Science.gov

Sample records for ac-coupled silicon strip

  1. Study of the design optimization of AC-coupled single-sided silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Jeon, H. B.; Kang, K. H.; Park, H.; Hyun, H. J.

    2015-05-01

    The high-intensity rare-isotope accelerator, RAON, will be constructed for nuclear physics research in Korea. AC-coupled single-sided silicon strip detectors (SSSDs) are being investigated for use in the Si-CsI detector of a large acceptance multi-purpose spectrometer to measure the energies of various isotopes. To determine the optimal design, four SSSD design parameters were examined in this study, namely the ratio of p+ implant width to strip pitch ( I/P), the width of the metal layer, the presence of an n+-edge field shaper (FS), and the distance between the guard-ring and sensor edge (DGS). The designed detectors were fabricated on high resistivity n-type silicon wafers of 500 μm thickness. The SSSDs had the strip pitch of 730 μm and 32 readout strips in each, and the size of the sensors was 40.0 × 25.5 mm2. In terms of the leakage current and production yield, the noise improved by up to 30%when the I/P ratio was 0.4, the metal layer was wider than the p+ implantation, and the DGS with n+-edge FS was twice the sensor thickness. The signal-to-noise ratio of the SSSD with the design parameters that provided the optimal leakage current and coupling capacitance was measured to be 29.1 using a 90Sr radioactive source and commercial electronics.

  2. Strip defect recognition in electrical tests of silicon microstrip sensors

    NASA Astrophysics Data System (ADS)

    Valentan, Manfred

    2017-02-01

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the "typical value". To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these "would-be" values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  3. A prototype of radiation imaging detector using silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  4. Charge collection in silicon strip detectors

    SciTech Connect

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 ..mu..m in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors.

  5. Test results of a self-triggering silicon strip detector readout chip

    NASA Astrophysics Data System (ADS)

    Kasiński, Krzysztof; Szczygieł, Robert; Czermak, Adam

    2009-08-01

    The n-XYter integrated circuit (ASIC) was designed in a CMOS 0.35 μm technology, as a 128-channel, data-driven silicon detector readout chip and became a prototype readout chip for several experiments at the Facility for Antiproton and Ion Research (FAIR). The details of the circuit architecture have already been published [C. Schmidt, et al., in: Proceedings of the Topical Workshop on Electronics for Particle Physics, Prague, Czech Republic, 03-07 September 2007; A. Brogna, et al., Nucl. Instr. and Meth. A 568 (2006) 301]. In this paper we present test results on discriminator threshold spread and its correction, analogue front-end gain measurements and calibration of the time-stamp circuitry. The measurements were performed using on-chip test pulses. The ASIC was connected to a 1 cm long, 100 μm pitch, AC-coupled silicon strip detector (SSD).

  6. Tests of the radiation hardness of VLSI Integrated Circuits and Silicon Strip Detectors for the SSC (Superconducting Super Collider) under neutron, proton, and gamma irradiation

    SciTech Connect

    Ziock, H.J.; Milner, C.; Sommer, W.F. ); Carteglia, N.; DeWitt, J.; Dorfan, D.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.F.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E. . Inst. for Particle Physics); Ellison, J.A. ); Ferguson, P. ); Giubellino

    1990-01-01

    As part of a program to develop a silicon strip central tracking detector system for the Superconducting Super Collider (SSC) we are studying the effects of radiation damage in silicon detectors and their associated front-end readout electronics. We report on the results of neutron and proton irradiations at the Los Alamos National Laboratory (LANL) and {gamma}-ray irradiations at UC Santa Cruz (UCSC). Individual components on single-sided AC-coupled silicon strip detectors and on test structures were tested. Circuits fabricated in a radiation hard CMOS process and individual transistors fabricated using dielectric isolation bipolar technology were also studied. Results indicate that a silicon strip tracking detector system should have a lifetime of at least one decade at the SSC. 17 refs., 17 figs.

  7. FPHX: A New Silicon Strip Readout Chip for the PHENIX Experiment at RHIC

    SciTech Connect

    Hoff, James R.; Zimmerman, Tom N.; Yarema, Raymond J.; Kapustinsky, Jon S.; Brookes, Melynda L.; /LOS ALAMOS

    2009-01-01

    The FPHX chip is a silicon strip readout chip developed at Fermilab for use in the FVTX Detector of the PHENIX experiment at RHIC. Each front end consists of an integrator which is AC coupled to a shaper, followed by a discriminator and a 3-bit analog-to-digital converter. The backend is a novel architecture in two stages that permits dead-timeless operation and high-speed readout with very low latency. A slow controller provides an interface for all on-chip programmable functions. This chip has been fabricated in the 0.25um TSMC process. All functionality including the analog front-end, the digital back-end, and the slow controller has been verified experimentally.

  8. Fermilab silicon strip readout chip for BTev

    SciTech Connect

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  9. Performance Characteristics of Thick Silicon Double-sided Strip Detectors.

    PubMed

    Shokouhi, Sepideh; McDonald, Benjamin S; Durko, Heather L; Fritz, Mark A; Furenlid, Lars R; Peterson, Todd E

    2007-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60 mm × 60 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 µm strip pitch is attainable. Good flood uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD shows high potential for small-animal SPECT imaging.

  10. Performance Characteristics of Thick Silicon Double-sided Strip Detectors

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2015-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60 mm × 60 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 µm strip pitch is attainable. Good flood uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD shows high potential for small-animal SPECT imaging. PMID:26778911

  11. Digital Images of Breast Biopsies using a Silicon Strip Detector

    SciTech Connect

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima

    2006-09-08

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics.

  12. Development, prototyping and characterization of double sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  13. SVX3: A deadtimeless readout chip for silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Zimmerman, T.; Huffman, T.; Srage, J.; Stroehmer, R.; Yarema, R.; Garcia-Sciveras, M.; Luo, L.; Milgrome, O.

    1998-02-01

    A new silicon strip readout chip called the SVX3 has been designed for the 720 000 channel CDF silicon upgrade at Fermilab. SVX3 incorporates an integrator, analog delay pipeline, ADC, and data sparsification for each of 128 identical channels. Many of the operating parameters are programmable via a serial bit stream, which allows the chip to be used under a variety of conditions. Distinct features of SVX3 include use of a backside substrate contact for optimal ground referencing, and the capability of simultaneous signal acquisition and digital readout, allowing deadtimeless operation in the Fermilab Tevatron.

  14. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  15. VTT's micron-scale silicon rib+strip waveguide platform

    NASA Astrophysics Data System (ADS)

    Aalto, Timo; Harjanne, Mikko; Cherchi, Matteo

    2016-05-01

    Silicon rib waveguides enable single-mode (SM) operation even with the combination of multi-micron core dimensions and high refractive index contrast. In such large waveguides the optical mode field is almost completely confined inside the Si core, which leads to small propagation losses and small polarization dependency. The unique SM condition of the rib waveguide also enables the use of an ultra-wide wavelength range, for example from 1.2 to <1.7 μm, without sacrificing either SM operation or low propagation loss. This makes micron-scale Si waveguides particularly well-suited for spectroscopy and extensive wavelength division multiplexing. However, rib waveguides require large bending radii, which lead to large circuit sizes. There are two solutions for this. So-called Euler bends in Si strip waveguides enable low-loss bends down to 1 μm bending radius with less than 0.1 dB/90° loss for both polarizations. Another alternative is a total-internal reflection mirror that can have loss as low as 0.1 dB for both polarizations in either strip or rib waveguides. The excitation of higher order modes in large strip waveguides is avoided by using adiabatic rib-strip converters and low-loss components. With rib and strip waveguides it is possible to reach a unique combination of low loss, extremely small footprint, small polarization dependency, ultra-wide bandwidth and tolerance to high optical powers.

  16. Architecture of a Silicon Strip Beam Position Monitor

    SciTech Connect

    Angstadt, R.; Cooper, W.; Demarteau, M.; Green, J.; Jakubowski, S.; Prosser, A.; Rivera, R.; Turqueti, M.; Utes, M.; Cai, X.; /Beijing, Inst. High Energy Phys.

    2010-10-01

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12 x 10 cm{sup 2}. Readout of the strips is provided through the use of VA1 ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

  17. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  18. Automatic intrinsic calibration of double-sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Reese, M.; Gerl, J.; Golubev, P.; Pietralla, N.

    2015-04-01

    A reliable and simple-to-use algorithm was developed for the energy-calibration of double-sided silicon strip detectors (DSSSDs). It works by enforcing mutual consistency of p-side and n-side information for every detected event. The procedure does not rely on a dedicated data set for calibration and is robust enough to work fully automated without human supervision. The method was developed and applied to data from a DSSSD of the Lund-York-Cologne CAlorimeter (LYCCA) for the HISPEC experiment at FAIR. It has been tested on ions in the A ≈ 90 mass range at energies of Ekin ≈ 300 MeV / u.

  19. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    SciTech Connect

    Arteche, F.; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  20. Heavy flavour physics at colliders with silicon strip vertex detectors

    NASA Astrophysics Data System (ADS)

    Schwarz, Andreas S.

    1994-03-01

    The physics of heavy flavours has played a dominant role in high energy physics research ever since the discovery of charm in 1974, followed by the τ lepton in 1975 and bottom in 1977. With the startup of the large experiments at the e+e- colliders LEP and the SLC a new type of detector system has now come into operation which has a major impact on the studies of heavy flavours: the silicon strip vertex detector. The basic design priciples of these novel detector systems are outlined and three representative experimental realizations are discussed. The impact of these detectors on the studies of the properties of heavy flavours is just emerging and focuses on the measurement of lifetimes and the tagging of the presence of heavy flavour hadrons in hadronic events. The tools that are being developed for these studies are described as well as details of representative analyses. The potential of these devices and the associated technological developments that were necessary for their application in the colding beam environment is reflected in a plethora of new proposals to build sophisticated silicon detector systems for a large variety of future high energy physics applications. Two examples will be briefly sketched, a vertex detector for an asymmetric e+e- bottom factory and a large scale tracking system for a multipurpose detector at one of the new large hadron colliders.

  1. A Proposal to Upgrade the Silicon Strip Detector

    SciTech Connect

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  2. Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

    NASA Astrophysics Data System (ADS)

    Díez, Sergio; Atlas Collaboration

    2013-01-01

    This paper describes the baseline integration structures for the silicon strip sensors to be used in the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC) machine, the so-called High Luminosity LHC (HL-LHC). Highly modular structures have been developed for the integration of the silicon strips sensors, readout electronics, cooling, and support structures, called 'staves' for the barrel region and 'petals' for the end-caps of the ATLAS strips tracker. This work describes the status of the current prototypes, the building procedure, designed for mass production even at a prototyping stage, and their electrical performances.

  3. Rad-Hard Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Giorgi, Marco

    2005-06-01

    For the next generation of High Energy Physics (HEP) Experiments silicon microstrip detectors working in harsh radiation environments with excellent performances are necessary. The irradiation causes bulk and surface damages that modify the electrical properties of the detector. Solutions like AC coupled strips, overhanging metal contact, <100> crystal lattice orientation, low resistivity n-bulk and Oxygenated substrate are studied for rad-hard detectors. The paper presents an outlook of these technologies.

  4. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  5. The effect of dead-timeless silicon strip readout at CDF II

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Garcia-Sciveres, M.; Goldstein, J.; Hill, C.; Stuart, D.; Volobouev, I.

    2003-03-01

    The Run IIa CDF Silicon Upgrade has recently finished installation. The detector uses revision D of the SVX3 readout IC. This final revision incorporated new features in order to improve the potential of dead-timeless operation. This paper describes measurements of dead-timeless effects on silicon strip readout on the test bench. This paper also describes tests of the dynamic pedestal subtraction circuitry, which is shown to improve greatly the dead-timeless performance of the silicon systems.

  6. The SVX II Silicon Vertex Detector at CDF

    NASA Astrophysics Data System (ADS)

    Valls, Juan A.

    1999-08-01

    The Silicon VerteX detector (SVX II) for the CDF experiment at the Tevatron p overlinep collider is a 3-barrel 5-layer device with double-sided, AC-coupled silicon strip detectors. The readout is based on a custom IC, the SVX3 chip, capable of simultaneous acquisition, digitization and readout operation (dead-timeless). In this paper we report on the SVX II design and project status including mechanical design, frontend electronics, and data acquisition.

  7. The impact and persistence of electrostatic charge on the passivation of silicon strip sensors

    NASA Astrophysics Data System (ADS)

    König, A.; Bergauer, T.; Schmidt, P.

    2016-12-01

    Silicon strip sensors as used for tracking detectors in high-energy physics experiments are bare large-area silicon devices without any packaging. To protect them from environmental influences like humidity and mechanical damage, a passivation is deposited as the uppermost layer. The passivation can consist of different materials like silicon oxide, silicon nitride, polyimides or doped glasses. In this study we first demonstrate the impact of static surface charge on the sensor characteristics. This is followed by investigations on how sensitive different passivation layers of silicon strip sensors are against charge-up and how these charges retain. For such purpose, a corona charge-up device has been built and used to charge up the detectors. The surface potential distribution caused by the charge was mapped using an electrostatic voltmeter. The self-discharge of sensors with different passivation layers was investigated by long-term studies.

  8. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry

    SciTech Connect

    Awal, M. A.; Ahmed, Zabir; Talukder, Muhammad Anisuzzaman

    2015-02-14

    We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ∼46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.

  9. Vacuum-stripped silicone binder for thermal-control paint

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Rogers, F. O.

    1973-01-01

    Silicone elastomer is placed in evacuating system, heated to 160 C and held at this temperature for 24 hours. Elastomer is then cooled to room temperature in vacuum, producing upgraded, low outgassing polymer of increased molecular weight.

  10. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    SciTech Connect

    Barabanenkov, M. Yu. Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  11. Schottky photodetector with tapered thin metal strip on silicon waveguide

    NASA Astrophysics Data System (ADS)

    Guo, Jingshu; Wu, Zhiwei; Li, Yuan; Zhao, Yanli

    2016-01-01

    We propose a Schottky photodetector with tapered thin metal strip on SOI platform. Schottky photodetector can detect photons below the semiconductor bandgap energy by exploiting the internal photoemission. In the internal photoemission process, the hot carriers generate in the tapered thin metal strip where light absorption occurs, and part of these carriers can be emitted over the Schottky barrier and collected as photocurrent. The small thickness of the tapered metal strip contributes to a high internal quantum efficiency of 11.25%. This metal-semiconductor structure acts as a photonics-plasmonics mode convertor. According to 3D-FDTD simulation, about 95.8% of the incident optical power can be absorbed in the absorption area within 4.5μm at wavelength of 1550 nm. The responsivity is estimated to be 0.135A/W at 1550 nm. This compact design with a low dark current has a minimum detectable power of -23.15 dβm. We argue that this design can promote the progress of all-Si photo-detection in near-infrared communication band.

  12. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  13. Formation of Widmanstätten Austenite in Strip Cast Grain-Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Guo-Dong; Jonas, John J.

    2017-02-01

    The formation of Widmanstätten austenite was studied in strip cast grain-oriented silicon steel. The microstructure was investigated by optical microscopy and scanning electron microscopy. The orientations of the ferrite, Widmanstätten austenite, and martensite were determined using electron backscatter diffraction. The Widmanstätten austenite exhibits a lath-like shape and nucleates directly on the ferrite grain boundaries. This differs significantly from earlier work on duplex stainless steels. The orientation relationship between the Widmanstätten austenite and the parent ferrite is closer to Kurdjumov-Sachs than to Nishiyama-Wassermann. The ferrite boundaries migrate so as to accommodate the habit planes of the laths, leading to the presence of zigzag boundaries in the as-cast strip. Carbon partitioning into the Widmanstätten austenite and silicon partitioning into the parent ferrite were observed.

  14. Formation of Widmanstätten Austenite in Strip Cast Grain-Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Guo-Dong; Jonas, John J.

    2017-04-01

    The formation of Widmanstätten austenite was studied in strip cast grain-oriented silicon steel. The microstructure was investigated by optical microscopy and scanning electron microscopy. The orientations of the ferrite, Widmanstätten austenite, and martensite were determined using electron backscatter diffraction. The Widmanstätten austenite exhibits a lath-like shape and nucleates directly on the ferrite grain boundaries. This differs significantly from earlier work on duplex stainless steels. The orientation relationship between the Widmanstätten austenite and the parent ferrite is closer to Kurdjumov-Sachs than to Nishiyama-Wassermann. The ferrite boundaries migrate so as to accommodate the habit planes of the laths, leading to the presence of zigzag boundaries in the as-cast strip. Carbon partitioning into the Widmanstätten austenite and silicon partitioning into the parent ferrite were observed.

