Science.gov

Sample records for ac voltage source

  1. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  2. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. PMID:24906895

  3. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  4. Analysis of three-phase rectifiers with AC-side switches and interleaved three-phase voltage-source converters

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie Katherine Teixeira

    Of all the alternative and renewable energy sources, wind power is the fastest growing alternative energy source with a total worldwide capacity of over 93 GW as of the end of 2007. However, making wind energy a sustainable and reliable source of electricity doesn't come without its set of challenges. As the wind turbines increase in size and turbine technology moves towards off-shore wind farms and direct drive transmission, the need for a reliable and efficient power electronics interface to convert the variable-frequency variable-magnitude output of the wind turbine's generator into the fixed-frequency fixed-magnitude voltage of the utility grid is critical. This dissertation investigates a power electronics interface envisioned to operate with an induction generator-based variable-speed wind turbine. The research conclusions and the interface itself are applicable to a variety of applications, including uninterruptible power supplies, industrial drives, and power quality applications, among others. The three-phase PWM rectifiers with ac-side bidirectional switches are proposed as the rectification stage of the power electronics interface. Modulation strategies are proposed for the rectifiers and the operation of the rectifiers in conjunction with an induction generator is demonstrated. The viability of using these rectifiers in place of the standard three-phase voltage-source converter is analyzed by comparing losses and common-mode voltage generation of the two topologies. Parallel three-phase voltage-source converter modules operated in an interleaved fashion are proposed for the inversion stage of the power electronics interface. The interleaved three-phase voltage-source converters are analyzed by deriving analytical models for the common-mode voltage, ac phase current, and dc-link current to reveal their spectra and the harmonic cancellation effects of interleaving. The practical problem of low frequency circulating current in parallel voltage-source

  5. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  6. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  7. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  8. An automatic AC/DC thermal voltage converter and AC voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1985-10-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frquency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  9. Automatic ac/dc thermal voltage converter and ac voltage calibration system

    NASA Astrophysics Data System (ADS)

    Lentner, K. J.; Flach, D. R.; Bell, B. A.

    1984-11-01

    An automatic ac/dc difference calibration system is described which uses direct measurement of thermoelement emfs. In addition to ac/dc difference testing, the system can be used to measure some important characteristics of thermoelements, as well as to calibrate ac voltage calibrators and precision voltmeters. The system operates over a frequency range from 20 Hz to 100 kHz, covering the voltage range from 0.5 V to 1 kv. For all voltages the total measurement uncertainties expected (including the uncertainty of the specific reference thermal converters used) were 50 parts per million (ppm) at frequencies from 20 Hz to 20 kHz, inclusive, and 100 ppm at higher frequencies up to 100 kHz.

  10. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  11. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  12. Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems

    SciTech Connect

    Pilotto, L.A.S.; Szechtman, M. ); Hammad, A.E. )

    1992-07-01

    In this paper a didactic explanation of voltage stability associated phenomena at HVDC terminals is presented. Conditions leading to ac voltage collapse problems are identified. A mechanism that excites control-induced voltage oscillations is shown. The voltage stability factor is used for obtaining the maximum power limits of ac/dc systems operating with different control strategies. Correlation to Pd {times} Id curves is given. Solutions for eliminating the risks of voltage collapse and for avoiding control-induced oscillations are discussed. The results are supported by detailed digital simulations of a weak ac/dc system using EMTP.

  13. Basic concepts of induced AC voltages on pipelines

    SciTech Connect

    Kirkpatrick, E.L.

    1995-07-01

    The phenomena of induced AC on pipelines sharing common rights-of-way with overhead high-voltage electrical transmission power lines is discussed. Basic concepts and techniques for personnel safety and some pipeline protective measures are reviewed.

  14. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  15. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  16. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  17. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  18. Advanced Sensors for Accurate, Broadband AC Voltage Metrology

    NASA Astrophysics Data System (ADS)

    Lipe, Thomas E.; Kinard, Joseph R.; Novotny, Donald B.; Sims, June E.

    2013-06-01

    We report on advances in ac voltage metrology made possible by a new generation of Multijunction Thermal Converters (MJTCs). Although intended for use primarily in high-frequency (1 MHz to 100 MHz) metrology, their exceptional low-frequency qualities, combined with a large dynamic range, makes these MJTCs excellent devices for the frequency range 10 Hz to 100 MHz at voltages from 1 V to 20 V, depending on the design. We anticipate that these devices will form the future basis for ac voltage metrology at the National Institute of Standards and Technology (NIST).

  19. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  20. Diagnostic of water trees using DC and AC voltages

    SciTech Connect

    Romero, P.; Puerta, J.

    1996-12-31

    Electric tools for non-destructive water tree diagnostic in XLPE medium voltage cables, by means of DC and AC voltages are presented. The DC method is related to the determination of a non-linear dependence of the polarization current on the applied DC step voltage, in contrast to a linear dependence found in non-water tree-damaged cables. In both cases the current follows the Curie-von Schweidler empirical law, I(t) = I{sub 0}t{sup {minus}n}. The AC method is based on the measurement of the dispersion relation of both the loss factor and the capacitance in the low and very low frequency ranges by means of the Fourier Transform techniques. The devised measuring instrumentation is presented.

  1. Strongly nonlinear dynamics of electrolytes in large ac voltages.

    PubMed

    Højgaard Olesen, Laurits; Bazant, Martin Z; Bruus, Henrik

    2010-07-01

    We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features--significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination" since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.

  2. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  3. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  4. A Single-Phase Embedded Z-Source DC-AC Inverter

    PubMed Central

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  5. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  6. Strongly nonlinear dynamics of electrolytes in large ac voltages

    NASA Astrophysics Data System (ADS)

    Højgaard Olesen, Laurits; Bazant, Martin Z.; Bruus, Henrik

    2010-07-01

    We study the response of a model microelectrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features—significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasiequilibrium structure of the double layers. The former leads to the prediction of “ac capacitive desalination” since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute-solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.

  7. Nonlinear oscillations in an electrolyte solution under ac voltage.

    PubMed

    Schnitzer, Ory; Yariv, Ehud

    2014-03-01

    The response of an electrolyte solution bounded between two blocking electrodes subjected to an ac voltage is considered. We focus on the pertinent thin-double-layer limit, where this response is governed by a reduced dynamic model [L. Højgaard Olesen, M. Z. Bazant, and H. Bruus, Phys. Rev. E 82, 011501 (2010)]. During a transient stage, the system is nonlinearly entrained towards periodic oscillations of the same frequency as that of the applied voltage. Employing a strained-coordinate perturbation scheme, valid for moderately large values of the applied voltage amplitude V, we obtain a closed-form asymptotic approximation for the periodic orbit which is in remarkable agreement with numerical computations. The analysis elucidates the nonlinear characteristics of the system, including a slow (logarithmic) growth of the zeta-potential amplitude with V and a phase straining scaling as V-1lnV. In addition, an asymptotic current-voltage relation is provided, capturing the numerically observed rapid temporal variations in the electric current. PMID:24730837

  8. Effect of low voltage AC fields on cardiovascular implants.

    PubMed

    Kothandaraman, Anjana; Anson, Tony; Reynolds, Alan

    2015-01-01

    Coronary Artery Stents have been the preferred form of treatment for vascular occlusive disease, due to the minimally invasive surgical procedure, post-operative recovery time and cost, when compared to open coronary bypass surgery. The cellular response upon applying an AC electric field to type 316LM Stainless Steel stent mimics was investigated in this paper. The highest RBC adhesion was observed at voltages higher than 88 mV and lower than 74 mV. Their unique alignment along the lines of fracture on the stent surface at 88 mV was a phenomenon caused by an increase in electrical conductivity in these regions. Being able to control RBC adhesion may have various clinical implications such as inhibition of thrombus formation, and provide a basis to analyse whether electric fields may be applied to cancer therapy as well.

  9. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  10. A multilevel voltage-source inverter with separate dc sources for static var generation

    SciTech Connect

    Peng, Fang Zheng |; Lai, Jih-Sheng; McKeever, J.; VanCoevering, J.

    1995-09-01

    A new multilevel voltage-source inverter with a separate dc sources is proposed for high-voltage, high-power applications, such as flexible ac transmission systems (FACTS) including static var generation (SVG), power line conditioning, series compensation, phase shifting, voltage balancing, fuel cell and photovoltaic utility systems interfacing, etc. The new M-level inverter consists of (M-1)/2 single phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle as the number of levels increases. It can solve the problems of conventional transformer-based multipulse inverters and the problems of the multilevel diode-clamped inverter and the multilevel flying capacitor inverter. To demonstrate the superiority of the new inverter, a SVG system using the new inverter topology is discussed through analysis, simulation and experiment.

  11. An Inexpensive Source of High Voltage

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  12. Generalised mc × nc -stage switched-capacitor-voltage-multiplier-based boost DC-AC inverter

    NASA Astrophysics Data System (ADS)

    Chang, Yuen-Haw; Wu, Ming-Zong

    2012-01-01

    A closed-loop scheme of a generalised ? -stage (multistage) switched-capacitor-voltage-multiplier inverter (SCVMI) is proposed by combining a two-phase interleaved phase generator and a sinusoidal-pulse-width-modulation (SPWM) control for low-power boost dc-ac conversion and regulation. In this SCVMI, the power unit contains two parts: SCVM booster (front) and H-bridge (rear). The SCVM booster is composed of two ? -stage SC cells and two ? -stage SC cells in series for a boost dc-dc conversion, and these cells are operated with two-phase non-overlapping clocks of phase generator for a high conversion ratio of ? at most (like a voltage multiplier). The H-bridge consists of four switches for a dc-ac conversion, and these switches are controlled by SPWM not only for realising full-wave operation, but also for enhancing output regulation as well as robustness to source/loading variation. Further, some aspects of theoretical analysis and design are included: SCVMI formulation, steady-state/dynamic analysis, conversion ratio, power efficiency, stability, capacitance selection, output filter and control design. Finally, the closed-loop SCVMI is simulated and the hardware implemented and tested. All the results are illustrated to show the efficacy of the proposed scheme.

  13. An Inexpensive Source of High Voltage

    NASA Astrophysics Data System (ADS)

    Saraiva, Carlos

    2012-04-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes.1-4 In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you can use a car ignition coil as a high voltage source. Such a coil can be obtained from an old car found in a car salvage yard and used to power cathode ray tubes and discharge tubes to observe the spectra. It can also be used as a source of ignition to simulate explosive combustion that occurs in car engines, rockets, etc. You can also buy these coils in shops that sell car accessories and they are cheaper than induction coils. In Fig. 1 you can see a coil that I used.

  14. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  15. New internal multi-range resistors for ac voltage calibration by using TVC

    NASA Astrophysics Data System (ADS)

    Ali, Rasha S. M.

    2015-10-01

    Accurate calibration of ac voltages up to 1000 V by using thermal converters requires range resistors connected in series with the converter. The combination of a thermal converter and range resistor is known as the thermal voltage converter. In this paper, multi-range internal range resistors are designed and implemented in the National Institute for Standards (NIS), Egypt to cover the ac voltage ranges from 10 V to 750 V. The range resistor values are 2 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 100 kΩ, and 150 kΩ to cover the voltage ranges 10 V, 50 V, 100 V, 200 V, 500 V, and 750 V, respectively. The six range resistors are mounted in series with a single-junction thermo-element in the same box to provide a new thermal voltage converter. The required range resistor is selected by using a six-pin selector switch. Each resistor is connected to a selector pin. The new thermal voltage converter ranges are automatically calibrated against other standard thermal voltage converters at different frequencies by using a LabVIEW program to determine their ac-dc transfer difference at each range. The expanded uncertainties are estimated according to the GUM for all ranges at different frequencies. The performance of the new thermal voltage converter is also evaluated by comparing its ac-dc differences and its accuracy in measuring the ac voltage at different frequencies with a traditional thermal voltage converter.

  16. High-voltage portable pulsed power supply fed by low voltage source

    NASA Astrophysics Data System (ADS)

    Rezanejad, Mohammad; Sheikholeslami, Abdolreza; Adabi, Jafar; Valinejad, Mohammadreza

    2016-05-01

    This article proposes a new structure of voltage multiplier for portable pulsed power applications. In this configuration, which is based on capacitor-diode voltage multiplier, the capacitors are charged by low AC input voltage and discharge through the load in series during pulse generation mode. The proposed topology is achieved by integrating of solid-state switches with conventional voltage multiplier, which can increase the low input voltage step by step and generate high-voltage high-frequency pulsed power across the load. After some discussion, simulations and experimental results are provided to verify the effectiveness of the proposed topology.

  17. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  18. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  19. A multilevel voltage-source converter system with balanced dc voltages

    SciTech Connect

    Peng, Fang Zheng; Lai, Jih-Sheng; McKeever, J.; VanCoevering, J.

    1995-04-01

    A multilevel voltage-source converter system is proposed for high-voltage, high-power applications such as large induction motor drives, back-to-back interconnected power systems, and electrical traction drives. Multilevel voltage-source converters have a voltage unbalance problem in the dc capacitors. The problem may be solved by use of additional voltage regulators or separate dc sources. However, these solutions are found not to be practicable for most applications. The proposed converter system can solve the voltage unbalance problem of the conventional multilevel voltage-source converters, without using any additional voltage balance circuits or separate voltage sources. Mechanism of the voltage unbalance problem is analyzed theoretically in this paper. The validity of the new converter system is demonstrated by simulation and experiment.

  20. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  1. Cryocooler operation of SNIS Josephson arrays for AC Voltage standards

    NASA Astrophysics Data System (ADS)

    Sosso, A.; De Leo, N.; Fretto, M.; Monticone, E.; Roncaglione, L.; Rocci, R.; Lacquaniti, V.

    2014-05-01

    Avoiding liquid helium is now a worldwide issue, thus cryocooler operation is becoming mandatory for a wider use of superconductive electronics. Josephson voltage standards hold a peculiar position among superconducting devices, as they are in use in high precision voltage metrology since decades. Higher temperature operation would reduce the refrigerator size and complexity, however, arrays of Josephson junctions made with high temperature superconductors for voltage standard applications are not to date available. The SNIS (Superconductor-Normal metal-Insulator-Superconductor) junction technology developed at INRIM, based on low temperature superconductors, but capable of operation well above liquid helium temperature, is interesting for application to a compact cryocooled standard, allowing to set a compromise between device and refrigerator requirements. In this work, the behavior of SNIS devices cooled with a closed-cycle refrigerator has been investigated, both in DC and under RF irradiation. Issues related to thermal design of the apparatus to solve specific problems not faced with liquid coolants, like reduced cooling power and minimization of thermal gradients for uniform operation of the chip are discussed in detail.

  2. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  3. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  4. Note: Galvanic isolated voltage source using a single photodiode.

    PubMed

    Stoican, O S

    2010-04-01

    A galvanic isolated voltage source able to provide several volts by using a single photodiode is described. A pulse-modulated laser beam is sent to a photodiode. By using a step-up transformer the amplitude of the variable voltage generated by the photodiode is increased. Adding a rectifier cell the variable voltage is converted back into a dc voltage.

  5. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  6. Stable voltage source for Penning trap experiments.

    PubMed

    Pinegar, David B; Blaum, Klaus; Biesiadzinski, Tomasz P; Zafonte, Steven L; Van Dyck, Robert S

    2009-06-01

    A voltage reference has been developed to bias ring electrodes of two Penning traps between -90 and 0 V. For output voltages near -90 V, the Allan deviation of the system's voltage instability is less than 1 part in 10(8) over all time scales shorter than 10(4) s. For averaging times longer than several seconds, the system's stability is determined almost completely by the noise, drift, and aging of the zener diodes in the array of voltage reference integrated circuits. For shorter averaging times, active filters built into the new system significantly reduce the intrinsic noise of the zener diodes. The system makes it possible to continuously adjust the ring voltages for frequency locking the axial motion in the two Penning traps. By keeping electrical noise highly correlated between the two traps, measurement uncertainty should be reduced for precision experiments such as Penning trap mass spectrometry.

  7. System for conveniently providing load testing termination of an AC power source having at least one battery

    NASA Astrophysics Data System (ADS)

    Morell, Wilbert J., III

    1995-05-01

    An AC uninterruptible power source is disclosed that provides multiphase power output signals for actual use and a selectable single phase power output signal for use in testing. The AC uninterruptible power source further comprises at least one battery. The single phase output signal is connected to a dummy load by means of a power switch of the break before make type. The invention further includes the dummy load as preferably having metering capabilities to measure the frequency, current, and voltage parameters of the single phase output signal. The arrangement of the present invention allows for the single phase output to be mated to the dummy load without the need of removing input power to the AC uninterruptible power source so as to reduce, or even eliminate, transient caused failures to the AC uninterruptible power source and to its sensitive load equipment which the power source services.

  8. A system for conveniently providing load testing termination of an AC power source having at least one battery

    NASA Astrophysics Data System (ADS)

    Morrell, Wilbert J., III

    1994-10-01

    An AC uninterruptible power source is disclosed that provides multi-phase power output signals for actual use and a selectable single phase power output signal for use in testing. The AC uninterruptible power source further comprises at least one battery. The single phase output signal is connected to a dummy load by means of a power switch of the break-before-make type. The invention further includes the dummy load as preferably having metering capabilities to measure the frequency, current, and voltage parameters of the single phase output signal. The arrangement of the present invention allows for the single phase output to be mated to the dummy load without the need of removing input power to the AC uninterruptible power source so as to reduce, or even eliminate, transient caused failures to the AC uninterruptible power source and to its sensitive load equipment which the power source services.

  9. Border Collision of Three-Phase Voltage-Source Inverter System with Interacting Loads

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Bin; Li, Yining; Wong, Siu-Chung; Liu, Xiangdong; Huang, Yuehui

    As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.

  10. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  11. Metrological traceability for AC High-Voltage in Inmetro up to 40 kV

    NASA Astrophysics Data System (ADS)

    Vitorio, P. C. O.; de Lima, V. R.; Borges Filho, O.; de Souza, L. A. A.; Asencios, O. W. G.

    2016-07-01

    This paper refers to a project carried out in Inmetro aiming to provide internal metrological traceability for 60 Hz AC High-Voltage up to 40 kV. It presents details about the method used, its equations and obtained results. A capacitance and tanb bridge, with a built-in current comparator, was used in combination with two standard capacitors to calibrate a standard potential transformer (PT), both in ratio and phase angle. The results obtained by Inmetro showed good agreement with PTB ones, for the same PT. The maximum estimated uncertainty was 0,0049% for ratio error and 104 μrad for phase angle error.

  12. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  13. Increased deposition of polychlorinated biphenyls (PCBs) under an AC high-voltage power line

    NASA Astrophysics Data System (ADS)

    Öberg, Tomas; Peltola, Pasi

    2009-12-01

    There is considerable public concern regarding the potential risks to health of electromagnetic fields in general and high-voltage power lines in particular. As epidemiological findings are not supported by a clearly defined mechanism of direct magnetic field interactions with the human body, potential indirect effects are of interest. It has been suggested that an increased exposure to chemical pollutants could occur near high-voltage power lines due to formation and deposition of charged aerosols. The current study reports empirical evidence that seems to support this hypothesis. The deposition of 18 congeners of polychlorinated biphenyls (PCBs) was studied by collecting samples of pine needles under a 400 kV AC power line and at reference sites in the vicinity. Compared to the reference sites, the average deposition of PCB congeners under the power line was almost double. This difference between the two groups of samples was statistically significant. While it is premature to draw any conclusions regarding the human exposure near high-voltage power lines, the issue deserves attention and further investigations.

  14. Superconducting, fast rise-time voltage source

    SciTech Connect

    Lumley, R.M.

    1983-01-25

    A pulse generator comprises a toroid of a superconducting material such as niobium on a glass or ceramic substrate. A cryogenic source such as liquid helium cools the toroid to within a few degrees of absolute zero and a perpetually circulatory current is set up in the toroid. A laser beam is fired at the toroid to cause localized heating and the resultant current drop due to the material resistance causes an output pulse to be induced in an adjacent current winding.

  15. Development of an AC power source for CSEM method using full-bridge switching configuration

    NASA Astrophysics Data System (ADS)

    Indrasari, Widyaningrum; Srigutomo, Wahyu; Djamal, Mitra; S, Rahmondia N.

