic distribution of discrete tilts of the molecular magnetic easy axis from the global easy axis of the crystal. Thus with the application of transverse field, the molecules with tilted easy axis experience an additional field along their easy axis and give rise to a distribution of random-fields that further destroys the long-range order, suggesting that this prototypical molecular magnet is a realization of Random-Field Ising Ferromagnet (RFIFM). Work performed in collaboration with: A. D. Kent, Physics Dept., NYU, Bo Wen, M. P. Sarachik, Physics Dept., CCNY, CUNY, Y. Yeshurun, Physics Dept., Bar Ilan U, A. J. Millis, Physics Dept., Columbia U, and G. Christou, Chemistry Dept., U of Florida.

  2. Dispersion relations near quantum criticality in the quasi one-dimensional Ising chain CoNb2O6 in transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Cabrera, Ivelisse; Thompson, Jordan; Coldea, Radu; Robinson, Neil; Essler, Fabian; Prabhakaran, Dharmalingam; Bewley, Robert; Guidi, Tatiana

    2013-03-01

    The Ising chain in a transverse magnetic field is one of the canonical examples of a quantum phase transition. We have recently realized this model experimentally in the quasi-one-dimensional (1D) Ising-like ferromagnet CoNb2O6. Here, we present single-crystal inelastic neutron scattering measurements of the magnetic dispersion relations in the full three-dimensional (3D) Brillouin zone for magnetic fields near the critical point and in the high field paramagnetic phase. We explore the gap dependence as a function of field and quantify the cross-over to 3D physics at the lowest energies due to the finite interchain couplings. We parametrize the dispersion relations in the high-field paramagnetic phase to a spin wave model to quantify the sub-leading terms in the spin Hamiltonian beyond the dominant 1D Ising exchange.

  3. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the

  4. Nonlinear and ac Susceptibility of the Dilute Ising Magnet LiHoxY1-xF4

    NASA Astrophysics Data System (ADS)

    Quilliam, Jeffrey; Meng, Shuchao; Mugford, Chas; Kycia, Jan

    2008-03-01

    Recent work has called into question the existence of a spin glass transition in the dilute dipolar Ising magnet LiHoxY1-xF4 [1]. Other work has suggested that there is an exotic spin liquid phase found at a Ho concentration of x = 0.045 [2]. In order to carefully study the dynamics of this system, we have put together a SQUID magnetometer which allows for measurements of ac susceptibility and nonlinear susceptibility over a large frequency range. We present results from measurements on single crystals of LiHoxY1-xF4, particularly on an x = 0.045 sample, in an attempt to either reproduce the exotic ``anti-glass'' physics that was previously observed or to detect a spin glass transition. [1] P. E. Jonnson et al. PRL 98, 256403 (2007) [2] S. Ghosh et al. Science 296, 2195 (2002)

  5. Linearity of the Faraday-rotation-type ac magnetic-field sensor with a ferrimagnetic or ferromagnetic rotator film

    NASA Astrophysics Data System (ADS)

    Mori, Hiroshi; Asahara, Yousuke

    1996-03-01

    We analyze the linearity and modulation depth of ac magnetic-field sensors or current sensors, using a ferrimagnetic or ferromagnetic film as the Faraday rotator and employing the detection of only the zeroth-order optical diffraction component from the rotator. It is theoretically shown that for this class of sensor the condition of a constant modulation depth and that of a constant ratio error give an identical series of curves for the relationship between Faraday rotation angle greater than or equals V and polarizer/analyzer relative angle Phi . We give some numerical examples to demonstrate the usefulness of the result with reference to a rare-earth iron garnet film as the rotator.

  6. Transverse wobbling in ^{135}pr.

    PubMed

    Matta, J T; Garg, U; Li, W; Frauendorf, S; Ayangeakaa, A D; Patel, D; Schlax, K W; Palit, R; Saha, S; Sethi, J; Trivedi, T; Ghugre, S S; Raut, R; Sinha, A K; Janssens, R V F; Zhu, S; Carpenter, M P; Lauritsen, T; Seweryniak, D; Chiara, C J; Kondev, F G; Hartley, D J; Petrache, C M; Mukhopadhyay, S; Lakshmi, D Vijaya; Raju, M Kumar; Madhusudhana Rao, P V; Tandel, S K; Ray, S; Dönau, F

    2015-02-27

    A pair of transverse wobbling bands is observed in the nucleus ^{135}Pr. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model. PMID:25768759

  7. Comparisons of Earthward Poynting flux and the kinetic energy flux of up-flowing transversely heated ions from the Polar spacecraft on cusp magnetic field lines

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; Mozer, F.; Russell, C. T.

    2013-12-01

    This paper presents estimates of the Poynting flux flowing along magnetic field lines in the Earth's cusp region over altitudes from 0.8 Re to 7 Re using measurements during several passes from the Polar spacecraft. The Poynting flux is calculated from measurements of electric fields from the University of California, Berkeley double probe electric field instrument, and from magnetic field measurements from the U.C.L.A. fluxgate magnetometer. The estimates of Poynting flux are of special interest because the high altitude mapping of the cusp magnetic flux tubes may connect to newly reconnected field lines and the low altitude mapping of these field lines is the scene of powerful acceleration processes, most notably transverse heating and outflow of ions. The data show that the Poynting flux is predominantly downward over the frequency range from 1 mHz to 1 Hz . This frequency range includes the Poynting flux due to steady state convection and field-aligned current systems, Alfven waves, and kinetic Alfven waves. Measurement of transversely heated ions over the energy ranges from 10 eV to several keV and their associated ion kinetic energy flux are presented from the University of Iowa Hydra instrument and compared to the values of the downward Poynting flux. Generally the downward Poynting flux exceeds the upward kinetic energy flux of the ions.

  8. Monitoring of changes in cluster structures in water under AC magnetic field

    NASA Astrophysics Data System (ADS)

    Usanov, A. D.; Ulyanov, S. S.; Ilyukhina, N. S.; Usanov, D. A.

    2016-01-01

    A fundamental possibility of visualizing cluster structures formed in distilled water by an optical method based on the analysis of dynamic speckle structures is demonstrated. It is shown for the first time that, in contrast to the existing concepts, water clusters can be rather large (up to 200 -m in size), and their lifetime is several tens of seconds. These clusters are found to have an internal spatially inhomogeneous structure, constantly changing in time. The properties of magnetized and non-magnetized water are found to differ significantly. In particular, the number of clusters formed in magnetized water is several times larger than that formed in the same volume of non-magnetized water.

  9. A combined lift and propulsion system of a steel plate by transverse flux linear induction motors

    SciTech Connect

    Hayashiya, H.; Ohsaki, H.; Masada, E.

    1999-09-01

    To realize a non-contacting conveyance of a steel plate, a combined lift and propulsion system of a steel plate by transverse flux linear induction motors (LIMs) is proposed. By introducing the DC biased AC feeding to the LIM< a steel plate is supported stably and efficiently. In this paper, after showing the advantages of the system, the magnetic levitation experiments are carried out to investigate the feasibility of the system.

  10. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  11. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    SciTech Connect

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Bednarz, B. P.; Sterpin, E.

    2015-02-15

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy{sup ®} Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code GEANT4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can

  12. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    PubMed Central

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Sterpin, E.; Bednarz, B. P.

    2015-01-01

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy® Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can be

  13. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. PMID:11122491

  14. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  15. A cluster-glass magnetic state in R5Pd2 (R = Ho, Tb) compounds evidenced by AC-susceptibility and neutron scattering measurements.

    PubMed

    Gubkin, A F; Sherstobitova, E A; Terentyev, P B; Hoser, A; Baranov, N V

    2013-06-12

    AC- and DC-susceptibility, high-field magnetization and neutron diffraction measurements have been performed in order to study the magnetic state of R5Pd2 (R = Ho, Tb) compounds. The results show that both compounds undergo cluster-glass freezing upon cooling below Tf. According to the neutron diffraction a long-range magnetic order is absent down to 2 K and magnetic clusters with short-range incommensurate antiferromagnetic correlations exist not only below Tf but also in a wide temperature range above the freezing temperature (at least up to 2Tf). A complex cluster-glass magnetic state existing in Ho5Pd2 and Tb5Pd2 down to low temperatures results in rather complicated magnetization behavior in DC and AC magnetic fields. Such an unusual magnetic state in compounds with a high rare-earth concentration may be associated with the layered type of their crystal structure and with substantial atomic disorder, which results in frustrations in the magnetic subsystem. PMID:23676314

  16. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  17. On the temperature dependence of the ac susceptibility of Fe 3O 4 magnetic fluids

    NASA Astrophysics Data System (ADS)

    Abu-Aljarayesh, I.; Al-Rawi, A.; Abu-Safia, H.

    1993-02-01

    The temperature dependence of the frequency-dependent magnetic susceptibility has been measured for Fe 3O 4 magnetic fluids with Isopar-M as a liquid carrier. The temperature range was 80 K ≤ T ≤ 300 K, and the volume fractions ɛ ranged from 0.004 to 0.062. With increasing temperature the in-phase magnetic susceptibility χ' increased from its initial value to a maximum at a temperature TB, then decreased monotonically until around the melting point of the liquid carrier, Tm ≈ 200 K. For T ≤ Tm, χ' increased rapidly to a second maximum at T = TB1. This behaviour was qualitatively similar for all studied samples. For the sample with ɛ = 0.047, χ' decreased with increasing frequency at all temperatures. When a static magnetic field was applied, a reduction in χ' was also observed. The effects of interparticle interactions on the static initial susceptibility χ i, are discussed. Analysis of the data yields information about the effective anisotropy energy, the median magnetic diameter, and relaxation times. The distribution of blocking temperature was calculated from the superparamagnetic blocking model of Wohlfarth. The results are further analysed and discussed within the framework of Lundgren model of spin glasses.

  18. Transversity 2005

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I

  19. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

  20. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1995-09-01

    This study demonstrates that exposure to 60 Hz magnetic fields (3.4--8.8 mt) and magnetic fields over the range DC-600 kHz (2.5--6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. the relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization.

  1. Effect of a Transverse Magnetic Field on Solidification Structures in Unmodified and Sr-Modified Al-7wtpctSi Alloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Gagnoud, Annie; Fautrelle, Yves; Moreau, Rene; Du, Dafan; Ren, Zhongming; Lu, Xionggang

    2016-03-01

    The influence of a transverse magnetic field on the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification was investigated. Experimental results indicated that the magnetic field caused the channel and freckle macrosegregations during directional solidification. Comparison of the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys showed that the Sr-addition enhanced the convection effects. Moreover, the EBSD analysis revealed that the magnetic field changed the alignment of the α-Al dendrite and modified the distribution of dendrite fragments in both unmodified and Sr-modified Al-7wtpctSi alloys. Indeed, the application of the magnetic field caused the <001>-crystal direction of the α-Al dendrite to deflect from the solidification direction and induced the formation of dendrite fragments on one side of the sample. Further, the Seebeck signal ( E S) at the liquid/solid interface was measured in situ during directional solidification of Al-7wtpct Si alloy and the results indicated that the value of the E S was of the order of 10 μV and decreased with the increase of the growth speed. The above results may be attributed to the thermoelectric magnetic convection and its effect on the distribution of the solute Si. It is proven that solute effects are primarily responsible for dendrite fragmentation.

  2. Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15 wt% Pb alloys grown by a Czochralski method

    NASA Astrophysics Data System (ADS)

    Shen, Zhe; Zhong, Yunbo; Wang, Huai; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-12-01

    The pure Sn and Sn-15 wt% Pb alloys were grown by a Czochralski method under various magnetic flux densities in this paper. The influence of thermoelectric magnetic (TEM) flows and buoyancy flows on solidification morphology, macrosegregation and microstructures had been investigated experimentally, and the velocity magnitude of TEM flows and buoyancy flows had been studied by 3D numerical simulations. The experimental results indicate that the modification of solidification morphology and microstructures is attributed to the unidirectional Pb solutes transport caused by TEM flows. The 3D numerical simulations results show that the buoyancy flows dominate the flows in the melt under a weak transverse magnetic field (B≤0.43 T), and the unidirectional TEM flows at the vicinity of solid-liquid interface become the dominant flows in the melt with the increase of magnetic field. The interaction of TEM flows and buoyancy flows affecting solidification morphology and microstructures during directional solidification of alloys by the Czochralski method under various magnetic flux densities has been discussed and a corresponding simple evolution mechanism of dendritic growth has been proposed.