  15. A silicon dioxide modified magnetic nanoparticles-labeled lateral flow strips for HBs antigen.

    PubMed

    Zhang, Xueqing; Jiang, Lin; Zhang, Chunlei; Li, Ding; Wang, Can; Gao, Feng; Cui, Daxiang

    2011-12-01

    Herein we reported a new type of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for detection of HBs antigen in sera. The SiO2 wrapped Fe3O4 nanocomposites were prepared and characterized by HR-TEM, FTIR and magnetometer. As-prepared nanocomposites were used to label anti-HBV surface monoclonal antibody, the lateral flow strips were constructed, and 100 specimens of sera were collected and tested. Results showed that the prepared SiO2 wrapped Fe3O4 nanocomposites were shell/core structure, well dispersed, with the size of 25 nm in diameter, the thickness of the shell was about 3 nm, their magnetic saturation intensity was 44.3 meu g(-1). Clinical sera specimens test results showed that the prepared lateral flow strips were with the detection limitation of 5 pg/mL by naked eye observation, and 0.1 pg/mL by CCD reader or MAR Analyzer, specificity was 100%. In conclusion, one kind of silicon dioxide wrapped magnetic nanoparticles-labeled lateral flow strip for ultrasensitive detection of HBs antigen was successfully developed, its ease of use, sensitiveness and low-cost make it well-suited for population-based on-the-site hepatitis B screening.

  16. A new inner layer silicon micro-strip detector for D0

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D{O} experiment at the Fermilab Tevatron is building a new inner layer detector (Layer-0) to be installed inside the existing D{O} Silicon Micro-strip Tracker (SMT). The Layer-0 detector is based on R&D performed for the RunIIb silicon upgrade, which was canceled in the fall of 2003. Layer-0 will be installed between the bean pipe and the the 2.2cm radius opening available in the SMT support structure. The radius of the first sampling will be reduced from 2.7cm to 1.6cm. Layer-0 will be radiation harder than the current SMT, thus ensuring that the silicon tracker remains viable through Tevatron RunII.

  17. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  18. Design and characterization of the BVX: An 8-channel CMOS preamplifier-shaper for silicon strips

    SciTech Connect

    Britton, C.L. Jr.; Alley, G.T.; Simpson, M.L.; Wintenberg, A.L.; Yarema, R.J.; Zimmerman, T.; Boissevain, J.; Collier, W.; Jacak, B.V.; Simon-Gillo, J.; Sondheim, W.; Sullivan, J.P.; Lockyer, N.

    1992-12-31

    This paper presents the design and characterization of an 8channel preamplifier-shaper intended for use with silicon strip detectors ranging in capacitance from 1 to 20pF. The nominal peaking time of the circuit is 200ns with an adjustment range of {plus_minus}50ns. The circuit has a pitch (width) of 84{mu}channel with a power dissipation of 1.2mW/channel and has been fabricated in 2{mu}m p-well CMOS. The 0pF noise is 330e with a noise slope of 64e/pF. The design approach is presented as well as both test bench and strip detector measurements.

  19. The SVX3D integrated circuit for dead-timeless silicon strip readout

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, M.; Milgrome, O.; Zimmerman, T.; Volobouev, I.; Ely, R. P.; Connolly, A.; Fish, D.; Affolder, T.; Sill, A.

    1999-10-01

    The revision D of the SVX3 readout IC has been fabricated in the Honeywell radiation-hard 0.8 μm bulk CMOS process, for instrumenting 712,704 silicon strips in the upgrade to the Collider Detector at Fermilab. This final revision incorporates new features and changes to the original architecture that were added to meet the goal of dead-timeless operation. This paper describes the features central to dead-timeless operation, and presents test data for un-irradiated and irradiated SVX3D chips.

  20. Ultra-high-Q thin-silicon nitride strip-loaded ring resonators.

    PubMed

    Stefan, L; Bernard, M; Guider, R; Pucker, G; Pavesi, L; Ghulinyan, M

    2015-07-15

    We report on the design, fabrication, and characterization of thin Si3N4 ultra-high-quality (UHQ) factor ring resonators monolithically integrated on a silicon chip. The devices are based on a strip-loaded configuration and operate at both near-infrared (NIR) and third-telecom wavelengths. This approach allows us to use a guiding Si3N4 core that is one order of magnitude thinner than what has been reported in the past for obtaining similar device performances. Our strip-loaded devices benefit from the absence of physically etched lateral boundaries to show minute light scattering and, therefore, reducing significantly scattering-related losses. Consequently, UHQs of 3.7×10(6) in the NIR and high-quality factors of up to 9×10(5) in the C-band were measured for the guiding material thickness of 80 nm and 115 nm, respectively. These first results are subject to further improvements that may allow employing strip-loaded resonators in nonlinear frequency conversion or quantum computing schemes within the desired spectral range provided by the material transparency.

  1. Charge collection mapping of a novel ultra-thin silicon strip detector for hadrontherapy beam monitoring

    NASA Astrophysics Data System (ADS)

    Bouterfa, Mohamed; Alexandre, Geoffrey; Cortina Gil, Eduardo; Flandre, Denis

    2013-12-01

    In precise hadrontherapy treatments, the particle beam must be monitored in real time without being degraded. Silicon strip detectors have been fabricated over an area as large as 4.5×4.5 cm2 with ultra low thickness of 20 μm. These offer the following considerable advantages: significantly reduced beam scattering, higher radiation hardness which leads to improved detector lifetime, and much better collection efficiency. In a previous work, the novel sensor has been described and a global macroscopic dosimetry characterization has been proposed. This provides practical information for the detector daily use but not about the local microscopic knowledge of the sensor. This work therefore presents a micrometric-accuracy charge-collection characterization of this new generation of ultra-thin silicon strip detectors. This goal is reached thanks to a 1060 nm-wavelength micrometric-sized laser that can be positioned relatively to the sensor with a submicron precision for the three different axes. This study gives a much better knowledge of the inefficient areas of the sensor and allows therefore optimization for future designs.

  2. Silicon template preparation for the fabrication of thin patterned gold films via template stripping

    NASA Astrophysics Data System (ADS)

    Schmidl, G.; Dellith, J.; Dellith, A.; Teller, N.; Zopf, D.; Li, G.; Dathe, A.; Mayer, G.; Hübner, U.; Zeisberger, M.; Stranik, O.; Fritzsche, W.

    2015-12-01

    Metallic nanostructures play an important role in the vast field of modern nanophotonics, which ranges from the life sciences to biomedicine and beyond. Gold is a commonly-used and attractive material for plasmonics in the visible wavelength range, most importantly due to its chemical stability. In the present work, we focused on the different methods of plasmonic nanostructure fabrication that possess the greatest potential for cost-efficient fabrication. Initially, reusable (1 0 0) silicon templates were prepared. For this purpose, three different lithography methods (i.e. e-beam, optical, and nanoparticle lithography) were used that correspond to the desired structural scales. The application of a subsequent anisotropic crystal orientation-dependent wet etching process produced well-defined pyramidal structures in a wide variety of sizes, ranging from several microns to less than 100 nm. Finally, a 200 nm-thick gold layer was deposited by means of confocal sputtering on the silicon templates and stripped in order to obtain gold films that feature a surface replica of the initial template structure. The surface roughness that was achieved on the stripped films corresponds well with the roughness of the template used. This makes it possible to prepare cost-efficient high-quality structured films in large quantities with little effort. The gold films produced were thoroughly characterized, particularly with respect to their plasmonic response.

  3. Impact of low-dose electron irradiation on $$n^{+}p$$ silicon strip sensors

    DOE PAGES

    Adam, W.

    2015-08-28

    The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate inmore » the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n+p strip sensors is discussed.« less

  4. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  5. Impact of low-dose electron irradiation on $n^{+}p$ silicon strip sensors

    SciTech Connect

    Adam, W.

    2015-08-28

    The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n+p strip sensors is discussed.

  6. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  7. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Ovejero, M. C.; Pérez Vega-Leal, A.; Gallardo, M. I.; Espino, J. M.; Selva, A.; Cortés-Giraldo, M. A.; Arráns, R.

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  8. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  9. AC-coupled front-end for biopotential measurements.

    PubMed

    Spinelli, Enrique Mario; Pallàs-Areny, Ramon; Mayosky, Miguel Angel

    2003-03-01

    AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 Hz.

  10. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  11. Electromagnetic noise studies in a silicon strip detector, used as part of a luminosity monitor at LEP

    NASA Astrophysics Data System (ADS)

    Ødegaard, Trygve; Tafjord, Harald; Buran, Torleiv

    1995-02-01

    As part of the luminosity monitor, SAT, in the DELPHI [1] experiment at CERN's Large Electron Positron collider, a tracking detector constructed from silicon strip detector elements was installed in front of an electromagnetic calorimeter. The luminosity was measured by counting the number of Bhabha events at the interaction point of the electron and the positron beans. The tracking detector reconstructs from the interaction point and the calorimeter measures the corresponding particles' energies. The SAT Tracker [2] consists of 504 silicon strip detectors. The strips are DC-coupled to CMOS VLSI-chips, baptized Balder [3,4]. The chip performs amplification, zero-suppression, digitalisation, and multiplexing. The requirements of good space resolution and high efficiency put strong requirements on noise control. A short description of the geometry and the relevant circuit layout is given. We describe the efforts made to minimise the electromagnetic noise in the detector and present some numbers of the noise level using various techniques.

  12. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  13. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  14. Ion-implanted capacitively coupled silicon strip detectors with integrated polysilicon bias resistors processed on a 100 mm wafer

    NASA Astrophysics Data System (ADS)

    Hietanen, Iiro; Lindgren, Jukka; Orava, Risto; Tuuva, Tuure; Voutilainen, Martti; Brenner, Richard; Andersson, Mikael; Leinonen, Kari; Ronkainen, Hannu

    1991-12-01

    Double-sided silicon strip detectors with integrated coupling capacitors and polysilicon resistors have been processed on a 100 mm wafer. A detector with an active area of 19 × 19 mm 2 was connected to LSI readout electronics and tested. The strip pitch of the detector is 25 μm on the p-side and 50 μm on the n-side. The readout pitch is 50 μm on both sides. The number of readout strips is 774 and the total number of strips is 1161. On the p-side a signal-to-noise of 35 has been measured using a 90Sr β-source. The n-side has been studied using a laser.

  15. Thermal imaging QC for silicon strip staves of the ATLAS phase II upgrade

    NASA Astrophysics Data System (ADS)

    Vergel Infante, Carlos

    2016-03-01

    A new silicon strip detector is part of the phase II upgrade of the ATLAS inner tracker. Light-material carbon fiber honeycomb sandwich staves serve as mechanical support for the strip sensors and readout modules and to move the dissipated heat out of the detector. A cooling pipe inside the stave is embedded in heat-conducting foam that thermally connects the pipe with the readout modules. The staves are required to pass a set of quality control (QC) tests before they are populated with readout modules. One test uses a non-invasive inspection method of infrared (IR) thermal imaging of the heat path while the stave is cooled to around -40°C at ambient room temperature. Imperfections in the manufacturing, such as the delamination of the stave facing from the foam, will exhibit a different temperature profile compared to a flawless stave. We report on the current status of the thermal imaging QC measurements including a characterization of various contributions to the uncertainties in the temperature reading of the IR camera such as pedestal variations, common-mode noise, vignetting, and statistical fluctuations across the field of view.

  16. Measurement of characteristic impedance of silicon fiber sheet based readout strip panel for RPC detector in INO

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Kumar, A.; Marimuthu, N.; Singh, V.; Subrahmanyam, V. S.

    2017-01-01

    The India-based Neutrino Observatory (INO) is a mega science project of India, which is going to use about 30,000 Resistive Plate Chambers (RPC) as active detector elements for the study of atmoshpheric neutrino oscillations. Each RPC detector will consist of two orthogonally placed readout strip panel for picking the signals generated in the gas chamber. The area of RPC detector in INO-ICAL (Iron Calorimeter) experiment will be 2 m × 2 m, therefore the dimensions of readout strip panel should also be 2 m × 2 m. To get undistorted signals pass through the readout strip panel to front-end electronics, their characteristic impedance should be matched with each other. In the present paper, we describe the need and search of new dielectric material for the fabrication of flame resistant, waterproof and flexible readout strip panel. We will also describe the measurement of characteristic impedance of Plastic Honeycomb (PH) based readout strip panel and Silicon Fiber Sheet (SFS) based readout strip panel in a comparative way, and its variation under loading and with time. Based on this study, we found that a 5 mm thick SFS-based readout strip panel has a minimum signal reflection at 49.5 ohm characteristic impedance value. Our study shows that SFS is a good dielectric material for the purpose.

  17. Development of a Broad High-Energy Gamma-Ray Telescope using Silicon Strip Detectors

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1998-01-01

    The research effort has led to the development and demonstration of technology to enable the design and construction of a next-generation high-energy gamma-ray telescope that operates in the pair-production regime (E greater than 10 MeV). In particular, the technology approach developed is based on silicon-strip detector technology. A complete instrument concept based on this technology for the pair-conversion tracker and the use of CsI(T1) crystals for the calorimeter is now the baseline instrument concept for the Gamma-ray Large Area Space Telescope (GLAST) mission. GLAST is NASA's proposed high-energy gamma-ray mission designed to operate in the energy range from 10 MeV to approximately 300 GeV. GLAST, with nearly 100 times the sensitivity of EGRET, operates through pair conversion of gamma-rays and measurement of the direction and energy of the resulting e (+) - e (-) shower. The baseline design, developed with support from NASA includes a charged particle anticoincidence shield, a tracker/converter made of thin sheets of high-Z material interspersed with Si strip detectors, a CsI calorimeter and a programmable data trigger and acquisition system. The telescope is assembled as an array of modules or towers. Each tower contains elements of the tracker, calorimeter, and anticoincidence system. As originally proposed, the telescope design had 49 modules. In the more optimized design that emerged at the end of the grant period the individual modules are larger and the total number in the GLAST array is 25. Also the calorimeter design was advanced substantially to the point that it has a self-contained imaging capability, albeit much cruder than the tracker.

  18. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  19. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environments

    NASA Astrophysics Data System (ADS)

    Printz, Martin

    2016-09-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to 1.5 ×1015neq /cm2 corresponding to 3000fb-1 after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20 cm < R < 110 cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolation but simultaneously high breakdown voltages. Therefore a study of the isolation characteristics with four different silicon sensor manufacturers has been executed in order to determine the most suitable p-stop parameters for the harsh radiation environment during HL-LHC. Several p-stop doping concentrations, doping depths and different p-stop pattern have been realized and experiments before and after irradiation with protons and neutrons have been performed and compared to T-CAD simulation studies with Synopsys Sentaurus. The measurements combine the electrical characteristics measured with a semi-automatic probestation with Sr90 signal measurements and analogue readout. Furthermore, some samples have been investigated with the help of a cosmic telescope with high resolution allowing charge collection studies of MIPs penetrating the sensor between two strips.

  20. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  1. Anamorphic preclinical SPECT imaging with high-resolution silicon double-sided strip detectors

    NASA Astrophysics Data System (ADS)

    Durko, Heather L.

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnications are not constrained to be equal. We incorporated a 60 mm x 60 mm, millimeter-thick megapixel silicon double-sided strip detector that permits ultrahigh-resolution imaging. While the stopping power of silicon is low for many common clinical radioisotopes, its performance is sufficient in the range of 20-60 keV to allow practical imaging experiments. The low-energy emissions of 125I fall within this energy window, and the 60-day half life provides an advantage for longitudinal studies. The flexible nature of this system allows the future application of adaptive imaging techniques. We have demonstrated ˜225-mum axial and ˜175-mum transaxial resolution across a 2.65 cm3 cylindrical field of view, as well as the capability for simultaneous multi-isotope acquisitions. We describe the key advancements that have made this system operational, including bringing up a new detector readout ASIC, development of detector control software and data-processing algorithms, and characterization of operating characteristics. We describe design and fabrication of the adjustable slit aperture platform, as well as the development of an accurate imaging forward model and its application in a novel geometric calibration technique and a GPU-based ultrahigh-resolution reconstruction code.

  2. Improvements of track fitting with well tuned probability distributions for silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Landi, Gregorio; Landi, Giovanni E.

    2014-10-01

    Well tuned probability distributions are synthetically illustrated, their forms produce faithful realizations of the impact point distributions for particles in silicon strip detector. Their use in track fitting shows a drastic improvement of a factor two, for the low noise case, and a factor three, for the high noise case, in respect to the standard approach. The tracks are well reconstructed even in presence of hits with large errors (outliers), with a surprising effect of hit discarding. The applications illustrated are simulations of the PAMELA tracker, but other type of trackers can be handled similarly. The probability distributions are calculated for the center of gravity algorithms, and they are evidently non-gaussian. The non gaussian tails are crucial to accurately reconstruct tracks with high error hits and their effective discarding. Our distributions share strong similarities with the Cauchy distribution and this forced us to abandon the standard deviation for our comparisons and instead use the full width at half maximum. A set of mathematical approaches must be developed for these applications, some of which are standard in wide sense, even if very complex. One is essential and, in its absence, all the others are useless. Therefore, in this paper, we report the details of this critical approach. It extracts physical properties of the detectors, and allows the insertion of the functional dependence from the impact point in the probability distributions. Other papers will be dedicated to the remaining parts.

  3. Heavy ion radiation damage in double-sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Livingston, K.; Woods, P. J.; Davinson, T.; Shotter, A. C.