    2015-04-01

    The electromagnetic (EM) method has been widely used in geophysical surveys. It is a non-destructive method that utilizes electromagnetic waves in characterizing subsurface profiles. Generally, EM method can be divided into passive EM and active EM. The passive EM uses the natural electromagnetic field sources, while the active EM or Controlled Source EM (CSEM) uses artificial source to generate electromagnetic wave. In this paper, we present the development of AC power source for CSEM transmitter. As the power source we used AC source with sine wave signal. To satisfy a high power and high voltage in the equipment, we used the full-bridge configuration switching. It works on 990 Hz maximum frequency, and can deliver maximum current of 1.9 A at 620 V. The switching is controlled by microcontroller using Pulse Width Modulation (PWM) and the driver of inverter is built using IGBT. The output frequency can be varied from 1 Hz to 990 Hz. For varied frequencies the harmonic distortion is different due to switching speed. As frequency increase the harmonic distortion also increase. We found that the total harmonic distortion can be reduced to 1 % at the output with 330 Hz.

  16. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. A Numerical Simulation Of The Pulse Sequence Reconstruction in AC Biased TESs With a {beta} Source

    SciTech Connect

    Ferrari, Lorenza; Vaccarone, Renzo

    2009-12-16

    We study the response of micro-calorimeters based on Ir/Au TESs biased by an AC voltage in the MHz range to the power input generated by beta emission in a Re source thermally connected to the calorimeter itself. The micro-calorimeter is assumed to work at -80 mK, and the energy pulses corresponding to the beta emission have an energy distributed between zero and 2.58 KeV. In this numerical simulation the TES is inserted in a RLC resonating circuit, with a low quality factor. The thermal conductivities between the source and the calorimeter and that from the calorimeter to the heat sink are non-linear. The superconducting to normal transition of the TES is described by a realistic non-linear model. The AC current at the carrier frequency, modulated by the changing resistance of the TES, is demodulated and the output is filtered. The resulting signal is analyzed to deduce the attainable time resolution and the linearity of the response.

  18. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  19. A virtual source model for Kilo-voltage cone beam CT: Source characteristics and model validation

    SciTech Connect

    Spezi, E.; Volken, W.; Frei, D.; Fix, M. K.

    2011-09-15

    Purpose: The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. Methods: We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. Results: We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( {+-} 2%, one standard deviation) in all cases studied. Conclusions: The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model

  20. Voltage regulator for battery power source. [using a bipolar transistor

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1979-01-01

    A bipolar transistor in series with the battery as the control element also in series with a zener diode and a resistor is used to maintain a predetermined voltage until the battery voltage decays to very nearly the predetermined voltage. A field effect transistor between the base of the bipolar transistor and a junction between the zener diode and resistor regulates base current of the bipolar transistor, thereby regulating the conductivity of the bipolar transistor for control of the output voltage.

  1. Electrical Experiments. VT-214-12-4. Part IV. A-C Reduced Voltage Controls.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this fourth document in a series of six electrical learning activity packages focuses on alternating current-reduced voltage controls. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the guidebook is comprised of…

  2. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  3. Achieving High Performance in AC-Field Driven Organic Light Sources.

    PubMed

    Xu, Junwei; Carroll, David L; Smith, Gregory M; Dun, Chaochao; Cui, Yue

    2016-04-11

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m(2) with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today's OLEDs in performance.

  4. Higher harmonics in voltage on superconductor carrying AC current due to non-linear I- V curve

    NASA Astrophysics Data System (ADS)

    Janíková, Edita; Gömöry, Fedor; Šouc, Ján

    2004-01-01

    When superconducting wire carries AC current with amplitude exceeding its critical current, additional losses appear due to non-zero resistivity. The voltage attributed to this mechanism will contain higher harmonics because of non-linear I- V curve of superconducting material. This curve can be derived using the following simple model: parallel combination of superconductor standing for the properties of all the filaments and the normal resistor representing the matrix. I- V relation is then characterized by three parameters: the critical current, I0, the n-exponent, n, and the ratio of the cross-section to the resistivity of metallic matrix. Expressions for Fourier coefficients have been calculated for this model. Extensive analysis of the influence that the model parameters exhibit on higher harmonics have revealed some useful features: 3rd harmonic could be nicely used to detect I0 and n, while from the maximum of 5th harmonic the value of matrix resistivity can be estimated.

  5. Load insensitive electrical device. [power converters for supplying direct current at one voltage from a source at another voltage

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C. (Inventor)

    1974-01-01

    A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

  6. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  7. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  8. Bias-voltage-controlled ac and dc magnetotransport phenomena in hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Smolyakov, D. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2015-06-01

    We report some ac and dc magnetotransport phenomena in silicon-based hybrid structures. The giant impedance change under an applied magnetic field has been experimentally found in the metal/insulator/semiconductor (MIS) diode with the Schottky barrier based on the Fe/SiO2/p-Si and Fe/SiO2/n-Si structures. The maximum effect is found to observe at temperatures of 10-30 K in the frequency range 10 Hz-1 MHz. Below 1 kHz the magnetoresistance can be controlled in a wide range by applying a bias to the device. A photoinduced dc magnetoresistance of over 104% has been found in the Fe/SiO2/p-Si back-to-back Schottky diode. The observed magnetic-field-dependent effects are caused by the interface states localized in the insula-tor/semiconductor interface.

  9. Final report on COOMET.EM-S5: Supplementary comparison of AC voltage ratio standards (COOMET project 396/UA/07)

    NASA Astrophysics Data System (ADS)

    Kikalo, V. N.; Petrovich, M. L.; Lobzhanidze, N. G.; Kisilev, V. V.; Styblikova, R.

    2013-01-01

    The comparison COOMET No 396/UA/07 of AC voltage ratio standards is registered in the BIPM key comparison database (KCDB) as supplementary comparison COOMET.EM-S5. It was conducted from June 2008 to July 2010 and involved the National Metrology Institutes of the Republic of Belarus, Georgia, the Russian Federation, the Czech Republic and Ukraine. SE "Ukrmetrteststandard" (Ukraine) was the Pilot laboratory for this exercise. The final report lists all data of measurement results and declared uncertainties as obtained by the participating NMIs. The degrees to which the values of the national standards correspond to the reference values of the supplementary comparison are quantitatively evaluated with the conclusions that the results obtained are recognized to be consistent taking into account the declared uncertainties. This gives evidence for supporting the corresponding Calibration and Measurement Capabilities for those values of voltage ratio at which NMIs have performed measurements. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by COOMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  11. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed. PMID:26932002

  12. Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source

    SciTech Connect

    Miyamoto, N. Okajima, Y.; Wada, M.

    2014-02-15

    Argon ion beam fluctuation from an AC filament driven Bernas-type ion source is observed. The ion beam was measured by an 8 measurement elements beam profile monitor. The amplitude of the beam current fluctuation stayed in the same level from 100 Hz to 1 kHz of the filament heating frequency. The beam current fluctuation frequency measured by the beam profile monitor was equal to the frequency of the AC filament operation. The fluctuation amplitudes of the beam current by AC operation were less than 7% and were in the same level of the DC operation.

  13. Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation.

    PubMed

    Patel, Dipal B; Chauhan, Khushbu R; Mukhopadhyay, Indrajit

    2014-10-14

    In this paper, we have carefully investigated the operation of a photoelectrochemical (PEC) cell configured of PbOx|Fe(CN)6(-4/-3)|Pt in the accumulation, flat band, depletion, inversion and deep-depletion regions using impedance measurements. The increases in the photocurrent for the different regions differ in their nature: a logarithmic increase in the depletion region, a linear increase in the inversion region along with a linear increase in the dark current and an exponential increase in the photo- and dark current in the deep-depletion region. All these variations are studied in detail to correlate these observations to the charge transfer mechanisms. The characteristics of the impedance spectrum itself can be assigned to the mentioned regions. We have found that the maximum photocurrent of the PEC cell, in the present investigation, can be extracted when the cell is working in the inversion region, while the maximum rate of the increase in photocurrent is found when the junction behaves as an ideal Schottky diode with a single RC element. Systematic experiments are suggested to establish a correlation between the observations obtained from the photocurrent, impedance, conductance, low frequency and high frequency capacitance measurements. It was found that light induced trap states in the semiconductor limit the photocurrent which has a linear dependency on the irradiance. A detailed investigation with A.C. conductivity measurements showed that the trap states actively participate in the current mechanism via a hopping phenomenon with small activation energies of 0.2 and 0.8 meV. The hopping rate increased exponentially with the applied bias under dark and illumination conditions. We also show a new way of finding the potential at which the maximum photocurrent will be extracted from the PEC cell, wherein the hopping via trap states is a dominating charge transfer mechanism. This study will help in pin pointing the key affecting parameters which limit the

  14. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  15. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  16. A prototype of a high-voltage platform for the KRION ion source

    NASA Astrophysics Data System (ADS)

    Alexandrov, V. S.; Donets, E. E.; Konnov, G. I.; Kosukhin, V. V.; Sidorova, V. O.; Sidorov, A. I.; Shvetsov, V. S.; Trubnikov, G. V.

    2014-09-01

    A high-voltage platform that has been developed for the KRION ion source is described. The platform design concept is explained. The calculations that have been performed of the influence of the design and materials on the source magnetic field make it possible to define a range of materials suitable for manufacturing the platform. The major components of the high-voltage platform, such as a high-voltage power supplier, and decoupling insulators of the high-voltage power source, and the main and supplementary platforms, are chosen and described. It is determined that, to exclude electric breakdowns and corona discharges, one should use an electrically shielded channel with a cryocooler and power supplies for the KRION-source coupling cables.

  17. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  18. An ultra-stable voltage source for precision Penning-trap experiments

    NASA Astrophysics Data System (ADS)

    Böhm, Ch.; Sturm, S.; Rischka, A.; Dörr, A.; Eliseev, S.; Goncharov, M.; Höcker, M.; Ketter, J.; Köhler, F.; Marschall, D.; Martin, J.; Obieglo, D.; Repp, J.; Roux, C.; Schüssler, R. X.; Steigleder, M.; Streubel, S.; Wagner, Th.; Westermann, J.; Wieder, V.; Zirpel, R.; Melcher, J.; Blaum, K.

    2016-08-01

    An ultra-stable and low-noise 25-channel voltage source providing 0 to -100 V has been developed. It will supply stable bias potentials for Penning-trap electrodes used in high-precision experiments. The voltage source generates all its supply voltages via a specially designed transformer. Each channel can be operated either in a precision mode or can be dynamically ramped. A reference module provides reference voltages for all the channels, each of which includes a low-noise amplifier to gain a factor of 10 in the output stage. A relative voltage stability of δV / V ≈ 2 ×10-8 has been demonstrated at -89 V within about 10 min.

  19. Analysis of Paralleling Limited Capacity Voltage Sources by Projective Geometry Method

    PubMed Central

    2014-01-01

    The droop current-sharing method for voltage sources of a limited capacity is considered. Influence of equalizing resistors and load resistor is investigated on uniform distribution of relative values of currents when the actual loading corresponds to the capacity of a concrete source. Novel concepts for quantitative representation of operating regimes of sources are entered with use of projective geometry method. PMID:24683335

  20. The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy.

    PubMed

    Geerlings, M W; Kaspersen, F M; Apostolidis, C; van der Hout, R

    1993-02-01

    This paper proposes the utilization of 225Ac for the alpha-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived alpha- and beta-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, 213Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of alpha-particles in radioimmunotherapy. This isotope is the last alpha emitter in the 225Ac decay-cascade and can be extracted from a 225Ac source at the bedside of the patient. 225Ac can quasi ad infinitum be obtained from one of its precursors, 229Th, which can be made available by various means. The indications for the use of alpha-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified.

  1. Method And Apparatus For Production Of Bi-213 From The Activity Ac-225 Source

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.

    2005-12-06

    A method and apparatus for isolating and purifying a .sup.213 Bi radioactive isotope from an .sup.225 Ac source using a primary column and a primary sorbent which preferentially retains .sup.225 Ac over .sup.213 Bi when exposed to a compatible solvent in combination with a secondary column having a secondary sorbent which retains .sup.213 Bi when exposed to a mixture of the compatible solvent and .sup.213 Bi. A "compatible solvent" is a solvent which will preferentially remove .sup.213 Bi radioactive isotopes from a primary sorbent without removing .sup.225 Ac radioactive isotopes, and then allow .sup.213 Bi radioactive isotopes removed from the primary sorbent to be retained on a secondary sorbent, without having to dilute or otherwise chemically or physically modify the compatible solvent in between exposure to the primary and secondary sorbents.

  2. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    NASA Astrophysics Data System (ADS)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  3. Source of stray voltage and effect on cow health and performance

    SciTech Connect

    Appleman, R.D.; Gustafson, R.J.

    1985-01-01

    In dairy cows, two distinct and important aspects of the interrelationship between stray voltage problems on the farm and dairy cow productivity can be identified. One is behavioral modification that increases in intensity when currents associated with neutral-to-earth voltages above .7 V find a pathway through the cow. The other is immediate endocrine response. Results of research are less clear on the current necessary for the latter to occur; it may require 8 mA or more. This implies, depending on the pathway and the cow's pathway resistance, that voltage difference between two cow contact points must exceed 3 V. Resistance of different cow pathways range from 350 to 1700 OMEGA. Milk production is more likely to be affected adversely when cows are subjected to shock patterns both intermittent and irregular. This paper identifies various sources of stray voltage problems and discusses appropriate procedures for correction.

  4. Demonstration of Johnson noise thermometry with all-superconducting quantum voltage noise source

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Urano, Chiharu; Maezawa, Masaaki

    2016-01-01

    We present a Johnson noise thermometry (JNT) system based on an integrated quantum voltage noise source (IQVNS) that has been fully implemented using superconducting circuit technology. To enable precise measurement of Boltzmann's constant, an IQVNS chip was designed to produce intrinsically calculable pseudo-white noise to calibrate the JNT system. On-chip real-time generation of pseudo-random codes via simple circuits produced pseudo-voltage noise with a harmonic tone interval of less than 1 Hz, which was one order of magnitude finer than the harmonic tone interval of conventional quantum voltage noise sources. We estimated a value for Boltzmann's constant experimentally by performing JNT measurements at the temperature of the triple point of water using the IQVNS chip.

  5. Performance of the Adaptive Collision Source (ACS) Method for Discrete Ordinates in Parallel Environments

    NASA Astrophysics Data System (ADS)

    Walters, William J.; Haghighat, Alireza

    2014-06-01

    A new collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained separately, with potentially a different quadrature order. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodolog y has been implemented in the TITAN discrete ordinates code, and has shown a speedup of 2-3 on a test problem, with very little loss of accuracy (within a provided adaptive tolerance). Further, the code has been extended to work in parallel environments by angular decomposition. Although the method requires increased parallel communication, tests have shown excellent scalability, with parallel fractions of up to 99%.

  6. Development of the Adaptive Collision Source (ACS) method for discrete ordinates

    SciTech Connect

    Walters, W.; Haghighat, A.

    2013-07-01

    We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)

  7. THE HST/ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS

    SciTech Connect

    Hammer, Derek; Verdoes Kleijn, Gijs; Den Brok, Mark; Peletier, Reynier F.; Hoyos, Carlos; Balcells, Marc; Aguerri, Alfonso L.; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Smith, Russell J.; Lucey, John R.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Jogee, Shardha; Batcheldor, Dan; Bridges, Terry J.

    2010-11-15

    The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers {approx}50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii ({approx}1.75 Mpc or 1{sup 0}) with a total coverage area of 274 arcmin{sup 2}. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the southwest region of the cluster. In this paper, we present reprocessed images and SEXTRACTOR source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for {approx}73,000 unique objects; approximately one-half of our detections are brighter than the 10{sigma} point-source detection limit at F814W = 25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5%-10% of all source detections, which consist of a large population of unresolved compact sources (primarily globular clusters but also ultra-compact dwarf galaxies) and a wide variety of extended galaxies from a cD galaxy to dwarf low surface brightness galaxies. The red sequence of Coma member galaxies has a color-magnitude relation with a constant slope and dispersion over 9 mag (-21 < M {sub F814W} < -13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008

  8. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    PubMed

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology. PMID:23893206

  9. A Mathematical Model to Predict Voltage Fluctuations in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Iyer, Shivkumar Venkatraman; Wu, Bin; Li, Yunwei; Singh, Birendra

    2015-12-01

    This paper proposes a simplified mathematical model to predict the impact of connection of Distributed Generators (DGs) to the ac grid. The model allows the user to examine the fluctuations in the magnitude of voltages at different nodes in the distribution system. In order to use the model, the user does not require a commercial simulation software making it a handy tool for a practicing engineer. Analysis has been presented to describe how the detailed mathematical model of the system is reduced using elementary matrix manipulation techniques to obtain the final simplified mathematical model. Simulation results are presented to verify the mathematical model with a ring distribution system with three DGs connected to it and the results validate those attained from the mathematical model.

  10. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  11. Multifunctional Voltage Source Inverter for Renewable Energy Integration and Power Quality Conditioning

    PubMed Central

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  12. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  13. Current Tracking Control of Voltage Source PWM Inverters Using Adaptive Digital Signal Processing

    NASA Astrophysics Data System (ADS)

    Fukuda, Shoji; Furukawa, Yuya

    An active filter (AF) is required to have a high control capability of tracking a time-varying current reference. However, a steady-state current error always exists if a conventional proportional and integral (PI) regulator is used because the current reference varies in time. This paper proposes the application of adaptive digital signal processing (ADSP) to the current control of voltage source PWM inverters. ADSP does not require any additional hardware. It can automatically minimize the mean square-error. Since the processing time available by a computer is limited, ADSP cannot eliminate higher order harmonics but can eliminate lower order harmonics such as 5th to 17th. Experimental results demonstrate that ADSP is useful for improving the reference tracking performance of voltage source inverters.

  14. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  15. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  16. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files. PMID:23988431

  17. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Technical Reports Server (NTRS)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; Smith, Russell J.; Graham, Alister W.; Trentham, Neil; Peng, Eric; Puzia, Thomas H.; Lucey, John R.; Jogee, Shardha; Aguerri, Alfonso L.; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Del Burgo, Carlos; Erwin, Peter; Hornschemeier, Ann; Hudson, Michael J.

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  18. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  19. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  20. FPGA techniques based new hybrid modulation strategies for voltage source inverters.

    PubMed

    Sudha, L U; Baskaran, J; Elankurisil, S A

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results.

  1. FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters

    PubMed Central

    Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852

  2. Inductive Voltage Adder Driven X-Ray Sources for Hydrodynamic Radiography

    SciTech Connect

    Bailey, V.; Cordova, S.; Droemer, D.; Gustwiller, J.; Hunt, E.; Johnson, D.L.; MacLeod, G.; Maenchen, John; Menge, P.; Molina, I.; Oliver, B; Olson, C.; Rosenthal, S; Rovang, D.; Smith, I.; Welch, D.; Woo, L.

    1999-06-17

    Inductive Voltage Adder (IVA) accelerators were developed to provide high-current (100s of kA) power pulses at high voltage (up to 20 MV) using robust modular components. This architecture simultaneously resolves problems found in conventional pulsed and linear induction accelerators. A variety of high-brightness pulsed x-ray radiographic sources are needed from sub-megavolt to 16-MeV endpoints with greater source brightness (dose/spot) than presently available. We are applying IVA systems to produce very intense (up to 75 TW/cm{sup 2}) electron beams for these flash radiographic applications. The accelerator electromagnetic pulse is converted to a directed electron beam at the end of a self-magnetically insulated vacuum transmission line. The cantilevered cathode threading the accelerator cavities terminates in a small (1-mm diameter) needle, producing the electron beam which is transported to a grounded bremsstrahlung converter within a strong ({approximately}50-T) axial magnetic field. These systems produce mm-sized stable electron beams, yielding very intense x-ray sources. Detailed simulations of the electron beam generation, transport, and target interaction are presented along with scaling laws for the radiation production and x-ray spot size. Experimental studies confirm these simulations and show this reliable, compact, and inexpensive technology scales to 1000-R doses a meter from a mm-diameter source in 50 ns.

  3. Asymmetric synthesis of crambescin A-C carboxylic acids and their inhibitory activity on voltage-gated sodium channels.