  3. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  4. A Fast-sampling, Planar Array for Measuring the AC Field of Fermilab Pulsed Extraction Magnets

    SciTech Connect

    DiMarco, E.Joseph; Johnstone, C.; Kiemschies, O.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Russell, A.D.; Tartaglia, Michael Albert; Velev, G.; /Fermilab

    2008-06-25

    A system employing a planar array of inductive pick-up coils has been developed for measurements of the rapidly changing dipole field in pulsed extraction magnets for the Fermilab MuCool project. The magnets are of C-type and deigned to support a peak field of 0.65 T during 8.33 millisecond half-sine pulse at a 15 Hz repetition rate. The coils of the measurement system are fabricated on a single, 97.5 mm wide, 2-layer circuit board. The array of coils is simultaneously sampled at data rates of up to 100 kHz with 10 kHz bandwidth using 24-bit ADC's. A detailed overview of the system and data analysis is presented, along with a characterization of results and system performance.

  5. Magnetoresistive DNA chips based on ac field focusing of magnetic labels

    NASA Astrophysics Data System (ADS)

    Ferreira, H. A.; Cardoso, F. A.; Ferreira, R.; Cardoso, S.; Freitas, P. P.

    2006-04-01

    A study was made on the sensitivity of a magnetoresistive DNA-chip platform being developed for cystic fibrosis diagnostics. The chip, comprised of an array of 2.5×80 μm2 U-shaped spin-valve sensors integrated within current line structures for magnetic label manipulation, enabled the detection at 30 Hz of 250 nm magnetic nanoparticles from 100 pM down to the pM range (or a target DNA concentration of 500 pM). It was observed that the sensor response increased linearly with label concentration. Noise spectra obtained for these sensors showed a thermal noise of 10-17 V2/Hz with a 1/f knee at 50 kHz at a 1 mA sense current, showing that lower detection limits are possible.

  6. Ac-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Botez, Cristian E.; Morris, Joshua L.

    2016-03-01

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 9 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, T B, upon diluting a Fe3O4/hexane magnetic fluid. As the nanoparticle volume ratio, Φ, is reduced from an as-prepared reference Φ = 1 to Φ = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Φ = 1/384 (where T B = 42.5 K). We found evidence that cooling below T B within the higher concentration range (Φ > 1/48) leads to the collective freezing of the superspins, whereas individual superspin blocking occurs in the presence of weaker interactions (Φ < 1/96). The unexpected increase of the blocking temperature with the decrease of the inter-particle interactions observed at low nanoparticle concentrations is well described by the Mørup-Tronc model.

  7. AC-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Morris, Joshua Logan

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 10 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, TB, upon diluting a Fe 3O4/hexane magnetic nanoparticle fluid. As the nanoparticle volume ratio, Phi, is reduced from an as-prepared reference Phi = 1 to Phi = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Phi = 1/384 (where TB = 42.5 K). We show that cooling below TB within the higher concentration range (Phi > 1/48) leads to the collective freezing of the superspins in a spin-glass-like fashion, whereas individual superspin blocking occurs in the presence of weaker dipolar interactions (Phi < 1/96). The unexpected increase of the blocking temperature with the decrease of the interparticle interactions observed at low nanoparticle concentrations is well described by the Morup-Tronc (MT) model.

  8. Ac-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles.

    PubMed

    Botez, Cristian E; Morris, Joshua L

    2016-03-18

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 9 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, T(B), upon diluting a Fe3O4/hexane magnetic fluid. As the nanoparticle volume ratio, Φ, is reduced from an as-prepared reference Φ = 1 to Φ = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Φ = 1/384 (where T(B) = 42.5 K). We found evidence that cooling below T B within the higher concentration range (Φ > 1/48) leads to the collective freezing of the superspins, whereas individual superspin blocking occurs in the presence of weaker interactions (Φ < 1/96). The unexpected increase of the blocking temperature with the decrease of the inter-particle interactions observed at low nanoparticle concentrations is well described by the Mørup-Tronc model. PMID:26876797

  9. Effect of Si addition on AC and DC magnetic properties of (Fe-P)-Si alloy

    NASA Astrophysics Data System (ADS)

    Gautam, Ravi; Prabhu, D.; Chandrasekaran, V.; Gopalan, R.; Sundararajan, G.

    2016-05-01

    We report a new (Fe-P)-Si based alloy with relatively high induction (1.8-1.9 T), low coercivity (< 80 A/m), high resistivity (˜38 μΩ cm) and low core loss (217 W/kg @ 1 T/1 kHz) comparable to the commercially available M530-50 A5 Si-steel. The attractive magnetic and electrical properties are attributed to i) the two phase microstructure of fine nano precipitates of Fe3P dispersed in α-Fe matrix achieved by a two-step heat-treatment process and ii) Si addition enhancing the resistivity of the α-Fe matrix phase. As the alloy processing is by conventional wrought metallurgy method, it has the potential for large scale production.

  10. The effect of nickel content on the ac magnetic properties of 49Fe-49Co-2V alloys

    NASA Astrophysics Data System (ADS)

    Novotny, P. M.

    1988-04-01

    Experimental alloys containing between 0.03 and 0.67 wt. % nickel were produced to determine the effect of low nickel content on the ac magnetic properties of Carpenter's 49Fe-49Co-2V Hiperco (a registered trademark of Carpenter Technology Corp.) 50A alloy. The alloys were processed into 1.02×10-4 m (0.004 in.) thick strip, wound into tape toroids, annealed then tested for core loss at 60 and 400 Hz for induction levels of 1.0, 1.5, and 2.0 T. Toroids annealed at 885 °C in hydrogen, followed by slow cooling, exhibited a linear increase in core loss as nickel content increased due to the presence of a second phase in the microstructure. When the annealing temperature was decreased to 845 °C the second phase was eliminated and the core loss did not vary with nickel content. STEM examination of the samples determined that the second phase was a heavily dislocated bcc α'1 phase which had martensitically transformed from the fcc γ1 phase despite the slow cooling rate. Thermal expansion testing determined that increasing the Ni content in the range of 0-1 wt. % decreased the α1 +γ1 /α1 transformation temperature of the 49Fe-49Co-2V alloy.

  11. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  12. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    SciTech Connect

    Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.

  13. Transverse myelitis

    SciTech Connect

    Black, M.J.; Motaghedi, B.; Robitaille, Y.

    1980-05-01

    Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented.

  14. Analysis of 31P nuclear magnetic resonance lineshapes and transversal relaxation of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    The experimentally observed 31P lineshapes and transversal relaxation of 15% (wt/wt) M13, 30% M13, and 30% tobacco mosaic virus (TMV) are compared with lineshapes and relaxation curves that are simulated for various types of rotational diffusion using the models discussed previously (Magusin, P. C. M. M., and M. A. Hemminga. 1993. Biophys. J. 64:1851-1860). It is found that isotropic diffusion cannot explain the observed lineshape effects. A rigid rod diffusion model is only successful in describing the experimental data obtained for 15% M13. For 30% M13 the experimental lineshape and relaxation curve cannot be interpreted consistently and the TMV lineshape cannot even be simulated alone, indicating that the rigid rod diffusion model does not generally apply. A combined diffusion model with fast isolated motions of the encapsulated nucleic acid dominating the lineshape and a slow overall rotation of the virion as a whole, which mainly is reflected in the transversal relaxation, is able to provide a consistent picture for the 15 and 30% M13 samples, but not for TMV. Strongly improved lineshape fits for TMV are obtained assuming that there are three binding sites with different mobilities. The presence of three binding sites is consistent with previous models of TMV. The best lineshapes are simulated for a combination of one mobile and two static sites. Although less markedly, the assumption that two fractions of DNA with different mobilities exist within M13 also improves the simulated lineshapes. The possible existence of two 31P fractions in M13 sheds new light on the nonintegral ratio 2.4:1 between the number of nucleotides and protein coat subunits in the phage: 83% of the viral DNA is less mobile, suggesting that the binding of the DNA molecule to the protein coat actually occurs at the integral ratio of two nucleotides per protein subunit. PMID:8369412

  15. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  16. Study of the Rb D 2-line splitting in a strong transverse magnetic field with Doppler-free spectroscopy in a nanocell

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Hakhumyan, G.; Tonoyan, A.; Petrov, P. A.; Vartanyan, T. A.

    2015-08-01

    Atomic transitions of 85Rb and 87Rb isotopes in a strong transverse magnetic field with induction of up to 7 kG have been studied experimentally. High spectral resolution is achieved owing to the application of the linear Doppler-free spectroscopy method to a nanometric thin cell with the thickness of L = λ/2 = 390 nm, where λ is the wavelength of laser emission tuned to the resonance with the Rb D 2-line (λ/2-method). It has been observed that the number of atomic transitions in the transmission spectrum of linearly polarized (π) radiation decreases from 64 down to 20 transitions as the field strength increases above B > 5 kG. Four atomic transitions (two of 85Rb and two of 87Rb), which are forbidden in the absence of magnetic field, acquire significant strength in the strong magnetic field. Experimental results are in a good agreement with theory. Several practical applications of alkali-vapor-filled nanometric thin cells have been proposed.

  17. A study on the steady-state solutions of a relativistic Bursian diode in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Kuznetsov, V. I.; Bakaleinikov, L. A.; Chakrabarti, Nikhil

    2016-08-01

    A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.

  18. Second VAMAS a.c. loss measurement intercomparison: magnetization measurement of low-frequency (hysteretic) a.c. loss in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Collings, E. W.; Sumption, M. D.; Itoh, K.; Wada, H.; Tachikawa, K.

    The results of the 2 nd VAMAS measurement intercomparison program on low-frequency (hysteretic) a.c. loss are presented and discussed. Two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diams 0.5, 1, 3, and 12 μm; Set No. 2: cupronickel matrix, fil. diams 0.4, 0.5, and 1 μm) were subjected to interlaboratory testing. In an initial series of tests, samples in various forms (e.g. wire bundles, coils) were measured mostly by vibrating-sample- and SQUID magnetometry. Considerable scatter was noted especially in the small-filament-diameter a.c.-loss data. In a study of measurement accuracy, a supplementary series of tests compared the results of VSM measurement of a given pair of copper-matrix samples. In the light of all the results, factors contributing to a.c. loss error are discussed and recommendations are made concerning the specification of future a.c.-loss measurement intercomparisons.

  19. Experimental Study of Corona Properties with a Heated Discharge Electrode and Crossed Magnetic Fields Individually

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, Karim

    2015-07-01

    This work involves ac and dc corona in air with heated discharge electrode, and breakdown streamers in corona in a crossed magnetic field. At first, the triggering of the breakdown streamers in positive and ac corona are governed by the temperature of the discharge electrode. In the negative corona, however, the breakdown streamers found to be practically independent of the temperature of the discharge electrode. Then, the transverse magnetic field, applied perpendicularly to the electric field, result in an improvement in pre-breakdown characteristic of the wire-tube gap. The application of the transverse field has the effect of increasing the corona onset voltage and the breakdown voltage. Also the transverse applied field has the effect of decreasing the corona current. It has been observed that triggering of the breakdown streamers in negative corona is affected appreciably by the transverse magnetic field.

  20. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.

    2010-10-15

    Purpose: The main focus of this work is to continue investigations into the Monte Carlo predicted skin doses seen in MRI-guided radiotherapy. In particular, the authors aim to characterize the 70 {mu}m skin doses over a larger range of magnetic field strength and x-ray field size than in the current literature. The effect of surface orientation on both the entry and exit sides is also studied. Finally, the use of exit bolus is also investigated for minimizing the negative effects of the electron return effect (ERE) on the exit skin dose. Methods: High resolution GEANT4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam (Varian 2100C) have been performed. Transverse magnetic fields of strengths between 0 and 3 T have been applied to a 30x30x20 cm{sup 3} phantom. This phantom is also altered to have variable entry and exit surfaces with respect to the beam central axis and they range from -75 deg. to +75 deg. The exit bolus simulated is a 1 cm thick (water equivalent) slab located on the beam exit side. Results: On the entry side, significant skin doses at the beam central axis are reported for large positive surface angles and strong magnetic fields. However, over the entry surface angle range of -30 deg. to -60 deg., the entry skin dose is comparable to or less than the zero magnetic field skin dose, regardless of magnetic field strength and field size. On the exit side, moderate to high central axis skin dose increases are expected except at large positive surface angles. For exit bolus of 1 cm thickness, the central axis exit skin dose becomes an almost consistent value regardless of magnetic field strength or exit surface angle. This is due to the almost complete absorption of the ERE electrons by the bolus. Conclusions: There is an ideal entry angle range of -30 deg. to -60 deg. where entry skin dose is comparable to or less than the zero magnetic field skin dose. Other than this, the entry skin dose increases are significant, especially at

  1. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T.