    1996-02-01

    A 252Cf fission fragment source was used to produce heavy-ion radiation damage in a double-sided silicon strip detector. It was found that a good quality fission fragment spectrum (as determined by the peak to valley ration {N L}/{N V}) could not be achieved for radiation incident on the p + face of the detector. However, for radiation incident on the n + face, the ratio {N L}/{N V} remained adequate up to an accumulated dose of ˜4×10 6 fragments mm -2. For the measurement of alphas, typical resolution deteriorated from an initial 30 keV FWHM to 50 keV FWHM at a dose of ˜8×10 6 fragments mm -2 for incident on the n + face, and ˜6×10 6 for radiation incident on the p + face. The interstrip resistance in one region of the n + face broke down completely after a relatively small radiation doses incident on that face. Further investigation of this is still required.

  4. Development of a 512-Channel Module for Digital X-Ray Imaging Systems with Silicon Strip Detectors

    SciTech Connect

    Bolanos, L.; Cabal, A. E.; Grybos, P.; Maj, P.; Swientek, K.; Szczygiel, R.; Marzari, A.; Prino, F.; Ramello, L.

    2008-08-11

    We present the development of a 512-channel module for high counting rate digital X-ray imaging systems. The module consists of 512 silicon micro-strips equipped with 8 64-channel readout ASICs called DEDIX. The detectors of 300 {mu}m thickness have strips with 100 micron pitch and strip length of 1 or 2 cm. Detectors were designed with the possibility of choosing the cutting edge distance from the active area in the range from 60 {mu}m down to 20 {mu}m. To obtain good detection efficiency at the relevant energies (10-50 keV) the module works in edge-on configuration: strips are oriented parallel to the incoming X-ray beam. The DEDIX ASIC has a binary readout architecture. Each channel is built of a charge sensitive amplifier (CSA) with pole-zero cancellation circuit, a shaper, two independent discriminators and two independent 20-bit counters. Internal correction DAC implemented in each channel independently ensures a low spread of discriminator effective threshold. This module has been characterized for noise and matching performance having in mind possible future applications like dual energy mammography and angiography. An equivalent noise charge is below 210 el rms for a 1 cm long strip detector and below 250 el. rms for 2 cm long strip detector with 100 {mu}m pitch. The spread of discriminator effective threshold for 512 channels is 16 el. rms, while the high counting rate performance has been demonstrated by the measurement up to 1 MHz average rate of input signals per single channel.

  5. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    NASA Astrophysics Data System (ADS)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  6. In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots.

    PubMed

    Sakurai, Gen; Satake, Akiko; Yamaji, Naoki; Mitani-Ueno, Namiki; Yokozawa, Masayuki; Feugier, François Gabriel; Ma, Jian Feng

    2015-04-01

    Silicon (Si) uptake by the roots is mediated by two different transporters, Lsi1 (passive) and Lsi2 (active), in rice (Oryza sativa). Both transporters are polarly localized in the plasma membranes of exodermal (outer) and endodermal (inner) cells with Casparian strips. However, it is unknown how rice is able to take up large amounts of Si compared with other plants, and why rice Si transporters have a characteristic cellular localization pattern. To answer these questions, we simulated Si uptake by rice roots by developing a mathematical model based on a simple diffusion equation that also accounts for active transport by Lsi2. In this model, we calibrated the model parameters using in vivo experimental data on the Si concentrations in the xylem sap and a Monte Carlo method. In our simulation experiments, we compared the Si uptake between roots with various transporter and Casparian strip locations and estimated the Si transport efficiency of roots with different localization patterns and quantities of the Lsi transporters. We found that the Si uptake by roots that lacked Casparian strips was lower than that of normal roots. This suggests that the double-layer structure of the Casparian strips is an important factor in the high Si uptake by rice. We also found that among various possible localization patterns, the most efficient one was that of the wild-type rice; this may explain the high Si uptake capacity of rice.

  7. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.

  8. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  9. Atmospheric Pressure Micro-Thermal-Plasma-Jet Crystallization of Amorphous Silicon Strips for High-Performance Thin Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Morisaki, Seiji; Nakatani, Taichi; Shin, Ryota; Higashi, Seiichiro

    2015-09-01

    Zone melting recrystallization (ZMR) of amorphous silicon (a-Si) strips by micro-thermal-plasma-jet (u-TPJ) irradiation is quite effective to suppress grain boundaries (GBs) except sigma 3 coincidence site lattice (CSL). Intra-grain defects in 1 μm wide strips were significantly reduced by suppressing the agglomeration of molten Si with low temperature condition around melting point of crystalline Si. Thin film transistors (TFTs), using optimized ZMR condition by scanning speed of 1500 mm/s demonstrated extremely high performance with field effect mobility (uFE) of 443 cm2/Vs and swing factor (S) of 210 mV/dec. Part of this work was supported by the Research Institute for Nanodevice and Bio Systems (RNBS), Hiroshima University.

  10. Characterization of a double-sided silicon strip detector autoradiography system

    SciTech Connect

    Örbom, Anders Ahlstedt, Jonas; Östlund, Karl; Strand, Sven-Erik; Serén, Tom; Auterinen, Iiro; Kotiluoto, Petri; Hauge, Håvard; Olafsen, Tove; Wu, Anna M.; Dahlbom, Magnus

    2015-02-15

    Purpose: The most commonly used technology currently used for autoradiography is storage phosphor screens, which has many benefits such as a large field of view but lacks particle-counting detection of the time and energy of each detected radionuclide decay. A number of alternative designs, using either solid state or scintillator detectors, have been developed to address these issues. The aim of this study is to characterize the imaging performance of one such instrument, a double-sided silicon strip detector (DSSD) system for digital autoradiography. A novel aspect of this work is that the instrument, in contrast to previous prototype systems using the same detector type, provides the ability for user accessible imaging with higher throughput. Studies were performed to compare its spatial resolution to that of storage phosphor screens and test the implementation of multiradionuclide ex vivo imaging in a mouse preclinical animal study. Methods: Detector background counts were determined by measuring a nonradioactive sample slide for 52 h. Energy spectra and detection efficiency were measured for seven commonly used radionuclides under representative conditions for tissue imaging. System dead time was measured by imaging {sup 18}F samples of at least 5 kBq and studying the changes in count rate over time. A line source of {sup 58}Co was manufactured by irradiating a 10 μm nickel wire with fast neutrons in a research reactor. Samples of this wire were imaged in both the DSSD and storage phosphor screen systems and the full width at half maximum (FWHM) measured for the line profiles. Multiradionuclide imaging was employed in a two animal study to examine the intratumoral distribution of a {sup 125}I-labeled monoclonal antibody and a {sup 131}I-labeled engineered fragment (diabody) injected in the same mouse, both targeting carcinoembryonic antigen. Results: Detector background was 1.81 × 10{sup −6} counts per second per 50 × 50 μm pixel. Energy spectra and

  11. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  12. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  13. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  14. Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor

    PubMed Central

    TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas

    2017-01-01

    Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963

  15. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  16. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Cadoux, F.; Clark, A.; Endo, M.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Hanagaki, K.; Hara, K.; Iacobucci, G.; Ikegami, Y.; Jinnouchi, O.; La Marra, D.; Nakamura, K.; Nishimura, R.; Perrin, E.; Seez, W.; Takubo, Y.; Takashima, R.; Terada, S.; Todome, K.; Unno, Y.; Weber, M.

    2014-04-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm-2 s-1. For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described.

  17. Calculation of BER in multi-channel silicon optical interconnects: comparative analysis of strip and photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    You, Jie; Lavdas, Spyros; Panoiu, Nicolae C.

    2016-05-01

    We present an effective approach to evaluate the performance of multi-channel silicon (Si) photonic systems. The system is composed of strip Si photonic waveguides (Si-PhWs) with uniform cross-section or photonic-crystal (PhC) Si waveguides (Si-PhCWs), combined with a set of direct-detection receivers. Moreover, the optical field in each channel is the superposition of a continuous-wave nonreturn-to-zero ON-OFF keying modulated signal and a white Gaussian noise. In order to characterize the optical signal propagation in the waveguides, an accurate mathematical model describing all relevant linear and nonlinear optical effects and its linearized version is employed. In addition, two semi-analytical methods, time- and frequency-domain Karhunen-Loève series expansion, are used to assess the system bit-error-rate (BER). Our analysis reveals that Si-PhCWs provide similar performance as Si-PhWs, but for 100× shorter length. Importantly, much worse BER is achieved in Si-PhCWs when one operates in slow-light regime, due to the enhanced linear and nonlinear effects.

  18. Multi-strip silicon sensors for beam array monitoring in micro-beam radiation therapy.

    PubMed

    Alagoz, E; Brauer-Krisch, E; Bravin, A; Cornelius, I; Fournier, P; Hansen, T E; Kok, A; Lerch, M; Monakhov, E; Morse, J; Pacifico, N; Petasecca, M; Povoli, M; Requard, H; Rozenfeld, A D; Salome, M; Sandaker, H; Stugu, B

    2016-12-01

    We present here the latest results from tests performed at the ESRF ID17 and ID21 beamlines for the characterization of novel beam monitors for Microbeam Radiation Therapy (MRT), which is currently being implemented at ID17. MRT aims at treating solid tumors by exploiting an array of evenly spaced microbeams, having an energy spectrum distributed between 27 and 600keV and peaking at 100keV. Given the high instantaneous dose delivered (up to 20kGy/s), the position and the intensity of the microbeams has to be precisely and instantly monitored. For this purpose, we developed dedicated silicon microstrip beam monitors. We have successfully characterized them, both with a microbeam array at ID17, and a submicron scanning beam at ID21. We present here the latest results obtained in recent tests along with an outlook on future developments.

  19. Alignment of the CMS silicon strip tracker during stand-alone commissioning

    SciTech Connect

    Adam, W.; et al.

    2009-07-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  20. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    NASA Astrophysics Data System (ADS)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  1. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2015-03-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported.

  2. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    NASA Astrophysics Data System (ADS)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  3. A silicon photo-multiplier signal readout using strip-line and waveform sampling for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Kao, C.-M.

    2016-09-01

    A strip-line and waveform sampling based readout is a signal multiplexing method that can efficiently reduce the readout channels while fully exploiting the fast time characteristics of photo-detectors such as the SiPM. We have applied this readout method for SiPM-based time-of-flight (TOF) positron emission tomography (PET) detectors. We have prototyped strip-line boards in which 8 SiPMs (pitch 5.2 mm) are connected by using a single strip-line, and the signals appearing at the ends of the strip-line are acquired by using the DRS4 waveform sampler at a nominal sampling frequency of 1-5 GS/s. Experimental tests using laser and LYSO scintillator are carried out to assess the performance of the strip-line board. Each SiPM position, which is inferred from the arrival time difference of the two signals at the ends of the strip-line, is well identified with 2.6 mm FWHM resolution when the SiPMs are coupled to LYSO crystals and irradiated by a 22Na source. The average energy and coincidence time resolution corresponding to 511 keV photons are measured to be ∼32% and ∼510 ps FWHM, respectively, at a 5.0 GS/s DRS4 sampling rate. The results show that the sampling rate can be lowered to 1.5 GS/s without performance degradation. These encouraging initial test results indicate that the strip-line and waveform sampling readout method is applicable for SiPM-based TOF PET development.

  4. A Silicon Photo-multiplier Signal Readout Using Strip-line and Waveform Sampling for Positron Emission Tomography.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Kao, C-M

    2016-09-11

    A strip-line and waveform sampling based readout is a signal multiplexing method that can efficiently reduce the readout channels while fully exploiting the fast time characteristics of photo-detectors such as the SiPM. We have applied this readout method for SiPM-based time-of-flight (TOF) positron emission tomography (PET) detectors. We have prototyped strip-line boards in which 8 SiPMs (pitch 5.2 mm) are connected by using a single strip-line, and the signals appearing at the ends of the strip-line are acquired by using the DRS4 waveform sampler at a nominal sampling frequency of 1-5 GS/s. Experimental tests using laser and LYSO scintillator are carried out to assess the performance of the strip-line board. Each SiPM position, which is inferred from the arrival time difference of the two signals at the ends of the strip-line, is well identified with 2.6 mm FWHM resolution when the SiPMs are coupled to LYSO crystals and irradiated by a (22)Na source. The average energy and coincidence time resolution responding to 511 keV photons are measured to be ~32% and ~510 ps FWHM, respectively, at a 5.0 GS/s DRS4 sampling rate. The results show that the sampling rate can be lowered to 1.5 GS/s without performance degradation. These encouraging initial test results indicate that the strip-line and waveform sampling readout method is applicable for SiPM-based TOF PET development.

  5. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.

    PubMed

    Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling.

  6. Effects of Two-Stage Cold Rolling Schedule on Microstructure and Texture Evolution of Strip Casting Grain-Oriented Silicon Steel with Extra-Low Carbon

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Liu, Wen-Qiang; Wang, Yin-Ping; Liu, Zhen-Yu; Wang, Guo-Dong

    2016-04-01

    A 0.27 mm-thick grain-oriented silicon steel sheet with extra-low carbon was successfully produced by a novel processing route including strip casting, normalizing, two-stage cold rolling with an intermediate annealing, primary annealing, and secondary recrystallization annealing. The evolutions of microstructure and texture along the whole processing route were investigated with a special emphasis on the effects of two-stage cold rolling schedule. It was found that Goss orientation originated in the first cold rolling due to shear banding and relatively strong Goss texture evolved through the whole thickness after intermediate annealing. This is significantly different from the results in conventional process in which the origin of Goss texture is in the hot rolling stage and Goss texture only develops below the sheet surface. Besides, it was found that cold rolling schedule had significant influences on microstructure homogeneity, evolution of λ-fiber texture in primary annealed state and, thus, on secondary recrystallization. In case of appropriate cold rolling schedule, a homogeneous microstructure with Goss texture, relatively strong γ-fiber texture and medium α-fiber texture was observed in the primary annealed strip. Although Goss texture in primary annealed state was much weaker than that in two-stage route in conventional process, a perfect secondary recrystallization microstructure was produced and the magnetic induction B8 was as high as 1.85 T. By contrast, when the cold rolling schedule was inappropriate, the primary annealed strips exhibited inhomogeneous microstructure, together with weak γ-fiber texture, medium α-fiber and λ-fiber texture. Finally, the sheets showed incomplete secondary recrystallization microstructure in which a large number of fine grains still existed.

  7. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    NASA Astrophysics Data System (ADS)

    Fang, F.; Lu, X.; Zhang, Y. X.; Wang, Y.; Jiao, H. T.; Cao, G. M.; Yuan, G.; Xu, Y. B.; Misra, R. D. K.; Wang, G. D.

    2017-02-01

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region.

  8. Effects of hot-rolling reduction on microstructure, texture and magnetic properties of high silicon steel produced by strip casting

    NASA Astrophysics Data System (ADS)

    Hou, D. Y.; Xu, H. J.; Jiao, H. T.; Zhao, C. W.; Xiong, W.; Yang, J. P.; Qiu, W. Z.; Xu, Y. B.

    2017-01-01

    Non-oriented Fe-7.1wt.% Si as-cast strips were produced by twin-roll strip casting process. Then the as-cast strips were hot rolled with different reductions, followed by warm rolling and final annealing. The microstructure, texture evolution and magnetic properties were investigated in detail. The texture of hot rolled sheets with 40% reduction showed strongest {001}<110> texture, whereas the dominated texture was turned into {110}<001> and {110}<112>as the reduction was increased to 56% and 68%. After warm rolling and annealing, the average grain size was decreased firstly and then increased with an increase in hot rolling reduction. In the case of 40% hot rolling reduction, the recrystallization texture was dominated by strong γ (<111>//ND) texture. With an increase in hot rolling reduction, the γ texture was gradually weakened while α (<110>//RD) texture was enhanced. In addition, relatively stronger {100} texture was presented in the sheet of 68% hot rolling reduction. The highest B50 value attained was 1.66 T and the lowest P10/400 was 24.26 W/kg at a reduction of 56%.

  9. Data pattern sensitivity in tracking performance of an AC coupled Costas loop with hard-limited in-phase channel

    NASA Technical Reports Server (NTRS)

    Park, Y. H.

    1979-01-01

    This paper is concerned with data pattern sensitivity in carrier tracking performance of an AC coupled Costas loop with a suppressed BPSK signal. The signal amplitude suppression factor is derived as a function of data 'asymmetry ratio' - the ratio of '1's to the total number of bits in a period of a periodic signal. For an asymmetric pattern, the effect of AC coupling is noticeable whereas there is almost no effect for symmetric square wave. The tracking performance with an asymmetric pattern is worse than that with a symmetric pattern. However, it is also shown that as expected, the tracking performance of a DC coupled loop with an asymmetric pattern is better than that with a symmetric pattern.

  10. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-01

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15-90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B8 and iron loss P10/400 was 1.79 T and 6.9 W/kg, respectively.

  11. ATLAS strip tracker stavelets

    NASA Astrophysics Data System (ADS)

    Phillips, P. W.

    2012-02-01

    The engineering challenges related to the supply of electrical power to future large scale detector systems are well documented. Two options remain under active study in our community, namely serial powering and the use of DC-DC converters. Whilst clearly different in detail, both have the potential to increase the efficiency of the powering system. The ATLAS Upgrade Strip Tracker Community has constructed two demonstrator stavelets using the ABCN-25 ASIC, each comprising four silicon strip detector modules. The first stavelet is serially powered, using shunt transistors integrated into the ABCN-25 chip to maintain the required operating voltage given a constant supply current, and the second stavelet uses STV-10 DC-DC converters provided by the CERN group. Although the detailed test programme shall continue at CERN, results from stavelet tests made at RAL are presented here.