    PubMed

    Nakazaki, Atsuo; Nakane, Yoshiki; Ishikawa, Yuki; Yotsu-Yamashita, Mari; Nishikawa, Toshio

    2016-06-21

    Synthesis of both enantiomers of crambescin B carboxylic acid is described. A cis-enyne starting material was epoxidized under the conditions of Katsuki asymmetric epoxidation to give 95% ee of the epoxide, which was transformed to crambescin B carboxylic acid via bromocation-triggered cascade cyclization as the key step. Enantiomerically pure crambescin A and C carboxylic acids were also synthesized from the product of the cascade reaction. Structure-activity relationship (SAR) studies against voltage-gated sodium channel (VGSC) inhibition using those synthetic compounds revealed that the natural enantiomer of crambescin B carboxylic acid was most active and comparable to tetrodotoxin, and the unalkylated cyclic guanidinium structure is indispensible, while the carboxylate moiety is not important. The absolute stereochemistry of crambescin A was determined by a comparison of the methyl ester derived from natural crambescin A with that derived from the stereochemically defined crambescin A carboxylic acid synthesized in this study.

  4. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    SciTech Connect

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Haggard, Daryl; Anderson, Jay E-mail: dhaggard@northwestern.edu

    2013-02-15

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central {approx}10' Multiplication-Sign 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, {approx}40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M {sub 625} =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} to Cen 20, the largest number yet known in any globular cluster.

  5. Sources of resonance-related errors in capacitance versus voltage measurement systems

    NASA Astrophysics Data System (ADS)

    Polishchuk, Igor; Brown, George; Huff, Howard

    2000-10-01

    A frequency dependence of the capacitance of metal-oxide-semiconductor devices is often observed in wafer-level probe station measurements for frequencies exceeding 100 kHz. It is well established, however, that the true capacitance value in the SiO2 devices biased into accumulation should remain frequency-independent well into the gigahertz range. Consequently, the apparent frequency dependence of the capacitance versus voltage characteristic may be the result of a resonance present in the measurement setup. We present a quantitative analysis, which can be used to identify the sources of error, characterize a measurement system, and improve the precision of the collected data.

  6. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  7. Multi-Modality Pulsed AC Source for Medical Applications of Non-Equilibrium Plasmas

    NASA Astrophysics Data System (ADS)

    Friedrichs, Daniel; Gilbert, James

    2014-10-01

    A burgeoning field has developed around the use of non-equilibrium (``cold'') plasmas for various medical applications, including wound treatment, surface sterilization, non-thermal hemostasis, and selective cell destruction. Proposed devices typically utilize pulsed DC power sources, which have no other therapeutic utility, and may encounter significant regulatory restrictions regarding their safety for use in patient care. Additionally, dedicated capital equipment is difficult for healthcare facilities to justify. In this work, we have demonstrated for the first time the generation of non-equilibrium plasma using pulsed AC output from a specially-designed electrosurgical generator. The ability to power novel non-equilibrium plasma devices from a piece of equipment already ubiquitous in operating theatres should significantly reduce the barriers to adoption of plasma devices. We demonstrate the ability of a prototype device, coupled to this source, to reduce bacterial growth in vitro. Such a system could allow a single surgical instrument to provide both non-thermal sterilization and thermal tissue dissection.

  8. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  9. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  10. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements.

    PubMed

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level. PMID:24784633

  11. A Passive EMI Filter with Access to the Ungrounded Motor Neutral Line-The Case that a General-Purpose Inverter is Directly Connected to a Three-Phase Grounded Voltage Source-

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.

  12. Experimental Verification of Application of Looped System and Centralized Voltage Control in a Distribution System with Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya

    The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.

  13. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  14. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    SciTech Connect

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  15. Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement

    DOEpatents

    Turner, Steven Richard

    2006-12-26

    A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.

  16. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  17. The Digital Simulation of Synchronous Motors Fed by Voltage-Source Inverters Over Wide Speed and Frequency Ranges

    NASA Astrophysics Data System (ADS)

    Rowihal, Said Soliman

    Both voltage-source and current-source inverters are widely used for supplying three-phase power to induction motor drives, each having their advantages and disadvantages. For high power drives and applications requiring accurate speed and tracking coordination, the synchronous motors are the optimum choice. For constant speed applications of synchronous motor drives, current-source inverters tend to be favored as the motor can usually be operated in the overexcited leading power factor region, thus providing the inverter with sufficient electro-motive force to allow natural commutation. Generally speaking low speed operation of synchronous motors is not satisfactory from naturally commutated current-source inverters. To provide a dynamic range of speed and frequency would require expensive control circuitry and complicates the performance of the drive. The advantage of the voltage-source inverter for the wide range of speed and frequency control herein envisaged is that forced commutation is employed throughout the range and the commutating circuits have been well developed and established. On balance, voltage-source inverters represent a viable compromise for variable-speed three -phase synchronous motor drives including start-up. To investigate the transient response of the voltage -source fed-synchronous motor drives, a digital computer program is developed. The program is based on two models --machine model and inverter model. The machine is represented by a detailed two-axis model which includes the effects due to saliency, damper windings, and machine resistances. The inverter model represents a forced-commutated voltage-source inverter assuming ideal switching devices (thyristors and diodes). To cope with the wide variations of power factor during start-up, a thyristor with a reverse connected parallel diode are integrated as a bidirectional switch. The digital program provides the machine variables of interest (phase currents, field current, damper winding

  18. Spatio-temporal behavior of microwave sheath-voltage combination plasma source

    NASA Astrophysics Data System (ADS)

    Kar, Satyananda; Kousaka, Hiroyuki; Raja, Laxminarayan L.

    2015-05-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the spatio-temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions, and the density is in amplitude order of 1011 cm-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition, and higher density plasma (1012 cm-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.

  19. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  20. Final report on SIM bilateral INMETRO-LNE comparisons SIM.EM-K6.1 and SIM.EM-K9.1: AC-DC voltage transfer difference

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Renata de Barros e.; Poletaeff, Andre

    2014-01-01

    The objective of this comparison was to compare the measurement capabilities of INMETRO and LNE in the field of AC-DC voltage transfer. INMETRO participated in the previous SIM comparison of AC-DC voltage transfer standards in 2004. In the last few years INMETRO has been improving the methodology of its AC-DC voltage transfer difference measurements, now using multijunction thermal converters. The degrees of equivalence of INMETRO relative to the corresponding CCEM key comparison reference values range between 0.1 µV/V and 10 µV/V in the frame of the SIM.EM-K6.1 key comparison, and between 0.5 µV/V and 4 µV/V in the frame of the SIM.EM-K9.1 key comparison. In all cases, they are consistent with the associated uncertainties. For results that are not linked to CCEM key comparisons, the agreement between INMETRO and LNE is very good at 1.5 V/50 kHz (0.1 µV/V). At 10 Hz (at 1.5 V and at 1000 V) a larger difference is observed between the two laboratories, which remains nevertheless consistent with the given uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Photovoltaic on-demand high-voltage pulse generator as an on-board power source for electrostatic actuator array

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Bong; Allen, Mark G.; Rohatgi, Ajeet

    1999-09-01

    The use of amorphous silicon solar cell array high voltage power source as an on-demand wireless power source for electrostatically actuated 32 X 32 micromirror array is presented. The amorphous silicon solar cell array has been reported previously by authors of this paper. In this work, the solar cell array has been used to drive distributed electrostatic actuator array (micromirror array in this particular paper). A 32 X 32 micromirror array has been fabricated and the size of single micromirror is 200 micrometer X 200 micrometer. Static deflection test of micromirrors has been carried out and pull-in voltage of 44 V and releasing voltage of 30 V was found. The electrical output of the solar cell array has been directly connected to the 32 X 32 micromirror array to demonstrate a wireless powered distributed MEMS actuator array. A total solar cell array area of 0.3 cm2 (30 series-interconnected solar cells) were used to drive a part of 32 X 32 micromirror array (a total array area of 0.4 cm2). Motion of multiple numbers of micromirrors was reproducibly observed. The ultimate goal of this research is to achieve power-integrated autonomous MEMS using solar cell array as a miniaturized wireless on-board power source and distributed actuator array as a locomotive engine.

  2. Microfluidic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs

    SciTech Connect

    Jacobson, S.C.; Ramsey, J.M.

    2000-05-16

    A microfabricated device and method for proportioning and mixing electrokinetically manipulated biological or chemical materials is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the electrical resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates voltage division on the microchip without relying on external wiring schemes and voltage division techniques external to the microchip. Microchannel designs that provide the necessary voltage division to accomplish electrokinetic valving operations using a single voltage source and a switch are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  3. MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2000-01-01

    A microfabricated device and method for proportioning and mixing electrokinetically manipulated biological or chemical materials is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the electrical resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates voltage division on the microchip without relying on external wiring schemes and voltage division techniques external to the microchip. Microchannel designs that provide the necessary voltage division to accomplish electrokinetic valving operations using a single voltage source and a switch are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  4. Testing Single Phase IGBT H-Bridge Switch Plates for the High Voltage Converter Modulator at the Spallation Neutron Source

    SciTech Connect

    Peplov, Vladimir V; Anderson, David E; Solley, Dennis J

    2014-01-01

    Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with two different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.

  5. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  6. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  7. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  8. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGES

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to bothmore » crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  9. Voltage management of distribution networks with high penetration of distributed photovoltaic generation sources

    NASA Astrophysics Data System (ADS)

    Alyami, Saeed

    Installation of photovoltaic (PV) units could lead to great challenges to the existing electrical systems. Issues such as voltage rise, protection coordination, islanding detection, harmonics, increased or changed short-circuit levels, etc., need to be carefully addressed before we can see a wide adoption of this environmentally friendly technology. Voltage rise or overvoltage issues are of particular importance to be addressed for deploying more PV systems to distribution networks. This dissertation proposes a comprehensive solution to deal with the voltage violations in distribution networks, from controlling PV power outputs and electricity consumption of smart appliances in real time to optimal placement of PVs at the planning stage. The dissertation is composed of three parts: the literature review, the work that has already been done and the future research tasks. An overview on renewable energy generation and its challenges are given in Chapter 1. The overall literature survey, motivation and the scope of study are also outlined in the chapter. Detailed literature reviews are given in the rest of chapters. The overvoltage and undervoltage phenomena in typical distribution networks with integration of PVs are further explained in Chapter 2. Possible approaches for voltage quality control are also discussed in this chapter, followed by the discussion on the importance of the load management for PHEVs and appliances and its benefits to electric utilities and end users. A new real power capping method is presented in Chapter 3 to prevent overvoltage by adaptively setting the power caps for PV inverters in real time. The proposed method can maintain voltage profiles below a pre-set upper limit while maximizing the PV generation and fairly distributing the real power curtailments among all the PV systems in the network. As a result, each of the PV systems in the network has equal opportunity to generate electricity and shares the responsibility of voltage

  10. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  11. A Novel Method of Suppressing the Inrush Current of Transformers Using a Series-Connected Voltage-Source PWM Converter

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki; Tanaka, Toshihiko; Funabiki, Shigeyuki

    This paper proposes a novel method of suppressing the inrush current of transformers. A small-rated voltage-source PWM converter is connected in series to the transformers through a matching transformer. As the connected PWM converter performs a resistor for the source current, no inrush phenomena occurs. The required-ratings of the PWM converter, which performs the damping resistor for the inrush phenomena, is one-four-hundredth as compared to that of the main transformers in single-phase circuits. In three-phase circuits, it is one-nine-hundredth. The basic principle of the proposed method is discussed. Digital computer simulation is implemented to confirm the validity and excellent practicability of the proposed method using the PSCAD/EMTDC. A prototype experimental-model is constructed and tested. The experimental results demonstrate that the proposed method can perfectly suppress the inrush phenomena.

  12. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  13. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  14. A low-frequency high-voltage rf-barrier-bunching system for high-intensity neutron source compressor rings

    SciTech Connect

    Hardek, T.W.; Ziomek, C.; Rees, D.

    1995-05-01

    A Los Alamos design for a 1-MW pulsed neutron source incorporates a ring utilizing an rf-barrier bunching system. This bunching concept allows uniform longitudinal beam distributions with low momentum spread. Bunching cavities are operated at the revolution frequency (1.5 MHz in this case) and each of the 2nd, 3rd, 4th, and 5th revolution frequency harmonics. Their effects combine to maintain a beam free gap in the longitudinal distribution of the accumulated beam. The cavities are driven by low-plate-resistance common-cathode configured retrode amplifiers incorporating local rf feedback. Additional adaptive feed-forward hardware is included to reduce the beam-induced bunching-gap voltages well below that achievable solely with rf feedback. Details of this system are presented along with a discussion of the various feed-back and feed-forward techniques incorporated.

  15. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  16. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    NASA Astrophysics Data System (ADS)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  17. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  18. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  19. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    SciTech Connect

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  20. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  1. A calculable, transportable audio-frequency AC reference standard

    SciTech Connect

    Oldham, N.M.; Hetrick, P.S. ); Zeng, X. )

    1989-04-01

    A transportable ac voltage source is described, in which sinusoidal signals are synthesized digitally in the audio-frequency range. The rms value of the output waveform may be calculated by measuring the dc level of the individual steps used to generate the waveform. The uncertainty of this calculation at the 7-V level is typically less than +-5 ppm from 60 Hz to 2 kHz and less than +-10 ppm from 30 Hz to 15 kHz.

  2. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  3. Measurement of Parasitic Inductances in the Bus-Bar Assembly of a High Power Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Datta, Aniket; Narayanan, G.

    2016-05-01

    Insulated gate bipolar transistor (IGBT) based voltage source converters use copper plates with insulating sheets in between them (sandwich bus-bar arrangement) for connecting the different device terminals in the power circuit. In such converters, the parasitic inductances in the power circuit are crucial as they cause overvoltage spikes across the device. Also, the parasitics affect the current sharing between IGBTs when they are connected in parallel in high power converters. The conduction path through plates and fasteners in the bus-bar assembly is three-dimensional and quite complex, making analytical evaluation of the stray inductance quite challenging. The first objective here is to present a simple experimental setup and experimental procedure, which are convenient for power electronic engineers, to measure the bus-bar inductance. The next objective is to carry out experimental studies on the inductances offered by different components and sub-assemblies in a bus-bar assembly. This includes evaluation of inductances of the different conduction paths in typical bus-bar plates. The third objective is to experimentally evaluate the parasitic inductances in the bus-bar assembly of a commercial 250 kVA high power converter. Each leg of this converter consists of two 300 A/1200 V IGBTs connected in parallel. The effective inductance seen by the individual device modules are determined experimentally.

  4. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  5. An Analytical Threshold Voltage Model of Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFETs with Back-Gate Control

    NASA Astrophysics Data System (ADS)

    Saramekala, Gopi Krishna; Tiwari, Pramod Kumar

    2016-10-01

    This paper presents an analytical threshold voltage model for back-gated fully depleted (FD), recessed-source drain silicon-on-insulator metal-oxide-semiconductor field-effect transistors (MOSFETs). Analytical surface potential models have been developed at front and back surfaces of the channel by solving the two-dimensional (2-D) Poisson's equation in the channel region with appropriate boundary conditions assuming a parabolic potential profile in the transverse direction of the channel. The strong inversion criterion is applied to the front surface potential as well as on the back one in order to find two separate threshold voltages for front and back channels of the device, respectively. The device threshold voltage has been assumed to be associated with the surface that offers a lower threshold voltage. The developed model was analyzed extensively for a variety of device geometry parameters like the oxide and silicon channel thicknesses, the thickness of the source/drain extension in the buried oxide, and the applied bias voltages with back-gate control. The proposed model has been validated by comparing the analytical results with numerical simulation data obtained from ATLAS™, a 2-D device simulator from SILVACO.

  6. An Analytical Threshold Voltage Model of Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFETs with Back-Gate Control

    NASA Astrophysics Data System (ADS)

    Saramekala, Gopi Krishna; Tiwari, Pramod Kumar

    2016-06-01

    This paper presents an analytical threshold voltage model for back-gated fully depleted (FD), recessed-source drain silicon-on-insulator metal-oxide-semiconductor field-effect transistors (MOSFETs). Analytical surface potential models have been developed at front and back surfaces of the channel by solving the two-dimensional (2-D) Poisson's equation in the channel region with appropriate boundary conditions assuming a parabolic potential profile in the transverse direction of the channel. The strong inversion criterion is applied to the front surface potential as well as on the back one in order to find two separate threshold voltages for front and back channels of the device, respectively. The device threshold voltage has been assumed to be associated with the surface that offers a lower threshold voltage. The developed model was analyzed extensively for a variety of device geometry parameters like the oxide and silicon channel thicknesses, the thickness of the source/drain extension in the buried oxide, and the applied bias voltages with back-gate control. The proposed model has been validated by comparing the analytical results with numerical simulation data obtained from ATLAS™, a 2-D device simulator from SILVACO.

  7. Three-phase ac-to-ac series-resonant power converter with a reduced number of thyristors

    SciTech Connect

    Klaassens, J.B.; de Beer, F. )

    1991-07-01

    This paper reports that ac-ac series-resonant converters have been proven to be functional and useful. Power pulse modulation with internal frequencies of tens of kHz and suited for multikilowatt power levels is applied to a series-resonant converter system for generating synthesized multiphase bipolar waveforms with reversible power flow and flow distortion. The use of a series-resonant circuit for power transfer and control obtains natural current commutation of the thyristors and the prevention of excessive stresses on components. Switches are required which have bidirectional current conduction and voltage blocking ability. The conventional series-resonant ac-ac converter applies a total for 24 anti-parallel thyristors. An alternative circuit configuration for the series-resonant ac-ac converter with only 12 thyristors is also presented. The alternative power circuit has three neutrals, related to the polyphase source, the load and the converter, which may be interconnected. If they are connected, the high-frequency component of the source and load currents will flow through the connection between the neutrals. The test results of a converter system generating three-phase sinusoidal input and output waveforms have demonstrated the significant aspects of this type of power interfaces.

  8. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Subramanian, N. Sankara; Loganathan, S.; Kannan, R.

    2014-04-01

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  9. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  10. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  11. Array of solid-state dye-sensitized solar cells with micropatterned TiO2 nanoparticles for a high-voltage power source.

    PubMed

    Cho, Seong-Min; Park, Hea-Lim; Kim, Min-Hoi; Kim, Se-Um; Lee, Sin-Doo

    2013-11-20

    We demonstrate an array of solid-state dye-sensitized solar cells (SS-DSSCs) for a high-voltage power source based on micropatterned titanium dioxide nanoparticles (TNPs) as photoanodes connected in series. The underlying concept of patterning the TNP of a few micrometers thick lies on the combination of the lift-off process of transfer-printed patterns of a sacrificial layer and the soft-cure treatment of the TNP for fixation. This sacrificial layer approach allows for high pattern fidelity and stability, and it enables to construct stable, micrometer-thick, and contamination-free TNP patterns for developing the SS-DSSC array for miniature high-voltage applications. The array of 20 SS-DSSCs integrated in series is found to show a voltage output of around 7 V.

  12. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  13. Module Two: Voltage; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will study and learn what voltage is, how it is generated, what AC (alternating current) and DC (direct current) are and why both kinds are needed, and how to measure voltages. The module is divided into six lessons: EMF (electromotive force) from chemical action, magnetism, electromagnetic induction, AC voltage, the…

  14. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  15. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  16. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  17. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  18. A cascaded three-phase symmetrical multistage voltage multiplier

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Singh, G. K.; Besar, R.; Muhammad, G.

    2006-10-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM.

  19. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  20. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  1. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  2. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  3. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  4. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  5. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  6. An Unusual Source of Multiple ESD Events in Electronic Equipment

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2015-10-01

    Small wall mounted power supplies that plug directly into AC power mains and furnish power, usually low voltage DC, to equipment over a low voltage cable are ubiquitous in the electronic field. It is shown that these low voltage supplies can be the source of multiple ESD events that are fed to the connected system on the low voltage cable when an ESD event is applied to the system or directly to the power supplies. The multiple ESD events produce nasty current waveforms Examples of these waveforms and the measurement method are given. The results have been duplicated in three laboratories, results are presented from two of the three.

  7. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  8. An automatic bridge for inductive voltage dividers

    SciTech Connect

    Chang, P.; Liang, C.P.; Hsiao, J.C.

    1994-12-31

    We describe an automatic, injection-type bridge for inductive voltage divider (IVD) applications at low audio frequencies. We used it to self-calibrate programmable IVDs fabricated in house, by an automated {open_quotes}boot-strap{close_quotes} procedure. It is the heart of our reference standard for ac voltage ratios as well as a calibration system for IVDs.