    PubMed

    Hartman, J; Kontaxis, C; Bol, G H; Frank, S J; Lagendijk, J J W; van Vulpen, M; Raaymakers, B W

    2015-08-01

    Proton therapy promises higher dose conformality in comparison with regular radiotherapy techniques. Also, image guidance has an increasing role in radiotherapy and MRI is a prime candidate for this imaging. Therefore, in this paper the dosimetric feasibility of Intensity Modulated Proton Therapy (IMPT) in a magnetic field of 1.5 T and the effect on the generated dose distributions compared to those at 0 T is evaluated, using the Monte Carlo software TOol for PArticle Simulation (TOPAS). For three different anatomic sites IMPT plans are generated. It is shown that the generation of an IMPT plan in a magnetic field is feasible, the impact of the magnetic field is small, and the resulting dose distributions are equivalent for 0 T and 1.5 T. Also, the framework of Monte Carlo simulation combined with an inverse optimization method can be used to generate IMPT plans. These plans can be used in future dosimetric comparisons with e.g. IMRT and conventional IMPT. Finally, this study shows that IMPT in a 1.5 T magnetic field is dosimetrically feasible. PMID:26182957

  2. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T

    NASA Astrophysics Data System (ADS)

    Hartman, J.; Kontaxis, C.; Bol, G. H.; Frank, S. J.; Lagendijk, J. J. W.; van Vulpen, M.; Raaymakers, B. W.

    2015-08-01

    Proton therapy promises higher dose conformality in comparison with regular radiotherapy techniques. Also, image guidance has an increasing role in radiotherapy and MRI is a prime candidate for this imaging. Therefore, in this paper the dosimetric feasibility of Intensity Modulated Proton Therapy (IMPT) in a magnetic field of 1.5 T and the effect on the generated dose distributions compared to those at 0 T is evaluated, using the Monte Carlo software TOol for PArticle Simulation (TOPAS). For three different anatomic sites IMPT plans are generated. It is shown that the generation of an IMPT plan in a magnetic field is feasible, the impact of the magnetic field is small, and the resulting dose distributions are equivalent for 0 T and 1.5 T. Also, the framework of Monte Carlo simulation combined with an inverse optimization method can be used to generate IMPT plans. These plans can be used in future dosimetric comparisons with e.g. IMRT and conventional IMPT. Finally, this study shows that IMPT in a 1.5 T magnetic field is dosimetrically feasible.

  3. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  4. One-dimensional edge transport on the surface of cylindrical Bi{sub x}Te{sub 3−y}Se{sub y} nanowires in transverse magnetic fields

    SciTech Connect

    Bäßler, Svenja Hamdou, Bacel; Sergelius, Philip; Michel, Ann-Kathrin; Zierold, Robert; Gooth, Johannes; Reith, Heiko; Nielsch, Kornelius

    2015-11-02

    The geometry of topological insulators (TIs) has a major impact on the magnetoelectric band structure of their surface states. Here, we investigate the surface states of cylindrical TI bismuth telluride selenide nanowires with three different diameters, by parallel and transverse magnetoresistance (MR) measurements. In parallel configuration, we observe Aharonov-Bohm oscillations as well as weak antilocalization, indicating two-dimensional TI surface states. In transverse magnetic fields, we observed MR oscillations that are non-linear against the reciprocal of the magnetic field and thus cannot be explained by two- or three-dimensional states. Instead, our transport data analysis reveals that these MR oscillations are the consequence of one-dimensional edge channels at the nanowire surface that form due to the projection of the external magnetic field on the cylindrically curved surface plane in high magnetic fields. Our observation provides an exotic class of surface states that might be used for electronic and spintronic devices.

  5. Prognostic Significance of Transverse Relaxation Rate (R2*) in Blood Oxygenation Level-Dependent Magnetic Resonance Imaging in Patients with Invasive Breast Cancer

    PubMed Central

    Choi, Hye Young; Ko, Eun Sook; Han, Boo-Kyung; Kim, Eun Ju; Kim, Sun Mi; Lim, Yaeji; Kim, Rock Bum

    2016-01-01

    Objective To examine the relationship between magnetic resonance transverse relaxation rate (R2*) and prognostic factors. Materials and Methods A total of 159 women with invasive ductal carcinomas (IDCs) underwent breast magnetic resonance imaging (MRI) including blood oxygenation level-dependent (BOLD) sequence at 3 T. The distribution of the measured R2* values were analyzed, and the correlation between R2* and various prognostic factors (age, tumor size, histologic grade, lymphovascular invasion, and axillary lymph node status, as well as expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, p53, and Ki-67) were retrospectively assessed using patient medical records. Results The baseline R2* values of the IDCs were very heterogeneous with wide range among the patients. The mean R2* value was (32.8 ± 14.0) Hz with a median of 29.3 Hz (range 13.5–109.4 Hz). In multivariate analysis, older age was associated with decreased R2* value (P = 0.011) and IDCs with p53-overexpression showed higher R2* values than those without p53-overexpression group (P = 0.031). Other prognostic factors were not significantly correlated with R2* value. Conclusion In this study, R2* values were significantly correlated with age and expression of p53. Further studies are necessary to determine the prognostic value of BOLD-MRI. PMID:27384310

  6. Graphene oxide-Fe{sub 3}O{sub 4} nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    SciTech Connect

    Venkatesha, N.; Srivastava, Chandan; Poojar, Pavan; Geethanath, Sairam; Qurishi, Yasrib

    2015-04-21

    The potential of graphene oxide–Fe{sub 3}O{sub 4} nanoparticle (GO-Fe{sub 3}O{sub 4}) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe{sub 3}O{sub 4} composites synthesized by precipitating Fe{sub 3}O{sub 4} nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe{sub 3}O{sub 4} composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe{sub 3}O{sub 4} composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.

  7. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon R.; Savel'ev, Sergey; Kusmartsev, Feodor V.; Peeters, François M.

    2015-11-01

    We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a "superradiant" vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.

  8. Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

    PubMed

    Suneetha, T; Kundu, S; Kashyap, Subhash C; Gupta, H C; Nath, T K

    2013-01-01

    The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s). PMID:23646726

  9. Transverse testicular ectopia.

    PubMed

    Yıldız, Abdullah; Yiğiter, Murat; Oral, Akgün; Bakan, Vedat

    2014-02-01

    Described herein are six cases of transverse testicular ectopia. All patients who underwent orchidopexy at the one pediatric surgical unit between October 2001 and January 2008 were evaluated. The medical records of all patients diagnosed with transverse testicular ectopia were evaluated retrospectively. Five patients (84%) were admitted with a symptomatic right inguinal hernia and empty scrotum on the left side. Only one child (16%) had left-sided hernia and right non-palpable testis (age ranged from 1 month to 3 years). Four patients (66%) were diagnosed in the operating theatre and the last two (33%) on inguinal ultrasound preoperatively. Magnetic resonance imaging was also performed in the last patient. Herniorrhaphy with fixation of the ectopic gonad to the opposite hemiscrotum through a transseptal incision was performed in all patients. Postoperative complications were not observed. PMID:24548194

  10. Backscattering of Laser Radiation on Ultrarelativistic Electrons in a Transverse Magnetic Field: Evidence of MeV-Scale Photon Interference

    NASA Astrophysics Data System (ADS)

    Abakumova, E. V.; Achasov, M. N.; Berkaev, D. E.; Kaminsky, V. V.; Muchnoi, N. Yu.; Perevedentsev, E. A.; Pyata, E. E.; Shatunov, Yu. M.

    2013-04-01

    In this Letter we report an observation of interference effects in Compton scattering in the experiment held on the VEPP-2000 collider. Infrared laser radiation was scattered head-on the 990 MeV electrons inside the dipole magnet, where an electron orbit radius is about 140 cm. It was observed that the energy spectrum of backscattered photons, measured by a HPGe detector, differs from that defined by the Klein-Nishina cross section and scattering kinematics of free electrons. The explanation of the effect, proposed in terms of classical electrodynamics, is in agreement with QED calculations.

  11. AC Magnetic Susceptibility of the Assembled-Metal Complex {NBu4[FeIIFeIII(ox)3]}∞ (Bu=n-C4H9, ox=oxalato)

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ashis; Nakazawa, Yasuhiro; Kobayashi, Hayao; Sorai, Michio

    2002-09-01

    AC magnetic susceptibility (χAC=χ\\prime-iχ\\prime\\prime) of {NBu4[FeIIFeIII(ox)3]}∞ was measured in the 4-50 K range for different frequencies (0.1-1000 Hz). Both of the χ\\prime(T) and χ\\prime\\prime(T) plots showed two peaks in two temperature regions: 4-33 K and 33-50 K. The χ\\prime(T) and χ\\prime\\prime(T) peaks in the 33-50 K range can be associated with the magnetic phase transition at the Néel temperature (43.3 K). However, the χ\\prime(T) peak in the 4-33 K range was found to be shifted towards lower temperature from 15.5 K to 13.5 K with increasing frequency, accompanied by a decrease in peak height. The fractional relative change in the peak temperature per decade change in frequency was calculated. The χ\\prime\\prime(T) in the 4-33 K range exhibited a broad peak around 25 K. The frequency dependence of χ\\prime(T) and χ\\prime\\prime(T) in the 4-33 K range occurred in the region where the irreversibilities in the ZFC (zero-field-cooled)-FC (field cooled) susceptibilities appeared. In this temperature range, a small heat capacity anomaly was detected and the negative magnetization effect took place in earlier reports. The wait-time dependence study of ZFC magnetization revealed an aging phenomenon. The frequency dependent peaks observed in the AC susceptibility and the aging phenomenon occurred below the Néel temperature might be indicative of the existence of a spin glass-like state in the present material at low temperatures.

  12. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field

    SciTech Connect

    Ilyasov, V. V. E-mail: chuongnguyen11@gmail.com; Meshi, B. C.; Nguyen, V. C. E-mail: chuongnguyen11@gmail.com; Ershov, I. V.; Nguyen, D. C.

    2014-07-07

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E{sub ext}). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E{sub ext} for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E{sub ext} is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E{sub ext} applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ{sub B}) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E{sub ext}. In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10{sup 5} cm{sup 2}/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E{sub ext}. These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics.

  13. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field.

    PubMed

    Ilyasov, V V; Meshi, B C; Nguyen, V C; Ershov, I V; Nguyen, D C

    2014-07-01

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E(ext)). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E(ext) for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E(ext) is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E(ext) applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ(B)) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E(ext). In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10(5) cm(2)/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E(ext). These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics. PMID:25005304

  14. Experimental study on the effect of applying a crossed magnetic field on the insulator flashover behavior in high vacuum

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, K.

    2015-09-01

    In this study, a possible method of reducing the flashover stress is achieved by the effect of an additional magnetic field in the transverse direction on the main applied electric field. The degree of vacuum used in this study was 5×10-5 Pa. The magnetic flux density B employed in this study extends from 4×10-3 to 24×10-3 T. From the results obtained throughout this work, the transverse magnetic field increases the flashover voltage and decreases the leakage current. The effect of the transverse magnetic field on the surface flashover of the dielectric solid in vacuum shows a marked dependence on the material and the thickness of the test specimen, the vacuum degree, the type of electric field (AC or DC) as well as the type of magnetic field (AC or DC).

  15. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  16. Nonlinear Raman forward scattering driven by a short laser pulse in a collisional transversely magnetized plasma with nonextensive distribution

    SciTech Connect

    Qiu, Hui-Bin; Song, Hai-Ying; Liu, Shi-Bing

    2015-09-15

    Nonlinear Raman forward scattering of an intense short laser pulse with a duration shorter than the plasma period propagating through a homogenous collisional nonextensive distributed plasma in the presence of a uniform magnetic field perpendicular to both the direction of propagation and electric vector of the radiation field is investigated theoretically when ponderomotive, relativistic, and collisional nonlinearities are taken into account. The governing equations for nonlinear wave in the context of nonextensive statistics are given, the nonextensive coupled equations describing the nonlinear Raman forward scattering instability are solved by the Fourier transformation method, and the growth rate of the nonlinear Raman forward scattering instability is obtained. The results in the case q → 1 are consistent with those in the framework of the Maxwellian distribution. It is found that the instability growth rate first decreases on increasing electron thermal velocity, minimizes at a critical thermal velocity, and then increases steeply; the critical temperature dependents on the nonextensive parameter, and the greater nonextensive parameter, correspond to the greater critical temperature; when the thermal velocity of electron is less than the critical speed, the instability growth rate is found to be enhanced as the nonextensive parameter increases; but when the thermal velocity is greater than the critical speed, the instability growth rate decreases on increasing the nonextensive parameter.