  12. Simulation study of an energy sensitive photon counting silicon strip detector for computed tomography: identifying strengths and weaknesses and developing work-arounds

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Xu, Cheng; Svensson, Christer; Danielsson, Mats

    2010-04-01

    We model the effect of signal pile-up on the energy resolution of a photon counting silicon detector designed for high flux spectral CT with sub-millimeter pixel size. Various design parameters, such as bias voltage, lower threshold level for discarding of electronic noise and the entire electronic read out chain are modeled and realistic parameter settings are determined. We explicitly model the currents induced on the collection electrodes of a pixel and superimpose signals emanating from events in neighboring pixels, either due to charge sharing or signals induced during charge collection. Electronic noise is added to the pulse train before feeding it through a model of the read out electronics where the pulse height spectrum is saved to yield the detector energy response function. The main result of this study is that a lower threshold of 5 keV and a rather long time constant of the shaping filter (τ0 = 30 ns) are needed to discard induced pulses from events in neighboring pixels. These induction currents occur even if no charge is being deposited in the analyzed pixel from the event in the neighboring pixel. There is also only a limited gain in energy resolution by increasing the bias voltage to 1000 V from 600 V. We show that with these settings the resulting energy resolution, as measured by the FWHM/E of the photo peak, is 5% at 70 keV.

  13. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  14. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  15. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  16. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  17. Data acquisition software for the CMS strip tracker

    NASA Astrophysics Data System (ADS)

    Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Jesus, A. C. A.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gill, K.; Giordano, D.; Gross, L.; Hahn, K.; Mersi, S.; Mirabito, L.; Nikolic, M.; Radicci, V.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed.

  18. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect

    Hanagaki, K.; /Fermilab

    2006-01-01

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  19. Bimetallic strip for low temperature use

    DOEpatents

    Bussiere, Jean F.; Welch, David O.; Suenaga, Masaki

    1981-01-01

    There is provided a class of mechanically pre-stressed structures, suitably bi-layer strips comprising a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of said transition metals with certain group 3A, 4A or 5A metals or metalloids suitably gallium, indium, silicon, germanium, tin, arsenic or antimony. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of but somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, in direct dial reading instruments, or the like. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers of the sandwich in intimate contact heating the same, cooling the same and removing the copper alloy and then removing one of the two thus formed interlayer alloys between said transition metal and the metal previously alloyed with copper.

  20. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  1. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  2. Treatment of stripping perforations.

    PubMed

    Allam, C R

    1996-12-01

    Strippings are problems that are frequent on thin and concave roots. Treatment and prognosis differ from that of a lateral root perforation because of the size, oval shape, and thin edges of the striping. We propose a two-step technique: an endodontic phase in which the root canal system is sealed with gutta-percha overflowing through the stripping perforation and a surgical second step that will allow elimination of this excess.

  3. Geometrical deuteron stripping revisited

    SciTech Connect

    Neoh, Y. S.; Yap, S. L.

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  4. PHENIX Silicon Stripixel Detector at RHIC

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin

    2010-11-01

    A novel design for a silicon sensor consisting of ``spirals'' of silicon strip-pixel was developed at the Brookhaven National Laboratory. This strip-pixel silicon sensor is a single-sided, DC-coupled, two-dimensional detector. A silicon vertex tracker (VTX) is now under construction and will be installed at PHENIX in fall 2010. The strip-pixel ladders will form the two outer barrels of the VTX. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometer and will enable precision measurements of heavy-quark production (charm and beauty) in A + A, p(d) + A, and polarized p + p collisions. In this talk I will focus on the silicon modules and the ladder assembly. I will show the performance results of the ladders.

  5. [Post-stripping telangiectasis].

    PubMed

    Hutinel, B; Maraval, M

    1985-01-01

    These telangiectasia appear between one and six months after the operation, especially in cases of capillary fragility. The most common localizations are the antero-internal and external sides of the thighs and knees. Unnecessary strippings, of continent saphenous veins, are the most frequent cause of these. Their prevention consists of the least possible traumatising stripping, using a fine stripper, a very rigorous post-operative support, and the wearing of light varicose stockings or tights for between one and three months. The treatment using microsclerosis, often delicate, should not be undertaken before six months.

  6. Health in strip cartoons.

    PubMed

    Videlier, P; Piras, P

    1990-01-01

    Strip cartoons are among the most vivid means of communication at our disposal, and they are particularly popular with the young. Medical matters have featured in many stories, though usually in a peripheral role. Could more be done to use this powerful medium, or would deliberate exploitation destroy it?

  7. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  8. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  9. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  10. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  11. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  12. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  13. Robotic Paint Stripping Cell

    DTIC Science & Technology

    1993-11-01

    based controls are used for all F-1 a substrate materials, Inc, ding graphite-epoxy composhes. The RPSC is a fully automated plastic media blast paint...based controls are used for all F.16 substrate materials, including graphite-epoxy composites. The RPSC is a fully automated plastic media blast...control the paint stripping rate and prevent overblasting of the substrate . Four halogen lamps provide an infrared-rich light source which is reflected

  14. Performance studies of the CMS Strip Tracker before installation

    SciTech Connect

    Adam, W.; et al.

    2009-06-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  15. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  16. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  17. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  18. STRIPPING METAL COATINGS

    DOEpatents

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  19. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  20. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  1. Road to Silicon Microsphere Fabrication and Mode Coupling

    DTIC Science & Technology

    2014-07-01

    and silicon microspheres. TAPERED FIBER FABRICATION The procedure for fabrication first requires stripping off the jacket and buffer from a short...left on the cladding strip by burning off the buffer and jacket residue. Figures 11 and 12 show the motion of the clamp stages moving in phase while...Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer. 2011. “All Silicon Waveguide Spherical Microcavity Coupler Device,” Optics Express 19:3185‒3192. [2

  2. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  3. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  4. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  5. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  6. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  7. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  8. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  9. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  10. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  11. New electrical steel strip grades developed in the Czech and Slovak Republics

    SciTech Connect

    Pacl, P.; Wiglasz, V.; Rosypal, F.

    1994-03-01

    The article gives an overview of the current state of manufacturing and development of electrical silicon steels with the stress on obtaining the best quality of both grain-oriented and non-oriented strips produced in the Czech and Slovak Republics.

  12. Electromechanical responses of Cu strips

    NASA Astrophysics Data System (ADS)

    Zhao, Guangfeng; Liu, Ming; An, Zhinan; Ren, Yang; Liaw, Peter K.; Yang, Fuqian

    2013-05-01

    Electrical-thermal-mechanical behavior of materials plays an important role in controlling the structural integrity of electromechanical structures of small volumes. The electromechanical response of Cu strips was studied by passing an electric current through the strips with electric current densities in the range of 12.34 to 29.60 kA/cm2. The passage of the electric current of high current densities introduced electrical-thermal-mechanical interactions, which caused grain growth and grain rotation in both the melted region and heat-affected zone. The electrothermal interactions led to the elastoplastic buckling of the Cu strips with the maximum deflection of the Cu strips increasing with the increase of the electric current density. The total strain is a quadratic function of the electric current density. There was a quasi-steady state in which the electric resistance of the Cu strips linearly increased with time before the occurrence of electric fusing. A power-law relation was used to describe the dependence of the time-to-failure (electric fusing) on the electric current density. For the region of relatively low current densities, the current exponent ranged from 17.9 to 44.6, and for the region of high current densities, the current exponent ranged from 2.5 to 5.2. The current exponent for relatively low current densities decreased with increasing the length of Cu strips, showing size-dependence. Finite element analyses were performed to analyze the current-induced deflection of a Cu strip. The simulation results showed that the maximum deflection for the electric current density larger than or equal to 5 kA/cm2 is a linear function of the current density in agreement with the experimental observation.

  13. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates

    PubMed Central

    2015-01-01

    We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication. PMID:26402066

  14. The D[O] upgrade silicon tracker

    SciTech Connect

    Heinson, A.P.

    1992-11-01

    A large silicon strip tracking detector is planned for the upgrade of the D0 experiment at Fermilab. This detector is designed to gag secondary vertices, to measure the momenta of charged particles and to operate in the high rate environment of the upgraded Tevatron. Details of the detector design are presented here.

  15. Flattened dispersion in silicon slot waveguides.

    PubMed

    Zhang, Lin; Yue, Yang; Beausoleil, Raymond G; Willner, Alan E

    2010-09-13

    We propose a silicon strip/slot hybrid waveguide that produces flattened dispersion of 0 ± 16 ps/(nm∙km), over a 553-nm wavelength range, which is 20 times flatter than previous results. Different from previously reported slot waveguides, the strip/slot hybrid waveguide employs the mode transition from a strip mode to a slot mode to introduce unique waveguide dispersion. The flat dispersion profile is featured by three zero-dispersion wavelengths, which is obtained for the first time in on-chip silicon waveguides, to the best of our knowledge. The waveguide exhibits flattened dispersion from 1562-nm to 2115-nm wavelength, which is potentially useful for both telecom and mid-infrared applications.

  16. Restitution of enamel after interdental stripping.

    PubMed

    Lundgren, T; Milleding, P; Mohlin, B; Nannmark, U

    1993-01-01

    This paper studies the effect of interdental stripping on the enamel surface and evaluates methods to restitute the treated surface. Extracted teeth mounted in a semielastic material were subjected to stripping by different kinds of steel strips. The treated enamel surfaces were then polished in several different ways. The effects were studied by SEM and profilometry. It was concluded that the coarsest strips produced irregularities of such a magnitude that polishing had very limited effect. Polishing starting with coarse polishing strips followed by gradually finer gave the best result. An increase in number of strokes and use of all grades of polishing strips slightly improved the result.

  17. The ATLAS ITk strip detector. Status of R&D

    NASA Astrophysics Data System (ADS)

    García Argos, Carlos

    2017-02-01

    While the LHC at CERN is ramping up luminosity after the discovery of the Higgs Boson in the ATLAS and CMS experiments in 2012, upgrades to the LHC and experiments are planned. The major upgrade is foreseen for 2024, with a roughly tenfold increase in luminosity, resulting in corresponding increases in particle rates and radiation doses. In ATLAS the entire Inner Detector will be replaced for Phase-II running with an all-silicon system. This paper concentrates on the strip part. Its layout foresees low-mass and modular yet highly integrated double-sided structures for the barrel and forward region. The design features conceptually simple modules made from electronic hybrids glued directly onto the silicon. Modules will then be assembled on both sides of large carbon-core structures with integrated cooling and electrical services.

  18. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  19. The silicon microstrip sensors of the ATLAS semiconductor tracker

    SciTech Connect

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  20. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  1. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  2. Intraply Hybrid Composites Would Contain Control Strips

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  3. Using Comic Strips in Language Classes

    ERIC Educational Resources Information Center

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  4. Light propagation in strip and slot waveguide arrays for sensing

    NASA Astrophysics Data System (ADS)

    Ma, Qingyan; Qi, Fan; Wang, Yufei; Liu, Zhishuang; Zheng, Wanhua

    2016-11-01

    Light propagation in strip and slot waveguide arrays for sensing are proposed and analyzed with a new theory of quantum walk. The waveguide arrays are designed on silicon-on-insulator and can be fabricated with mature and cost-efficient complementary metal-oxide semiconductor technology. A new slot waveguide array modified by conventional strip waveguide array with electric field mainly confined in the cladding region is investigated. Quantum walks have an exact mapping to classical phenomena as verified by experiments using bright laser light, so that they are introduced in our work as theoretical foundation. We take the width of waveguide of 450 nm and the coupling distance of 200 nm for strip waveguide array, and 420 nm and 180 nm for slot waveguide array, but with a 100nm slot in the center of waveguide. At last the waveguide array covered by a thin layer of graphene is investigated, which brings higher sensing property as well as a much better biocompatibility. With the monochrome light injection the intensity distribution at the end of the arrays changes with the refractive index of the sensing area (cladding region) and it can be explained by quantum walks theory. The designed waveguide arrays can possess compact footprint and high refractive index resolution, reaching 1E-11 RIU theoretically.

  5. Buckling of a Flexible Strip Sliding on a Frictional Base

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Marck, Julien; Denoel, Vincent; Detournay, Emmanuel

    2013-03-01

    The main motivation for this contribution is the buckling of a drillstring sliding on the bottom of the horizontal section of borehole. The open questions that remain today are related to the determination of the onset of instability, and to the conditions under which different modes of constrained buckling occur. In this presentation, we are concerned by a two-dimensional version of this problem; namely, the sliding of a flexible strip being fed inside a conduit. The ribbon, which has a flexural rigidity EI and a weight per unit length w, is treated as an inextensible elastica of negligible thickness. The contact between the ribbon and the wall of the conduit is characterized by a friction coefficient μ. First, we report the result of a stability analysis that aims at determining the critical inserted length of the ribbon l* (μ) (scaled by the characteristic length λ =(EI / w) 1 / 3) at which there is separation between the strip and the conduit bottom, as well as the buckling mode. Next, the relationship between the feeding force F and the inserted length l after bifurcation is computed. Finally, the results of a ``kitchen table'' experiment involving a strip of silicon rubber being pushed on a plank are reported and compared with predictions.

  6. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  7. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  8. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  9. Chloroform stripping from waste waters

    SciTech Connect

    Kolev, N.; Darakchiev, R.; Semkov, K.

    1997-01-01

    The problem treated in this paper is the purification of waste industrial waters from chloroform. An industrial installation with a stripping column is designed, and the results of its study and industrial tests are presented. It is shown that, in a column with 6400 mm total height of the used packing (Holpack), the chloroform concentration in the waste water decreases 150,000 times, approaching that of drinking water.

  10. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  11. Fabrication of the GLAST Silicon Tracker Readout Electronics

    SciTech Connect

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

    2006-03-03

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

  12. Silicon-micromachined microchannel plates

    NASA Astrophysics Data System (ADS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-03-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ˜0.5 to ˜25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200°C, also compatible with high-temperture brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented.

  13. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  14. Robotic sensors for aircraft paint stripping

    NASA Astrophysics Data System (ADS)

    Weniger, Richard J.

    1990-10-01

    Aircraft of all types need to have paint routinely removed from their outer surfaces. Any method needs to be controlled to remove all the paint and not damage the surface of the aircraft. Human operators get bored with the monotonous task of stripping paint from an aircraft and thus do not control the process very well. This type of tedious operation tends itself to robotics. A robot that strips paint from aircraft needs to have feedback as to the state of the stripping process, its location in respect to the aircraft, and the availability of stripping material. This paper describes the sensors used on the paint stripping robot being developed for the United States Air Force's Manufacturing Technology Program. Particular attention is given to the paint sensor which is the feedback element for determining the state of the stripping process.

  15. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  16. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  17. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  18. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  19. The CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  20. Coulomb explosion as a probe to understand the mechanism of electron stripping from ions interacting with crystalline solids

    SciTech Connect

    Martin y Marero, David; Gordillo, Nuria; Gonzalez-Arrabal, Raquel

    2009-04-15

    When an ion impinges on a solid, it rapidly undergoes a process in which its electrons are stripped away provided the velocity of the orbiting electrons is smaller than the projectile speed. Electron stripping determines any posterior behavior of the ions in the solid, and it is assumed that it takes place on the surface of the solid, but no information is available on the details of the process. Here we show, using the Coulomb explosion of C{sub 2}{sup +} ions moving in Si as a tool, that electron stripping takes place in an orderly manner and that the number of electrons stripped, before charge equilibration, depends on a characteristic length. We also propose a relation capable of quantifying this dependence. We foresee these results as a starting point to a more general understanding of ion-solid interaction, with important consequences on ion beam analysis and modification techniques, and special significance in silicon technology.

  1. The CDF silicon vertex trigger

    SciTech Connect

    B. Ashmanskas; A. Barchiesi; A. Bardi

    2003-06-23

    The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.

  2. Status of the CDF silicon detector

    SciTech Connect

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  3. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  4. Silicon spintronics.

    PubMed

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  5. 7 CFR 29.6041 - Strips.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strips. 29.6041 Section 29.6041 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6041 Strips. The sides of a tobacco leaf from which the stem has...

  6. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  7. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  8. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  9. 33 CFR 157.128 - Stripping system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... times the rate at which all the COW machines that are designed to simultaneously wash the bottom of the... of the following devices for stripping oil from each cargo tank: (1) A positive displacement pump. (2... positive displacement pump or a self-priming centrifugal pump, the stripping system must have the...

  10. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  11. Toward a complete picture of 11Be interaction with silicon

    NASA Astrophysics Data System (ADS)

    Borcea, C.; Carstoiu, F.; Negoita, F.; Lewitowicz, M.; Saint-Laurent, M. G.; Anne, R.; Guillemaud-Mueller, D.; Mueller, A. C.; Pougheon, F.; Sorlin, O.; Fomitchev, A.; Lukyanov, S.; Penionzhkevich, Yu.; Skobelev, N.; Dlouhy, Z.

    1998-12-01

    For the interaction of 11Be with silicon, the dissociation and stripping cross sections and momentum distributions have been studied in a wide energy range. Cross sections for other reaction channels and angular distributions of coincident neutrons completed the picture of this interaction.