  9. Optical fiber bundle displacement sensor using an ac-modulated light source with subnanometer resolution and low thermal drift

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1995-09-01

    An optical fiber bundle displacement sensor with subnanometer order resolution and low thermal drift is proposed. The setup is based on a carrier amplifier system and involves techniques to eliminate fluctuation in the light power of the source. The achieved noise level of the sensor was 0.03 nm/ \\radical Hz \\end-radical . The stability was estimated by comparing the outputs of two different sensors from the same target for 4 ks (67 min). The relative displacements between the fiber bundle ends of the two sensors and the target surface varied in the area of 400 nm depending on the ambient temperature variation at 2 deg C. However, the difference in output between the two sensor systems is within 2 nm for more than 1 hour of measurement. It is expected that it would be reduced to within the area of 0.1 nm if the ambient temperature were controlled to within +/-0.1 deg C. It is concluded that the stability of the sensors is sufficiently good to be used with nanotechnological instruments.

  10. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  11. [Flow of high-voltage current in coal electrodes of arc furnaces as a source of noise of special nature].

    PubMed

    Polanowska, R

    1984-01-01

    The noise level for working arc furnace has been measured. Arc furnaces were found to be the source of infrasounds and acoustic field. The sound pressure levels for infrasounds range from 55 to 77 dB. It has been showed that particular noise level includes the onethird-octave band with middle frequency 100 Hz. The sound pressure levels in this band range from 105 to 110 dB.

  12. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  13. An AC drive system for a battery driven moped

    SciTech Connect

    Nandi, S.; Saha, S.; Sharon, M.; Sundersingh, V.P.

    1995-12-31

    A petrol driven moped is converted to an electric one by replacing the petrol engine by a three phase 1.5 HR, AC squirrel cage induction motor drive system. The motor voltage rating selected is 200 V to keep the DC boost voltage level to a reasonable value.f the power source used is a high energy density, 24 V, 110 Ah, Ni-Zn battery. A modified indirect current controlled step-up chopper as well as a standard push-pull DC-DC boost converter is studied for the boost scheme. A simple three phase quasi-square wave inverter is designed along with suitable protection for driving the motor. Successful trial test of the system has been conducted at the laboratory.

  14. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  15. Modelling a single phase voltage controlled rectifier using Laplace transforms

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  16. Parametric effect of a spatially periodic voltage depression on operation of [hacek C]erenkov sources of electromagnetic radiation

    SciTech Connect

    Nusinovich, G.S.; Vlasov, A.N. )

    1994-03-01

    In microwave sources of coherent [hacek C]erenkov radiation the electrons usually propagate near the rippled wall of a slow-wave structure. These ripples cause the periodic modulation of electron potential depression, and therefore, lead to periodic modulation of electron axial velocities. Since the period of this electrostatic pumping is the period of the slow-wave structure the parametric coupling of electrons to originally nonsynchronous spatial harmonics of the microwave field may occur. This effect can be especially important for backward-wave oscillators (BWO's) driven by high current, relativistic electron beams. In the paper both linear and nonlinear theories of the relativistic resonant BWO with periodic modulation of electron axial velocities are developed and results illustrating the evolution of the linear gain function and the efficiency of operation in the large-signal regime are presented.

  17. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle. PMID:18262528

  18. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  19. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  20. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  1. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source

    NASA Astrophysics Data System (ADS)

    Xing, Qing-Zi; Du, Lei; Zheng, Shu-Xin; Guan, Xia-Ling; Li, Jian; Cai, Jin-Chi; Gong, Cun-Kui; Wang, Xue-Wu; Tang, Chuan-Xiang; James, Billen; James, Stovall; Lloyd, Young

    2013-05-01

    A four-vane radio-frequency quadrupole (RFQ) accelerator is under construction for the Compact Pulsed Hadron Source (CPHS) project at Tsinghua University. The 3 m-long RFQ will accelerate a 50keV proton beam from the ECR source to 3MeV, and deliver it to the downstream drift tube linac (DTL) with a peak current of 50mA, pulse length of 0.5 ms and beam duty factor of 2.5%. The inter-vane voltage is designed to increase with the longitudinal position to produce a short RFQ. Coupling plates are therefore not necessary. The cavity cross section and vane-tip geometry are tailored as a function of the longitudinal position, while limiting the peak surface electric field to 1.8 Kilpatrick. The RFQ is designed, manufactured, and installed at Tsinghua University. We also present the tuning and cold test results of the RFQ accelerator. After final tuning, the relative error of the quadrupole field is within 2%, and the admixture of the two dipole modes are less than 2% of the quadrupole mode.

  2. Dynamic voltage-current characteristics for a water jet plasma arc

    SciTech Connect

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-05-05

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid.

  3. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  4. Voltage modulation of propagating spin waves in Fe

    SciTech Connect

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  5. Piezotube borehole seismic source

    DOEpatents

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  6. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. PMID:26549566

  7. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor.

  8. Analysis of coronary arterial calcification components with coronary CT angiography using single-source dual-energy CT with fast tube voltage switching.

    PubMed

    Matsui, Kazuhiro; Machida, Haruhiko; Mitsuhashi, Tetsuya; Omori, Hisako; Nakaoka, Takashi; Sakura, Hiroshi; Ueno, Eiko

    2015-03-01

    Clinical cardiac applications of single-source dual-energy computed tomography (DECT) have recently been introduced. This study aimed to analyze the components of coronary arterial calcification (CAC) in vivo by material decomposition achieved with DECT. We reconstructed computed tomography (CT) angiography images for 51 consecutive patients with CACs who had undergone electrocardiography-gated coronary CT angiography by single-source DECT with fast tube voltage switching. We placed regions of interest (ROIs) within the CAC with margins of at least 0.5 mm to minimize partial volume averaging. We compared histograms for the effective atomic number (EAN) and the median, mean, and maximum EANs for each CAC with the theoretical EANs for possible CAC components, including hydroxyapatite (HA), calcium oxalate monohydrate (COM), and dicalcium phosphate dehydrate. We also investigated the in vivo EAN for COM and in vitro EAN for HA by our phantom experiment. Analysis of the CAC components was feasible in 177 ROIs from 28 patients. The median EAN was 13.8 ± 0.8 (95% confidence interval 13.7-13.9), which is similar to the theoretical EAN for COM (13.8). The EAN for HA in vitro was 16.5 ± 0.1, which was slightly higher than the theoretical EAN value for HA (16.1). Notably, the median EAN in 144 ROIs (81.4%) was between 11.2 and 14.4, which is the reported range of the in vivo EAN for COM. Our results suggest that COM might be a more frequent CAC component than previously reported. PMID:25407480

  9. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  10. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality.

    PubMed

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  11. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-04-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

  12. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  13. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  14. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  15. Recovery of consciousness in broilers following combined dc and ac stunning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...

  16. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  17. Voltage Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.

  18. Response of dairy cattle to transient voltages and magnetic fields

    SciTech Connect

    Reinemann, D.J.; Laughlin, N.K.; Stetson, L.E.

    1995-07-01

    Stray voltages in dairy facilities have been studied since the 1970`s. Previous research using steady-state ac and dc voltages has defined cow-contact voltage levels which may cause behavior and associated production problems. This research was designed to address concerns over possible effects of transient voltages and magnetic fields on dairy cows. Dairy cows response to transient voltages and magnetic fields was measured. The waveforms of the transient voltages applied were: 5 cycles of 60-Hz ac with a total pulse time of 83 ms, 1 cycle of 60-Hz ac with a total pulse time of 16 ms, and 1 cycle of an ac square wave (spiking positive and negative) of 2-ms duration. Alternating magnetic fields were produced by passing 60-Hz ac fundamental frequency with 2nd and 3rd harmonic and random noise components in metal structures around the cows. The maximum magnetic field associated with this current flow was in excess of 4 G. A wide range of sensitivity to transient voltages was observed among cows. Response levels from 24 cows to each transient exposure were normally distributed. No responses to magnetic fields were observed.

  19. A dry-cooled AC quantum voltmeter

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.

    2016-10-01

    The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.

  20. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  1. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  2. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  3. Non-contact current and voltage sensor

    SciTech Connect

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  4. Starting Phenomena and Temperature-rise under vvvf Supply of Three-Phase Squirrel-Cage ac Traction Motor of Electric Locomotive

    NASA Astrophysics Data System (ADS)

    Paul, R. N.; Arya, L. D.; Verma, H. K.

    2012-09-01

    In three-phase squirrel-cage ac traction motor, temperature-rise calculation during variable-voltage and variable-frequency starting is of vital importance and has to be predicted and critically examined. Under voltage source inverter supply with PWM, the generation of harmonics by inverter supply reduces the output during starting due to higher harmonic losses, thereby reducing the starting tractive effort in kN on locomotive wheel. Stator and rotor temperature-rises during starting have been determined for average acceleration torque in segmental zone (calculated from variable acceleration) which have been presented in the paper with both copper and aluminium alloy rotor bars.

  5. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  6. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  7. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  8. Very low noise AC/DC power supply systems for large detector arrays

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  9. Voltage-dependent membrane displacements measured by atomic force microscopy.

    PubMed

    Mosbacher, J; Langer, M; Hörber, J K; Sachs, F

    1998-01-01

    Cells use polar molecules in the membrane to sense changes in the transmembrane potential. The opening of voltage-gated ion channels and membrane bending due to the inverse flexoelectric effect are two examples of such electromechanical coupling. We have looked for membrane motions in an electric field using atomic (or scanning) force microscopy (AFM) with the intent of studying voltage-dependent conformational changes of ion channels. Voltage-clamped HEK293 cells were either untransfected controls or transfected with Shaker K+ channels. Using a +/- 10-mV peak-peak AC carrier stimulus, untransfected cells moved 0.5-15 nm normal to the plane of the membrane. These movements tracked the voltage at frequencies >1 kHz with a phase lead of 60-120 degrees, as expected of a displacement current. The movement was outward with depolarization, but the holding potential only weakly influenced the amplitude of the movement. In contrast, cells transfected with a noninactivating mutant of Shaker K+channels showed similar movements, but these were sensitive to the holding potential; decreasing with depolarization between -80 and 0 mV. Searching for artifactual origins of these movements, we used open or sealed pipettes and AFM cantilever placements just above the cells. These results were negative, suggesting that the observed movements were produced by the cell membrane rather than by movement of the patch pipette, or by acoustic or electrical interactions of the membrane with the AFM tip. In control cells, the electrical motor may arise from the flexoelectric effect, where changes in potential induce changes in curvature. In transfected cells, it appears that channel-specific movements also occurred. These experiments demonstrate that the AFM may be able to exploit voltage-dependent movements as a source of contrast for imaging membrane components. The electrically induced motility will cause twitching during action potentials, and may have physiological consequences. PMID

  10. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  11. Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

    NASA Astrophysics Data System (ADS)

    Ahmed, Waheed; Usman Ali, Syed M.

    2013-12-01

    We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

  12. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  13. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Astrophysics Data System (ADS)

    Castell, Karen D.; Ruitberg, Arthur P.

    1994-11-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  14. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  15. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  16. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  17. 46 CFR 129.326 - Dual-voltage generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Dual-voltage generators. 129.326 Section 129.326... INSTALLATIONS Power Sources and Distribution Systems § 129.326 Dual-voltage generators. If a dual-voltage generator is installed on an OSV— (a) The neutral of the dual-voltage system must be solidly grounded at...

  18. 46 CFR 129.326 - Dual-voltage generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Dual-voltage generators. 129.326 Section 129.326... INSTALLATIONS Power Sources and Distribution Systems § 129.326 Dual-voltage generators. If a dual-voltage generator is installed on an OSV— (a) The neutral of the dual-voltage system must be solidly grounded at...

  19. 46 CFR 129.326 - Dual-voltage generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Dual-voltage generators. 129.326 Section 129.326... INSTALLATIONS Power Sources and Distribution Systems § 129.326 Dual-voltage generators. If a dual-voltage generator is installed on an OSV— (a) The neutral of the dual-voltage system must be solidly grounded at...

  20. 46 CFR 129.326 - Dual-voltage generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Dual-voltage generators. 129.326 Section 129.326... INSTALLATIONS Power Sources and Distribution Systems § 129.326 Dual-voltage generators. If a dual-voltage generator is installed on an OSV— (a) The neutral of the dual-voltage system must be solidly grounded at...

  1. 46 CFR 129.326 - Dual-voltage generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Dual-voltage generators. 129.326 Section 129.326... INSTALLATIONS Power Sources and Distribution Systems § 129.326 Dual-voltage generators. If a dual-voltage generator is installed on an OSV— (a) The neutral of the dual-voltage system must be solidly grounded at...

  2. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  3. Power conditioning using dynamic voltage restorers under different voltage sag types

    PubMed Central

    Saeed, Ahmed M.; Abdel Aleem, Shady H.E.; Ibrahim, Ahmed M.; Balci, Murat E.; El-Zahab, Essam E.A.

    2015-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type. PMID:26843975

  4. Level structure and reflection asymmetric shape in sup 223 Ac

    SciTech Connect

    Sheline, R.K.; Liang, C.F.; Paris, P. )

    1990-07-20

    Mass separated sources of {sup 227}Pa (separated as PaF{sub 4}{sup +} ions) were used to study the level structure of {sup 223}Ac following alpha decay. The levels in {sup 223}Ac are interpreted as K = 5/2{sup {plus minus}} parity doublet bands which occur naturally in reflection asymmetric models and the multiphonon octupole model. The anomalous structure of the K = 3/2{sup {minus}} band is explained in terms of Coriolis coupling. The low lying parity doublet bands in {sup 223}Ac, {sup 225}Ac, and {sup 227}Ac are compared and contrasted.

  5. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  6. A Kalman filtering based control scheme for the improvement of dynamic performance of an AC/DC power system

    NASA Astrophysics Data System (ADS)

    Pecen, Recayi

    In this dissertation, two major accomplishments are achieved. First, the feasibility of a proposed Wyoming to California HVDC system having the ratings of 1000 MW, ±500 kV, 2 kA, 860 miles and 12-pulse bipolar lines is shown for exporting Wyoming's electrical power resources to the heavy loaded western states. The second and the main objective of this dissertation is the development of a Kalman filtering (KF) based control scheme applied to an ac/dc power system. It is shown that the use KF algorithm to estimate some of the system states and utilizing them in a proportional Integral (PI) controller which has a better performance for this specific control scheme have resulted in a better dynamic performance of the proposed system. A set of case studies has shown that the system dynamic performance is improved for most of the contingencies. Ac and dc noisy voltage and current measurements received from the simulated ac/dc power system are sent to the KF estimation algorithm. The noise-separated best estimates of measurable states are computed and sent to a PI controller-based current and firing angle control subsections in order to provide a set of optimum thyristor firing angles for both converter stations during and after contingencies until the normal operation is reached. To evaluate the dynamic performance of the system with the KF algorithm, the model is simulated by a well-known digital simulation package, Electromagnetic Transients DC Program (PSCAD/EMTDC) of Manitoba HVDC Research Center. To apply the KF algorithm, a general, linearized, state-space model of the proposed ac/dc system, appropriate for analyzing both the KF and the electromagnetics transients, is derived first. The derived model enables the representation of an ac power system with two ac sources and one HVDC line with a parallel ac line connecting the two systems. It is shown that system eigenvalues of the discretized system model for a normal operating point are inside the unit circle that

  7. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  8. Designing a Battery-Less Piezoelectric based Energy Harvesting Interface Circuit with 300 mV Startup Voltage

    NASA Astrophysics Data System (ADS)

    Sarker, M. R.; Ali, Sawal H. Md; Othman, M.; Islam, Shabiul

    2013-04-01

    This paper presents a designing a battery-less piezoelectric based energy harvesting interface circuits with 300mV step-up voltage. A technique (i.e., DC-DC Step-Up converter) has chosen for designing the startup voltage with low voltage energy (i.e., 300mV). The proposed method consumes very little power, and is especially suitable for the ambient environmental source, where energy harvested power is very low. The energy harvesting interface circuit consists of MOSFET bridge ac-dc rectifier, voltage regulator, dc-dc step-up converter and an energy storage device with capacitor at the output terminal, replacing this by external battery. This paper will study results these important issues regarding the efficiencies of the energy harvesting power conversion interface circuits considering the storage device low voltage. The achievement of our development circuit is able to boost up minimum 1.67 V for input DC voltage of 300mV. The overall circuit efficiency is greater than 80% following the simulation results. This research has focused on the application of Wireless Sensor Network (WSN) and bio-medical device can be operated without battery.

  9. AC corrosion -- A new challenge to pipeline integrity

    SciTech Connect

    Gummow, R.A.; Wakelin, R.G.; Segall, S.M.

    1998-12-31

    Corrosion of steel by alternating current was investigated as far back as the early 1900`s. These early studies and others in the 1950--60`s indicated that AC corrosion of steel was only a fraction of an equivalent amount of direct current (i.e. less than 1% of a like amount of DC) and in addition was controlled to negligible levels when cathodic protection was applied to industry standards. In 1986 however, an investigation into a corrosion failure on a high pressure gas pipeline in Germany indicated that the sole cause of the failure was AC corrosion. This corrosion failure on an otherwise well protected pipeline resulted in the initiation of several laboratory and field studies which indicated, that above a certain minimum AC current density, normal levels of cathodic protection will not control AC corrosion to acceptable levels and that AC mitigation is often required to prevent serious corrosion. Several other AC corrosion sites were discovered at coating holidays during the follow-up investigations in Germany. A graph, relating AC voltage to holiday size at the minimum AC current density for corrosion, is presented to assist the pipeline operator in determining whether or not a pipeline is susceptible to AC corrosion activity.

  10. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  11. A useful infrared source.

    PubMed

    Carlon, H R

    1966-08-01

    Reliable Inconel-sheathed cartridge heaters rated at hundreds or thousands of watts have been in use for many years. Miniature heaters have been manufactured, having axial leads, which when treated with an emissive coating meet or exceed Globar emissivities in the ir. Free-air temperatures approximating 800 degrees C have been obtained for power inputs of 10 W, while temperatures as high as 1150 degrees C are possible for short lifetimes, e.g., 10 h, at power dissipations of 24 W or more. Sources can be designed to operate from d or ac power with higher voltages and lower currents depending upon physical size limitations, resulting in simplified power supply problems. Although voltages from 12 V to 230 V are practical for larger units, the sources described below operated at 1060 degrees C from a nominal 1.07 A at 18.7 V d for apower consumption of 20 W variable continuously about this value. The small dimensions of these sources compare favorably to those of a 0.5-W electronic resistor. The present units are cylindrical, 1 cm long x 4 mm diam. The construction of smaller units is possible bt difficult under present state-of-the-art limitations. PMID:20057526

  12. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.

    PubMed

    Sasaki, Naoki

    2012-01-01

    AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.

  13. Charge Voltages from Magnetization Dynamics

    NASA Astrophysics Data System (ADS)

    Hoffmann, Axel

    2013-03-01

    The main challenge of spin caloritronics is to establish a connection between heat currents and spin currents. Towards this end, spin Hall effects have become very important, since they allow to convert a pure spin current into a transverse charge voltage. I will show how these spin Hall effects can be characterized with great accuracy using spin pumping, where the excitation of ferromagnetic resonance generates a pure spin current in an adjacent non-magnetic conductor.[3] The change in the line-width of the ferromagnetic resonance determines the spin-mixing conductance and thus after proper calibration of the rf magnetic fields and the concomitant opening angles of the magnetization precession, allows to determine the magnitude of the spin current. The charge current generated from inverse spin Hall effect is measured through the associated electrical voltage and the ration of spin and charge current directly determines the spin Hall angle. Furthermore I will present an alternative approach for converting magnetization dynamics into measurable charge voltages. Namely, the dissipation of magnetization dynamics in thin films generally also results in a temperature gradient perpendicular to the film, since the supporting substrate acts as a heat sink. This in turn can generate a transverse voltage through the anomalous Nernst effect. Interestingly this allows to detect spin waves with very good signal to noise[4] and unlike optical or inductive detection techniques there is practically no lower limit for the wavelength of the detected spin waves. Financial support was through U.S. Department of Energy, Office of Science under Contract no. DE-AC02-06CH11357.