  17. Observing dynamics of chromatin fibers in Xenopus egg extracts by single DNA manipulation using a transverse magnetic tweezer setup

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Skoko, Dunja; Marko, John; Maresca, Tom; Heald, Rebecca

    2005-03-01

    We have studied assembly of chromatin on single DNAs using Xenopus egg extracts and a specially designed magnetic tweezer setup which generates controlled force in the focal plane of the objective, allowing us to visualize and measure DNA extension under a wide range of constant tensions. We found, in the absence of ATP, interphase extracts assembled nucleosomes against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations indicating our experiments were in mechano-chemical equilibrium. We found that the ATP-depleted reaction can do mechanical work of 27 kcal/mol per nucleosome, providing a measurement of the free energy difference between core histone octamers on and off DNA. Addition of ATP leads to highly dynamic behavior: time courses show processive runs of assembly and disassembly of not observed in the -ATP case, with forces of 2 pN leading to nearly complete fiber disassembly. Our study shows that ATP hydrolysis plays a major role in nucleosome rearrangement and removal, and suggests that chromatin in vivo may be subject to continual assembly and disassembly.

  18. Study of the secondary electron emission in the limit of low electron energies using Q-machine in transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Kaganovich, Igor; Demidov, Vladimir; Grabovskiy, Artiom

    2015-09-01

    The secondary electron emission (SEE) from surfaces plays an important role in plasma, accelerator and high power microwave applications. A recent study proposed that the SEE yield, which is ratio of secondary to primary electron fluxes, approaches unity in the limit of zero energy of incident electron. The high SEE has profound implications especially for plasma applications, including, for example, plasma thrusters for spacecraft propulsion and electric probes. High SEE at low electron energies may be caused by variety of surface effects. In specially cleaned metal surfaces numerous previous experimental studies of the secondary electron emission did not observed high SEE. This talk presents a technique for measurements of SEE yield in a low-pressure plasmas in the presence of transverse magnetic field. It is shown that for poly-crystal surfaces, the SEE yield can be indeed very high (~ 0.8) but still not approaching unity. This result is explained by additional reflection of primary electrons from a potential barrier near the poly-crystal surface. The contribution of electron reflection from the potential barrier and the surface has been identified and studied.

  19. Crossed-magnetic-field experiments on stacked second generation superconducting tapes: Reduction of the demagnetization effects

    NASA Astrophysics Data System (ADS)

    Baghdadi, M.; Ruiz, H. S.; Coombs, T. A.

    2014-06-01

    The crossed-magnetic-field effect on the demagnetization factor of stacked second generation (2G) high temperature superconducting tapes is presented. The superconducting sample was initially magnetized along the c-axis by the field cooling magnetization method and after achieving the magnetic relaxation of the sample, an extensive set of experimental measurements for different amplitudes of an applied ac magnetic field parallel to the ab-plane was performed. On the one hand, a striking reduction of the demagnetization factor compared with the reported values for superconducting bulks is reported. On the other hand, the demagnetization factor increases linearly with the amplitude of the ac transverse magnetic field confirming the universal linear behavior for the magnetic susceptibility predicted by Brandt [Phys. Rev. B 54, 4246 (1996)]. The study has been also pursued at different frequencies of the ac transverse magnetic field in order to determine the influence of this parameter on the demagnetization factor measurements. We report an even lower demagnetization factor as long as the frequency of the transverse magnetic field increases. Thus, the significant reduction on the demagnetization factor that we have found by using stacked 2G-superconducting tapes, with higher mechanical strength compared with the one of superconducting bulks, makes to this configuration a highly attractive candidate for the future development of more efficient high-power density rotating machines and strong magnet applications.

  20. The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii [rapid communication

    NASA Astrophysics Data System (ADS)

    Vahle, Carsten; Kontny, Agnes

    2005-09-01

    We applied the field dependence parameter χHd (%) = [( k300A/m - k30A/m) / k300A/m] × 100 given by de Wall for the subaerial and submarine basalts drilled by the 3109 m deep HSDP-2 borehole on Hawaii in order to verify the hypothesis that mainly composition controls the field dependence of AC susceptibility in titanomagnetite of natural occurrences. When we used this parameter, our data showed a significant scattering compared to data presented in earlier studies. In addition to composition, the effect of measurement temperature, grain size and anisotropy on the field dependent susceptibility were examined and found to be critical. The impact of grain size is weaker than the other effects. It cannot be totally excluded that the observed effects arise indirectly through an overlap of the other effects for the investigated basalts. The most important factor for the variation of field dependence is the degree of oxidation, causing a modification of the titanomagnetite composition or formation of titanomaghemite, and the mixing of Ti-rich with Ti-poor titanomagnetites, which strongly reduces the χHd parameter. Field dependence is not only related to titanomagnetite composition, especially for intermediate titanomagnetites with TCs between 100 and 300 °C. Temperature dependent susceptibility measurements at different field amplitudes for these intermediate types showed at constant geometry of the k( T) curve great differences in susceptibility, resulting in significant changes of the field dependence parameter over the temperature interval from - 100 to 260 °C. Therefore variations of the ambient measurement temperatures are able to influence the field dependence. The second important effect is the degree of particle shape and alignment, which controls the field dependence in different orientations especially for the intermediate titanomagnetite, which is intensively intergrown with elongated hemoilmenite grains. As a consequence, samples with higher degrees of

  1. Hysteretic Dependence of Magnetic Flux Density on Primary AC Current in Flat-Type Inductive Fault Current Limiter with YBCO Thin Film Discs

    NASA Astrophysics Data System (ADS)

    Harada, Masayuki; Yokomizu, Yasunobu; Matsumura, Toshiro

    2014-05-01

    This paper focuses on a flat-type inductive superconducting FCL (FIS-FCL) consisting of a pancake coil and a YBCO thin layer disc. AC current injection experiments and magnetic field analysis were carried out for two kinds of FIS-FCL, single-disc model and double-discs model. In the former, the pancake coil was putted on the YBCO disc. In the latter, the pancake coil was sandwiched with two YBCO discs. The double-discs model cancels out the magnetic flux density more effectively than the single-disc model. In the double-discs model, the superconducting state period is longer than in the single-disc model. Thus, it may be concluded that the double-discs model is considered to be suitable for FIS-FCL.

  2. Comparison of AC losses, magnetic field/current distributions and critical currents of superconducting circular pancake coils and infinitely long stacks using coated conductors

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Campbell, A. M.; Hong, Z.; Ainslie, M. D.; Coombs, T. A.

    2010-08-01

    A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.

  3. Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system

    NASA Astrophysics Data System (ADS)

    Linga Raju, T.; Neela Rao, B.

    2016-05-01

    An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.

  4. Measurements of the angular dependence of the nonlinear transverse magnetic moment of YBCO as a probe of the pairing-state symmetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anand

    The symmetry of the superconducting order parameter reflects the symmetries in the underlying mechanism of electron pairing, such as 's-wave ' symmetry for conventional BCS superconductors with a phonon mediated pairing mechanism. The High-Tc superconductors are widely believed to be unconventional, inasmuch the conventional BCS theory fails to describe their physical properties. Amongst the proposed theories for describing these novel superconductors, the leading candidate for the pairing state symmetry is dx2-y2 or 'd-wave'. This state has a lower symmetry than the underlying Fermi surface, has nodes where the order parameter changes sign and the gap goes to zero on the Fermi surface, with a finite density of states for the lowest lying excitations. In order to study the pairing symmetry, we have developed a technique that uses the nonlinear Meissner effect in the transverse magnetic moment (NLTM) as a probe of the low energy excitations, below 1 meV. The predictions for this effect are known from exact numerical calculations based on the ideas of Yip and Sauls. In this thesis, our experiment is motivated with a brief overview of the pairing state problem. Techniques for sample preparation as also the development of various instrumentation techniques to study the angular dependence of the NLTM are described, and the results of our experiments are presented. Our data on high quality single crystals of YBa2Cu3O6.95 support a minimum gap of 0.5--0.75 meV in the quasiparticle excitation spectrum at all points on the Fermi surface. This is contrary to pure ' d-wave' symmetry, but does not rule out gap functions with deep minima or 'quasinode'.

  5. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    PubMed

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc. PMID:24745226

  6. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values. PMID:11082591

  7. Hiding objects in AC magnetic fields of power grid frequency by two-shell ferromagnetic/superconducting cloak

    NASA Astrophysics Data System (ADS)

    Šouc, J.; Solovyov, M.; Gömöry, F.

    2016-07-01

    Performance of magnetic cloak made from commercially available materials has been tested by verifying its ability to suppress the magnetic signatures of metallic and ferromagnetic objects. The range of magnetic field amplitudes from 0.1 to 10 mT and frequencies around 50-60 Hz were used. The cloak combines the inner tube from high-temperature superconductor that should be cooled by liquid nitrogen, with the outer tube made from MnZn ferrite powder mixed in plastic matter. Superconductor is in the form of tapes wound in helical manner on a round former. Such design is promising when the objects with dimensions reaching several centimeters should be cloaked. Performance of the small model manufactured following this design was demonstrated by observing ˜20 times reduction of the magnetic signature of metallic or ferromagnetic objects.

  8. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  9. Observation of transverse spin freezing by TDPAC

    NASA Astrophysics Data System (ADS)

    Webb, T. A.; Ryan, D. H.

    2013-05-01

    We use 181Hf time-differential perturbed angular correlation (TDPAC) spectroscopy to investigate magnetic ordering in the bond-frustrated metallic glass: a - Fe91Hf9. We show that TDPAC can be used to observe the magnetic fluctuations that are associated with the freezing of transverse spin components at T xy .

  10. Transverse Mode Dynamics of VCSELs Undergoing Current Modulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind

    2000-01-01

    Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling

  11. Slow Relaxation of Magnetization in an Isostructural Series of Zinc-Lanthanide Complexes: An Integrated EPR and AC Susceptibility Study.

    PubMed

    Amjad, Asma; Madalan, Augustin M; Andruh, Marius; Caneschi, Andrea; Sorace, Lorenzo

    2016-08-26

    We report the synthesis, structure, and spectroscopic and dynamic magnetic properties of a series of heterodinuclear complexes, [ZnLn(LH4 )2 ](NO3 )3 ⋅6 H2 O (Ln=Nd, Tb, Dy, Ho, Er, and Yb), with the singly deprotonated form of a new compartmentalized Schiff-base ligand, LH5 . The Ln(III) ions in these systems show a distorted square-antiprism geometry with an LnO8 coordination sphere. EPR spectroscopy and DC magnetic studies have shown that the anisotropic nature of the complexes is far more complicated than predicted on the basis of a simple electrostatic model. Among the investigated systems, only the Dy(III) derivative showed single-ion magnet behavior, in zero and an applied magnetic field, both in pure polycrystalline samples and in a series of polycrystalline samples with different degrees of dilution at the single-crystal level in the isostructural Y(III) derivative. The rich dynamics observed as functions of frequency, field, and temperature reveals that multiple relaxation mechanisms are at play, resulting in a barrier of 189 cm(-1) , which is among the highest reported for a dinuclear Zn-Dy system. Analysis of the dynamic behavior as a function of dilution degree further evidenced the persistence of non-negligible intermolecular interactions, even at the lowest concentration of 1 %. PMID:27465998

  12. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  13. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

  14. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

  15. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS STUDY GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES,…

  16. A study on the steady-state solutions of a Bursian diode in the presence of transverse magnetic field, when the electrons of the injected beam are turned back partially or totally

    SciTech Connect

    Pramanik, Sourav; Chakrabarti, Nikhil

    2015-11-15

    The properties of a steady-state planar vacuum diode driven by a cold electron beam have been investigated in the presence of an external transverse magnetic field, employing both the Eulerian and the Lagrangian formalism. With the help of a numerical scheme, the features of the steady-state solutions have been explored in the Eulerian frame, particularly for the case that corresponds to the potential distributions with a virtual cathode. However, exact analytical formulae for the potential and velocity profiles within the inter-electrode region have been derived with the Lagrangian description. In contrast to the previous work [Phys. Plasmas 22, 042110 (2015)], here we have emphasized the situation when electrons are reflected back to the emitter by the magnetic field. Both partial and complete reflection of the electrons due to the magnetic field have been taken into account. Using the emitter electric field as a characteristic parameter, steady-state solutions have been evaluated for specific values of diode length, applied voltage, and magnetic field strength. It has been shown that, due to the inclusion of the magnetic field, a new region of non-unique solutions appears. An external magnetic field seems to have a profound effect in controlling fast electronic switches based on the Bursian diode.

  17. Heat capacity and magnetization of CoNb2O6 near quantum critical point

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Koohpayeh, Seyed; Krizan, Jason; Dutton, Sian; McQueen, Tyrel; Cava, Robert; Phuan Ong, N.