  12. Silicon position sensitive detectors for the HELIOS (NA34) experiment

    SciTech Connect

    Beuttenmuller, R.; Bisi, V.; Chesi, E.; Di Nardo, R.P.; Esten, M.J.; Giubellino, P.; Kraner, H.W.; Ludlam, T.W.; Meddi, F.; Piuz, F.

    1986-03-01

    Silicon detectors having both ''pad'' and strip position sensitive configurations have been fabricated for the HELIOS experiment which requires an elaborate pulse height-dependent trigger as well as one dimensional silicon strip position sensing. The trigger detector is a 400 element, 30 mm diameter detector with readout connections from a ceramic overlay board. Tests with full prototype detectors have shown essentially 100% detection efficiency and excellent pulse height resolution well capable of delineating 0, 1 or 2 hits per pad. Strip detectors with 25 ..mu..m pitch and a varying readout pitch have been tested, which utilize both capacitive and resistive charge division. Techniques for realization of required interstrip resistors will be discussed and results which may compare these readout methods will be reported. 11 refs., 13 figs.

  13. Performance of the CLAS12 Silicon Vertex Tracker modules

    SciTech Connect

    Antonioli, Mary Ann; Boiarinov, Serguie; Bonneau, Peter R.; Elouadrhiri, Latifa; Eng, Brian J.; Gotra, Yuri N.; Kurbatov, Evgeny O.; Leffel, Mindy A.; Mandal, Saptarshi; McMullen, Marc E.; Merkin, Mikhail M.; Raydo, Benjamin J.; Teachey, Robert W,; Tucker, Ross J.; Ungaro, Maurizio; Yegneswaran, Amrit S.; Ziegler, Veronique

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  14. Performance of the CLAS12 Silicon Vertex Tracker modules

    NASA Astrophysics Data System (ADS)

    Antonioli, M. A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B.; Gotra, Y.; Kurbatov, E.; Leffel, M.; Mandal, S.; McMullen, M.; Merkin, M.; Raydo, B.; Teachey, W.; Tucker, R.; Ungaro, M.; Yegneswaran, A.; Ziegler, V.

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156 μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  15. A Strip Cell in Pyroelectric Devices

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  16. Benzene stripping in a flotation unit

    SciTech Connect

    Hillquist, D.; Litchfield, J.; Willet, S.; Whiteford, R.

    1994-12-31

    An induced gas flotation unit is used as a combination stripping/flotation vessel with fuel gas as the stripping/flotation medium. The gas bubbles simultaneously float the oils and solids, and strip out and recover the benzene and other volatile components from wastewater and from the floated oils and solids. The effluent stripping gas is then either used as fuel gas, or recycled to the process for product recovery. The induced gas flotation stripper, IGFS, is self-cleaning and normally experiences no sludge build up or fouling. The unit requires a minimum of operator attention and maintenance. It is sealed to eliminate emissions, has a high stripping efficiency, and has a significantly wider operating range than conventional strippers. The unit does not experience the biological fouling and disposal problems of air strippers, or the fouling and higher capital and operating costs of steam strippers. The IGFS unit was installed at the BF Goodrich ethylene plant in Calvert City in 1991. The unit was designed to treat a combined stream consisting of quench water, neutralized spent caustic, and a number of intermittent smaller oily water streams. The unit is operating effectively in stripping the benzene to levels below the NESHAP requirements. The average benzene removal efficiency is above 97%. Operating data indicate that the benzene removal efficiency can be further enhanced by increasing temperature, increasing stripping flow, reducing oil emulsions in the influent and eliminating dilution from recycled water. This paper presents performance and operating experience of the IGFS unit.

  17. Transfusion and blood donation in comic strips.

    PubMed

    Lefrère, Jean-Jacques; Danic, Bruno

    2013-07-01

    The representation of blood transfusion and donation of blood in the comic strip has never been studied. The comic strip, which is a relatively recent art, emerged in the 19th century before becoming a mass medium during the 20th century. We have sought, by calling on collectors and using the resources of Internet, comic strips devoted, wholly or in part, to the themes of transfusion and blood donation. We present some of them here in chronologic order, indicating the title, country of origin, year of publication, and names of authors. The theme of the superhero using transfusion to transmit his virtues or his powers is repeated throughout the 20th century in North American comic strips. More recently, comic strips have been conceived from the outset with a promotional aim. They perpetuate positive images and are directed toward a young readership, wielding humor to reduce the fear of venipuncture. Few comic strips denounce the abuse of the commercialization of products derived from the human body. The image of transfusion and blood donation given by the comic strips is not to be underestimated because their readership is primarily children, some of whom will become blood donors. Furthermore, if some readers are transfused during their lives, the impact of a memory more or less conscious of these childhood readings may resurface, both in hopes and in fears.

  18. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  19. Strip and microstrip line periodic heterogeneities

    NASA Astrophysics Data System (ADS)

    Lerer, A. M.; Lerer, B. M.; Ryazanov, V. D.; Sledkov, V. A.

    1985-04-01

    A quasistatic method is described for analyzing periodic heterogeneities in single and coupled strip lines and microstrip lines. An ALGOL program on a BESM-6 computer calculated the running inductance and capacitance, wave impedances and delay coefficients for single and coupled strip lines and microstrip lines with periodic heterogeneities of arbitrary form. The analyzed quantities are investigated as a function of distance (from side shield to the strip), number of terms in the series and number of approximated functions. The method demonstrates good convergence and requires little machine time and results were verified experimentally.

  20. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  1. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  2. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  3. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  4. A video strip chart program

    SciTech Connect

    Jones, N.L.

    1994-12-31

    A strip chart recorder has been utilized for trend analysis of the Oak Ridge National Laboratory EN tandem since 1987. At the EN, the author could not afford the nice eight channel thermal pen recorder that was used at the 25 URC. He had to suffice with two channel fiber tip or capillary pen type recorders retrieved from salvage and maintained with parts from other salvaged recorders. After cycling through several machines that eventually became completely unserviceable, a search for a new thermal recorder was begun. As much as he hates to write computer code, he decided to try his hand at getting an old data acquisition unit, that had been retrieved several years ago from salvage, to meet his needs. A BASIC language compiler was used because time was not available to learn a more advanced language. While attempting to increase acquisition and scroll speed on the 6 MHz 80286 that the code was first developed on, it became apparent that scrolling only the first small portion of the screen at high speed and then averaging that region and histogramming the average provided both the speed necessary for capturing fairly short duration events, and a trend record without use of back scrolling and disk storage routines. This turned out to be quite sufficient.

  5. Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxiang; Xu, Yunbo; Liu, Haitao; Li, Chenggang; Cao, Guangming; Liu, Zhenyu; Wang, Guodong

    2012-10-01

    In this work, the evolution of microstructure, texture and magnetic properties of non-oriented 1.3% silicon steel processed using the twin-roll strip casting was investigated, especially under different solidification structures. A number of microstructures about the as-cast strips show that the initial solidification structure of casting a strip can be controlled by the melt superheats. The microstructures with the average grain size of ˜100-400 μm can be obtained in strips when the melt superheats are from 20 to 60 °C. A nearly random, diffuse, homogeneous texture under a low melt superheat, but comparatively developed {100} oriented grains are formed under a high melt superheat through the cast strip thickness. The relatively low core loss and high magnetic induction can be obtained in the cold rolled and annealed sheets when increasing the initial grain size of cast-strip. The textures in annealed sheets with coarse initial grain size are characterized by the relatively strong Goss component and {001} fiber but weak γ-fiber component, which lead to the high permeability.

  6. Extinction cross section of a dielectric strip

    NASA Astrophysics Data System (ADS)

    Dowerah, Subratananda; Chakrabarti, Aloknath

    1988-05-01

    The problem of scattering of a plane electromagnetic wave by a dielectric strip is formulated in terms of an uncoupled system of three-part Wiener-Hopf equations by using a set of approximate boundary conditions derived and utilized recently. The resulting Wiener-Hopf problems are solved approximately for sufficiently large values of the width of the strip by using Jones' method (1964). An analytical formula is derived for the excitation cross section of the strip under consideration from which numerical values are obtained in specific situations and the results are presented graphically. The radar cross section of the strip is also computed for several special circumstances and these are presented separately.

  7. Plaque accumulations caused by interdental stripping.

    PubMed

    Radlanski, R J; Jäger, A; Schwestka, R; Bertzbach, F

    1988-11-01

    Human enamel surfaces were stripped with orthodontic grinding and finishing materials, and evaluated with the scanning electron microscope (SEM). Even under in vitro conditions with the finest finishing strips, it was not possible to produce an enamel surface free of the furrows that result from the initial abrasion caused by the coarse strip. Enamel surfaces stripped gradually from coarse to superfine were left in the mouths of patients for 12 weeks and evaluated with the SEM. The edges of the furrows were found to be smoother but the furrows remained wide and deep enough to facilitate more plaque accumulations than those on untreated surfaces. The use of dental floss did not result in prevention of plaque accumulations along the bottom of the furrows.

  8. Fixture for multiple-FCC chemical stripping and plating

    NASA Technical Reports Server (NTRS)

    Angele, W.; Norton, W. E.

    1971-01-01

    For chemical stripping, lead tape applied near ends to be stripped protects insulation. Taped ends are submerged half way in stripping solution. For electroplating, both ends of FCC are stripped - top ends for electric contact, others for submersion in electroplating solution.

  9. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  10. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  11. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  12. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  13. 25 CFR 170.445 - What is a strip map?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What is a strip map? 170.445 Section 170.445 Indians... What is a strip map? A strip map is a graphic representation of a section of road or other transportation facility being added to or modified in the IRR Inventory. Each strip map submitted with an...

  14. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  15. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    PubMed

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-09

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  16. Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping

    PubMed Central

    2013-01-01

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174

  17. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, A. M.; Li, L.; Kao, C.-M.

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 T small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2×8 LYSO scintillators (5.0×5.0×10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  18. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm(3) with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  19. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    PubMed Central

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, Alice M.; Li, Limin; Kao, C.-M.

    2014-01-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner. PMID:25937685

  20. As flat as it gets: ultrasmooth surfaces from template-stripping procedures.

    PubMed

    Vogel, Nicolas; Zieleniecki, Julius; Köper, Ingo

    2012-07-07

    In an experimentally simple replica process, the natural flatness of mica or polished silicon wafers can be transferred to metal films, resulting in metal surfaces with topographic features in Angstrom dimensions over large areas. Two decades after its invention, the template-stripping process continues to appeal to scientists from diverse research backgrounds primarily due to its simplicity, cost-effectiveness and ability to yield high quality substrates and structures. This article introduces the basic construction process for template-stripped substrates, and reports on a variety of extensions of the process, including the generation of materials contrasts and the design of tailored topographies. It also highlights the use of such substrates in a variety of research fields in nanoscience and technology ranging from surface force measurement and high definition imaging to the self-assembly of model membranes and plasmonics.

  1. As flat as it gets: ultrasmooth surfaces from template-stripping procedures

    NASA Astrophysics Data System (ADS)

    Vogel, Nicolas; Zieleniecki, Julius; Köper, Ingo

    2012-06-01

    In an experimentally simple replica process, the natural flatness of mica or polished silicon wafers can be transferred to metal films, resulting in metal surfaces with topographic features in Angstrom dimensions over large areas. Two decades after its invention, the template-stripping process continues to appeal to scientists from diverse research backgrounds primarily due to its simplicity, cost-effectiveness and ability to yield high quality substrates and structures. This article introduces the basic construction process for template-stripped substrates, and reports on a variety of extensions of the process, including the generation of materials contrasts and the design of tailored topographies. It also highlights the use of such substrates in a variety of research fields in nanoscience and technology ranging from surface force measurement and high definition imaging to the self-assembly of model membranes and plasmonics.

  2. Data-Processing Strategies for Crossed-Strip Gamma-Ray Detectors.

    PubMed

    Durko, Heather L; McDonald, Benjamin S; Shokouhi, Sepideh; Furenlid, Lars R; Barrett, Harrison H; Peterson, Todd E

    2008-10-01

    Crossed-strip gamma-ray detectors are an attractive option for small-animal SPECT imagers due to their high space-bandwidth product. In systems with independent triggering of the two sides of the detector, advanced data-processing techniques are required to accurately determine gamma-ray interaction locations and energy deposition. Optimal detector operation further relies on rigorous detector characterization in order to achieve detector triggering uniformity and best timing resolution and to permit position and energy estimation with maximum-likelihood methods. We describe algorithms and methods developed for calibrating and characterizing a recently fabricated system based on 1024-strips-per-side 1-mm-thick silicon detectors.

  3. Silicon microdosimetry.

    PubMed

    Agosteo, Stefano; Pola, Andrea

    2011-02-01

    Silicon detectors are being studied as microdosemeters since they can provide sensitive volumes of micrometric dimensions. They can be applied for assessing single-event effects in electronic instrumentation exposed to complex fields around high-energy accelerators or in space missions. When coupled to tissue-equivalent converters, they can be used for measuring the quality of radiation therapy beams or for dosimetry. The use of micrometric volumes avoids the contribution of wall effects to the measured spectra. Further advantages of such detectors are their compactness, cheapness, transportability and a low sensitivity to vibrations. The following problems need to be solved when silicon devices are used for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known dimensions; (ii) the electric noise limits the minimum detectable energy; (iii) corrections for tissue-equivalency should be made; (iv) corrections for shape equivalency should be made when referring to a spherical simulated site of tissue; (v) the angular response should be evaluated carefully; (vi) the efficiency of a single detector of micrometric dimensions is very poor and detector arrays should be considered. Several devices have been proposed as silicon microdosemeters, based on different technologies (telescope detectors, silicon on insulator detectors and arrays of cylindrical p-n junctions with internal amplification), in order to satisfy the issues mentioned above.

  4. Anodic stripping voltammetry of silver nanoparticles: aggregation leads to incomplete stripping.

    PubMed

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-02-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of 'partial oxidation' and 'inactivation' of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes.

  5. Mastering Interproximal Stripping: With Innovations in Slenderization

    PubMed Central

    Shrivastav, Sunita S; Hazarey, Pushpa V

    2012-01-01

    ABSTRACT Crowding and irregularity remain a consistent problem for children. Management of space problems continues to play an important role in a dental practice. It also represents an area of major interaction between the primary provider and the specialists. Proximal stripping is routinely carried out to avoid extraction in borderline cases where space discrepancy is less and in cases where there is a discrepancy between the mesio- distal width of maxillary and mandibular teeth to satisfy Bolton ratio. Proximal stripping is carried out using of metallic abrasive strip, safe sided carborundum disk, or with long thin tapered fissure burs with air rotor. The use of rotary cutting instrument can harm the pulp by exposure of mechanical vibration and heat generation (in some cases). Whereas, the large diameter of the disk obstructs vision of the working area. Also fracturing away a portion is a common problem with disk. Tapered fissure burs cut the tooth structure as the width of bur or overcutting may occur of the tooth structure due to high speed. The use of metallic abrasive strip is the safest procedure amongst the above. The strip can be placed in the anterior region without any difficulty but using it in the posterior region is difficult as, it is difficult to hold it with fingers while stripping the posterior teeth. To avoid this inconvenience here with a simple and economical way of fabricating strip holder from routine lab material is presented. Clinical implications: Proper management of space in the primary and mixed dentitions can prevent unnecessary loss in arch length. Diagnosing and treating space problems requires an understanding of the etiology of crowding and the development of the dentition to render treatment for the mild, moderate and severe crowding cases. Most crowding problems with less than 4.5 mm can be resolved through preservation of the leeway space, regaining space or limited expansion in the late mixed dentition. In cases with 5 to 9 mm

  6. ERTS-1 data applied to strip mining

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Schubert, J.

    1976-01-01

    Two coal basins within the western region of the Potomac River Basin contain the largest strip-mining operations in western Maryland and West Virginia. The disturbed strip-mine areas were delineated along with the surrounding geological and vegetation features by using ERTS-1 data in both analog and digital form. The two digital systems employed were (1) the ERTS analysis system, a point-by-point digital analysis of spectral signatures based on known spectral values and (2) the LARS automatic data processing system. These two systems aided in efforts to determine the extent and state of strip mining in this region. Aircraft data, ground-verification information, and geological field studies also aided in the application of ERTS-1 imagery to perform an integrated analysis that assessed the adverse effects of strip mining. The results indicated that ERTS can both monitor and map the extent of strip mining to determine immediately the acreage affected and to indicate where future reclamation and revegetation may be necessary.

  7. Modeling of continuous strip production by rheocasting

    NASA Astrophysics Data System (ADS)

    Matsumiya, T.; Flemings, M. C.

    1981-03-01

    A process was experimentally and mathematically modeled for continuous and direct production of metal strip from its molten state by the use of Rheocasting. The process comprises 1) continuous production of a Rheocast semisolid alloy, and 2) direct shaping of the semisolid into strip. Sn-15 pct Pb was used as the modeling alloy. Crack formation and surface quality of the strip produced depend on fraction solid and deformation force. Continuous, sound strip could be obtained with good surface quality when fraction solid was between 0.50 and 0.70 and deformation force did not exceed a given maximum. Sheet thickness depends on deformation force, fraction solid, rotor rate of Rheocaster and production line speed. At constant deformation force, sheet thickness increases as fraction solid increases, rotor rate decreases and line speed is reduced. Sheet thickness is larger in the center than in the edge, but the difference is reduced by applying edgers. Some segregation of lead toward the edges is observed, and the segregation increases as amount of deformation is increased. A mathematical model for heat flow, solidification and deformation was constructed. The model predicts the point of completion of solidification in the strip and sheet thickness as a function of deformation force and line speed. Calculations are in good agreement with experimental results.