  14. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  15. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m-1 was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio

  16. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  17. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  18. High-power ac/dc variable load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.; Birnbach, S.; Bruce, L. D.; Smith, L.

    1975-01-01

    Design of medium-power dynamic electrical load simulator has been extended to permit simulation of ac as well as dc loads and to provide for operation at higher power levels. Simulator is internally protected against reverse voltage, overvoltage, overcurrent, and overload conditions.

  19. Batteries: Widening voltage windows

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Wang, Chunsheng

    2016-10-01

    The energy output of aqueous batteries is largely limited by the narrow voltage window of their electrolytes. Now, a hydrate melt consisting of lithium salts is shown to expand such voltage windows, leading to a high-energy aqueous battery.

  20. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  1. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  2. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  3. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  4. The EP-4(0) shielding kits: a new approach to protection from induced voltage

    SciTech Connect

    Vorob'ev, A. Yu.; Otmorskii, S. G.; Smekalov, V. V.; Gorozhankina, E. N.; Sosunov, N. N.; Bol'shunov, A. M.

    2011-09-15

    Problems of safety in work on overhead power lines and the overhead railroad ac contact network under induced voltages are considered. The use of additional individual protection systems is proposed to provide protection from electric shock during such work.

  5. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  6. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  7. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current

    SciTech Connect

    Calabrese, G.; Capineri, L.; Granato, M.; Frattini, G.

    2015-04-15

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  8. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current.

    PubMed

    Calabrese, G; Capineri, L; Granato, M; Frattini, G

    2015-04-01

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  9. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  10. Study on preferred crystal orientations of Mg-Zr-O composite protective layer in AC-PDP

    NASA Astrophysics Data System (ADS)

    Bingang, G.; Chunliang, L.; Zhongxiao, S.; Liu, L.; Yufeng, F.; Xing, X.; Duowang, F.

    2006-11-01

    In order to study the preferred crystal orientations of Mg-Zr-O composite protective layers in PDP, Mg-Zr-O composite protective layers were deposited by Electron-beam Evaporator using (MgO+ZrO{2}) powder mixture as evaporation source material. X-ray diffractometer (XRD) was used to determine preferred crystal orientations of Mg-Zr-O composite protective layers, surface morphologies of films were analyzed by FESEM and voltage characteristics were examined in a testing macroscopic discharge cell of AC-PDP. On the basis of experimental analysis, the influence of oxide addition and deposition conditions on preferred orientations of Mg-Zr-O composite protective layers were investigated. The results showed that the preferred orientations of Mg-Zr-O films were determined by lattice distortion of MgO crystal. The deposition conditions have great effects on the preferred orientations of Mg-Zr-O films. The preferred orientations affect voltage characteristics through affecting surface morphology of Mg-Zr-O films. A small amount of Zr solution in MgO can decrease firing voltage compared with using pure MgO film. Firing voltage is closely related with the [ ZrO{2}/(MgO+ZrO{2})] ratio of evaporation source materials.

  11. AC plasma anemometer—characteristics and design

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2015-08-01

    The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.

  12. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  13. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  14. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  15. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  16. Tracking MOV operability under degraded voltage condition by periodic test measurements

    SciTech Connect

    Hussain, B.; Behera, A.K.; Alsammarae, A.J.

    1996-12-31

    The purpose of this paper is to develop a methodology for evaluating the operability of Alternating Current (AC) Motor Operated Valve (MOV) under degraded voltage condition, based on the seating parameter measured during surveillance/testing. This approach will help resolve Nuclear Regulatory Commission`s (NRC`s) concern on verifying the AC MOV`s design basis capability through periodic testing.

  17. 46 CFR 183.324 - Dual voltage generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Dual voltage generators. 183.324 Section 183.324... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1)...

  18. 46 CFR 120.324 - Dual voltage generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Dual voltage generators. 120.324 Section 120.324... INSTALLATION Power Sources and Distribution Systems § 120.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1) The neutral of a dual...

  19. 46 CFR 183.324 - Dual voltage generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Dual voltage generators. 183.324 Section 183.324... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1)...

  20. 46 CFR 183.324 - Dual voltage generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Dual voltage generators. 183.324 Section 183.324... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1)...

  1. 46 CFR 120.324 - Dual voltage generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Dual voltage generators. 120.324 Section 120.324... INSTALLATION Power Sources and Distribution Systems § 120.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1) The neutral of a dual...

  2. 46 CFR 183.324 - Dual voltage generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Dual voltage generators. 183.324 Section 183.324... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1)...

  3. 46 CFR 120.324 - Dual voltage generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Dual voltage generators. 120.324 Section 120.324... INSTALLATION Power Sources and Distribution Systems § 120.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1) The neutral of a dual...

  4. 46 CFR 120.324 - Dual voltage generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Dual voltage generators. 120.324 Section 120.324... INSTALLATION Power Sources and Distribution Systems § 120.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1) The neutral of a dual...

  5. 46 CFR 183.324 - Dual voltage generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Dual voltage generators. 183.324 Section 183.324... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1)...

  6. 46 CFR 120.324 - Dual voltage generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Dual voltage generators. 120.324 Section 120.324... INSTALLATION Power Sources and Distribution Systems § 120.324 Dual voltage generators. (a) A dual voltage generator installed on a vessel shall be of the grounded type, where: (1) The neutral of a dual...

  7. Programmable AC power supply for simulating power transient expected in fusion reactor

    SciTech Connect

    Halimi, B.; Suh, K. Y.

    2012-07-01

    This paper focus on control engineering of the programmable AC power source which has capability to simulate power transient expected in fusion reactor. To generate the programmable power source, AC-AC power electronics converter is adopted to control the power of a set of heaters to represent the transient phenomena of heat exchangers or heat sources of a fusion reactor. The International Thermonuclear Experimental Reactor (ITER) plasma operation scenario is used as the basic reference for producing this transient power source. (authors)

  8. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  9. A Matching Transformer-less Inrush Current Suppressor for Transformers Using a Series-Connected Small-Rated Voltage-Source PWM Converter

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki; Tanaka, Toshihiko; Funabiki, Shigeyuki

    This paper proposes a new inrush current suppressor using a series-connected small-rated PWM converter for a transformer. The PWM converter is directly connected in series between the source and transformer without a matching transformer. The inrush phenomena of the matching transformer, thus, can be avoided. The control gain and required-ratings of the series-connected small-rated PWM converter is discussed in detail. The capacity of the dc capacitor of the PWM converter is also discussed considering the active power flows into the PWM converter. The PSCAD/EMTDC is used to verify the validity of the proposed inrush current suppressor. A prototype experimental model is constructed and tested. The experimental results demonstrate that the proposed suppressor can perfectly overcome the inrush phenomena of transformers.

  10. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  11. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  12. Voltage controlled spintronic devices for logic applications

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A reprogrammable logic gate comprising first and second voltage-controlled rotation transistors. Each transistor comprises three ferromagnetic layers with a spacer and insulating layer between the first and second ferromagnetic layers and an additional insulating layer between the second and third ferromagnetic layers. The third ferromagnetic layer of each transistor is connected to each other, and a constant external voltage source is applied to the second ferromagnetic layer of the first transistor. As input voltages are applied to the first ferromagnetic layer of each transistor, the relative directions of magnetization of the ferromagnetic layers and the magnitude of the external voltage determines the output voltage of the gate. By altering these parameters, the logic gate is capable of behaving as AND, OR, NAND, or NOR gates.

  13. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  14. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  15. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  16. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  17. The LMF triaxial MITL voltage adder system

    SciTech Connect

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-12-31

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed.

  18. Power Quality Improvement in Bridgeless Ac-Dc Converter Based Multi-output Switched Mode Power Supply

    NASA Astrophysics Data System (ADS)

    Singh, Shihka; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2014-12-01

    Computer power supplies are required to have multiple isolated regulated dc voltages with low ripple content and high input power factor at the utility interface. A dc-dc converter is used for obtaining these isolated multi-output dc voltages with excellent regulation. In this paper, a non-isolated ac-dc converter is proposed as the first stage converter to obtain a regulated dc output rather than using a simple uncontrolled diode bridge rectifier at the front end. A dc-dc converter is used at the second stage that has a high frequency transformer with multiple secondary windings to obtain different dc voltage levels at the output. The proposed bridgeless converter based power supply is designed using fundamental design equations, and different component values are calculated. Extensive simulations are carried out to demonstrate the improved performance of the proposed bridgeless converter based multi-output computer power supply at varying source voltages and load conditions. Experimental validation of the power supply is carried on a developed hardware prototype, and the test results are compared with the simulated performance for design verification.

  19. Interplay between electron overheating and ac Josephson effect

    NASA Astrophysics Data System (ADS)

    De Cecco, A.; Le Calvez, K.; Sacépé, B.; Winkelmann, C. B.; Courtois, H.

    2016-05-01

    We study the response of high-critical-current proximity Josephson junctions to a microwave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

  20. Electric voltage generation by antiferromagnetic dynamics

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo

    2016-05-01

    We theoretically demonstrate dc and ac electric voltage generation due to spin motive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the intersublattice electron dynamics treated as a perturbation. This work suggests a way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.

  1. AC Resonant charger with charge rate unrelated to primary power frequency

    DOEpatents

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  2. Ac resonant charger with charge rate unrelated to preimary power requency

    DOEpatents

    Not Available

    1979-12-07

    An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  3. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  4. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  5. Transistor current and voltage limiting switch

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1970-01-01

    Limiting circuit protects the main power supply of electronic modules and limits the current drawn by each module should a short circuit occur. It limits current within one mA when used with direct current of either polarity, or with pulse or ac power sources from direct current to 100 kHz.

  6. Local Dynamic Reactive Power for Correction of System Voltage Problems

    SciTech Connect

    Kueck, John D; Rizy, D Tom; Li, Fangxing; Xu, Yan; Li, Huijuan; Adhikari, Sarina; Irminger, Philip

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  7. Application of fuzzy logic in the speed control of AC servo system and an intelligent inverter

    SciTech Connect

    Fengfu Cheng; Shengnian Yeh . Dept. of Electrical Engineering)

    1993-06-01

    This paper presents a novel fuzzy logic controller for use in the fully digital speed control of ac servo systems. A new intelligent inverter is also proposed to reduce the switching loss and the current harmonics in induction motors. A 16-bit single-chip microprocessor is used to reduce the number of circuit components for cost reduction and reliability enhancement. In order to facilitate the instantaneous control of motor torque, indirect field orientation is adopted along with a current regulated pulse-width-modulation voltage-source inverter (CRPWM VSI). Computer simulation is first given to assess the feasibility of the system proposed. Circuit design and software development are then undertaken. Simulation results are verified experimentally.

  8. Derivation of Instantaneous Wye and Zero-Phase Sequence Voltages from Line-Line Voltages in Unbalanced 3-Phase 3-Wire Systems and Application of This Method to 3-Phase PWM Converter Control

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Itsuo; Kawamura, Atsuo

    In general, voltage imbalances in 3-phase AC power systems are inevitable. 3-Phase PWM (Pulse Width Modulation) converter used in 3-wire systems are generally designed for use under limited imbalances of input voltages, and problems such as input current distortion, deterioration of output properties, degradation of efficiency and failure may occur in some cases. These problems cause severe damages to industries in some cases, for example, semiconductor production machines: SEMI defined “SEMI F47-0200” and “SEMI F47-0706” standards that have to be satisfied to realize voltage sag immunity. In order to compensate the remained problems due to the unbalanced input voltages, particular storage devices are designed additionally for conventional converters. This paper proposes that the determination of both the instantaneous zero-phase sequence voltage and wye voltages is essential for 3-phase PWM converter control used for a 3-wire system to keep its output rated under occasional or long-term voltage imbalances in an AC system. This paper also describes a general new method to derive the components of the voltages of instantaneous wye and zero-phase sequence voltage from line-line voltages of a 3-wire system. This paper also describes a method to apply the voltages to control the converter. The results obtained on implementation verify that this new converter keeps its output rated under unbalanced conditions wider than those defined by SEMIs without particular storage devices as far as the AC voltages are remained live.

  9. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  10. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jin; Kim, Jae Young; Kim, Jae Hyun; Kim, Dong Ha; Lee, Duck-Sik; Park, Choon-Sang; Park, Hyung Dal; Shin, Bhum Jae; Tae, Heung-Sik

    2015-12-01

    In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  11. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition.

    PubMed

    Jarvis, P; Belzile, F; Page, T; Dean, C

    1997-05-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.

  12. Microfluidic flow-focusing in ac electric fields.

    PubMed

    Tan, Say Hwa; Semin, Benoît; Baret, Jean-Christophe

    2014-03-21

    We demonstrate the control of droplet sizes by an ac voltage applied across microelectrodes patterned around a flow-focusing junction. The electrodes do not come in contact with the fluids to avoid electrochemical effects. We found several regimes of droplet production in electric fields, controlled by the connection of the chip, the conductivity of the dispersed phase and the frequency of the applied field. A simple electrical modelling of the chip reveals that the effective voltage at the tip of the liquid to be dispersed controls the production mechanism. At low voltages (≲ 600 V), droplets are produced in dripping regime; the droplet size is a function of the ac electric field. The introduction of an effective capillary number that takes into account the Maxwell stress can explain the dependance of droplet size with the applied voltage. At higher voltages (≳ 600 V), jets are observed. The stability of droplet production is a function of the fluid conductivity and applied field frequency reported in a set of flow diagrams. PMID:24401868

  13. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  14. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  15. A Novel Inductor-less DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Du, Zhong; Ozpineci, Burak; Tolbert, Leon M; Chiasson, John N

    2007-01-01

    This paper presents an inductorless cascaded H- bridge multilevel boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. An inductorless cascaded H-bridge multilevel boost inverter for EV and HEV applications is proposed in this paper. Traditionally, each H-bridge needs a DC power supply. The proposed inductorless cascaded H-bridge multilevel boost inverter uses a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the DC power source. Fundamental switching scheme is used to do modulation control and to produce a 5-level phase voltage. Experiments show that the proposed inductorless DC-AC cascaded H-bridge multilevel boost inverter can output a boosted AC voltage.

  16. Voltage tunable polymer laser device

    NASA Astrophysics Data System (ADS)

    Döring, Sebastian; Kollosche, Matthias; Rabe, Torsten; Kofod, Guggi; Stumpe, Joachim

    2012-03-01

    Since organic laser materials offer broad optical gain spectra they are predestined for the realization of widely tunable laser sources. Here we report on a compact organic laser device that allows for voltage controlled continuously wavelength tuning in the visible range of the spectrum by external deformation. The device consists of an elastomeric distributed feedback (DFB) laser and an electro-active elastomer actuator also known as artificial muscle. Second order DFB lasing is realized by a grating line structured elastomer substrate covered with a thin layer of dye doped polymer. To enable wavelength tuning the elastomer laser is placed at the center of the electro-active elastomer actuator. Chosen design of the actuator gives rise to homogeneous compression at this position. The voltage induced deformation of the artificial muscle is transferred to the elastomer laser and results in a decrease of grating period. This leads to an emission wavelength shift of the elastomer laser. The increase of actuation voltage to 3.25 kV decreased the emission wavelength from 604 nm to 557 nm, a change of 47 nm or 7.8%.

  17. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  18. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  19. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  20. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  1. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  2. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  3. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  4. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  5. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of examination... record shall be kept in a book approved by the Secretary. High-Voltage Longwalls Source: 67 FR 11001,...

  6. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  7. Simulation of an ac electro-osmotic pump with step microelectrodes

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Jae; Lee, Seung-Hyun; Rezazadeh, Soghra; Sung, Hyung Jin

    2011-05-01

    Pumps with step microelectrodes subjected to an ac voltage are known to have faster pumping rates than those with planar asymmetric microelectrodes. The driving force for pumping in these systems is ac electro-osmosis. This paper aims to understand the flow behaviors of pumps with step microelectrodes by using a realistic model applicable to high external voltages. This model takes the steric effect due to the finite sizes of ions into account and copes with the exponential sensitivity of the counterion concentration to voltage. The effects on the pumping flow rate of varying the pump parameters were investigated. The geometrical parameters were optimized, and the effects of varying the ac frequency and amplitude were examined. The electrical potential of the fluid and the electrical charge at the electrode surface were solved simultaneously, and the Stokes equation was used to describe the fluid flow.

  8. Non-oxidized porous silicon-based power AC switch peripheries

    PubMed Central

    2012-01-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries. PMID:23057856

  9. Changes in behavioral responses of Lygus lineolaris (Hemiptera: Miridae) from various applied signal voltages during EPG recordings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...

  10. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  11. Voltage-current-power meter for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G. (Inventor)

    1979-01-01

    A meter is disclosed for measuring the voltage, current, and power (VIP) parameters of a photovoltaic solar array, or array module, under sunlight operating conditions utilizing a variable load connected across the array and controlled by a voltage regulator which responds to the difference between the output voltage of the array and a programmed test voltage from a source which generates a single ramp voltage for measuring and recording current as a function of voltage, repeated ramp voltages at a high rate for peak output measurements or a DC voltage for VIP measurements at selected points on the I-V characteristic curve of the array. The voltage signal from a current sensing element, such as a shunt resistor in series with the variable load, is compared with the output current of a reference solar cell to provide a normalizing signal to be added to the signal from the current-sensing element in order to provide a record of array current as a function of array voltage, i.e., for all load conditions from short circuit to open circuit. As the normalized current is thus measured, an analog multiplier multiplies the array voltage and normalized current to provide a measurement of power. Switches are provided to selectively connect the power, P, current, I, or voltage, V, to a meter, directly or through a peak detector. At the same time any one of the parameters V, I and P may be recorded as a function of any other parameter.

  12. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias; Eisermann, Henning

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  13. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  14. STABILITY OF HIGH VOLTAGE MODULATORS FOR NONLINEAR LOADS

    SciTech Connect

    PAWLEY,J.C; TOOKER,J; PEAVY,J; CARY,W.P; NEREM,A; HOYT,D; LOHR,J

    2003-10-01

    OAK-B135 Gyrotrons have a nonlinear voltage--current characteristic such that the small signal or ac impedance changes as operational voltage and currents are reached. The ac impedance determines the stability of a voltage or current control system. this can become particularly challenging when several gyrotron are connected in parallel to a single modulator. With all gyrotrons hooked to a common ground, large current loops can be generated as well as non-canceling currents in individual coaxial lines. These inequalities can provide the required feedback impulse to start an oscillation condition in the power system for the tubes. Recent operation of two CPI 110 GHz gyrotrons in the MN class from a single modulator on DIII-D has shown instability in the power system. An oscillation in the drive current occurs at various points in the ramp up and flat top portions of the 80 kV voltage pulse with each tube drawing 40 A at full voltage. Efforts to stabilize these instabilities are presented along with some modeling and examination of the issues for gyrotron modulators.

  15. Characteristics of ac capillary discharge produced in electrically conductive water solution

    NASA Astrophysics Data System (ADS)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.

    2007-05-01

    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  16. Pulse-Width Control in Ladder Structure Four-Phase Rectifier for AC-Electromotive

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Myatez, S. V.; Langeman, E. G.; Schurov, N. I.

    2016-04-01

    Based on these studies the ways of power factor of the single-phase rectifiers operating in a single-phase AC network improving are suggested. The ladder four-phase rectifier is offered as a technical mean using a pulse-width method of controlling the rectified voltage. The pulse-width control efficiency as a way of the power factor rectifier with a ladder structure for AC electromotive improving is evaluated.

  17. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  18. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  19. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  20. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  1. The role of the defect levels in MgO in the low firing voltage, wide driving voltage margin operation of an alternate current plasma display panel

    NASA Astrophysics Data System (ADS)

    Ha, Chang Hoon; Kim, Joong Kyun; Whang, Ki-Woong

    2007-06-01

    In order to study the relationship between the discharge characteristics of an ac plasma display panel and the surface conductivity of a MgO thin film, we measured the surface current across a ring-shaped MgO film temporally induced by exposure to monochromatic vacuum ultraviolet radiation from a synchrotron radiation source whose wavelength ranges from 60 to 240 nm (5.5-25 eV). The experimental results show that the surface current begins to increase rapidly at a photon energy of about 9 eV which might correspond to the valence band edge of MgO. The differences in the surface current level correlate well with the differences in the preparation method of the MgO films and their respective discharge characteristics, such as firing, minimum sustained voltages, address voltage margins, and address discharge delay times. Surface charge measurements using the linear electro-optic effect also show consistent correlations with the surface current measurement of each MgO sample.