    2012-02-01

    CoNb2O6 is a quasi-1D quantum magnet in which magnetic Co^2+ ions are ferromagnetically arranged into nearly isolated chains along the c axis with the magnetic moment confined in the ac-plane. By applying transverse magnetic field along b-axis, quantum phase transition from magnetically ordered phase to paramagnetic phase occurs. Evidence for emergent E8 symmetry was recently obtained by neutron scattering near the quantum critical point (QCP) in an applied transverse magnetic field of 5.5 T We will report on experiments to investigate the behavior of the heat capacity and torque magnetization in the vicinity of the QCP and discuss their implications.

  18. Chiral dynamics and peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  19. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications

    PubMed Central

    Bordelon, David E.; Goldstein, Robert C.; Nemkov, Valentin S.; Kumar, Ananda; Jackowski, John K.; DeWeese, Theodore L.; Ivkov, Robert

    2014-01-01

    In this paper, we describe a modified solenoid coil that efficiently generates high amplitude alternating magnetic fields (AMF) having field uniformity (≤10%) within a 125-cm3 volume of interest. Two-dimensional finite element analysis (2D-FEA) was used to design a coil generating a targeted peak AMF amplitude along the coil axis of ~100 kA/m (peak-to-peak) at a frequency of 150 kHz while maintaining field uniformity to >90% of peak for a specified volume. This field uniformity was realized by forming the turns from cylindrical sections of copper plate and by adding flux concentrating rings to both ends of the coil. Following construction, the field profile along the axes of the coil was measured. An axial peak field value of 95.8 ± 0.4 kA/m was measured with 650 V applied to the coil and was consistent with the calculated results. The region of axial field uniformity, defined as the distance over which field ≥90% of peak, was also consistent with the simulated results. We describe the utility of such a device for calorimetric measurement of nanoparticle heating for cancer therapy and for magnetic fluid hyperthermia in small animal models of human cancer. PMID:25392562

  20. Transversal magnetoresistance in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Klier, J.; Gornyi, I. V.; Mirlin, A. D.

    2015-11-01

    We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H →0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.

  1. 2D magnetic nanoparticle imaging using magnetization response second harmonic

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi; Zhang, Yi

    2015-06-01

    A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field Hac/Hk is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of Gz=3.17 T/m transverse to the imaging bore and Gx=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm2 vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.

  2. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    SciTech Connect

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  3. Transverse gravity versus observations

    SciTech Connect

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  4. Transverse gravity versus observations

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂μξμ = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  5. Dynamic conductivity of ac-dc-driven graphene superlattice

    NASA Astrophysics Data System (ADS)

    Kukhar', E. I.; Kryuchkov, S. V.; Ionkina, E. S.

    2016-06-01

    The dynamic conductivity of graphene superlattice in the presence of ac electric field and dc electric field with longitudinal and transversal components with respect to superlattice axis was calculated. In the case of strong transversal component of dc field conductivity of graphene superlattice was shown to be such as if the electrons had got the effective mass. In the case of weak transversal component of dc field conductivity was shown to change its sign if the frequency of ac field was an integer multiple of half of Bloch frequency.

  6. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  7. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    NASA Astrophysics Data System (ADS)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  8. Transverse instability of dunes.

    PubMed

    Parteli, Eric J R; Andrade, José S; Herrmann, Hans J

    2011-10-28

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation. PMID:22107675

  9. Transverse Instability of Dunes

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2011-10-01

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.

  10. Ferrimagnetic behaviors in a transverse Ising nanoisland

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2016-05-01

    In this paper, the phase diagrams and magnetizations of a magnetic nanoisland described by the transverse Ising model (TIM) are investigated by the use of the effective-field theory (EFT) with correlations. A lot of characteristic behaviors observed in standard ferrimagnetic materials as well as novel phenomena have been obtained, although the system consists of two finite spin-1/2 layers coupled antiferromagnetically with a negative interlayer coupling.

  11. Electron in a transverse harmonic cavity

    SciTech Connect

    Honkanen, H.; Maris, P.; Vary, J.P.; Brodsky, S.J.; /SLAC

    2010-10-27

    We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.

  12. TRANSVERSE INSTABILITIES IN RHIC.

    SciTech Connect

    Blaskiewicz, M; Cameron, P; Catalan-Lasheras, N; Dawson, C; Degen, C; Drees, K; Fischer, W; Koropsak, E; Michnoff, R; Montag, C; Roser, T

    2003-05-12

    The beam quality in RHIC can be significantly impacted by a transverse instability which can occur just after transition [1]. Data characterizing the instability are presented and analyzed. Techniques for ameliorating the situation are considered.

  13. Transverse Schwarzschild field

    SciTech Connect

    Belinfante, F.J.

    1982-06-15

    For Schwarzschild's static spherically symmetric external field, a coordinate system is determined in which the metric field is the transverse field satisfying the coordinate conditions of Arnowitt, Deser, and Misner.

  14. Study of the effects of a transverse magnetic field on radio frequency argon discharges by two-dimensional particle-in-cell-Monte-Carlo collision simulations

    SciTech Connect

    Fan, Yu; Zou, Ying; Sun, Jizhong; Wang, Dezhen; Stirner, Thomas

    2013-10-15

    The influence of an applied magnetic field on plasma-related devices has a wide range of applications. Its effects on a plasma have been studied for years; however, there are still many issues that are not understood well. This paper reports a detailed kinetic study with the two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo collision method on the role of E×B drift in a capacitive argon discharge, similar to the experiment of You et al.[Thin Solid Films 519, 6981 (2011)]. The parameters chosen in the present study for the external magnetic field are in a range common to many applications. Two basic configurations of the magnetic field are analyzed in detail: the magnetic field direction parallel to the electrode with or without a gradient. With an extensive parametric study, we give detailed influences of the drift on the collective behaviors of the plasma along a two-dimensional domain, which cannot be represented by a 1 spatial and 3 velocity dimensions model. By analyzing the results of the simulations, the occurring collisionless heating mechanism is explained well.

  15. Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Caloz, Christophe

    2016-08-01

    We present a magnetically biased graphene-ferrite structure discriminating the transverse electric (TE) and transverse magnetic (TM) plasmonic modes of graphene. In this structure, the graphene TM plasmons interact reciprocally with the structure. In contrast, the graphene TE plasmons exhibit nonreciprocity. This nonreciprocity is manifested in unidirectional TE propagation in a frequency band close to the interband threshold frequency. The proposed structure provides a unique platform for the experimental demonstration of the unusual existence of the TE plasmonic mode in graphene.

  16. Transverse colon conduit diversion

    SciTech Connect

    Schmidt, J.D.; Buchsbaum, H.J.

    1986-05-01

    The versatility and other advantages of the transverse colon conduit for urinary diversion have been described and implemented in 50 patients. Because most patients considered for this procedure will be at high risk because of a history of significant pelvic irradiation, underlying malignancy, poor renal function, fistula, and so forth, the technical details of surgery and patient selection cannot be minimized. The transverse colon segment is indicated for primary supravesical diversion as well as for salvage of problems related to ileal conduits. Adenocarcinoma of the colon is an unlikely long-term complication of this form of diversion because the fecal stream is absent. Now that the transverse colon conduit has been used for more than 10 years, meaningful comparisons with ileal segments should soon be available.

  17. Investigation of magnetic spin glass property in La{sub 0.5}Bi{sub 0.5}MnO{sub 3} sample using non-linear AC susceptibility measurements

    SciTech Connect

    Kumar, Punith V. Manju, M. R. Dayal, Vijaylakshmi

    2014-04-24

    We present a comprehensive study on origin of Spin Glass (SG) property in polycrystalline La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite oxide using linear and higher order ac susceptibility (χ) measurements. The third order harmonic susceptibility (χ{sub 3}) vs. temperature (K) with varying magnetic fields from 0.95 to 9.45 Oe and the divergence in their χ{sub 3} (max) allows us to infer the SG behavior occurring in the sample possibly due to co-operative freezing of the spins.

  18. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  19. Mixed convection flow along a vertical permeable plate embedded in a porous medium in the presence of a transverse magnetic field

    SciTech Connect

    Chamkha, A.J.

    1998-07-01

    Continuum boundary layer equations are derived for governing steady, laminar, hydromagnetic, mixed convection flow along a vertical semi-infinite permeable plate maintained at constant heat flux and embedded in a uniform porous medium with heat generation and magnetic dissipation. A mixed-convection parameter covering the entire range from pure forced convection to pure free convection is introduced. The governing equations are transformed using a non-similarity transformation and solved numerically by an implicit finite difference method. Typical results for the skin friction coefficient and the wall heat transfer are presented and discussed for various parametric conditions. The investigation of forced, mixed, and free convection heat transfer from surfaces embedded in porous media has received considerable attention in view of its importance in the petroleum industries, filtration, heat exchanger design, thermal insulation, chemical catalytic reactors, burying of drums containing heat-generating chemicals in the earth, and underground spread of pollutants.

  20. Numerical investigations and analysis on the effects of geometrical parameters on the group velocity of transverse magnetic pump mode and free electron laser instability

    SciTech Connect

    Sharma, B. S.; Jaiman, N. K.

    2009-02-15

    In this paper, we have numerically investigated the effects of various geometrical parameters of a backward wave oscillator, filled with a magnetized plasma of uniform density and driven by a mild relativistic solid electron beam, on the instability growth rate R{sub 0} of a seeded free electron laser. On changing mean radius corrugation amplitude h and corrugation period z{sub 0} of backward wave oscillator; the ponderomotive potential of space charge wave changes. This in turn, changes the coupling strength of TM mode with negative beam space charge mode and hence the growth rate of parametric instability of free electron laser. A dispersion relation is derived and numerically solved for various geometrical parameters of backward wave oscillator and beam profile. A relation for {Gamma} is also derived and computed numerically. The instability growth scales directly to the square root of beam density and inversely as seven power of relativistic gamma factor {gamma}{sub 0}.

  1. Deconstructed transverse mass variables

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; Walker, Devin G. E.

    2015-04-01

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.

  2. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  3. Unsteady Two-Layered Fluid Flow and Heat Transfer of Conducting Fluids in a Channel Between Parallel Porous Plates Under Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Raju, T. Linga; Nagavalli, M.

    2013-08-01

    The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  4. Temperature evolution of superparamagnetic clusters in single-crystal La0.85Sr0.15CoO3 characterized by nonlinear magnetic ac response and neutron depolarization

    NASA Astrophysics Data System (ADS)

    Lazuta, A. V.; Ryzhov, V. A.; Runov, V. V.; Khavronin, V. P.; Deriglazov, V. V.

    2015-07-01

    The representative measurements of the second harmonic in ac magnetization complemented by neutron depolarization have been performed for single-crystal La0.85Sr0.15CoO3 in the temperature range 97 KMagnetic, geometrical, and dynamical parameters of the FMC system have been evaluated in the temperature range T <140 K, where superparamagnetic regime installs, by means of the formalism involving the Fokker-Planck equation. With lowering the temperature, the amount of clusters fraction, the cluster size, and magnetic moment along with its diffusion relaxation time strongly increase, each in its own temperature interval. Below 130 K, FMC contribute essentially to the total linear magnetic susceptibility. The damping factor of the order 10-1 proves the importance of precession in thermal relaxation of the cluster magnetic moment. The FMC are a precursor of long-range ferromagnetic correlations seen below 100 K with neutron-scattering techniques.

  5. Transverse acousto-electric effect in superconductors

    NASA Astrophysics Data System (ADS)

    Lipavský, P.; Koláček, J.; Lin, P.-J.

    2016-06-01

    We formulate a theory based on the time-dependent Ginzburg-Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman-Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  6. Characteristics of transverse waves in chromospheric mottles

    SciTech Connect

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Verth, G.; Erdélyi, R.; Morton, R. J.; Christian, D. J.

    2013-12-10

    Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ∼2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ∼280 ± 80 km.

  7. Partonic Transverse Momentum Distributions

    SciTech Connect

    Rossi, Patrizia

    2010-08-04

    In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.

  8. [Ettore Majoran's transversal epistemology].