  8. Stripping of titanium from TBP-decanol phase

    NASA Astrophysics Data System (ADS)

    Mao, X. H.

    2017-01-01

    The stripping of titanium from TBP-decanol phase with hydrochloric acid has been investigated. The results showed that the stripping rate of titanium increased with decreased hydrochloric acid concentration in the aqueous phase, decreased organic and aqueous phase ratio and increased stripping temperature. Extracted titanium was easy to strip and 0.5 mol/L hydrochloric acid was suitable stripping agent. The kinetics of the stripping process was fast, since the equilibrium was reached in 10 minutes. The extraction and stripping isotherms showed that through extraction and stripping titanium (IV) was separated and enriched as about five fold. The simulated extraction and stripping of titanium (IV) in leaching solution of blast furnace slag were proceeded.

  9. Spray forming lead strip. Final report

    SciTech Connect

    McHugh, K.

    1996-04-10

    A cooperative research project was conducted between the Idaho National Engineering Laboratory (INEL) and Johnson Controls, Inc. (JCI) to adapt the INEL spray forming process to produce near-net-shape lead alloy strip. The emphasis of the work was to spray form lead strip samples at INEL, using a variety of spray conditions, for characterization at JCI. An existing glove box apparatus was modified at INEL to spray form lead. The main spray forming components were housed inside the glove box. They included a spray nozzle, tundish (crucible), substrate assembly, gas heater and furnaces to heat the nozzle and tundish. To spray form metal strip, liquid metal was pressure-fed at a controlled rate through a series of circular orifices that span the width of the nozzle. There the metal contacted high velocity, high temperature inert gas (nitrogen) which atomized the molten material into fine droplets, entrained the droplets in a directed flow, and deposited them onto glass plates that were swept through the spray plume to form strip samples. In-flight convection cooling of the droplets followed by conduction and convection cooling at the substrate resulted in rapid solidification of the deposit. During operation, the inside of the glove box was purged with an inert gas to limit the effects of in-flight oxidation of the particles and spray-formed strips, as well as to protect personnel from exposure to airborne lead particulate. Remote controls were used to start/stop the spray and control the speed and position of the substrate. In addition, substrate samples were loaded into the substrate translator manually using the gloved side ports of the box. In this way, the glove box remained closed during a series of spray trials, and was opened only when loading the crucible with a lead charge or when removing lead strip samples for shipment to JCI.

  10. Dynamic crack propagation in a viscoelastic strip

    NASA Astrophysics Data System (ADS)

    Popelar, C. H.; Atkinson, C.

    1980-04-01

    THE DYNAMIC PROPAGATION of a semi-infinite crack in a finite linear viscoelastic strip subjected to Mode I loading is investigated. Through the use of integral transforms the problem is reduced to solving a Wiener-Hopf equation. The asymptotic properties of the transforms are exploited to establish the stress intensity factor. Plane-stress and plane-strain stress intensity factors as a function of crack speed for both fully-clamped and shear-free lateral boundaries are presented for the standard linear viscoelastic solid. Comparisons are made with previously obtained asymptotic stress intensity factors and with stress intensity factors for the equivalent elastic strips.

  11. Grain size control of rhenium strip

    NASA Technical Reports Server (NTRS)

    Schuster, Gary B.

    1991-01-01

    Ensuring the desired grain size in the pure Re strip employed by the SP-100 space nuclear reactor design entails the establishment of an initial grain size in the as-received strip and the avoidance of excessive grain growth during subsequent fabrication. Pure Re tapered tensile specimens have been fabricated and tested in order to quantify the effects of grain-boundary migration. Grain size could be rendered fine and uniform by means of a rolling procedure that uses rather large reductions between short intermediate anneals. The critical strain regime varies inversely with annealing temperature.

  12. Validation of the Hot Strip Mill Model

    SciTech Connect

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  13. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  14. Mechanism of combustion synthesis of silicon carbide

    NASA Astrophysics Data System (ADS)

    Narayan, J.; Raghunathan, R.; Chowdhury, R.; Jagannadham, K.

    1994-06-01

    The mechanism of self-propagating high-temperature synthesis (SHS) or combustion synthesis of SiC has been investigated using pellets consisting of silicon and carbon powders. The combustion reaction was initiated by rapidly heating the pellet on a graphite strip. The reaction products were analyzed using scanning and transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. The results show that it is possible to produce β-SiC without any residual silicon and carbon. Occasionally, a very small number density of α-SiC precipitates embedded in the β-SiC matrix was observed. Based upon the microstructural features, it is proposed that the formation of SiC involves the dissolution of carbon into liquid silicon, diffusion of C into liquid silicon, and subsequent precipitation of SiC. The size of the SiC crystallites is determined by the diffusion coefficient of carbon in liquid silicon and the time available for SiC precipitation. The activation enthalpy for the SHS process is estimated to be 59±3 kcal/mol.

  15. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode.

    PubMed

    Teixeira, Meryene C; Tavares, Elisângela de F L; Saczk, Adelir A; Okumura, Leonardo L; Cardoso, Maria das Graças; Magriotis, Zuy M; de Oliveira, Marcelo F

    2014-07-01

    We have developed an eletroanalytical method that employs Cu(2+) solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110μgL(-1) and from 10 to 110μgL(-1) for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5μgL(-1) for mineral oil and 3.4 and 11.2μgL(-1) for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).

  16. Strip edge cracking simulation in cold rolling

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-01

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges. This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips. Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  17. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  18. Propulsion by Helical Strips in Circular Channels

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Serhat; Demir, Ebru

    2016-11-01

    Progress in manufacturing techniques avails the production of artificial micro swimmers (AMS) in various shapes and sizes. There are numerous studies on the generation of efficient locomotion by means of helical tails with circular cross-sections. This work focuses on locomotion with helical strips in circular channels. A CFD model is used to analyze the effects of geometric parameters and the radius of the channel on swimming velocity of infinite helical-strips in circular channels. Results show that there is an optimum wavelength that depends on thickness to channel radius ratio, suggesting that these parameters need to be optimized simultaneously. With constant torque, thinner strips swim faster, whereas under constant angular velocity application, thicker strips (in radial direction) prevail. As width approaches the wavelength, velocity decreases under both conditions, unless a magnetically coated tail is simulated, for which width has an optimum value. Increasing channel radius to helix amplitude ratio increases the velocity up to a maximum and after a slight drop, saturation occurs as bulk swimming conditions are approached.

  19. Comic Strips to Accompany Science Museum Exhibits

    ERIC Educational Resources Information Center

    Chung, Beom Sun; Park, Eun-mi; Kim, Sang-Hee; Cho, Sook-kyoung; Chung, Min Suk

    2016-01-01

    Science museums make the effort to create exhibits with amusing explanations. However, existing explanation signs with lengthy text are not appealing, and as such, visitors do not pay attention to them. In contrast, conspicuous comic strips composed of simple drawings and humors can attract science museum visitors. This study attempted to reveal…

  20. ENGINEERING BULLETIN: AIR STRIPPING OF AQUEOUS SOLUTIONS

    EPA Science Inventory

    Air striding is a means to transfer contaminants from aqueous solutions to air. ontaminants are not destroyed by air stripping but are physically separated from the aqueous solutions. ontaminant vapors are transferred into the air stream and, if necessary, can be treated by incin...

  1. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  2. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  3. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  4. Calibrating ultrasonic test equipment for checking thin metal strip stock

    NASA Technical Reports Server (NTRS)

    Peterson, R. M.

    1967-01-01

    Calibration technique detects minute laminar-type discontinuities in thin metal strip stock. Patterns of plastic tape are preselected to include minutely calculated discontinuities and the tape is applied to the strip stock to intercept the incident sonic beam.

  5. Topics in Chemical Instrumentation: CII. Automated Anodic Stripping Voltammetry.

    ERIC Educational Resources Information Center

    Stock, John T.; Ewing, Galen W., Ed.

    1980-01-01

    Presents details of anodic stripping analysis (ASV) in college chemistry laboratory experiments. Provides block diagrams of the analyzer system, circuitry and power supplies of the automated stripping analyzer, and instructions for implementing microcomputer control of the ASV. (CS)

  6. Refuges, flower strips, biodiversity and agronomic interest.

    PubMed

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    Several arthropods are natural predators of pests, and they are able to reduce and control their population development. FREDON Nord Pas-de-Calais (Federation Regionate de Defense contre les Organismes Nuisibles = Regional Federation for Pest Control) has begun for a long time to form farmers to the recognition of beneficial arthropods and to show them their usefulness. These beneficial insects or arachnids are present everywhere, in orchards and even in fields which are areas relatively poor in biodiversity. Adults feed in the flower strips instead larvae and some adults feed on preys such as aphids or caterpillars. Most of the time, beneficial insects can regulate pest but sometimes, in agricultural area, they can't make it early enough and efficiently. Their action begin too late and there biodiversity and number are too low. It's possible to enhance their action by manipulating the ecological infrastructures, like sewing flower strips or installing refuges. Flower strips increase the density of natural enemies and make them be present earlier in the field in order to control pests. Refuges permit beneficial's to spend winter on the spot. So they're able to be active and to grow in number earlier. From 2004 to 2007, on the one hand, FREDON Nord Pas-de-Calais has developed a research program. Its purpose was to inventory practices and also tools and means available and to judge the advisability of using such or such beneficial refuge in orchards. On the second hand, it studied the impact in orchard of refuges on population of beneficial's and the difference there were between manufactured refuges and homemade refuges. Interesting prospects were obtained with some of them. Otherwise, since 2003, FREDON has studied flower strips influence on beneficial population and their impact on pest control. In cabbage fields, results of trials have shown that flower strips lead to a reduction of aphid number under acceptable economic level, up to 50 meters from flower strips

  7. Dry stripping as a surface treatment method

    NASA Astrophysics Data System (ADS)

    Nieminen, Ilkka

    1992-03-01

    High environmental and safety standards as well as use of new paint and substrate materials have created the need for developing stripping methods to substitute chemical and mechanical methods and on the other hand for expanding the applicability of blasting as a surface treatment. Plastic Media Blasting (PMB) (alternatively Dry Stripping System (DSS)) is an emerging technology first used in aircraft maintenance for paint stripping. Traditionally this task is performed by brushing and grinding or by using chemical solvents. With plastic media it is possible to remove thick paints with high adhesion without damaging the substrate and even layer by layer. If suitable type of plastic media, blasting pressure low enough, media concentration high enough and on the other right blasting time, blasting distance and blasting angle are chosen, the effectiveness of PMB can be varied to a large extent. In regard to the hardness of media plastic particles are situated between some organic materials and shots used in sand blasting. Therefore composite materials can be treated without damaging the substrate or thin metal plates without causing any deformations. The principle of plastic media blasting equipment is similar to traditional blasting equipment. Nevertheless the properties of plastic media are different to harder particles used in shot peening resulting in higher demands for filtration, ventilation and recycling systems. In addition the facilities have to contain proper recovery equipment, because plastic media can be reused, even 20 times. In recycling systems plastic media is cleaned, too large and too small particles are removed, hard and magnetic particles are removed from reusable media and dust is separated from media. In addition to paint stripping PMB can successfully be used for cleaning of surfaces from contamination and to some extent for polishing, grinding and roughening. Paint stripping has been the main application so far, but there may be many other

  8. Thermal-Balance Strip for Fluted LFC Panels

    NASA Technical Reports Server (NTRS)

    Bono, P.

    1985-01-01

    Waviness of less than 0.004 inch achieved using titanium strips. Process uses titanium balancing strips to keep waviness within 0.004inch limit. Balancing strips reduce thermal bonding stresses on lower fiberglass fluted sections and placed so fiberglass ends up sandwiched between porous titanium skin and titanium balance strip. Method requires less skill and less labor intensive than composite-wrapped-mandrel method.

  9. Study the Z-Plane Strip Capacitance

    SciTech Connect

    Parikh, H.; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  10. Crystallization of silicon films on glass: a comparison of methods

    SciTech Connect

    Lemons, R.A.; Bosch, M.A.; Herbst, D.

    1983-01-01

    The lure of flat panel displays has stimulated much research on the crystallization of silicon films deposited on large-area transparent substrates. In most respects, fused quartz is ideal. It has high purity, thermal shock resistance, and a softening point above the silicon melting temperature. Unfortunately, fused quartz has such a small thermal expansion that the silicon film cracks as it cools. This problem has been attacked by patterning with islands or moats before and after crystallization, by capping, and by using silicate glass substrates that match the thermal expansion of silicon. The relative merits of these methods are compared. Melting of the silicon film to achieve high mobility has been accomplished by a variety of methods including lasers, electron beams, and strip heaters. For low melting temperature glasses, surface heating with a laser or electron beam is essential. Larger grains are obtained with the high bias temperature, strip heater techniques. The low-angle grain boundaries characteristic of these films may be caused by constitutional undercooling. A model is developed to predict the boundary spacing as a function of scan rate and temperature gradient.

  11. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  12. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  13. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  14. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  15. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  16. Evaluation of strips of centipede grass for sediment load reduction.

    PubMed

    Shiono, Takahiro; Haraguchi, Noburo; Miyamoto, Kuniaki; Shinogi, Yoshiyuki; Miyamoto, Teruhito; Kameyama, Koji

    2008-01-01

    Reddish sediment runoff from agricultural fields results in coastal environmental problems in Okinawa, Japan. Recent studies have demonstrated the effectiveness of strips of centipede grass (Eremochloa ophiuroides (Munro) Hack.), a perennial turf grass, in reducing the sediment loads from farmlands. However, sufficient information has not been provided to determine the appropriate strip specifications in the grass strip design. This study evaluated centipede grass strips for reduction of reddish sediment runoff from farmlands in Okinawa, Japan. A numerical model simulating the reddish sediment transport in the grass strip was constructed to determine the sediment removal efficiency of the strip. The model was verified using data obtained from field plot experiments with the grass strips under natural conditions. The sensitivity analysis of the model showed that the length of the grass strip (i.e. the dimension of the strip in the direction of flow) and unit inflow discharge have a great effect on sediment removal efficiency. The sediment removal efficiency obtained from the model simulation increased with the length of the strip and the increment of the efficiency decreased with the length of the strip. Therefore, these results indicate that the effective and efficient length of a centipede grass strip is 3 m for the reduction of reddish sediment loads under typical farmland conditions in Okinawa.

  17. Conveyorized Photoresist Stripping Replacement for Flex Circuit Fabrication

    SciTech Connect

    Megan Donahue

    2009-02-24

    A replacement conveyorized photoresist stripping system was characterized to replace the ASI photoresist stripping system. This system uses the qualified ADF-25c chemistry for the fabrication of flex circuits, while the ASI uses the qualified potassium hydroxide chemistry. The stripping process removes photoresist, which is used to protect the copper traces being formed during the etch process.

  18. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  19. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  20. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  1. Optical properties of wide single-mode strip and grating loaded channel waveguides

    SciTech Connect

    Tsarev, Andrei V

    2009-12-31

    New wide single-mode strip and grating loaded (SGL) channel waveguides made of silicon nitride on the oxide buffer layer of a planar silicon-on-insulator waveguide are studied. The central 10-lm-wide strip produces a multi-mode channel waveguide and diffraction gratings with a period 0.6 lm built on the structure edges produce mode-dependent additional losses due to radiation to the surrounding medium. The optical properties of these waveguides are discussed using the results of a three-dimensional numerical simulation by the FDTD and BPM methods. It is shown that a wide SGL waveguide is quasi-single-mode one because it has a small propagation loss ({approx} 0.3 dB cm{sup -1}) for the fundamental mode and a high (up to -20 dB cm{sup -1}) loss for the higher order modes. The new SGL waveguides are CMOS compatible and can become basic for fabricating new photonic elements, including tunable optical filters and multi-plexers based on the multireflector technology. (waveguides)

  2. Bird community response to filter strips in Maryland

    USGS Publications Warehouse

    Blank, P.J.; Dively, G.P.; Gill, D.E.; Rewa, C.A.

    2011-01-01

    Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ???1 yr. Breeding bird density was greater in narrow (60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. Copyright ?? 2011 The

  3. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  4. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  5. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  6. ITCS Test Strip Development and Certification

    NASA Technical Reports Server (NTRS)

    Carrigan, Caitlin; Adam, Niklas; Pickering, Karen; Gazda, Daniel; Piowaty, Hailey

    2011-01-01

    Internal coolant loops used for International Space Station thermal control must be periodically monitored for system health, including pH, biocide levels and any indication of ammonia. The presence of ammonia, possible via a microleak in the interface between the internal and external thermal control systems, could be a danger to the crew. The Internal Thermal Control System (ITCS) Sampling Kit uses test strips as a colorimetric indicator of pH and concentrations of biocide and free ammonia. This paper describes the challenges in designing an ammonia colorimetric indicator in a variable pH environment, as well as lessons learned, ultimately resulting in a robust test strip to indicate a hazardous ammonia leak.