  2. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  3. ACS after SM4: New Life for an Old Workhorse

    NASA Astrophysics Data System (ADS)

    Golimowski, David; Anderson, Jay; Armstrong, Amber; Arslanian, Steve; Bedin, Luigi; Bohlin, Ralph; Boyce, Kevin; Chapman, George; Cheng, Edward; Chiaberge, Marco; Cox, Colin; Desiardins, Tyler; Dye, Darryl; Ellis, Tracy; Ferguson, Brian; Fruchter, Andrew; Grogin, Norman; Lim, Pey Lian; Loose, Markus; Lucas, Ray; Lupie, Olivia; Mack, Jennifer; Maybhate, Aparna; Mil, Kathleen; Mutchler, Max; Ricardo, Raphael; Scott, Barbara; Serrano, Beverly; Sirianni, Marco; Smith, Linda; Suchkov, Anatoly A.; Waczynski, Augustyn; Welty, Alan; Wheeler, Thomas; Wilson, Erin

    2010-07-01

    The ACS CCD Electronics Box Replacement (CEB-R) installed during SM4 features a Teledyne SIDECAR ASIC that permits optimization of the WFC via adjustment of CCD clock voltages, bias voltages, and pixel transmission timing. An on-orbit campaign to optimize the performance of the WFC was undertaken at the start of the SMOV period. Initial tests with pre-SM4 default voltages and timing patterns showed that WFC's performance matches or exceeds its pre-failure levels, notwithstanding the expected increases in dark current and hot pixels and the decline in charge-transfer efficiency due to prolonged exposure to HST's radiation environment. One WFC CCD exhibited anomalous behavior when operated with nondefault settings of its reset drain voltage. Consequently, the optimization campaign was truncated after two iterations, and ACS science operations commenced with the pre-SM4 default configuration. Several artifacts attributed to the CEB-R appear in post-SM4 WFC images: large-scale but stable bias gradients, low-level but temporally variable horizontal stripes, a signal-dependent bias shift, and amplifier crosstalk. STScI has developed algorithms for the correction or mitigation of these electronic artifacts as well as for the restoration of images affected by continuously degrading CTE. Standalone correction packages are now or will soon be publicly available. These packages will be incorporated into the calacs package of the OPUS data pipeline by September 2011.

  4. ACS after Servicing Mission 4: The WFC Optimization Campaign

    NASA Astrophysics Data System (ADS)

    Golimowski, David; Cheng, Ed; Loose, Markus; Sirianni, Marco; Lupie, Olivia; Smith, Linda; Arslanian, Steve; Boyce, Kevin; Chapman, George; Chiaberge, Marco; Desjardins, Tyler; Dye, Darryl; Grogin, Norman; Lim, Pey Lian; Lucas, Ray; Maybhate, Aparna; Mil, Kathleen; Mutchler, Max; Ricardo, Raphael; Scott, Barbara; Serrano, Beverly; Suchkov, Anatoly; Waczynski, Augustyn; Welty, Alan; Wheeler, Thomas; Wilson, Erin

    2011-07-01

    The ACS CCD Electronics Box Replacement (CEB-R) installed during SM4 features a Teledyne SIDECAR ASIC that permits optimization of the WFC via adjustment of CCD clock voltages, bias voltages, and pixel transmission timing. A built-in oscilloscope mode allows sensing of the analog signal from each output amplifier. An on-orbit campaign to optimize the performance of the WFC was undertaken at the start of the SMOV period. Initial tests with pre-SM4 default voltages and timing patterns showed that WFC's performance matches or exceeds its pre-failure levels, notwithstanding the expected increases in dark current and hot pixels and the decline in charge-transfer efficiency due to prolonged exposure to HST's radiation environment. The WFC2 CCD exhibited anomalous behavior when operated with nondefault settings of its amplifiers' reset-drain voltage (VOD). The CCD again displayed normal behavior when VOD was restored to its default setting. Consequently, the Optimization Campaign was truncated after two iterations, and ACS science operations commenced with the pre-SM4 default configuration.

  5. Fuel injection pump having voltage variation compensation

    SciTech Connect

    Takemoto, E.; Miyaki, M.; Norimatsu, H.; Hobo, N.; Tsuzuki, Y.; Konishi, Y.

    1986-08-05

    A fuel injection pump is described for internal combustion engine, comprising: an enclosure; pump means including a plunger rotatingly and reciprocally movable in the enclosure to define a compression chamber of variable volume, the pump means coupling the compression chamber to a fuel inlet during an intake stroke of the plunger and connecting the compression chamber to a fuel outlet during a compression stroke of the plunger to thereby initiate injection of fuel to the outlet, the pump means being responsive to the speed of rotation of the engine to pressurize the fuel in the inlet; means for detecting the speed of the engine; a source of voltage having a tendency to vary; solenoid valve means operable when a voltage is applied thereto from the source for providing a pressure relief action of the fuel in the compression chamber to terminate the injection of fuel; a memory storing trimming data in locations addressable as a function of the detected voltage and as a function of the detected engine speed; and control means for detecting the voltage of the source and responsive to the initiation of the fuel injection for determining the basic timing at which the fuel injection is to be terminated, reading trimming data out of the memory as a function of the detected voltage and as a function of the detected engine speed, correcting the basic timing in accordance with the trimming data and applying the voltage of the source to the solenoid valve means at the corrected timing to thereby terminate the fuel injection.

  6. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  7. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  8. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  9. Characterization and snubbing of a bidirectional MCT in a resonant ac link converter

    NASA Technical Reports Server (NTRS)

    Lee, Tony; Elbuluk, Malik E.; Zinger, Donald S.

    1993-01-01

    The MOS-Controlled Thyristor (MCT) is emerging as a powerful switch that combines the better characteristics of existing power devices. A study of switching stresses on an MCT switch under zero voltage resonant switching is presented. The MCT is used as a bidirectional switch in an ac/ac pulse density modulated inverter for induction motor drive. Current and voltage spikes are observed and analyzed with variations in the timing of the switching. Different snubber circuit configurations are under investigation to minimize the effect of these transients. The results will be extended to study and test the MCT switching in a medium power (5 hp) induction motor drive.

  10. Voltage Regulators for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  11. New zero voltage switching DC converter with flying capacitors

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Shiau, Tung-Yuan

    2016-04-01

    A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal-oxide-semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.

  12. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip. PMID:27230495

  13. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  14. Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Chen, Du-Xing; Fang, Jin

    2015-12-01

    The current-voltage curve and transport ac loss of a second-generation HTS tape with a ferromagnetic NiW substrate and brass stabilizer are measured. It is found that the ac loss is up to two orders of magnitude larger than what is expected by the power-law E(J) determined by the current-voltage curve and increases with increasing frequency. Modeling results show that the overly large ac loss is contributed by the ac loss in the HTS strip enhanced by the NiW substrate and the magnetic hysteresis loss in the substrate, and the frequency-dependent loss occurs in the brass layer covering the substrate but not in the ferromagnetic substrate itself as assumed previously. The ac loss in the brass layer is associated with transport currents but not eddy currents, and it has some features similar to ordinary eddy-current loss with significant differences.

  15. Simulation analysis of three-phase current type AC-to-DC converter with high power factor

    SciTech Connect

    Okui, Yoshiaki; Yamada, Hajime

    1997-03-01

    A new three-phase current type AC-to-DC converter has been developed by the authors. This paper describes the principle of the circuit operation and the circuit configuration of the AC-to-DC converter controlled by PWM. Simulation analysis of each waveform, such as AC and DC voltages and currents, are calculated by Euler`s method. The simulated values of the total power factor agreed with the measured values within the difference of 5.8% on the condition of full load, 10kW. When the AC side voltage is unbalanced, it is found by simulation that the total harmonic distortion controlled by both feedforward control and AC side current feedback control (proportion gain, k{sub 4} = 1) is restrained at only 38% compared with only feedforward control (k{sub 4} = 0).

  16. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  17. Module Nine: Relationships of Current, Counter EMF, and Voltage in LR Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student will study the ways that inductance affects voltage and current in Direct Current (DC) and Alternating Current (AC) circuits and why and how inductors cause these actions. The module is divided into six lessons: rise and decay of current and voltage, LR (inductive-resistive) time constant, using the universal TC (time constant) chart,…

  18. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  19. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field

    NASA Astrophysics Data System (ADS)

    Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan

    2016-10-01

    In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.

  20. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  1. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  2. Geomagnetism and Induced Voltage

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is…

  3. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  4. Ac Josephson effect in hysteretic junctions: Range and stability of phase lock

    SciTech Connect

    Kautz, R.L.

    1981-05-01

    The rf-induced constant voltage steps generated by the ac Josephson effect are studied within the context of the Stewart-McCumber model. Simulations are used to determine the range of current bias over which phase lock occurs for model parameters appropriate to hysteretic tunnel junctions. The effect of noise on phase lock is also considered. The results are applied to a zero-bias voltage standard proposed by Levinsen et al.

  5. ACS CCD Stability Monitor

    NASA Astrophysics Data System (ADS)

    Grogin, Norman

    2012-10-01

    A moderately crowded stellar field in the cluster 47 Tuc {6 arcmin West of the cluster core} is observed every four months with the WFC. The first visit exercises the full suite of broad and narrow band imaging filters and sub-array modes; following visits observe with only the six most popular Cycle 18 filters in full-frame mode. The positions and magnitudes of objects will be used to monitor local and large scale variations in the plate scale and the sensitivity of the detectors and to derive an independent measure of the detector CTE. One exposure in each sub-array mode with the WFC will allow us to verify that photometry obtained in full-frame and in sub-array modes are repeatable to better than 1%. This test is important for the ACS Photometric Cross-Calibration program, which uses sub-array exposures. This program may receive additional orbits to investigate ORIENT-dependent geometric distortion, which motivates the ORIENT and BETWEEN requirement on the first visit.

  6. Suppression of spatially periodic patterns by dc voltage

    NASA Astrophysics Data System (ADS)

    Éber, Nándor; Salamon, Péter; Fekete, Balázs András; Karapinar, Ridvan; Krekhov, Alexei; Buka, Ágnes

    2016-04-01

    The effect of superposed dc and ac applied voltages on two types of spatially periodic instabilities in nematic liquid crystals, flexoelectric domains (FD), and electroconvection (EC) was studied. The onset characteristics, threshold voltages, and critical wave vectors were determined. We found that in general the superposition of driving with different time symmetries inhibits the pattern forming mechanisms for FD and EC as well. As a consequence, the onset extends to much higher voltages than the individual dc or ac thresholds. A dc-bias-induced reduction of the crossover frequency from the conductive to the dielectric EC regimes and a peculiar transition between two types of flexodomains with different wavelengths were detected. Direct measurements of the change of the electrical conductivity and its anisotropy, induced by the applied dc voltage component, showed that the dc bias substantially affects both parameters. Taking into account the experimentally detected variations of the conductivity in the linear stability analysis of the underlying nematohydrodynamic equations, a qualitative agreement with the experimental findings on the onset behavior of spatially periodic instabilities was obtained.

  7. Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables.

    PubMed

    Bunch, K J; Swanson, J; Vincent, T J; Murphy, M F G

    2015-09-01

    Epidemiological evidence of increased risks for childhood leukaemia from magnetic fields has implicated, as one source of such fields, high-voltage overhead lines. Magnetic fields are not the only factor that varies in their vicinity, complicating interpretation of any associations. Underground cables (UGCs), however, produce magnetic fields but have no other discernible effects in their vicinity. We report here the largest ever epidemiological study of high voltage UGCs, based on 52,525 cases occurring from 1962-2008, with matched birth controls. We calculated the distance of the mother's address at child's birth to the closest 275 or 400 kV ac or high-voltage dc UGC in England and Wales and the resulting magnetic fields. Few people are exposed to magnetic fields from UGCs limiting the statistical power. We found no indications of an association of risk with distance or of trend in risk with increasing magnetic field for leukaemia, and no convincing pattern of risks for any other cancer. Trend estimates for leukaemia as shown by the odds ratio (and 95% confidence interval) per unit increase in exposure were: reciprocal of distance 0.99 (0.95-1.03), magnetic field 1.01 (0.76-1.33). The absence of risk detected in relation to UGCs tends to add to the argument that any risks from overhead lines may not be caused by magnetic fields.

  8. A low voltage ``railgun''

    NASA Astrophysics Data System (ADS)

    Starr, Stanley O.; Youngquist, Robert C.; Cox, Robert B.

    2013-01-01

    Due to recent advances in solid-state switches and ultra-capacitors, it is now possible to construct a "railgun" that can operate at voltages below 20 V. Railguns typically operate above a thousand volts, generating huge currents for a few milliseconds to provide thousands of g's of acceleration to a small projectile. The low voltage railgun described herein operates for much longer time periods (tenths of seconds to seconds), has far smaller acceleration and speed, but can potentially propel a much larger object. The impetus for this development is to lay the groundwork for a possible ground-based supersonic launch track, but the resulting system may also have applications as a simple linear motor. The system would also be a useful teaching tool, requiring concepts from electrodynamics, mechanics, and electronics for its understanding, and is relatively straightforward to construct.

  9. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  10. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  11. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  12. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  13. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  14. High Voltage Connector

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-03-06

    The originally designed high voltage connectors were to be made of brass. However, if treated like a Bellevile spring with the initially given dimensions, the stresses of the connector when crimped were calculated to be much higher than the yield stress of brass. Since the flange and outer diameters of the connector are to remain small, it was necessary to alter the other dimensions and choice of material in order to bring down the stresses applied to the connector.

  15. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  16. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  17. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  18. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  19. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  20. Automatic voltage-imbalance detector

    SciTech Connect

    Bobbett, R.E.; McCormick, J.B.; Kerwin, W.J.

    1981-05-20

    A device is described for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  1. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  2. Voltage Control in Distribution Systems Considered Reactive Power Output Sharing

    NASA Astrophysics Data System (ADS)

    Oshiro, Masato; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu; Funabashi, Toshihisa

    In recent years, distributed generation (DG) and renewable energy source (RES) are attracting special attention to distribution systems. Renewable energy such as photovoltaic (PV) system and wind turbine generator are used as a source of clean energy. However, the large amount of distributed generation causes voltage deviation beyond a statutory range in distribution systems. This paper proposes a methodology for voltage control by using inverters interfaced with DG and tap changing transformers. In the proposed method a one-day schedule of voltage references for the control devices are determined by an optimization technique based on predicted values of load demand and PV power generation. Furthermore, decided reactive power output according to the locally measurable voltage based on droop characteristic. Slope and base value on droop characteristic are selected by fuzzy control. The proposed method accomplishes improvement against voltage distribution considered the reactive power output sharing and reduction of distribution loss. The effectiveness of the proposed method is verified by using MATLAB®.

  3. Three-Phase and Six-Phase AC at the Lab Bench

    ERIC Educational Resources Information Center

    Caplan, George M.

    2009-01-01

    Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…

  4. The System Impact of Air-Conditioner Under-voltage Protection Schemes

    SciTech Connect

    Lu, Ning; Yang, Bo; Huang, Zhenyu; Bravo, Richard

    2009-03-31

    This paper presents simulation results of evaluating an under-voltage protection scheme designed to take stalled air-conditioner (a/c) units offline such that the slow voltage recovery phenomena can be solved on areas heavily loaded with a/c motors during summer peak periods. A three feeder test-bed has been first used to quantify the effectiveness of the protection scheme and the sensitivity of the under-voltage relay settings. Then two real system events of the Western US power grid have been studied to evaluate the area impact of the protection scheme proposed by Southern California Edison. The study demonstrates that by taking all or most of the stalled a/c unit offline, the feeder voltage will recover in a few seconds, much quicker than the tens of seconds that the standard thermal relays imbedded in the motors need to trip the units. The drawback of the control scheme is that after the voltage recover, it settled at a higher voltage than before the faults because a large chuck of load has been shed.

  5. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.

    PubMed

    Zhou, Hao; White, Lee R; Tilton, Robert D

    2005-05-01

    Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone. PMID:15797412

  6. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  7. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  8. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  9. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  10. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  11. AC operation and runaway electron behaviour in HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Wei; Hu, Li-Qun; Zhou, Rui-Jie; Lin, Shi-Yao; Zhong, Guo-Qiang; Wang, Shao-Feng; Chen, Kai-Yun; Xu, Ping; Zhang, Ji-Zong; Ling, Bi-Li; Mao, Song-Tao; Duan, Yan-Min

    2010-06-01

    Operation of HT-7 tokamak in a multicycle alternating square wave plasma current regime is reported. A set of AC operation experiments, including LHW heating to enhance plasma ionization during the current transition and current sustainment, is described. The behaviour of runaway electrons is analysed by four HXR detectors tangentially viewing the plasma in the equatorial plane, within energy ranges 0.3-1.2 MeV and 0.3-7 MeV, separately. High energy runaway electrons (~MeV) are found to circulate predominantly in the opposite direction to the plasma current, while the number of low energy runaway electrons (~tens to hundreds of keV) circulating along the plasma current is comparable to that in the direction opposite to the plasma current. AC operation with lower hybrid current drive (LHCD) is observed to have an additional benefit of suppressing the runaway electrons if the drop of the loop voltage is large enough.

  12. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report

    SciTech Connect

    Eager, G.S. Jr.; Seman, G.W.; Fryszczyn, B.

    1995-11-01

    Based on the successful completion of the extensive research project DOE/ET/29303-1 February 1982 to develop a new method for the determination of threshold voltage in XLPE and EPR insulated cables, tests were initiated to establish the maximum safe operating voltage stresses of crosslinked polyethylene insulated cables that become wet when they operate in a moist environment. The present report covers the measurement of the threshold voltage, the a.c. breakdown voltage and the impulse breakdown voltage of XLPE cable after undergoing accelerated laboratory aging in water. Model and 15 kV XLPE cables were manufactured in commercial equipment using state-of-the-art semiconducting shields and XLPE insulation. The threshold voltage, a.c. voltage breakdown and impulse voltage breakdown of the model cables were determined before aging, after aging one week and after aging 26 weeks. The model cable, following 26 weeks aging, was dried by passing dry gas through the conductor interstices which removed moisture from the cable. The threshold voltage, the a.c. voltage breakdown and the impulse voltage breakdown of the XLPE model cable after drying was measured.

  13. AC and lightning performance of fiberglass crossarms aged in 115 kV transmission line

    SciTech Connect

    Grzybowski, S. . Dept. of Electrical and Computer Engineering); Jenkins, E.B. . Generation and Transmission Group)

    1993-10-01

    This paper presents the results of an investigation of the electrical performance of 115 kV transmission line fiberglass cross-arm used by Mississippi Power and Light Company. A transmission line fiberglass crossarm removed from service and companion cross-arms outdoors but not in service were examined. The evaluation of electrical performance was based on flashover voltage value at AC voltage and standard lightning impulses as well as under dry and wet conditions. The tests were performed in the Mississippi State University High Voltage Laboratory. The obtained flashover voltages show no large differences in electrical strength of fiberglass crossarms removed from service and those stored outdoors. The Added CFO voltage by fiberglass crossarm to the porcelain suspension insulators is presented versus the length of the fiberglass crossarm for dry and wet conditions.

  14. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    PubMed

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  15. Electrical system architecture having high voltage bus

    DOEpatents

    Hoff, Brian Douglas; Akasam, Sivaprasad

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  16. Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Zeeman, Anne-Marie; Cardoso, Helena; Sousa, Maria João; Steensma, H Yde; Côrte-Real, Manuela; Leão, Cecília

    2004-03-01

    A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells. PMID:15042592

  17. Triple voltage dc-to-dc converter and method

    SciTech Connect

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  18. High-voltage supply for neutron tubes in well-logging applications

    DOEpatents

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  19. SEMICONDUCTOR DEVICES: A novel high voltage start up circuit for an integrated switched mode power supply

    NASA Astrophysics Data System (ADS)

    Hao, Hu; Xingbi, Chen

    2010-09-01

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions.