    PubMed

    Bontems, Vincent

    2013-01-01

    « Il valore delle leggi statistiche nella fisica e nelle scienze sociali » is Ettore Majorana's only work on science. It offers a critique of classical determinism, establishing an analogy between the laws of quantum mechanics and social science and arguing that both are intrinsically linked to probability. This article first studies this argument from the standpoing of metaphysics, physics, and sociology, and then assesses the significance of this transversal epistemology. PMID:23636783

  9. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    SciTech Connect

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  10. AC losses and heat removal in three-dimensional winding pack of Samsung superconducting test facility under pulsed magnetic field operation

    NASA Astrophysics Data System (ADS)

    Wang, Qiuliang; Seong Yoon, Cheon; Baang, Sungkeun; Kim, Myungkyu; Park, Hyunki; Kim, Yongjin; Lee, Sangil; Kim, Keeman

    2001-04-01

    The Samsung superconducting test facility (SSTF) will be operated under the highly pulsed field to simulate the operating conditions of KSTAR. An analysis has been performed to study the transient heat removal characteristics and temperature margin for the main, blip and compensating coils in the SSTF. This method is based on a quasi-three-dimensional model, which the thermal coupling of turn-to-turn, pancake-to-pancake and channel-to-channel is taken into account, to simulate the conductor temperature rise and the thermal expansion of supercritical helium due to the high AC losses under the pulsed field. The local AC losses, which include coupling loss, eddy current loss and hysteresis loss in the cable-in-conduit conductor, are estimated. The temperature margin, mass flow rate, distribution of AC losses are studied under the given operating scenario. The mass flow reduction and peak temperature rise depending on the inlet pressure and inlet position of CICC are studied. It is shown that the initial mass flow rate remarkably influences on the peak temperature of superconducting strands. The large mass flow rate can reduce the temperature rise when the inlet of helium is located at the high field region. By contrast, because of heat induced flow to improve the cooling condition of the superconducting strands, the small initial mass flow rate results in the low peak temperature in strands when the inlet of helium is located at the low field region.

  11. An antiferromagnetic transverse Ising nanoisland; unconventional surface effects

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-12-01

    The phase diagrams and temperature dependences of magnetizations in a transverse Ising nanosisland with an antiferromagnetic spin configuration are studied by the use of the effective-field theory with correlations (EFT). Some novel features, such as the re-entrant phenomena with two compensation points being free from disorder induced frustration, are obtained for the magnetic properties in the system.

  12. Neutron Transversity at Jefferson Lab

    SciTech Connect

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  13. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  14. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURE AND AC MAGNETIC PROPERTIES OF Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1.0, 1.5, 2.0) NANOCRYSTALLINE SOFT MAGNETIC ALLOYS

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.

  15. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  16. First order tune shift calculations for transverse betatron dynamics

    SciTech Connect

    Garavaglia, T.

    1991-09-01

    An effective Hamiltonian, with non-linear magnetic multipole terms and momentum dispersion contributions, is used to obtain the first order tune-shift results for transverse betatron motion for protons in the Superconducting Super Collider (SSC). This Hamiltonian is represented in terms of action angle variables, and analytical results are obtained using symbolic algebra methods. Mathematical derivations of the transverse multipole expansion and of the transverse betatron equations, using an invariant action and curvilinear coordinates, are given in the appendices. Numerical and graphical tune-space results are given that illustrate the dependence of tune-shifts on injection amplitude and momentum spread. 10 refs., 7 figs.

  17. Broadband gold nanoantennas arrays with transverse dimension effects.

    PubMed

    Su, Chen-Wei; Chen, Kuo-Ping

    2016-08-01

    Broadband resonance in gold paired-rods nanoantennas and paired-strips gratings is investigated when the nanostructure's transverse (non-polarization) dimension is changed from paired-rods to paired-strips. Increasing the transverse dimension blue shifts the resonance wavelength and widens its bandwidth due to cancellation of the magnetic field between nanoantennas. A derived resistor-inductor-capacitor (RLC) equivalent circuit model verifies the nanostructures' resonance when elongating the transverse dimensions. Paired-strips gratings have a bandwidth 2.04 times that of paired-rods nanoantennas. PMID:27505744

  18. Local transport in multi-filamentary superconductors: longitudinal versus transverse dissipation

    NASA Astrophysics Data System (ADS)

    Borroto, A.; Del Rio, L.; Altshuler, E.; Arronte, M.; Mikheenko, P.; Qviller, A.; Johansen, T. H.

    2013-11-01

    Little is known on the electrical properties of superconducting tapes and coatings in the direction transverse to the long dimension of the composite. However, transverse dissipation can eventually determine the fate of a transmission line in the case of failure due to the presence of transversal cracks, and is also crucial in the AC regime. In this paper we present a detailed experimental study of the electrical transport properties along the transverse direction of Bi2Sr2Ca2Cu3O10+x-Ag tapes, and compare them with those measured along the long axis of the material. We study in detail the influence of the tape’s microstructure on electrical properties along both directions by using sliding electrodes. Our measurements suggest that there is always dissipation in the transverse direction for any value of the current. We also demonstrate that the local dissipation in the transverse direction has a nontrivial correlation with the local density of superconducting filaments.

  19. Transverse Compression of Tendons.

    PubMed

    Samuel Salisbury, S T; Paul Buckley, C; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  20. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Onar, Omer C

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  1. The application of Halbach cylinders to brushless ac servo motors

    SciTech Connect

    Atallah, K.; Howe, D.

    1998-07-01

    Halbach cylinders are applied to brushless ac servo motors. It is shown that a sinusoidal back-emf waveform and a low cogging torque can be achieved without recourse to conventional design features such as distributed windings and/or stator/rotor skew. A technique for imparting a multipole Halbach magnetization distribution on an isotropic permanent magnet cylinder is described, and it is shown that the torque capability of a Halbach ac servo motor can be up to 33% higher than conventional brushless permanent magnet ac motors.

  2. Critical field measurements in superconductors using ac inductive techniques

    NASA Astrophysics Data System (ADS)

    Campbell, S. A.; Ketterson, J. B.; Crabtree, G. W.

    1983-09-01

    The ac in-phase and out-of-phase response of type II superconductors is discussed in terms of dc magnetization curves. Hysteresis in the dc magnetization is shown to lead to a dependence of the ac response on the rate at which an external field is swept. This effect allows both Hc1 and Hc2 to be measured by ac techniques. A relatively simple mutual inductance bridge for making such measurements is described in the text, and factors affecting bridge sensitivity are discussed in the Appendix. Data for the magnetic superconductor ErRh4B4 obtained using this bridge are reported.

  3. Strong Transverse Coupling in the Tevatron

    NASA Astrophysics Data System (ADS)

    Syphers, Michael

    2004-05-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A distributed zeroth harmonic skew quadrupole circuit has traditionally been used to correct for transverse coupling, and the strength required of this circuit has increased since 1983 by more than an order of magnitude. In recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling has become evident, often encumbering routine operation. In February 2003 it was discovered that the superconducting coils within the main bending magnets of the Tevatron had become vertically displaced within their iron yokes relative to their measured positions in the early 1980's during construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. Beam observations, explanations, and remedial measures are presented.

  4. Kinetic theory for electrostatic waves due to transverse velocity shears

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.

    1988-01-01

    A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.

  5. Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2 laminates for AC/DC magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Reis, S.; Silva, M. P.; Castro, N.; Correia, V.; Gutierrez, J.; Lasheras, A.; Lanceros-Mendez, S.; Martins, P.

    2016-05-01

    The anisotropic magnetoelectric (ME) effect on a Fe61.6Co16.4Si10.8B11.2/PVDF Fe61.6Co16.4Si10.8B11.2 laminate composite has been used for the development of a magnetic field sensor able to detect both the magnitude and direction of AC and DC magnetic fields. The accuracy (99% for both AC and DC sensors), linearity (92% for the DC sensor and 99% for the AC sensor) and reproducibility (99% for both sensors) indicate the suitability of the sensor for applications. Furthermore, the sensitivity of the Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2 anisotropic magnetic sensor—15 and 1400 mV Oe‑1 for the DC and AC fields, respectively—are the highest reported in the literature for polymer-based ME materials. Such features, combined with its flexibility, versatility, light weight, low cost and low-temperature fabrication, lead to the suitability of the developed sensor for use in magnetic sensor applications.

  6. Transverse Spin Effects at COMPASS

    SciTech Connect

    Wollny, H.

    2009-08-04

    The measurement of transverse spin effects in semi-inclusive deep-inelastic scattering (SIDIS) is an important part of the COMPASS physics program. In the years 2002-2004 data was taken by scattering a 160 GeV/c muon beam off a transversely polarized deuteron target. In 2007, additional data was collected on a transversely polarized proton target. New preliminary results for the Collins and Sivers asymmetries from the analysis of the proton data are presented.

  7. Pediatric transverse myelitis.

    PubMed

    Absoud, Michael; Greenberg, Benjamin M; Lim, Ming; Lotze, Tim; Thomas, Terrence; Deiva, Kumaran

    2016-08-30

    Pediatric acute transverse myelitis (ATM) is an immune-mediated CNS disorder and contributes to 20% of children experiencing a first acquired demyelinating syndrome (ADS). ATM must be differentiated from other presentations of myelopathy and may be the first presentation of relapsing ADS such as neuromyelitis optica (NMO) or multiple sclerosis (MS). The tenets of the diagnostic criteria for ATM established by the Transverse Myelitis Consortium Working Group can generally be applied in children; however, a clear sensory level may not be evident in some. MRI lesions are often centrally located with high T2 signal intensity involving gray and neighboring white matter. Longitudinally extensive ATM occurs in the majority. Asymptomatic lesions on brain MRI are seen in more than one-third and predict MS or NMO. The role of antibodies such as myelin oligodendrocyte glycoprotein in monophasic and relapsing ATM and their significance in therapeutic approaches remain unclear. ATM is a potentially devastating condition with variable outcome and presents significant cumulative demands on health and social care resources. Children generally have a better outcome than adults, with one-half making a complete recovery by 2 years. There is need for standardization of clinical assessment and investigation protocols to enable international collaborative studies to delineate prognostic factors for disability and relapse. There are no robust controlled trials in children or adults to inform optimal treatment of ATM, with one study currently open to recruitment. This review provides an overview of current knowledge of clinical features, investigative workup, pathogenesis, and management of ATM and suggests future directions. PMID:27572861

  8. Spin Hall Effect and Irreversible Thermodynamics; Center-to-Edge Transverse Current-Induced Voltage

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne

    2015-03-01

    For the first time the Dyakonov and Perel theory of the Spin Hall Effect (SHE) is examined from the viewpoint of irreversible thermodynamics, which is significantly more constraining than the symmetry arguments of pure phenomenology. As thermodynamic driving forces we include the thermal gradient, the gradient of the electrochemical potential (rather than the potential gradient and density gradient separately), and the ``internal'' magnetic field that is thermodynamically conjugate to the magnetization. In turn, we obtain the form of bulk transport coefficients relating the fluxes to the thermodynamic forces. Relative to Dyakonov and Perel, in addition to the new terms due to thermal gradients, the Onsager relations require three new (non-linear) terms in the current density, and minor revisions in the current density and spin current density. For a longitudinal current along a strip, the center-to-edge transverse voltage difference, due both to the - β P --> × E --> term of the number current density q --> and to one of the new current density terms, is determined. An ac capacitative probe likely would not significantly disturb this effect. We estimate a ΔV⊥ as large as 10-4 V for GaAs, but only 10-8 V for Pt. This work was performed while a guest of the Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD, 20878.

  9. Change in the microhardness of nonmagnetic crystals after their exposure to the Earth's magnetic field and AC pump field in the EPR scheme

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2012-02-01

    Changes in the microhardness of ZnO, triglycine sulfate (TGS), and potassium acid phthalate (KAP) crystals after their exposure to crossed ultralow magnetic fields, i.e., the Earth's field B Earth ≈ 50 μT and the alternating-current field tilde B ≈ 3 μ T orthogonal to it, have been revealed. In ZnO crystals, the microhardness increases, whereas in TGS and KAP, it decreases. A maximum change (10-15%) is reached within 1-3 h after magnetic treatment; then, the microhardness gradually recovers to its initial value for the first day. After a sufficient pause, the effect is completely reproduced under the same conditions. The resonant frequency of the pump field tilde B corresponds to the EPR condition with a g-factor close to two. The magnetic memory exhibits a strong anisotropy: for each of the crystals, a direction is found, which, being coincident with the Earth's magnetic field vector B Earth, causes complete or partial suppression of the effect. In ZnO and TGS crystals, these are symmetry axes 6 and 2, respectively. In the KAP crystal, it is the direction in the cleavage plane orthogonal the 2 axis. Possible physical mechanisms of the observed phenomena have been discussed.

  10. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  11. Ferrimagnetism in a transverse Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2016-05-01

    The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.

  12. Coupled transverse motion

    SciTech Connect

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  13. Kinesthetic Transverse Wave Demonstration

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  14. Coronal seismology using transverse loop oscillations

    NASA Astrophysics Data System (ADS)

    Verwichte, E.; Foullon, C.; Van Doorsselaere, T.; Smith, H. M.; Nakariakov, V. M.