  7. Strengthening Bridges with Prestressed CFRP Strips

    NASA Astrophysics Data System (ADS)

    Siwowski, Tomasz; Żółtowski, Piotr

    2012-06-01

    Limitation of bridge's carrying bearing capacity due to aging and deterioration is a common problem faced by road administration and drivers. Rehabilitation of bridges including strengthening may be applied in order to maintain or upgrade existing bridge parameters. The case studies of strengthening of two small bridges with high modulus prestressed CFRP strips have been presented in the paper. The first one - reinforced concrete slab bridge - and the other - composite steel-concrete girder bridge - have been successfully upgraded with quite new technology. In both cases the additional CFRP reinforcement let increasing of bridge carrying capacity from 15 till 40 metric tons. The CFRP strip prestressing system named Neoxe Prestressing System (NPS), developed by multi-disciplinary team and tested at full scale in Rzeszow University of Technology, has been also described in the paper.

  8. Antenna with distributed strip and integrated electronic components

    DOEpatents

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  9. Novel Strip Test for Circulating Hormones

    DTIC Science & Technology

    1996-10-01

    level of discrimination will permit 72 hour advance notice of impending ovulation , making the strips a useful tool in family planning in that they...provide sufficient advance notice of ovulation to allow for the lifetime of sperm in the vagina. To implement this novel immunoassay technology, a new...before the peak of luteinizing hormone (LH) until two days after the peak.’ The maximum notification of impending ovulation provided by measurement

  10. Modeling recrystallization kinetics during strip rolling

    SciTech Connect

    Sun, W.P.; Hawbolt, E.B.; Meadowcroft, T.R.

    1995-01-01

    In order to simulate the microstructural evolution during hot strip rolling, double-hit compression tests have been carried out on plain carbon steels. Using the softening data obtained by these tests, mathematical models were developed to predict the overall kinetics of static recrystallization under roughing and finishing mill conditions. These models include the effects of deformation temperature, applied strain, strain rate and initial austenite grain size. Predictions based on these models are in reasonable agreement with the present experimental results.

  11. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  12. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  13. Ram pressure stripping in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J.

    2015-10-01

    Gas can be violently stripped from their galaxy disks in rich clusters, and be dispersed over 100 kpc-scale tails or plumes. Young stars have been observed in these tails, suggesting they are formed in situ. This will contribute to the intracluster light, in addition to tidal stripping of old stars. We want to quantify the efficiency of intracluster star formation. We present CO(1-0) and CO(2-1) observations, made with the IRAM-30 m telescope, towards the ram-pressure stripped tail northeast of NGC 4388 in Virgo. We selected HII regions found all along the tails, together with dust patches, as observing targets. We detect molecular gas in 4 positions along the tail, with masses between 7 × 105 to 2 × 106M⊙. Given the large distance from the NGC 4388 galaxy, the molecular clouds must have formed in situ, from the HI gas plume. We compute the relation between surface densities of star formation and molecular gas in these regions, and find that the star formation has very low efficiency. The corresponding depletion time of the molecular gas can be up to 500 Gyr and more. Since this value exceeds a by far Hubble time, this gas will not be converted into stars, and will stay in a gaseous phase to join the intracluster medium.

  14. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    EPA Pesticide Factsheets

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  15. Silicon carbide

    SciTech Connect

    Ault, N.N.; Crowe, J.T. )

    1991-05-01

    This paper reports that, since silicon carbide (SiC) does not occur in nature, it must be synthesized by a high-temperature chemical reaction. The first commercial production began at the end of the 19th century when Acheson developed a process of reacting sand and coke in a resistance furnace. This process is still the basic SiC manufacturing process used today. High-quality silica sand (99.5% SiO{sub 2}), low-sulfur petroleum coke, and electricity (23.8 MJ/kg) are the major ingredients in the production of SiC. The reaction takes place in a trough-like furnace with a removable refractory side (or some similar configuration) and with permanent refractory ends holding carbon electrodes. When the furnace is started, the carbon electrodes are joined by the graphite core laid the length of the furnace near the center of the mixture which fills the furnace.

  16. The DAMPE silicon-tungsten tracker

    NASA Astrophysics Data System (ADS)

    Azzarello, P.; Ambrosi, G.; Asfandiyarov, R.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; Caprai, M.; De Mitri, I.; Domenjoz, M.; Dong, Y.; Duranti, M.; Fan, R.; Fusco, P.; Gallo, V.; Gargano, F.; Gong, K.; Guo, D.; Husi, C.; Ionica, M.; La Marra, D.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Mesa, J.; Nardinocchi, A.; Nicola, L.; Pelleriti, G.; Peng, W.; Pohl, M.; Postolache, V.; Qiao, R.; Surdo, A.; Tykhonov, A.; Vitillo, S.; Wang, H.; Weber, M.; Wu, D.; Wu, X.; Zhang, F.

    2016-09-01

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV-10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  17. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  18. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  19. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  20. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  1. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  2. Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers.

    PubMed

    Sun, Peng; Reano, Ronald M

    2011-02-28

    We demonstrate vertical chip-to-chip light coupling using silicon strip waveguide cantilever couplers. The guided-wave couplers consist of silicon strip waveguides embedded within silicon dioxide cantilevers. The cantilevers deflect 90° out-of-plane via residual stress, allowing vertical light coupling between separate chips. A chip-to-chip coupling loss of 2.5 dB per connection is measured for TE polarization and 1.1 dB for TM polarization at 1550 nm wavelength. The coupling loss varies by less than±0.8 dB within the wavelength range from 1500 nm to 1565 nm for both polarizations. The couplers enable broadband and compact system architectures involving high speed vertical data transport between photonic integrated circuits.

  3. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  4. The Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.; Kah, D. H.; Kang, K. H.; Kato, E.; Kiesling, C.; Kodys, P.; Kohriki, T.; Koike, S.; Kvasnicka, P.; Marinas, C.; Mayekar, S. N.; Mibe, T.; Mohanty, G. B.; Moll, A.; Negishi, K.; Nakayama, H.; Natkaniec, Z.; Niebuhr, C.; Onuki, Y.; Ostrowicz, W.; Park, H.; Rao, K. K.; Ritter, M.; Rozanska, M.; Saito, T.; Sakai, K.; Sato, N.; Schmid, S.; Schnell, M.; Shimizu, N.; Steininger, H.; Tanaka, S.; Tanida, K.; Taylor, G.; Tsuboyama, T.; Ueno, K.; Uozumi, S.; Ushiroda, Y.; Valentan, M.; Yamamoto, H.

    2013-12-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×1035 cm-2 s-1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13 m2 and 223,744 channels-twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  5. DAMPE silicon tracker on-board data compression algorithm

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Fan; Zhang, Fei; Qiao, Rui; Peng, Wen-Xi; Fan, Rui-Rui; Gong, Ke; Wu, Di; Wang, Huan-Yu

    2015-11-01

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker (STK) is a subdetector of the DAMPE payload. It has excellent position resolution (readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA040402) and National Natural Science Foundation of China (1111403027)

  6. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  7. Power and control in gay strip clubs.

    PubMed

    DeMarco, Joseph R G

    2007-01-01

    The gay strip club is a place in which more than displays of male beauty take place. The mix of customers, performers, liquor, and nudity results in fascinating dynamics. Of interest in this article are the power relationships and issues of control played out both among and between strippers and customers. Based on extensive participant observation conducted in eight cities and numerous bars/clubs and including more than 150 in-depth interviews, this article concerns just one aspect of the world of male strippers who perform for men.

  8. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  9. Galaxies in Clusters : Gas Stripping and Accretion

    NASA Astrophysics Data System (ADS)

    O'Dea, Chris; Balsara, Dinshaw; Livio, Mario

    1994-05-01

    We study the process of a galaxy moving through the intercluster gas in a cluster of galaxies, using a high quality hydrocode run at high resolutions. We find that ram pressure stripping occurs in the form of individual events that are separated by about ten million years. In addition we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial "pumping" mode, similar to the one found previously in simulations of wind accretion onto compact objects. Some implications of our results for the understanding of a few recent observations are discussed.

  10. Method for forming a solar array strip

    NASA Technical Reports Server (NTRS)

    Mueller, R. I.; Yasui, R. K. (Inventor)

    1979-01-01

    A flexible solar array strip is formed by a method which lends itself to automatic production techniques. Solder pads are deposited on printed circuitry deposited on a flexible structure. The resultant substrate is stored on a drum from which it is withdrawn and incrementally advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads which are then heated in order to attach the cells to the circuitry. Excess flux is cleaned from the cells which are encapsulated in a protective coating. The resultant array is then spirally wound on a drum.

  11. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  12. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    SciTech Connect

    Pool, T.C.

    1993-05-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

  13. Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

    NASA Technical Reports Server (NTRS)

    Blosser, Max L. (Inventor); Poteet, Carl C. (Inventor); Bouslog, Stan A. (Inventor)

    2015-01-01

    A heat shield for a space vehicle comprises a plurality of phenolic impregnated carbon ablator (PICA) blocks secured to a surface of the space vehicle and arranged in a pattern with gaps therebetween. The heat shield further comprises a plurality of PICA strips disposed in the gaps between the PICA blocks. The PICA strips are mounted edgewise, such that the structural orientation of the PICA strips is substantially perpendicular to the structural orientation of the PICA blocks.

  14. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  15. Microstructure and properties of strip cast AZ91 Mg alloy

    NASA Astrophysics Data System (ADS)

    Park, Sung S.; Park, Young S.; Kim, Nack J.

    2002-11-01

    A study has been conducted on the microstructure and mechanical properties of the strip cast AZ91 Mg alloy. The microstructure of the as-cast strip is characterized by a fine equiaxed dendritic structure. There is a variation of secondary dendrite arm spacing throughout the thickness of the strip, showing the smallest value at the wheel surface and the largest value at the center. The distribution of Mg17Al12 particles is also not uniform in the as-cast strip. The microstructure of the solution treated strip consists of fine Mg grains and Al-Mn particles in the matrix with no Mg17Al12 particles. T6 treatment of the strip results in the precipitation of Mg17Al12 particles, the volume fraction of which decreases from the wheel side to the center of the strip. The strip cast AZ91 Mg alloy has the best combination of tensile properties in the T4 condition. It is believed that the good tensile properties of the T4 treated strip are due to the presence of Al-Mn particles, which induce homogeneous deformation.

  16. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  17. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  18. Liquid crystal elastomer strips as soft crawlers

    NASA Astrophysics Data System (ADS)

    DeSimone, Antonio; Gidoni, Paolo; Noselli, Giovanni

    2015-11-01

    In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, 'breathing-like' deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

  19. Development of casparian strip in rice cultivars

    PubMed Central

    Cai, Xia; Chen, Tong; Zhou, QingYuan; Xu, Lei; Qu, LeQing; Hua, XueJun

    2011-01-01

    The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of suberin lamellae of CSs on the endo- and exodermis in the salt-tolerant cultivar Liaohan 109 was earlier than in the moderately tolerant cultivar Tianfeng 202 and the sensitive cultivar Nipponbare. The detection of chemical components indicated major contributions to the structure of the outer part from aliphatic suberin, lignin and cell wall proteins and carbohydrates to the rhizodermis, exodermis, sclerenchyma and one layer of cortical cells in series (OPR) and the endodermal Casparian strip. Moreover, the amounts of these major chemical components in the outer part of the Liaohan 109 root were higher than in Tianfeng 202 and Nipponbare, but there was no distinct difference in endodermal CSs among the three rice cultivars. The results suggest that the exodermis of the salt-tolerant cultivar Liaohan 109 functions as a barrier for resisting salt stress. PMID:21248477

  20. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  1. SNS Laser Stripping for H- Injection

    SciTech Connect

    V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

    2009-05-01

    The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

  2. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    EPA Pesticide Factsheets

    Synthetic musk compounds are used as inexpensive fragrance materials for the production of perfumes and as additives to soap, detergent, and shampoo. They have been found in surface water, fish tissues, and human breast milk. The ubiquity of this class of compounds in the environment is attributable to high use and release into the environment. Current techniques for separating these compounds from fish tissues require tedious sample clean-up procedures. To obtain fat-free extracts, gel permeation chromatography (GPC), column chromatography using alumina, and silica gel, and thin layer chromatography (TLC clean-up procedures are frequently employed. Despite the considerable effort and resources devoted to these processes, a fraction of the lipids and lipid-like compounds frequently remains in the extracts. These low-level lipids foul injection liners, contaminate columns, and yield elevated baselines during gas chromatographic analysis of synthetic musk compounds. In this study, a simple method for the determination of synthetic musk compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge- and-trap vessel, is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar an

  3. Therapeutic surfactant-stripped frozen micelles

    PubMed Central

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-01-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like ‘top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and ‘bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2–3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated. PMID:27193558

  4. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  5. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  6. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  7. Gamma Large Area Silicon Telescope (GLAST)

    SciTech Connect

    Godfrey, G.L.

    1993-11-01

    The recent discoveries and excitement generated by EGRET have prompted an investigation into modern technologies ultimately leading to the next generation space-based gamma ray telescope. The goal is to design a detector that will increase the data acquisition rate by almost two orders of magnitude beyond EGRET, while at the same time improving on the angular resolution, the energy measurement of reconstructed gamma rays, and the triggering capability of the instrument. The GLAST proposal is based on the assertion that silicon particle detectors are the technology of choice for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggering. The GLAST detector is roughly modeled after EGRET in that a tracking module precedes a calorimeter. The GLAST Tracker has planes of thin radiatior interspersed with planes of crossed-strip (x,y) 300-{mu}m-pitch silicon detectors to measure the coordinates of converted electron-positron pairs. The gap between the layers ({approximately}5 cm) provides a lever arm in track fitting resulting in an angular resolution of 0.1{degree} at high energy (the low energy angular resolution at 100 MeV would be about 2{degree}, limited by multiple scattering). A possible GLAST calorimeter is made of a mosaic of Csl crystals of order 10 r.l. in depth, with silicon photodiodes readout. The increased depth of the GLAST calorimeter over EGRET`s extends the energy range to about 300 GeV.

  8. The Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bergauer, T.; Dolejschi, P.; Frankenberger, A.; Gfall, I.; Irmler, C.; Obermayer, T.; Onuki, Y.; Smiljic, D.; Tsuboyama, T.; Valentan, M.

    The KEKB factory (Tsukuba, Japan) has been shut down in mid-2010 after reaching a total integrated luminosity of 1ab-1. Recently, the work on an upgrade of the collider (SuperKEKB), aiming at an ultimate luminosity of 8×1035 cm-2s-1, has started. This is 40 times the peak value of the previous system and thus also requires a redesign of the Belle detector (leading to Belle II), especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. Similar to its predecessor, the future Belle II SVD will again consist of four layers of double-sided silicon strip sensors (DSSD), but at higher radii. Moreover, a double-layer PiXel Detector (PXD) will complement the SVD as the innermost sensing device. All DSSDs will be made from 6" silicon wafers and read out by APV25 chips, which were originally developed for the CMS experiment. That system was proven to meet the requirements for Belle II in matters of occupancy and dead time. Since the KEKB factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by the Origami chip-on-sensor concept, including a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO2 cooling for the front-end chips will ensure high efficiency at minimum material budget.

  9. Design and Use of the Stratigraphic Strip Log.

    ERIC Educational Resources Information Center

    Fichter, Lynn Stanton

    1987-01-01

    Discusses the use of a strip log as a diagrammatic representation of the information available in a sequence of sedimentary rocks. Describes the design of the strip log (both symbolically and by visual/spatial patterns) and some of the possible interpretations that can be made using them. (TW)

  10. A strip array for spoligotyping of Mycobacterium tuberculosis complex isolates.

    PubMed

    Tu, Yiling; Zeng, Xiaohong; Li, Hui; Zheng, Rongrong; Xu, Ye; Li, Qingge

    2016-03-01

    A novel strip array was developed for a nine-spacer spoligotyping scheme of Mycobacterium tuberculosis complex (MTBC). The new method was evaluated using 211 MTBC isolates and the results were fully concordant with the traditional spoligotyping approach. The strip array proved to be rapid and convenient for spoligotyping of MTBC.

  11. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  12. Wheat strip effects on nutrient loads following variable manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Narrow grass hedges have been shown to significantly reduce nutrient loads in runoff. The effectiveness of narrow wheat strips in reducing nutrient loads was examined in this investigation. The objectives of this study were to: (1) determine the effects of a narrow wheat strip, varying manure applic...

  13. Using Comic Strips as a Book Report Alternative

    ERIC Educational Resources Information Center

    Reading Teacher, 2012

    2012-01-01

    Comic strips are great to share with parents, younger students, and peers. This article presents an activity where students use a six-paneled comic strip to summarize a story. This activity allows for multiple interpretations and enhances comprehension by drawing attention to story elements.

  14. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  15. Test strips detect different CO2 concentrations in closed compartments

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Four different test strips, using crystal violet for one pair of strips and basic fuchsin as a dye for the second pair, give unambiguous colorimetric indications of four different concentrations of carbon dioxide in the atmosphere of a closed compartment. Tetraethylene pentamine is used as a dye decoloring agent.