  20. Development of AC and DC Power Supply Direct Interface Converter

    NASA Astrophysics Data System (ADS)

    Kato, Koji; Itoh, Jun-Ichi

    This paper proposes a novel control method for a direct interface converter for management of the energy flow in either an AC or DC supply. The proposed converter is constructed based on an indirect matrix converter. Therefore a proposed control strategy is based on an indirect control method with a triangular carrier wave. The basic operation of the proposed control method is confirmed by experimental results. In addition, this paper also proposes a commutation error compensation method of an output voltage error and an input current error for an indirect matrix converter. In the proposed method, the output voltage and input current error by the commutation can be compensated at the same time, because the PWM pulse of each switch is directly compensated. The validity of the proposed method is confirmed by experimental results. Those results prove that the proposed compensation method can decrease total harmonic distortion (THD) of the input and output current.

  1. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    PubMed

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores. PMID:27428174

  2. Transistor voltage comparator performs own sensing

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1965-01-01

    Detection of the highest voltage input among a group of varying voltage inputs is accomplished by a transistorized voltage comparison circuit. The collector circuits of the transistors perform the sensing function. Input voltage levels are governed by the transistors.

  3. Restrictions on TWT Helix Voltage Ripple for Acceptable Notch Filter Performance

    SciTech Connect

    Hyslop, B.

    1984-12-01

    An ac ripple on the helix voltage of the 1-2 GHz TWT's creates FM sidebands that cause amplitude and phase modulation of the microwave TWT output signal. A limit of 16 volts peak-to-peak is required for acceptable superconducting notch filter performance.

  4. Phase-sensitive detection of spin pumping via the ac inverse spin Hall effect.

    PubMed

    Weiler, Mathias; Shaw, Justin M; Nembach, Hans T; Silva, Thomas J

    2014-10-10

    We use a phase-sensitive, quantitative technique to separate inductive and ac inverse spin Hall effect (ISHE) voltages observed in Ni(81)Fe(19)/normal metal multilayers under the condition of ferromagnetic resonance. For Ni(81)Fe(19)/Pt thin film bilayers and at microwave frequencies from 7 to 20 GHz, we observe an ac ISHE magnitude that is much larger than that expected from the dc spin Hall angle Θ(SH)(Pt) = 0.1. Furthermore, at these frequencies, we find an unexpected, ≈ 110° phase of the ac ISHE signal relative to the in-plane component of the resonant magnetization precession. We attribute our findings to a dominant intrinsic ac ISHE in Pt.

  5. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  6. Clocked single-spin source based on a spin-split superconductor

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Giazotto, Francesco

    2016-08-01

    We propose an accurate clocked single-spin source for ac-spintronic applications. Our device consists of a superconducting island covered by a ferromagnetic insulator (FI) layer through which it is coupled to superconducting leads. Single-particle transfer relies on the energy gaps and the island's charging energy, and is enabled by a bias and a time-periodic gate voltage. Accurate spin transfer is achieved by the FI layer which polarizes the island, provides spin-selective tunneling barriers and improves the precision by suppressing Andreev reflection. We analyze realistic material combinations and experimental requirements which allow for a clocked spin current in the MHz regime.

  7. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992). PMID:19485513

  8. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992).

  9. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  10. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  11. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  12. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  13. Analyzing effects of aperture size and applied voltage on the response time

    NASA Astrophysics Data System (ADS)

    Kim, YooKwang; Lee, Jin Su; Won, Yong Hyub

    2016-03-01

    Electrowetting lens is a promising technique for non-mechanical vari-focal lens, because of fast response time, wide expressible diopter, and etc. Although electrowetting related papers are actively published, no one did not clearly define the relationship among electrowetting parameters, especially in AC driven case. Analysis for AC voltage driving is needed because AC electrowetting has many advantages like low hysteresis and short settling time. In this experiment we confirmed that the response time depends on aperture size and applied voltage. Response time measurement for lens aperture of 200-1000um and applied voltage of 0-70V with 1kHz frequency was conducted. Experimental data was compared with simulation result by COMSOL Multiphysics program with the same condition, and they correspond with each other well. As voltage increases, the overshoot height becomes higher, so it has longer oscillation and settling time. On the other hand if aperture size decreases, the surface tension of lens wall could be delivered effectively to the center region of meniscus, so it has less oscillation and shorter settling time. The result was that in 500um aperture no more than 30V should be applied to ensure 1ms response time. In 200um aperture, the voltage limit is disappeared.

  14. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    DOEpatents

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  15. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    DOEpatents

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  16. Source circuit design considerations

    NASA Technical Reports Server (NTRS)

    Noel, G. T.

    1983-01-01

    The cost of several circuit configurations for large (5MW) array fields were investigated to assess the relative costs of high and low voltage configurations. Three source circuit NOC voltages were evaluated: 400V (ungrounded), 800V (+ or 400V center grounded), and 2000V (+ or - 1000V center grounded). Four source circuit configurations were considered for each of the three NOC voltages. The configurations correspond to source circuit currents of 15, 30, 45, and 60 amperes, respectively. Conceptual layouts for 5MW building blocks for each of the above configurations were developed. The designs were optimized to minimize BOS electrical and structural costs. Only the BOS electrical costs were evaluated. The designs were broken down into the following elements for cost: (1) basic source circuit intermodule wiring, bypass diodes and associated hardware, source circuit to J-Box wiring, etc; (2) J-Box blocking diodes, varistors, heat sinks, and housing; (3) disconnects source circuit disconnects, fuses, and housing; (4) bus cabling J-Box to PCU interface wiring, and trenching; (5) interface bus bar, group disconnects, and fuses; and (6) fault detection shunts, signal wire, electronics, and alarm. It is concluded that high voltage low current circuits are not economical, at higher currents high and low voltage circuit costs approach each other, high voltage circuits are not likely to offer near term advantage, and development work/manufacturer stimulation is needed to develop low cost high voltage hardware.

  17. A feed-forward controlled AC-DC boost converter for biomedical implants.

    PubMed

    Jiang, Hao; Lan, Di; Lin, Dahsien; Zhang, Junmin; Liou, Shyshenq; Shahnasser, Hamid; Shen, Ming; Harrison, Michael; Roy, Shuvo

    2012-01-01

    Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF) is employed to deliver electrical power wirelessly. In this approach, a rectifier is needed to convert the received RF power to a stable DC one. To achieve high efficiency, the induced voltage of the receiving coil must be much higher than the turn-on voltage of the rectifying diode (which could be an active circuit for low turn-on voltage) [1]. In order to have a high induced voltage, the size of the receiving coil often is significantly larger than rest of the implant. A rotating magnets based wireless power transfer has been demonstrated to deliver the same amount of power at much lower frequency (around 100 Hz) because of the superior magnetic strength produced by rare-earth magnets [2]. Taking the advantage of the low operating frequency, an innovative feed-forward controlled AC to DC boost converter has been demonstrated for the first time to accomplish the following two tasks simultaneously: (1) rectifying the AC power whose amplitude (500 mV) is less than the rectifier's turn-on voltage (1.44 V) and (2) boosting the DC output voltage to a much higher level (5 V). Within a range, the output DC voltage can be selected by the control circuit. The standard deviation of the output DC voltage is less than 2.1% of its mean. The measured load regulation is 0.4 V/kΩ. The estimated conversion efficiency excluding the power consumption of the control circuits reaches 75%. The converter in this paper has the potential to reduce the size of the receiving coil and yet achieve desirable DC output voltage for powering biomedical implants. PMID:23366230

  18. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  19. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  20. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  1. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  2. Vortex ratchet reversal in an asymmetric washboard pinning potential subject to combined dc and ac stimuli.

    PubMed

    Shklovskij, Valerij A; Sosedkin, Vladimir V; Dobrovolskiy, Oleksandr V

    2014-01-15

    The mixed-state resistive response of a superconductor thin film with an asymmetric washboard pinning potential subject to superimposed dc and ac currents of arbitrary amplitudes and frequency at finite temperature is theoretically investigated. The problem is considered in the single-vortex approximation, relying upon the exact solution of the Langevin equation in terms of a matrix continued fraction. The dc voltage response and the absorbed power in ac response are analyzed as functions of dc bias and ac current amplitude and frequency in a wide range of corresponding dimensionless parameters. Predictions are made of (i) a reversal of the rectified voltage at small dc biases and strong ac drives and (ii) a non-monotonic enhancement of the absorbed power in the nonlinear ac response at far sub-depinning frequencies. It is elucidated how and why both these effects appear due to the competition of the fixed internal and the tunable, dc bias-induced external asymmetry of the potential as the only reason. This is distinct from other scenarios used for explaining the vortex ratchet reversal effect so far. PMID:24304564

  3. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  4. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  5. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  6. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  7. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  8. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  9. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  10. ACS Expands Role In High School Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Describes some of the services and programs of special interests to high school chemistry teachers that are being provided by ACS, and meant to make ACS membership more attractive to the teachers. (GA)

  11. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  12. Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.

    2016-05-01

    As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.

  13. Subthreshold voltage noise of rat neocortical pyramidal neurones.

    PubMed

    Jacobson, Gilad A; Diba, Kamran; Yaron-Jakoubovitch, Anat; Oz, Yasmin; Koch, Christof; Segev, Idan; Yarom, Yosef

    2005-04-01

    Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV-V pyramidal neurones in slices taken from rat neocortex. The dependence of the noise on holding potential, synaptic activity and Na+ conductance is systematically analysed. We demonstrate that voltage noise increases non-linearly as the cell depolarizes (from a standard deviation (s.d.) of 0.19 mV at -75 mV to an s.d. of 0.54 mV at -55 mV). The increase in voltage noise is accompanied by an increase in the cell impedance, due to voltage dependence of Na+ conductance. The impedance increase accounts for the majority (70%) of the voltage noise increase. The increase in voltage noise and impedance is restricted to the low-frequency range (0.2-2 Hz). At the high frequency range (5-100 Hz) the voltage noise is dominated by synaptic activity. In our slice preparation, synaptic noise has little effect on the cell impedance. A minimal model reproduces qualitatively these data. Our results imply that ion channel noise contributes significantly to membrane voltage fluctuations at the subthreshold voltage range, and that Na+ conductance plays a key role in determining the amplitude of this noise by acting as a voltage-dependent amplifier of low-frequency transients. PMID:15695244

  14. Subthreshold voltage noise of rat neocortical pyramidal neurones

    PubMed Central

    Jacobson, Gilad A; Diba, Kamran; Yaron-Jakoubovitch, Anat; Oz, Yasmin; Koch, Christof; Segev, Idan; Yarom, Yosef

    2005-01-01

    Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV–V pyramidal neurones in slices taken from rat neocortex. The dependence of the noise on holding potential, synaptic activity and Na+ conductance is systematically analysed. We demonstrate that voltage noise increases non-linearly as the cell depolarizes (from a standard deviation (s.d.) of 0.19 mV at −75 mV to an s.d. of 0.54 mV at −55 mV). The increase in voltage noise is accompanied by an increase in the cell impedance, due to voltage dependence of Na+ conductance. The impedance increase accounts for the majority (70%) of the voltage noise increase. The increase in voltage noise and impedance is restricted to the low-frequency range (0.2–2 Hz). At the high frequency range (5–100 Hz) the voltage noise is dominated by synaptic activity. In our slice preparation, synaptic noise has little effect on the cell impedance. A minimal model reproduces qualitatively these data. Our results imply that ion channel noise contributes significantly to membrane voltage fluctuations at the subthreshold voltage range, and that Na+ conductance plays a key role in determining the amplitude of this noise by acting as a voltage-dependent amplifier of low-frequency transients. PMID:15695244

  15. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  16. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  17. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  18. Voltage Sensors Monitor Harmful Static

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  19. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  20. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal. PMID:27553685

  1. An ac quantum voltmeter based on a 10 V programmable Josephson array

    NASA Astrophysics Data System (ADS)

    Lee, Jinni; Behr, Ralf; Palafox, Luis; Katkov, Alexander; Schubert, Marco; Starkloff, Michael; Böck, Andreas Charles

    2013-12-01

    An ac quantum voltmeter based on a 10 V programmable Josephson array that is simple to use, provides dc and ac calibration up to kHz range for equipment widely used in metrology, and ensures direct traceability to a quantum-based standard, is developed. This ac quantum voltmeter is proven to match conventional Josephson standard systems at dc and extends its advantages up to 10 kHz in the low-frequency ac range. The ac quantum voltmeter is capable of performing calibrations up to 7 VRMS in the frequency range from dc to 10 kHz completely under software control. A direct comparison at dc has demonstrated an uncertainty better than 2 parts in 1010 (k = 2). The uncertainty at 1 kHz is better than 1.7 µV V-1 (k = 2) for a measurement time of 1 min. The ac quantum voltmeter is a robust and practical system that fulfils the needs of general metrology laboratories for quantum-based voltage calibrations.

  2. Numeric description of space charge in polyethylene under ac electric fields

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Xu, Z.; Chen, G.; Lewin, P. L.

    2010-12-01

    Space charge in polyethylene-based insulation materials and its effect on the local electric field under a dc environment have been extensively examined over the last few decades while the behavior of space charge under ac stress has received less attention. Space charge phenomenon under ac electric fields becomes an important issue with increased operating field strength in many applications, such as next generation high voltage cables. In this paper, a bipolar charge transport model has been developed to simulate space charge in polymers under ac electric fields. Obtained simulation results show that there is a small quantity of phase-dependent bipolar charge accumulation in the vicinity of the electrodes that does not move into the bulk under ac stress. This causes a slight distortion of the local field in the bulk. However, at lower frequencies less than 1 Hz, there is increased charge accumulation and penetration. Comparison with available experimental data suggests that the model is capable of describing the underlying physics of charge behavior when a dielectric material is subjected to ac electric fields. Due to the weak charge movement in the bulk, the conduction current density is small and hence the displacement component dominates the total current density and this increases linearly with ac frequency.

  3. Low input voltage switching amplifiers for piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Lindner, Douglas K.; Zhu, Huiyu; Song, Chunping; Huang, Weixing; Cheng, Danling

    2002-07-01

    The Inertially Stabilized Rifle is a new stabilized rifle system that can eliminate the disturbances induced by the shooter. Recurve actuator is used in this system to provide the precise movement of the rifle barrel. In such a portable device, only low voltage electrical sources are available yet the piezoelectric actuator needs high voltage to drive the actuator. The actuators consume little real power but a large amount of reactive power. Furthermore, the piezoelectric actuators are present an almost purely capacitive load. In this paper, we describe the development of a low input voltage amplifier for a high voltage piezoelectric actuator. This amplifier is based on switching technology so it efficiently handles the regenerative energy from the piezoelectric actuator. This amplifier consists of two stages. The first stage is a flyback converter which boosts the (low) input voltage to the maximum voltage required by the piezoelectric actuator. The second stage is a half-bridge amplifier which delivers the output voltage to the actuator as commanded by the reference signal. The basic structure of the amplifier is described, and its performance is characterized in terms of bandwidth, distortion, and efficiency.

  4. Modeling and Correcting the Time-Dependent ACS PSF

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie

    2006-01-01

    The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.

  5. Genetically Engineered Fluorescent Voltage Reporters

    PubMed Central

    2012-01-01

    Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development. PMID:22896802

  6. Low-Voltage Bypass Device

    NASA Technical Reports Server (NTRS)

    Wilson, J. P.

    1994-01-01

    Improved bypass device provides low-resistance current shunt around low-voltage power cell when cell fails in open-circuit condition during operation. In comparison with older bypass devices for same application, this one weighs less, generates less heat, and has lower voltage drop (less resistance). Bypass device connected in parallel with power cell. Draws very little current during normal operation of cell.

  7. Switched-Capacitor Voltage Multiplier

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  8. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  9. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes.

    PubMed

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-03-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  10. Why an ac magnetic field shifts the irreversibility line in type-II superconductors.

    PubMed

    Brandt, Ernst Helmut; Mikitik, Grigorii P

    2002-07-01

    We show that for a thin superconducting strip placed in a transverse dc magnetic field--the typical geometry of experiments with high-T(c) superconductors--the application of a weak ac magnetic field perpendicular to the dc field generates a dc voltage in the strip. This voltage leads to the decay of the critical currents circulating in the strip, and eventually the equilibrium state of the superconductor is established. This relaxation is not due to thermally activated flux creep but to the "walking" motion of vortices in the two-dimensional critical state of the strip with in-plane ac field. Our theory explains the shaking effect that was used for detecting phase transitions of the vortex lattice in superconductors.

  11. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes

    PubMed Central

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-01-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  12. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)

    PubMed Central

    Rahman, Nawreen; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role. PMID:24324443

  13. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. PMID:25399199

  14. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  15. A matter of quantum voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  16. Manipulating photoinduced voltage in metasurface with circularly polarized light.

    PubMed

    Bai, Qiang

    2015-02-23

    Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications. PMID:25836566

  17. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  18. Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC

    NASA Astrophysics Data System (ADS)

    Linley, L. J.; Luper, A. B.; Dunn, J. H.

    1982-12-01

    The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac.

  19. Performance criteria guideline for three explosion protection methods of electrical equipment rated up to 15,000 volts AC

    NASA Technical Reports Server (NTRS)

    Linley, L. J.; Luper, A. B.; Dunn, J. H.

    1982-01-01

    The Bureau of Mines, U.S. Department of the Interior, is reviewing explosion protection methods for use in gassy coal mines. This performance criteria guideline is an evaluation of three explosion protection methods of machines electrically powered with voltages up to 15,000 volts ac. A sufficient amount of basic research has been accomplished to verify that the explosion proof and pressurized enclosure methods can provide adequate explosion protection with the present state of the art up to 15,000 volts ac. This routine application of the potted enclosure as a stand alone protection method requires further investigation or development in order to clarify performance criteria and verification certification requirements. An extensive literature search, a series of high voltage tests, and a design evaluation of the three explosion protection methods indicate that the explosion proof, pressurized, and potted enclosures can all be used to enclose up to 15,000 volts ac.

  20. Analysis and Implementation of Real Number Extended Sliding Surface with Integral Compensation for DC-AC Converters

    NASA Astrophysics Data System (ADS)

    Chang, E. C.; Wu, R. C.; Liao, K. Y.

    2014-11-01

    This paper proposes a real number extended sliding surface (RNESS) with integral compensation (IC) for the application of DC-AC converters. Classic sliding surface (CSS) is insensitive to system uncertainties, but in sliding action its system dynamics becomes a reduced-order dimension and thus lost the partial system dynamics. For recovering incomplete system response, the RNESS is designed and can retrieve incomplete system response of the CSS. However, steady-state errors still exist in system dynamics of the RNESS and cause high converter voltage harmonics. To overcome steady-state errors, a modified RNESS by the addition of IC is proposed. With the proposed method, the system yields a DC-AC converter with high-quality AC output voltage. Experiments are performed in support of the proposed method.

  1. On voltage collapse in electric power systems

    SciTech Connect

    Chiang, H.D.; Dobson, I.; Thomas, R.J.; Thorp, J.S.; Fekih-Ahmed, L. . School of Electrical Engineering)

    1990-05-01

    Several voltage collapses have had a period of slowly decreasing voltage followed by an accelerating collapse in voltage. This paper analyzes this type of voltage collapse based on a center manifold voltage collapse model. The essence of this model is that the system dynamics after bifurcation are captured by the center manifold trajectory and it is a computable model that allows prediction of voltage collapse. Both physical explanations and computational considerations of this model are presented. The authors clarify the use of static and dynamic models to explain voltage collapse. Voltage collapse dynamics are demonstrated on a simple power system model.

  2. Leonurenones A-C: Labdane diterpenes from Leonotis leonurus.

    PubMed

    He, Fang; Lindqvist, Charlotte; Harding, Wayne W

    2012-11-01

    Labdanes, leonurenones A-C, two known labdanes, luteolin 7-O-β-glucoside and luteolin were isolated and characterized from a commercial source of Leonotis leonurus. Genetic methods allowed for identification of the plant material. The leonurenones contain an uncommon α,β-unsaturated enone moiety in ring B, and leonurenones A and B were evaluated in a competitive inhibition assay at the GABA A neuroreceptor site.

  3. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  4. Creation and Annihilation of Fluxons in ac-driven Semiannular Josephson Junction

    NASA Astrophysics Data System (ADS)

    Nayak, Chitra R.; Kuriakose, V. C.

    2011-04-01

    A new geometry (semiannular) for Josephson junction has been proposed and theoretical studies have shown that the new geometry is useful for electronic applications [1, 2]. In this work we study the voltage-current response of the junction with a periodic modulation. The fluxon experiences an oscillating potential in the presence of the ac-bias which increases the depinning current value. We show that in a system with periodic boundary conditions, average progressive motion of fluxon commences after the amplitude of the ac drive exceeds a certain threshold value. The analytic studies are justified by simulating the equation using finite-difference method. We observe creation and annihilation of fluxons in semiannular Josephson junction with an ac-bias in the presence of an external magnetic field.