    2009-12-01

    Coronal seismology exploits the properties of magnetohydrodynamics in the corona of the Sun to diagnose the local plasma. Therefore, seismology complements direct diagnostic techniques, which suffer from line-of-sight integration or may not give access to all physical quantities. In particular, the seismological exploitation of fast magnetoacoustic oscillations in coronal loops provides information about the global magnetic and density structuring of those loops acting as wave guides. From the oscillation period and damping time it is shown how to obtain information about the local coronal magnetic field as well as the longitudinal and transverse structuring. Furthermore, such studies motivate the development of coronal wave theories, which are also relevant to the coronal heating problem.

  15. Transverse Spin Physics at HERMES

    SciTech Connect

    Marco, Contalbrigo

    2009-08-04

    HERMES results on azimuthal single-spin asymmetries in semi-inclusive leptoproduction of pions and charged kaons from a transversely polarised hydrogen target are presented. Preliminary results for both Collins and Sivers Fourier amplitudes are extracted with a much higher statistical significance than the evidence firstly published by HERMES for charged pions in 2005. The first evidence for a correlation between the transverse target polarization and the azimuthal orientation of the plane containing a pair of produced pions is also observed. It is expected to be related to the product of the transversity and an as-yet unmeasured dihadron fragmentation function.

  16. Optimization of spin-torque switching using AC and DC pulses

    SciTech Connect

    Dunn, Tom; Kamenev, Alex

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  17. A Precision Measurement of the Transverse Asymmetry A{sub T} from Quasi-elastic {sup 3}He(e,e') process, and the Neutron Magnetic Form Factor GNM at low Q{sup 2}

    SciTech Connect

    Wang Xu

    2002-06-01

    Electromagnetic form factors are fundamental quantities in describing the underlying electromagnetic structure of nucleons. While proton electromagnetic form factors have been determined with good precision, neutron form factors are known poorly, largely due to the lack of free neutron targets. Jefferson Lab Hall A experiment E95-001, a ''precise measurement of the transverse asymmetry A{sub T}' from the quasielastic {sup 3}He(e, e') process,'' was therefore designed to determine precisely the neutron magnetic form factor, G{sub M}{sup n} at low momentum transfer values and was successfully completed in Spring 1999. High precision A{sub T}'data in the quasi-elastic region at Q{sup 2} values of 0.1 to 0.6 (GeV/c){sup 2} were obtained using a high-pressure spin-exchange optically-pumped polarized {sup 3}He gas target with an average polarization of 30%, a longitudinally polarized e{sup -} beam, and two High Resolution Spectrometers: HRSe and HRSh. HRSe was employed to detect scattered electrons from the quasi-elastic kinematic region, and HRSh was employed as a elastic polarimetry to monitor the product of the beam and target polarizations. The extraction of form factors is usually model-dependent. Significant constraints on theoretical calculations are provided bu additional high precision quasi-elastic asymmetry data at Q{sup 2} values of 0.1 and 0.2 (GeV/c){sup 2} in {sup 3}He breakup region, where effects of final state interactions (FSI) and meson exchange currents (MEC) are expected to be large [71]. G{sub M}{sup n} is extracted from a non-relativistic Faddeev calculation which includes both FSI and MEC at Q{sup 2} values of 0.1 and 0.2 (GeV/c){sup 2}. The uncertainties of G{sub M}{sup n} at these Q{sup 2} values are comparable to those of recent experiments with deuterium targets [58]. At the higher Q{sup 2} values from this experiment, G{sub M}{sup n} is extracted from Plane-Wave Impulsive Approximation (PWIA) calculations with a relatively large theoretical

  18. Transverse cable stiffness and mechanical losses associated with load cycles in ITER Nb3Sn and NbTi CICCs

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; Ilyin, Y.

    2009-05-01

    The flexible nature of the cable bundles in the sizeable cable-in-conduit-conductors for ITER containing more than a thousand strands, in combination with a void fraction of around 30%, gives scope for significant cable compression and strand deflection. In particular, the transverse stiffness of the Nb3Sn type of cabled superconductors, being subjected to large electromagnetic forces, is critical for their long-term performance considering the impact of the strain variation on the transport properties. What is more, the compression of the cable bundle under load and the permanent deformation and relaxation in time or that associated with quenches, have an effect on the cooling and pressure drop along the turns of the windings and are valuable to account for in large magnets such as for ITER. The electromagnetic AC losses of ITER Nb3Sn and NbTi CICCs, related to changing magnetic field and in this manner important for their stability, were broadly studied and reported but the associated mechanical losses have received less attention so far. The lifetime characteristics in terms of cable compression, changes in transverse stiffness and mechanical losses are experimentally determined on several prototype ITER NbTi and Nb3Sn conductors in the Twente press and a summary of the results is given. The nonlinear stress-strain characteristics of the cable bundle and its moderate time-dependent nature can be considered as a viscoelastic-plastic phenomenon. The evolution of the stiffness and the mechanical loss depends on the peak load, void fraction, strand type and strand coating and changes with the number of load cycles. The dissipated heat from mechanical energy is not a critical issue for ITER magnet operation but is not negligible, in particular in the case of NbTi conductors.

  19. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  20. Estimation of objects transverse parameters in off-axis and in-line Fresnel digital holography

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-05-01

    In this report transverse parameters of objects registered with inline and off-axis Fresnel digital holography schemes were estimated: maximum transverse dimensions of objects, size and quantity of object resolution elements. By determining allowed locations of diffraction orders under reconstruction, new expressions for estimation of objects transverse parameters were obtained. In case of off-axis holography it is desirable that object should not overlap with zero-order and twin images. If object and twin images are located on opposite sides relative to zero-order under reconstruction, this is case of preventing of cyclic shift of twin image (PCS). If twin image is located on both sides relative to zero-order under reconstruction but don't overlap with object image, this is case of assumption of cyclic shift of twin image (ACS). ACS case allows to register digital holograms of larger objects compared to PCS case. However, for example, for automatic image processing, separate display of object and twin images relative to zero-order is often required. It was found that ACS case allows to register holograms with distance between the object and hologram 1.5 times lesser than in PCS case. And maximum transverse dimension of object in ACS case is always greater than in PCS case by the half of hologram size. For verification of obtained estimates, off-axis digital Fresnel holograms with 2048x2048 pixels were optically registered. Contour images located behind static scatter were used as objects. Confirmations on transverse object parameters estimates, satisfying ACS and PCS cases, were derived. These results demonstrate correctness of obtained quantitative estimates.

  1. A Magnetic Paradox

    ERIC Educational Resources Information Center

    Arndt, Ebe

    2006-01-01

    Two recent articles in this journal described how an air core solenoid connected to an ac power source may restore the magnetization of a bar magnet with an alternating magnetic field (see Figs. 1 and 2). Although we are quite accustomed to using a constant magnetic field in an air core solenoid to remagnetize a ferromagnet, it is puzzling that we…

  2. Novel itinerant transverse spin waves

    NASA Astrophysics Data System (ADS)

    Feldmann, John Delaney

    In 1956, Lev Davidovich Landau put forth his theory on systems of interacting fermions, or fermi liquids. A year later, Viktor Pavlovich Silin described spin waves that such a system of fermions would support. The treatment of the contribution of the molecular field to the spin wave dispersion was a novel aspect of these spin waves. Silin predicted that there would exist a hierarchy of spin waves in a fermi liquid, one for each component of the spherical harmonic expansion of the fermi surface. In 1968, Anthony J. Leggett and Michael J. Rice derived from fermi liquid theory how the behavior of the spin diffusion coefficient of a fermi liquid could be directly experimentally observable via the spin echo effect [24]. Their prediction, that the diffusion coefficient of a fermi liquid would not decay exponentially with temperature, but rather would have a maximum at some non-zero temperature, was a direct consequence of the fermi liquid molecular field and spin wave phenomena, and this was corroborated by experiment in 1971 by Corruccini, et al. [13]. A parallel advancement in the theory of fermi liquid spin waves came with the extension of the theory to describe weak ferromagnetic metals. In 1959, Alexei Abrikosov and I. E. Dzyaloshiski put forth a theoretical description of a ferromagnetic fermi liquid [1]. In 2001, Kevin Bedell and Krastan Blagoev showed that a non-trivial contribution to the dispersion of the ferromagnetic current spin wave arises from the necessary consideration of higher harmonic moments in the distortion of the fermi surface from its ground state [8]. In the chapters to follow, the author presents new results for transverse spin waves in a fermi liquid, which arise from a novel ground state of a fermi liquid-one in which an l = 1 harmonic distortion exists in the ground state polarization. It is shown that such an instability can lead to spin waves with dispersions that are characterized by a linear dependence on the wave number at long

  3. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  4. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  5. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    SciTech Connect

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  6. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  7. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  8. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  9. Limitation of linear colliders from transverse rf deflections

    SciTech Connect

    Seeman, J.T.

    1987-01-01

    Offaxis beam trajectories in a linear collider produce transverse wakefield and chromatic effects which cause emittance enlargement. One cause for non-centered trajectories in the accelerating structures is radial rf fields which produce transverse deflections. Static deflections can be compensated by static dipole magnetic fields. However, fluctuations of the rf fields cause variations in the deflections which must be managed or limited. Given the level of fluctuation of the phase and amplitude of an rf system, a limit on the allowable rf deflection can be calculated. Parameters, such as the beam emittance, lattice design, rf wavelength and the initial and final beam energies, influence the tolerances. Two tolerances are calculated: (1) one assumes that the wakefields are completely controlled, and that chromatic effects are the only enlarging mechanism (optimistic), and (2) the other assumes the limit is due to transverse wakefields without the aid of Landau damping (pessimistic).

  10. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  11. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  12. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  13. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  14. Evidence for magnetic clusters in Ni1-xVx close to the quantum critical concentration

    NASA Astrophysics Data System (ADS)

    Wang, R.; Ubaid-Kassis, S.; Schroeder, A.; Baker, P. J.; Pratt, F. L.; Blundell, S. J.; Lancaster, T.; Franke, I.; Möller, J. S.; Vojta, T.

    2015-03-01

    The d-metal alloy Ni1-xVx undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration x is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc ~ 11.6 % at which the onset of ferromagnetic order is suppressed to zero temperature. Below xc, the muon data reveal a broad magnetic field distribution indicative of a long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase boundary in this disordered itinerant system as an important generic ingredient of a disordered quantum phase transition. In contrast, the temperature dependence of the magnetic susceptibility above xc is best described in terms of a magnetic quantum Griffiths phase with a power-law distribution of fluctuation rates of dynamic magnetic clusters. At the lowest temperatures, the onset of a short-range ordered cluster-glass phase is recognized by an increase in the muon depolarization in transverse fields and maxima in ac-susceptibility.

  15. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  16. A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-11-01

    The phase diagrams and the temperature dependences of magnetizations in a transverse Ising nanowire with an antiferromagnetic spin configuration are investigated by the use of the effective-field theory with correlations (EFT) and the core-shell concept. Many characteristic and unexpected behaviors are found for them, especially for thermal variation of total magnetization mT. The reentrant phenomenon induced by a transverse field in the core, the appearance of a compensation point, the non-monotonic variation with a compensation point, the reentrant phenomena with a compensation point and the existence of both a broad maximum and a compensation point have been found in the thermal variations of mT.

  17. Transverse coupling property of beam from ECR ion sources

    SciTech Connect

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  18. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  20. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  1. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  2. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  3. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  4. Total AC loss study of 2G HTS coils for fully HTS machine applications

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yuan, Weijia; Kvitkovic, Jozef; Pamidi, Sastry

    2015-11-01

    The application of HTS coils for fully HTS machines has become a new research focus. In the stator of an electrical machine, HTS coils are subjected to a combination of an AC applied current and AC external magnetic field. There is a phase shift between the AC current and AC magnetic field. In order to understand and estimate the total AC loss of HTS coils for electrical machines, we designed and performed a calorimetric measurement for a 2G HTS racetrack coil. Our measurement indicates that the total AC loss is greatly influenced by the phase shift between the applied current and the external magnetic field when the magnetic field is perpendicular to the tape surface. When the applied current and the external magnetic field are in phase, the total AC loss is the highest. When there is a 90 degree phase difference, the total AC loss is the lowest. In order to explain this phenomenon, we employ H formulation and finite element method to model the 2G HTS racetrack coil. Our calculation agrees well with experimental measurements. Two parameters are defined to describe the modulation of the total AC loss in terms of phase difference. The calculation further reveals that the influence of phase difference varies with magnetic field direction. The greatest influence of phase difference is in the perpendicular direction. The study provides key information for large-scale 2G HTS applications, e.g. fully HTS machines and superconducting magnetic energy storage, where the total AC loss subjected to both applied currents and external magnetic fields is a critical parameter for the design.

  5. Transverse spin effects at COMPASS

    SciTech Connect

    Pesaro, G.

    2009-03-23

    The COMPASS experiment at the CERN SPS has a broad physics program focused on the nucleon spin structure and on hadron spectroscopy, using both muon and hadron beams. One of the main objectives for the spin program with the muon beam is the measurement of transverse spin effects in semi inclusive deep inelastic scattering. A longitudinally polarized 160 GeV/c muon beam is impinging on a transversely polarized target: from 2002 to 2004 a {sup 6}LiD(deuteron) target has been used, while during 2007 data taking a NH{sub 3}(proton) target was put in place. All measured transverse asymmetries on deuteron have been found to be small, and compatible with zero, within the few percent statistical errors. These results, which are currently used as input for global fits, can be interpreted as cancellation between u and d quark contribution in the deuteron. The first results for the Collins and Sivers asymmetries for charged hadrons from the 2007 proton COMPASS data are also presented and discussed.

  6. A transverse Ising bilayer film with an antiferromagnetic spin configuration

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-10-01

    The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.

  7. Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications

    NASA Astrophysics Data System (ADS)

    García, Helbert; Jiménez, Giovanny

    2016-08-01

    We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.

  8. QCD Evolution of Helicity and Transversity TMDs

    SciTech Connect

    Prokudin, Alexei

    2014-01-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  9. Transversity distribution functions in the valon model

    NASA Astrophysics Data System (ADS)

    Alizadeh Yazdi, Z.; Taghavi-Shahri, F.; Arash, F.; Zomorrodian, M. E.

    2014-05-01

    We use the valon model to calculate the transversity distribution functions inside the nucleon. Transversity distributions indicate the probability to find partons with spin aligned (antialigned) to the transversely polarized nucleon. The results are in good agreement with all available experimental data and also global fits.

  10. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  11. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  12. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by

  13. Transverse Force on Quarks in DIS

    SciTech Connect

    Burkardt, Matthias

    2009-01-01

    The $x^2$-moment of the twist-3 polarized parton distribution $g_2(x)$ is related to the transverse force acting on the active quark in deep-inelastic scattering off a transversely polarized nucleon immediately after it has absorbed the virtual photon. Lattice calculations of the corresponding matrix element as well as experimental measurements of $g_2(x)$ are used to estimate sign and magnitude of this force. Similarly, the $x^2$-moment of the chirally odd twist-3 unpolarized parton distribution $e(x)$ can be related to the transverse force experienced by a transversely polarized quark ejected from a transversely polarized nucleon.

  14. DESIGN OF AN AC-DIPOLE FOR USE IN RHIC.

    SciTech Connect

    PARKER,B.; BAI,M.; JAIN,A.; MCINTYRE,G.; METH,M.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.

    1999-03-29

    We present two options for implementing a pair of AC-dipoles in RHIC for spin flipping, measuring linear optical functions and nonlinear diagnostics. AC-dipoles are magnets that can be adiabatically excited and de-excited with a continuous sine-wave in order to coherently move circulating beam out to large betatron amplitudes without incurring emittance blow up [1]. The AGS already uses a similar device for getting polarized proton beams through depolarizing resonances [2]. By placing the magnets in the IP4 common beam region, two AC-dipoles are sufficient to excite both horizontal and vertical motion in both RHIC rings. While we initially investigated an iron-dominated magnet design using available steel tape cores; we now favor a new air coil plus ferrite design featuring mechanical frequency tuning, in order to best match available resources to demanding frequency sweeping requirements. Both magnet designs are presented here along with model magnet test results. The challenge is to make AC-dipoles available for year 2000 RHIC running.

  15. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  16. TRANSVERSE ECHO MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER, W.

    2005-09-18

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  17. Transverse SSA in inclusive DIS

    NASA Astrophysics Data System (ADS)

    Pitonyak, Daniel

    2013-10-01

    We analyze the transverse single spin asymmetry (SSA) in inclusive deep inelastic scattering (DIS), which requires a two-photon exchange to generate a non-zero effect. We present numerical results for the SSA that allow us to comment on the so-called "sign mismatch" issue invloving the Efremov-Teryaev-Qiu-Sterman (ETQS) function TF(x,x). In particular, we discuss how our results indicate a collinear twist-3 Sivers-type effect may not be the main cause of the SSAs seen in proton-proton (pp) collisions.

  18. Transverse Echo Measurements in RHIC

    SciTech Connect

    Fischer, Wolfram

    2006-03-20

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular we examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  19. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    SciTech Connect

    Hillier, A.; Morton, R. J.; Erdélyi, R.

    2013-12-20

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s{sup –1}. The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency.

  20. Transverse spin gradient functional for non-collinear Spin Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Vignale, G.; Gross, E. K. U.

    2013-03-01

    The ab-initio description of non-collinear magnetism is essential for the search of new materials suitable for the construction of spintronic devices. We present a novel functional explicitly constructed for the description of non-collinear magnetism. It is formulated in terms of a Spin Gradient Extension (SGE) to the Local Spin Density Approximation, which introduces a dependence on the transverse gradients of the spin magnetization. While collinear Generalized Gradient Approximations provide a dependence on longitudinal spin gradients the SGE takes into account that longitudinal and transverse variations of the spin magnetization affect the energy differently. The explicit dependence on the transverse gradients is obtained from a reference systems which exhibits non-collinearity, i.e., the spin-spiral-wave state of the uniform electron gas. The inclusion of transverse spin gradients yields exchange-correlation magnetic fields that are non-collinear w.r.t. the spin magnetization. This implies that the spin-current density of the Kohn-Sham system does not vanish even if no external magnetic field is applied. As an example we present the application of the SGE to the non-collinear 120°-Néel state of a Chromium mono-layer. F.G.E. is supported by DOE grant No. DE-FG02-05ER46203

  1. TRANSVERSE OSCILLATIONS OF A COOLING CORONAL LOOP

    SciTech Connect

    Morton, R. J.; Erdelyi, R. E-mail: Robertus@sheffield.ac.u

    2009-12-10

    Here we present an investigation into how cooling of the plasma influences the oscillation properties (e.g., eigenfunctions and eigenfrequencies) of transverse (i.e., kink) magnetohydrodynamic (MHD) waves in a compressible magnetic flux tube embedded in a gravitationally stratified and uniformly magnetized atmosphere. The cooling is introduced via a temperature-dependent density profile. A time-dependent governing equation is derived and an approximate zeroth-order solution is then obtained. From this the influence of cooling on the behavior of the eigenfrequencies and eigenfunctions of the transverse MHD waves is determined for representative cooling timescales. It is shown analytically, as the loop cools, how the amplitude of the perturbations is found to decrease as time increases. For cooling timescales of 900-2000 s (as observed in typical EUV loops), it is shown that the cooling has important and relevant influence on the damping times of loop oscillations. Next, the theory is put to the test. The damping due to cooling is fitted to a representative observation of standing kink oscillation of EUV loops. It is also shown with an explicit approximate analytical form, how the period of the fundamental and first harmonic of the kink mode changes with time as the loop cools. A consequence of this is that the value of the period ratio P {sub 1}/P {sub 2}, a tool that is popular in magneto-seismological studies in coronal diagnostics, decreases from the value of a uniform loop, 2, as the temperature decreases. The rate of change in P {sub 1}/P {sub 2} is dependent upon the cooling timescale and is well within the observable range for typical EUV loops. Further to this, the magnitude of the anti-node shift of the eigenfunctions of the first harmonic is shown to continually increase as the loop cools, giving additional impetus to the use of spatial magneto-seismology of the solar atmosphere. Finally, we suggest that measurements of the rate of change in the

  2. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  3. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    NASA Astrophysics Data System (ADS)

    Grether, A.; Scheuerlein, C.; Ballarino, A.; Bottura, L.

    2016-07-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (I c ) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and I c of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa, to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  4. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  5. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  6. Growth and Transverse Field Muon Spin Rotation of Cobalt Niobate

    NASA Astrophysics Data System (ADS)

    Munsie, Timothy; Millington, Anna; Marjerrison, Casey; Medina, Teresa; Wilson, Murray; Kermarrec, Edwin; Liu, Lian; Dabkowska, Hanna; Uemura, Yasutomo; Williams, Travis; Luke, Graeme

    2014-03-01

    Cobalt niobate, CoNb2O6, is a material whose spins, when in a transverse field, act like the theoretical ideal 1D-Ising model. This occurs due to the magnetic spins aligning highly anisotropically along the Co2+ chains. Because of this unique structure and material performance, the creation and characterization of this material is of both experimental and theoretical interest. The research we will present is a detailing of changes in the characteristics of the growth of the material utilizing the optical floating zone crystal growth method compared to previous growth parameters and an examination of this material in a moderately high transverse field using the technique of muon spin rotation (μSR). We have determined that the quality of crystals created by the floating zone are highly dependent on the growth parameters utilized (original ceramic shape and rotation rate) and dictate the speed at which the growth can be performed. Transverse Field μSR shows a gradual but significant change to the magnetic structure of the material below 5 K. Second Affiliation: Brockhouse Institute for Materials Research.

  7. ANTI-PHASE SIGNATURE OF FLARE GENERATED TRANSVERSE LOOP OSCILLATIONS

    SciTech Connect

    White, R. S.; Verwichte, E.; Foullon, C.

    2013-09-10

    Transverse loop oscillations observed by the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory spacecraft are studied after an impulsive solar flare eruption on 2012 May 8. We have found that a transversely oscillating coronal loop seen in the 171 A bandpass oscillates in anti-phase with respect to adjacent larger loops seen in the 193 A and 211 A bandpasses. These unusual oscillations are analyzed to investigate the excitation mechanism responsible for their initial inwardly directed anti-phase behavior. The transverse oscillations are analyzed by constructing space-time diagrams from cuts made parallel to the projected loop displacements. The displacement time oscillation profiles are background subtracted and fitted with a damped cosine curve that includes a linear change in the period with time. The local magnetic topology of the active region is modeled using potential field source surface extrapolation. It reveals that the loops are anchored in different topological regions with foot point locations identified on either side of the EUV flare peak emission source. In this context, the oscillation characteristics indicate that the excitation mechanism is closely linked to the local magnetic field topology and the reconnection generated wave dynamics in the active region rather than following an external flare blast wave. We discuss how observations such as these may serve to identify reconnection processes in similar quadrupolar active regions.

  8. Magnetic

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  9. Suppression of microbunching instability via a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Huang, Dazhang; Deng, Haixiao; Gu, Qiang; Zhao, Zhentang

    2015-07-01

    The microbunching instability in the linear accelerator (linac) of a free-electron laser facility has always been a problem that degrades the electron beam quality. In this paper, a quite simple and inexpensive technique is proposed to smooth the electron beam current profile to suppress the instability. By directly adding a short undulator with a transverse gradient field right after the injector to couple the transverse spread into the longitudinal direction, additional density mixing in the electron beam is introduced to smooth the current profile, which results in the reduction of the gain of the microbunching instability. The magnitude of the density mixing can be easily controlled by varying the strength of the undulator magnetic field. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the accelerator of an x-ray free-electron laser.

  10. Transverse electric surface mode in atomically thin Boron-Nitride.

    PubMed

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm. PMID:27244441

  11. Transverse electric surface mode in atomically thin Boron–Nitride

    NASA Astrophysics Data System (ADS)

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analysed in term of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic non-radiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric non-radiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 microns and an intensity-propagation distance greater than 2 cm.

  12. Design of the ac dipole and compensation of saturation effects for the LANL synchrotron

    SciTech Connect

    Liu, J.; Greene, S.

    1987-08-01

    An ac dipole magnet, which can work in two accelerator energy modes of 45 GeV and 60 GeV, is reported for the LANL synchrotron. In order to reach high uniformity of magnetic field distribution in good field region, some effective measures are presented to compensate field errors due to the saturation at both edges of magnet poles.

  13. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  14. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  15. Transverse-longitudinal integrated resonator

    SciTech Connect

    Hutchinson, Donald P; Simpson, Marcus L; Simpson, John T

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  16. Gluonic transversity from lattice QCD

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Shanahan, P. E.

    2016-07-01

    We present an exploratory study of the gluonic structure of the ϕ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-2 double-helicity-flip gluonic structure function Δ (x ,Q2). This structure function only exists for targets of spin J ≥1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and nonflip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where Δ (x ,Q2) is an "exotic glue" observable probing gluons in a nucleus not associated with individual nucleons.

  17. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  18. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  19. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  20. Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.

    2004-05-01

    Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.