  5. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  6. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  7. Anomalous open-circuit voltage from a high-Tc superconducting dynamo

    NASA Astrophysics Data System (ADS)

    Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.

    2016-03-01

    We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.

  8. The role of optoelectronic feedback on Franz-Keldysh voltage modulation of transistor lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Hsiang; Chang, Shu-Wei; Wu, Chao-Hsin

    2016-03-01

    Possessing both the high-speed characteristics of heterojunction bipolar transistors (HBTs) and enhanced radiative recombination of quantum wells (QWs), the light-emitting transistor (LET) which operates in the regime of spontaneous emissions has achieved up to 4.3 GHz modulation bandwidth. A 40 Gbit/s transmission rate can be even achieved using transistor laser (TL). The transistor laser provides not only the current modulation but also direct voltage-controlled modulation scheme of optical signals via Franz-Keldysh (FK) photon-assisted tunneling effect. In this work, the effect of FK absorption on the voltage modulation of TLs is investigated. In order to analyze the dynamics and optical responses of voltage modulation in TLs, the conventional rate equations relevant to diode lasers (DLs) are first modified to include the FK effect intuitively. The theoretical results of direct-current (DC) and small-signal alternating-current (AC) characteristics of optical responses are both investigated. While the DC characteristics look physical, the intrinsic optical response of TLs under the FK voltage modulation shows an AC enhancement with a 20 dB peak, which however is not observed in experiment. A complete model composed of the intrinsic optical transfer function and an electrical transfer function fed back by optical responses is proposed to explain the behaviors of voltage modulation in TLs. The abnormal AC peak disappears through this optoelectronic feedback. With the electrical response along with FK-included photon-carrier rate equations taken into account, the complete voltage-controlled optical modulation response of TLs is demonstrated.

  9. Small-Signal ac Analysis

    NASA Technical Reports Server (NTRS)

    Jagielski, James M.; Chen, Jess

    1987-01-01

    Program simulates power circuits and systems. Small Signal A.C. Analysis program (SSAC) valuable tool for design and analysis of electrical-power-system circuits. By combining "black box" power-system components operating in specified manner, user characterizes system modeled. Menu-driven program proved simple and cost effective in development and modification of arbitrary power-system configurations. Package includes sample data from Dynamic Explorer satellite family. Results compared favorable to calculations from such general circuit-analysis programs as SPICE. Written in FORTRAN 77.

  10. Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves

    NASA Astrophysics Data System (ADS)

    Soni, Gaurav; Squires, Todd; Meinhart, Carl

    2006-11-01

    We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.

  11. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz. PMID:24110077

  12. Combined Operation of AC and DC Distribution System with Distributed Generation Units

    NASA Astrophysics Data System (ADS)

    Noroozian, Reza; Abedi, Mehrdad; Gharehpetian, Gevorg

    2010-07-01

    This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.

  13. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  14. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations.

  15. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations. PMID:22940415

  16. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  17. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  18. Electrode voltage fall and total voltage of a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  19. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  20. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    The figure shows a prototype of a relatively inexpensive electronic monitoring apparatus that measures and records selected parameters of lightning-induced transient voltages on communication and power cables. The selected parameters, listed below, are those most relevant to the ability of lightning-induced transients to damage electronic equipment. This apparatus bridges a gap between some traditional transient-voltage recorders that record complete waveforms and other traditional transient-voltage recorders that record only peak values: By recording the most relevant parameters and only those parameters this apparatus yields more useful information than does a traditional peak-value (only) recorder while imposing much smaller data-storage and data-transmission burdens than does a traditional complete-waveform recorder. Also, relative to a complete-waveform recorder, this apparatus is more reliable and can be built at lower cost because it contains fewer electronic components. The transients generated by sources other than lightning tend to have frequency components well below 1 MHz. Most commercial transient recorders can detect and record such transients, but cannot respond rapidly enough for recording lightning-induced transient voltage peaks, which can rise from 10 to 90 percent of maximum amplitude in a fraction of a microsecond. Moreover, commercial transient recorders cannot rearm themselves rapidly enough to respond to the multiple transients that occur within milliseconds of each other on some lightning strikes. One transient recorder, designed for Kennedy Space Center earlier [ Fast Transient-Voltage Recorder (KSC- 11991), NASA Tech Briefs, Vol. 23, No. 10, page 6a (October 1999)], is capable of sampling transient voltages at peak values up to 50 V in four channels at a rate of 20 MHz. That recorder contains a trigger circuit that continuously compares the amplitudes of the signals on four channels to a preset triggering threshold. When a trigger signal

  1. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  2. Technique for the calibration of thermal voltage converters using a Josephson waveform synthesizer and a transconductance amplifier

    NASA Astrophysics Data System (ADS)

    Budovsky, Ilya; Behr, Ralf; Palafox, Luis; Djordjevic, Sophie; Hagen, Thomas

    2012-12-01

    This paper describes a simple and effective technique for calibrating thermal converters for an ac-dc voltage transfer difference using a Josephson waveform synthesizer and a transconductance amplifier. Preliminary measurements and uncertainty analysis confirm the possibility of achieving systematic uncertainties below 0.1 µV V-1 at frequencies up to 1 kHz.

  3. Development of AC-driven liquid electrode plasma for sensitive detection of metals

    NASA Astrophysics Data System (ADS)

    Van Khoai, Do; Miyahara, Hidekazu; Yamamoto, Tamotsu; Trong Tue, Phan; Okino, Akitoshi; Takamura, Yuzuru

    2016-02-01

    A novel liquid electrode plasma (LEP) driven by AC, which is used as an excitation source for elemental analysis, has been developed for the first time. The conditions such as chip layout and flow rate were found to produce the plasma in the channel. The mechanism of AC LEP generation was determined. AC LEP could be sustained in the resin channel with no severe damage on the channel. The emission spectra of electrolyte, lead and cadmium solution were obtained and compared with those generated by DC LEP. AC LEP was developed for the quantitative determination of lead and cadmium with limits of detection of 75.0 µg/L (ppb) and 4.5 µg/L (ppb), respectively. The novel plasma source is promising for on-chip combination and integration because it could be maintained at low flow rates on a resin-based platform.

  4. Production of Ac-225 from Th-229 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; Rasmussen, G; Morgenstern, A

    2005-10-01

    This work describes a method for the separation and purification of Ac-225 from a Th-229 source. The procedure is based on the combination of ion exchange and extraction chromatographic methods in nitric acid media and allows the preparation of carrier-free, clinical grade Ac-225 with an overall yield exceeding 95%. Quality control of the product is performed using radiometric (alpha, gamma spectrometry) and mass spectrometric methods. The Ac-225 product can be loaded on a radionuclide generator for the preparation of Bi-213 for preclinical and clinical studies of targeted alpha therapy of cancer and infectious diseases.

  5. Production of Ac-225 from Th-229 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; Rasmussen, G; Morgenstern, A

    2005-10-01

    This work describes a method for the separation and purification of Ac-225 from a Th-229 source. The procedure is based on the combination of ion exchange and extraction chromatographic methods in nitric acid media and allows the preparation of carrier-free, clinical grade Ac-225 with an overall yield exceeding 95%. Quality control of the product is performed using radiometric (alpha, gamma spectrometry) and mass spectrometric methods. The Ac-225 product can be loaded on a radionuclide generator for the preparation of Bi-213 for preclinical and clinical studies of targeted alpha therapy of cancer and infectious diseases. PMID:16194090

  6. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  7. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  8. Effective variable switching point predictive current control for ac low-voltage drives

    NASA Astrophysics Data System (ADS)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  9. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  10. Ancillary service details: Voltage control

    SciTech Connect

    Kirby, B.; Hirst, E.

    1997-12-01

    Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

  11. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  12. A low voltage CMOS low drop-out voltage regulator

    NASA Astrophysics Data System (ADS)

    Bakr, Salma Ali; Abbasi, Tanvir Ahmad; Abbasi, Mohammas Suhaib; Aldessouky, Mohamed Samir; Abbasi, Mohammad Usaid

    2009-05-01

    A low voltage implementation of a CMOS Low Drop-Out voltage regulator (LDO) is presented. The requirement of low voltage devices is crucial for portable devices that require extensive computations in a low power environment. The LDO is implemented in 90nm generic CMOS technology. It generates a fixed 0.8V from a 2.5V supply which on discharging goes to 1V. The buffer stage used is unity gain configured unbuffered OpAmp with rail-to-rail swing input stage. The simulation result shows that the implemented circuit provides load regulation of 0.004%/mA and line regulation of -11.09mV/V. The LDO provides full load transient response with a settling time of 5.2μs. Further, the dropout voltage is 200mV and the quiescent current through the pass transistor (Iload=0) is 20μA. The total power consumption of this LDO (excluding bandgap reference) is only 80μW.

  13. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  14. Low Voltage Spatial Light Modulator

    SciTech Connect

    Papavasiliou, A

    2003-02-19

    This project studied the feasibility of a Low-Voltage actuator technology that promises to reduce the switched voltage requirements and linearize the response of spatial light modulators. We created computer models that demonstrate substantial advantages offered by this technology, and fabricated and tested those devices. SLMs are electro-optic devices for modulating the phase, amplitude or angle of light beams, laser or other. Applications for arrays of SLMs include turbulence correction for high-speed optical communications, imaging through distorting media, input devices for holographic memories, optical manipulation of DNA molecules, and optical computers. Devices based on micro electro-mechanical systems (MEMS) technology have recently become of special interest because of their potential for greatly improved performance at a much lower cost than piezoelectric or liquid crystal based devices. The new MEMS-based SLM devices could have important applications in high-speed optical communication and remote optical sensing, in support of DoD and DOE missions. Virtually all previously demonstrated MEMS SLMs are based on parallel-plate capacitors where an applied voltage causes a mirror attached to a suspended electrode to move towards a fixed electrode. They require relatively high voltages, typically on the order of 100 V, resulting in (1) large transistor sizes, available only from specialized foundries at significant cost and limiting the amount/sophistication of electronics under each SLM pixel, and (2) large power dissipation/area, resulting in a heat removal issue because of the optical precision required ({approx} 1/50-th of a wavelength). The actuator described in this process uses an advanced geometry that was invented at LLNL and is currently still proprietary. The new geometry allows the application of a bias voltage. This applied bias voltage results in a reduction of the required switched voltage and a linearization of the response curve. When this

  15. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  16. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  17. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  18. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    PubMed

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B; Baker, Bradley J

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  19. Incrementally Variable High-Voltage Supply

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Chin, J.; Anderson, H. R.; Loveless, R. L.

    1985-01-01

    Programable power supply provides regulated output ranging from 2.5 to 2,500 volts. Exponential digital-to-analog converter provides low-voltage analog signal to power converter and to negative and positive high-voltage regulators. In response, converter furnishes voltage of approximate magnitude represented by analog signal, and regulators adjust voltage to precise magnitude. Entire voltage range covered in 169 steps. Total power consumption expected to be less than 2 watts.

  20. A Bragg grating tunable filter based on temperature control system to demodulate a voltage sensor

    NASA Astrophysics Data System (ADS)

    Ribeiro, Bessie A.; Werneck, Marcelo M.; de Nazaré, Fabio B. V.; Gonçalves, Marceli N.

    2015-09-01

    This work presents an innovative automated Fiber Bragg Grating (FBG) based tunable optical filter (TOF) controlled by temperature to be used in temperature compensating schemes in FBG sensing set-ups. Mechanical and electronic aspects are discussed, and the implemented FBG-TOF viability and reliability in sensing systems are showed. The system was employed to demodulate a high voltage AC signal applied to a FBG-PZT sensor, showing good linearity and sensitivity.

  1. Voltage-current characteristics of superconducting bismuth(2223)-in silver tapes

    SciTech Connect

    Wallis, R.; Mayo, B. de

    1997-09-01

    Voltage-current characteristics, dc and ac to 75 kHz, were measured for samples of commercially supplied tapes over 100 m long of Ag- clad Bi(2223) at room temperature and at 77K. Currents to 30 A were applied. The dc critical current (the current at 0.1, {mu}V/cm) was determined to be over 10 A and the dc resistance per length was in the range of 40 m{Omega}/m.

  2. High-voltage (270 V) dc power-generating system for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcginley, K. M.

    1983-01-01

    The advantages of using high voltage, direct current advanced power generating systems in fighter aircraft are discussed. Weight reduction is achieved. Efficiency is increased 85 to 90 percent by eliminating the constant speed drive. Power interruptions are eliminated. There are no speed restrictions and no powerline constraints. Personal safety is increased by eliminating the hold on frequency, present in ac systems, which causes muscle contractions.

  3. High-voltage (270 V) dc power-generating system for fighter aircraft

    NASA Astrophysics Data System (ADS)

    McGinley, K. M.

    1983-06-01

    The advantages of using high voltage, direct current advanced power generating systems in fighter aircraft are discussed. Weight reduction is achieved. Efficiency is increased 85 to 90 percent by eliminating the constant speed drive. Power interruptions are eliminated. There are no speed restrictions and no powerline constraints. Personal safety is increased by eliminating the hold on frequency, present in ac systems, which causes muscle contractions.

  4. Parametric resonance voltage response of electrostatically actuated Micro-Electro-Mechanical Systems cantilever resonators

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Martinez, Israel; W. Knecht, Martin

    2016-02-01

    This paper investigates the parametric resonance voltage response of nonlinear parametrically actuated Micro-Electro-Mechanical Systems (MEMS) cantilever resonators. A soft AC voltage of frequency near natural frequency is applied between the resonator and a parallel ground plate. This produces an electrostatic force that leads the structure into parametric resonance. The model consists of an Euler-Bernoulli thin cantilever under the actuation of electrostatic force to include fringe effect, and damping force. Two methods of investigation are used, namely the Method of Multiple Scales (MMS) and Reduced Order Model (ROM) method. ROM convergence of the voltage response and the limitation of MMS to small to moderate amplitudes with respect to the gap (gap-amplitudes) are reported. MMS predicts accurately both Hopf supercritical and supercritical bifurcation voltages. However, MMS overestimates the large gap-amplitudes of the resonator, and. misses completely or overestimates the saddle-node bifurcation occurring at large gap-amplitudes. ROM produces valid results for small and/or large gap-amplitudes for a sufficient number of terms (vibration modes). As the voltage is swept up at constant frequency, the resonator maintains zero amplitude until reaches the subcritical Hopf bifurcation voltage where it loses stability and jumps up to large gap-amplitudes, next the gap-amplitude decreases until it reaches the supercritical Hopf bifurcation point, and after that the gap-amplitude remains zero, for the voltage range considered in this work. As the voltage is swept down at constant frequency, the zero gap-amplitude of the resonator starts increasing continuously after reaching the supercritical Hopf bifurcation voltage until it reaches the saddle-node bifurcation voltage when a sudden jump to zero gap-amplitude occurs. Effects of frequency, damping and fringe parameters on the voltage response show that (1) the supercritical Hopf bifurcation is shifted to lower voltage

  5. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator

    PubMed Central

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended. PMID:26302491

  6. Working group report on advanced high-voltage high-power and energy-storage space systems

    NASA Technical Reports Server (NTRS)

    Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.

    1986-01-01

    Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.

  7. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  8. A driving scheme to reduce AC LED flicker

    NASA Astrophysics Data System (ADS)

    Tan, Jianchuan; Narendran, Nadarajah

    2013-09-01

    Light flicker is a common but unwelcome phenomenon in conventional lighting applications. In solid-state lighting, driving or dimming methods also give rise to light flicker. AC LED products in today's marketplace suffer from flicker, which stems from the arrangement of the micro-LEDs and the driving method. Research has shown that light flicker can be a health hazard to humans. Several solutions have been proposed to reduce light flicker in solid-state lighting applications; however, most have drawbacks in terms of power and other performance. This paper proposes a circuit design to reduce light flicker from AC LEDs while maintaining a normal power factor and high power efficiency. The circuit is composed of one resistive branch and one capacitive branch, and each branch drives a load which is made up of high-voltage LEDs. Percent flicker, power factor, and power efficiency were selected as three metrics, and their benchmarks were set to evaluate the performance of this circuit. Phase shift between the two branches was selected as a factor that could determine the circuit performance. The variations of percent flicker, power factor, and power efficiency as a function of phase shift were identified by theoretical analysis and were verified by experiments. The experimental results show that an optimal solution can be achieved for this circuit design at proper phase shift, where the benchmarks of the three metrics are reached.

  9. Adaptive Phase Synchronization Techniques for Unbalanced and Distorted Three-Phase Voltage System

    NASA Astrophysics Data System (ADS)

    Woinowsky-Krieger, Alexis

    Interfacing and operating AC power electronic systems requires rapid and accurate estimation of the phase angle of the power source, and specifically of the positive sequence of the three-phase utility grid voltage. This is needed to ensure reliable operation of the power control devices and of the resulting power flow. However, the quality of this information is undermined by various distortions and unbalanced conditions of the three-phase grid voltage. Phase estimation and power control can both be performed in real time by a DSP, but a DSP typically has limited computational resources, especially in regards to speed and memory, which motivates the search for computationally efficient algorithms to accomplish these tasks. In contrast to conventional PLL techniques, recent approaches have used adaptive amplitude estimation to enhance the acquisition of the phase information, resulting in faster response and improved performance. This thesis presents a novel technique to estimate the phase of the positive sequence of a three-phase voltage in the presence of frequency variations and unbalanced conditions, referred to as hybrid negative sequence adaptive synchronous amplitude estimation with PLL, or H-NSASAE-PLL. The key feature consists of a feedback structure which embeds a positive sequence PLL and an adaptive synchronous negative sequence estimator to enhance the performance of the PLL. The resulting benefits include faster estimation of the phase of the positive sequence under unbalanced conditions with zero steady state error, simplified tuning of PLL parameters to address a wide range of application requirements, robust performance with respect to distortions and PLL parameters, a structure of minimal dynamical order (fifth) to estimate the main signal parameters of interest, simplified discretization, and reduced computational costs, making the proposed technique suitable for real time execution on a DSP. The H-NSASAE-PLL is developed in the Matlab

  10. Novel bandgap-based under-voltage-lockout methods with high reliability

    NASA Astrophysics Data System (ADS)

    Yongrui, Zhao; Xinquan, Lai

    2013-10-01

    Highly reliable bandgap-based under-voltage-lockout (UVLO) methods are presented in this paper. The proposed under-voltage state to signal conversion methods take full advantages of the high temperature stability characteristics and the enhancement low-voltage protection methods which protect the core circuit from error operation; moreover, a common-source stage amplifier method is introduced to expand the output voltage range. All of these methods are verified in a UVLO circuit fabricated with a 0.5 μm standard BCD process technology. The experimental result shows that the proposed bandgap method exhibits a good temperature coefficient of 20 ppm/°C, which ensures that the UVLO keeps a stable output until the under-voltage state changes. Moreover, at room temperature, the high threshold voltage VTH+ generated by the UVLO is 12.3 V with maximum drift voltage of ±80 mV, and the low threshold voltage VTH- is 9.5 V with maximum drift voltage of ±70 mV. Also, the low voltage protection method used in the circuit brings a high reliability when the supply voltage is very low.

  11. Daughter growth in freshly separated Ra-226, Ac-227 and U-232

    NASA Technical Reports Server (NTRS)

    Basile, L. J.; Macias, E. S.; Milstead, J.; Stewart, D. C.

    1969-01-01

    Report provides computer-calculated curves and tables for the daughter buildup of Ra-226, Ac-227 and U-232 chains. Data are presented as a function of time beginning with pure samples of each parent. The information may be of interest to those using decay chains as isotopic alpha sources or neutron sources.

  12. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  13. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  14. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  15. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  16. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  19. Voltage-gated proton channels.

    PubMed

    Decoursey, Thomas E

    2012-04-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.

  20. Module Five: Relationships of Current, Voltage, and Resistance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    This module covers the relationships between current and voltage; resistance in a series circuit; how to determine the values of current, voltage, resistance, and power in resistive series circuits; the effects of source internal resistance; and an introduction to the troubleshooting of series circuits. This module is divided into five lessons:…