  16. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  17. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  18. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  19. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists...

  20. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow.

    PubMed

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-12-15

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system.

  1. Nano-strip grating lines self-organized by a high speed scanning CW laser

    NASA Astrophysics Data System (ADS)

    Kaneko, Satoru; Ito, Takeshi; Akiyama, Kensuke; Yasui, Manabu; Kato, Chihiro; Tanaka, Satomi; Hirabayashi, Yasuo; Mastuno, Akira; Nire, Takashi; Funakubo, Hiroshi; Yoshimoto, Mamoru

    2011-04-01

    After a laser annealing experiment on Si wafer, we found an asymmetric sheet resistance on the surface of the wafer. Periodic nano-strip grating lines (nano-SGLs) were self-organized along the trace of one-time scanning of the continuous wave (CW) laser. Depending on laser power, the nano-trench formed with a period ranging from 500 to 800 nm with a flat trough between trench structures. This simple method of combining the scanning laser with high scanning speed of 300 m min - 1 promises a large area of nanostructure fabrication with a high output. As a demonstration of the versatile method, concentric circles were drawn on silicon substrate rotated by a personal computer (PC) cooling fan. Even with such a simple system, the nano-SGL showed iridescence from the concentric circles.

  2. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  3. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  4. Evaluation of anatomy comic strips for further production and applications.

    PubMed

    Shin, Dong Sun; Kim, Dae Hyun; Park, Jin Seo; Jang, Hae Gwon; Chung, Min Suk

    2013-09-01

    The corresponding author of the study has been sketching comic strips to explain anatomy in a humorous manner. All the anatomy comic strips, including those in Korean (650 episodes) and English (451 episodes), can be viewed on the homepage (http://anatomy.co.kr). Such comic strips were created with the aim of assisting medical students. However, their impact was unknown, and therefore, we surveyed the students' responses. We noted that anatomy grades were better in the students who read the comic strips. The comics helped the trainees chat with individuals with and without a medical background. The authors also considered comments on the problems with the comic strips and attempted to find solutions. The episodes are being currently used and further produced for educational purposes. To support this effort, the readers' valuable opinions will be continuously collected and assessed.

  5. The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope

    SciTech Connect

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Hirayama, Masaharu; Johnson, R.P.; Kroeger, Wilko; Latronico, Luca; Minuti, Massimo; Nelson, David; Rando, Riccardo; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Spencer, E.N.; Sugizaki, Mutsumi; Tajima, Hiro; Cohen-Tanugi, Johann; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /Maryland U. /UC, Santa Cruz /Padua U. /INFN, Padua

    2006-02-27

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm strips using only 160 W of power, and it achieves close to 100% detection efficiency with noise occupancy sufficiently low to allow it to self trigger. The design of the readout system is described, and results are presented from ground-based testing of the completed detector system.

  6. Method and apparatus for corrugating strips

    DOEpatents

    Day, Jack R.; Curtis, Charles H.

    1983-01-01

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  7. Method and apparatus for corrugating strips

    DOEpatents

    Day, J.R.; Curtis, C.H.

    1981-10-27

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  8. Optical fiber cable chemical stripping fixture

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  9. Galaxies in clusters: Gas stripping and accretion

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw; Livio, Mario; O'Dea, Christopher P.

    1994-12-01

    We study the process of a galaxy moving through the intracluster gas in a cluster of galaxies, using two-dimensional hydrodynamic simulations at high resolution. We find that ram pressure stripping occurs in the form of individual events which are separated by a few times 107 yr. In addition, we find that the galaxy accretes gas from the downstream side into the core. This accretion process exhibits a radial 'pumping' mode, similar to the one found previously in simulations of wind accretion onto compact objects. The flow is found to exhibit a complex shock structure around the core. Some implications of our results for the understanding of a few recent observations are discussed.

  10. Robotic dry stripping of airframes - Phase II

    NASA Astrophysics Data System (ADS)

    Pauli, Robert A.; Wittenberg, Art M.

    1989-03-01

    This paper describes a program for the development of a dust-free closed-cycle robotic system for dry stripping of airframes, designed to insure dust-free work environment and reduce plastic-media loss, the contamination risk, and the media inventory requirement. Phase I of the program involved building a prototype of the proposed robotic arm and its dust enclosure to prove basic automation concepts, showing reasonable paint removal rate from a curved surface, and establishing that the process is dust-free and recovers plastic media in a closed-cycle fashion. This paper contains calculations on the effect of different blasting parameters in order to determine optimum values required for the completion of Phase I. Also presented is the progress achieved by the Phase II of the program, which is to prove the total concept by building the complete system and demonstrating its capability.

  11. Crack instabilities of a heated glass strip

    NASA Astrophysics Data System (ADS)

    Adda-Bedia, Mokhtar; Pomeau, Yves

    1995-10-01

    Recently, Yuse and Sano [Nature (London) 362, 329 (1993)] have observed that a crack traveling in a glass strip submitted to a nonuniform thermal diffusion field undergoes numerous instabilities. We study two cases of quasistatic crack propagation. The crack extension condition in straight propagation is determined. An asymptotic analysis of the elastic free energy is introduced and scaling laws are derived. A linear stability analysis of the straight propagation is performed, based on the assumption that the crack tip propagation deviates from the centered straight one as soon as it is submitted to a ``physical'' singular shear stress. It is shown that a straight propagation can become unstable after which a wavy instability appears. The condition for instability as well as the selected wavelength is calculated quantitatively. The results are compared with experiments and the agreement is favorable.

  12. Oral strip technology: overview and future potential.

    PubMed

    Dixit, R P; Puthli, S P

    2009-10-15

    Over the recent past, many of the research groups are focusing their research on this technology. Amongst the plethora of avenues explored for rapid drug releasing products, Oral Strip Technology (OST) is gaining much attention. The advantages of OST are the administration to pediatric and geriatric patient population where the difficulty of swallowing larger oral dosage forms is eliminated. This technology has been used for local action, rapid release products and for buccoadhesive systems that are retained for longer period in the oral cavity to release drug in controlled fashion. OST offers an alternate platform for molecules that undergo first pass metabolism and for delivery of peptides. The review article is an overview of OST encompassing materials used in OST, critical manufacturing aspects, applications, commercial technologies and future business prospects of this technology.

  13. 77 FR 9892 - Polyethylene Terephthalate Film, Sheet and Strip from India: Preliminary Intent to Rescind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip from India: Preliminary... polyethylene terephthalate film, sheet and strip from India covering the period January 1, 2010, through... Vacmet and Polypacks. See Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission,...

  14. 77 FR 73428 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic... the antidumping duty order on polyethylene terephthalate film, sheet, and strip (``PET film'') from... Duty Administrative Review: Polyethylene Terephthalate Film, Sheet, and Strip from the...

  15. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  16. AC Coupled Interconnect for Low Power Spaceborne Electronics

    DTIC Science & Technology

    2012-01-18

    architecture ............................................49 Figure 77 In-flight module showing motherboard (red) and ASIM (green... motherboard (the red board on the floor of the module) and the ASIM (the green board in the center): Figure 77 In-flight module showing... motherboard (red) and ASIM (green) The motherboard contains the Virtex II FPGA (which is underneath the ASIM in the picture.). The cover of the

  17. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  18. Nanocrystalline silicon/amorphous silicon dioxide superlattices

    SciTech Connect

    Fauchet, P.M.; Tsybeskov, L.; Zacharias, M. |; Hirschman, K. |

    1998-12-31

    Thin layers made of densely packed silicon nanocrystals sandwiched between amorphous silicon dioxide layers have been manufactured and characterized. An amorphous silicon/amorphous silicon dioxide superlattice is first grown by CVD or RF sputtering. The a-Si layers are recrystallized in a two-step procedure (nucleation + growth) for form layers of nearly identical nanocrystals whose diameter is given by the initial a-Si layer thickness. The recrystallization is monitored using a variety of techniques, including TEM, X-Ray, Raman, and luminescence spectroscopies. When the a-Si layer thickness decreases (from 25 nm to 2.5 nm) or the a-SiO{sub 2} layer thickness increases (from 1.5 nm to 6 nm), the recrystallization temperature increases dramatically compared to that of a single a-Si film. The removal of the a-Si tissue present between the nanocrystals, the passivation of the nanocrystals, and their doping are discussed.

  19. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  20. Highly coherent supercontinuum generation in strip/slot hybrid As2S3 waveguide with low and ultra-flat dispersion

    NASA Astrophysics Data System (ADS)

    Yan, Shuangxiang; Mei, Chao; Wang, Kuiru; Yuan, Jinhui; Sang, Xinzhu; Yan, Binbin; Yu, Chongxiu

    2016-11-01

    In this work, two kinds of strip/slot hybrid As2S3 waveguides with the silicon dioxide slots, which are demonstrated to have low and flat dispersion profiles are proposed. Based on those waveguides, we obtain broadband and highly coherent supercontinuum numerically using the nonlinear Schrödinger equation. For the waveguide with a vertical silicon dioxide slot, the dispersion between +/-20 ps/(nm•km) from 1435 to 2800 nm is obtained by adjusting the structure parameters. The broadband spectrum covering from 1392 to 2916 nm at -35 dB level is generated in a 5.5-mm waveguide with high correlation of 1. For the waveguide with a horizontal silicon dioxide slot, the dispersion spans +/-4 ps/(nm•km) from 1685 to 2770 nm and the generated spectrum with correlation of 1 spans from 1212 to 3979 nm in a 5.5-mm waveguide.

  1. Flexible Distributed Pressure Sensing Strip for a Urethral Catheter1

    PubMed Central

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A.S.

    2015-01-01

    A multi-sensor flexible strip is developed for a urethral catheter to measure distributed pressure in a human urethra. The developed sensor strip has important clinical applications in urodynamic testing for analyzing the causes of urinary incontinence in patients. There are two major challenges in the development of the sensor. First, a highly sensitive sensor strip that is flexible enough for urethral insertion into a human body is required and second, the sensor has to work reliably in a liquid in-vivo environment in the human body. Capacitive force sensors are designed and micro-fabricated using polyimide/PDMS substrates and copper electrodes. To remove the parasitic influence of urethral tissues which create fringe capacitance that can lead to significant errors, a reference fringe capacitance measurement sensor is incorporated on the strip. The sensing strip is embedded on a catheter and experimental in-vitro evaluation is presented using a bench-top pressure chamber. The sensors on the strip are able to provide the required sensitivity and range. Preliminary experimental results also show promise that by using measurements from the reference parasitic sensor on the strip, the influence of parasitics from human tissue on the pressure measurements can be removed. PMID:27065719

  2. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Lösel, Philipp; Atlas Muon Collaboration

    2016-07-01

    Resistive strip Micromegas detectors have been tested extensively as small detectors of about 10×10 cm2 in size and they work reliably at high rates of 100 kHz/cm2 and above. Tracking resolution well below 100 μm has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m2 in size. To investigate possible differences between small and large detectors, a 1 m2 detector with 2048 resistive strips at a pitch of 450 μm was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4×2.2 m2 large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm×93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, determination of signal propagation along the 1 m long anode strips and calibration of the position of the anode strips.

  3. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  4. The water crisis in the gaza strip: prospects for resolution.

    PubMed

    Weinthal, E; Vengosh, A; Marei, A; Kloppmann, W

    2005-01-01

    Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.

  5. Silicon on graphite cloth

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Thomas, C.J.; Ingram, A.E.; Bai, Y.B.; Ruffins, T.R.; Barnett, A.M.

    1994-12-31

    A new polycrystalline silicon solar cell has been developed that utilizes commercially available graphite cloth as a substrate. This solar cell has achieved an energy conversion efficiency of 13.4% (AM1.5G). It is believed that this is a record efficiency for a silicon solar cell formed on a graphite substrate. The silicon-on-fabric structure is comprised of a thin layer of polycrystalline silicon grown directly on the graphite fabric substrate. The structure is fabricated by a low-cost ribbon process that avoids the expense and waste of wafering. The fabric substrate gives structural support to the thin device. Critical to the achievement of device quality silicon layers is control over impurities in the graphite fabric. The silicon-on-fabric technology has the potential to supply lightweight, low-cost solar cells to weight-sensitive markets at a fraction of the cost of conventionally thinned wafers.

  6. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  7. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  8. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, Jr., Fred J.

    1985-01-01

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.

  9. Autoionization of He atoms by partially stripped ion impact

    SciTech Connect

    Otranto, S.; Olson, R.E.

    2005-08-15

    A study of the autoionization process induced by partially stripped ion impact is performed. Electron spectra in momentum space are predicted within a classical model for partially stripped ions. The results are compared with those obtained for pure Coulomb-like projectiles. A quantum-mechanical extension of the Barrachina-Macek model is proposed for partially stripped projectiles. Structure on the electron angular distribution arising in quantum and classical treatments is identified and compared. The presence of rainbow scattering interference is observed in the binary ring profile of the outgoing autoionized electrons for positive-ion impact.

  10. Enhancement Of Water-Jet Stripping Of Foam

    NASA Technical Reports Server (NTRS)

    Cosby, Steven A.; Shockney, Charles H.; Bates, Keith E.; Shalala, John P.; Daniels, Larry S.

    1995-01-01

    Improved robotic high-pressure-water-jet system strips foam insulation from parts without removing adjacent coating materials like paints, primers, and sealants. Even injects water into crevices and blind holes to clean out foam, without harming adjacent areas. Eliminates both cost of full stripping and recoating and problem of disposing of toxic solutions used in preparation for coating. Developed for postflight refurbishing of aft skirts of booster rockets. System includes six-axis robot provided with special end effector and specially written control software, called Aftfoam. Adaptable to cleaning and stripping in other industrial settings.

  11. Retrieval of a stripped abutment screw: a clinical report.

    PubMed

    Maalhagh-Fard, Ahmad; Jacobs, Leyvee Cabanilla

    2010-10-01

    Mechanical complications, such as loosening or damaging of the prosthetic components of an osseointegrated implant, may occur. Stripping of the implant abutment screw head can be a serious problem which can render an implant unusable. This report describes a clinical situation involving a patient who presented with a fractured screw-retained interim crown. Upon further examination, it was determined that the abutment screw head was stripped. There was limited access and visibility in this situation since the implant was a bone-level implant. The procedure used for the removal of the stripped abutment screw head is described in detail in this clinical report.

  12. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  13. Automated strip mine and reclamation mapping from ERTS. [Ohio coal

    NASA Technical Reports Server (NTRS)

    Pettyjohn, W. A.; Rogers, R. H.; Reed, L. E.

    1974-01-01

    In response to the urgent need for a faster and more economical means of generating strip mine and reclamation maps, a study was conducted to evaluate the suitability of using ERTS computer compatible tape for automatic mapping. The procedure uses computer target spectral recognition techniques as a basis for classification. The area encompassed by this investigation includes five counties in eastern Ohio that comprise nearly 7,500 square kilometers (3,000 square miles). The counties have been disrupted by coal mining since the early 1800's, and strip mining has been practiced in all of them. The environmental effects of strip mining are also discussed.

  14. Accustrip - The next generation in nontoxic low impact stripping

    NASA Astrophysics Data System (ADS)

    Lee, Rick C.; Kirschner, Larry

    1989-03-01

    Accustrip: a new 'wet stripping' process that allows depainting in existing chemical stripping facilities utilizes a proprietary blend of sodium bicarbonate as a media along with a mixture of air and water. The media is manufactured and blended as food grade quality. The process has several major benefits. It has very low dust emissions, removes oil and grease, and has ability to remove surface corrosion from metal substrates during stripping without additional steps or materials. The blended sodium bicarbonate is nontoxic to the worker and environment. Economics of the media do not require costly reclaim facilities or dust collecting systems. Disposal costs are minimal.

  15. Enamel stripping and the spring aligner appliance--an update.

    PubMed

    Lew, K K

    1993-12-01

    Irregularity of the mandibular incisors in an otherwise good occlusion is quite common in young adult patients. Through use of enamel stripping in the incisor region, it is possible to create sufficient space to align the teeth with a mandibular sectional removable appliance, commonly known as the spring aligner. This article reviews the methods of enamel stripping and describes the author's preferred technique of enamel stripping and the various modifications of the spring aligner appliances that can be prescribed by the general practitioner to correct mandibular anterior crowding.

  16. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.

    PubMed

    Qi, Chengzhu; Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2014-07-23

    Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.

  17. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  18. Silicon Carbide Shapes.

    DTIC Science & Technology

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  19. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  20. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  1. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones.

  2. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  3. SILICON METABOLISM IN DIATOMS

    PubMed Central

    Lewin, Joyce C.

    1954-01-01

    1. Cells of the fresh water diatom Navicula pelliculosa may be grown in a mineral medium containing a low concentration of silicon. When transferred to a fresh silicate solution and incubated under non-growing conditions such deficient cells rapidly take up silicon from the medium. 2. The utilization of silicon is an aerobic process. 3. When deficient cells are washed with distilled water or saline, their ability to utilize silicon is impaired whereas respiration is unaffected. 4. The ability of washed cells to take up silicon can be partially restored with sulfate or ascorbic acid, and is completely restored by Na2S, Na2S2O3, glutathione, l-cysteine, dl-methionine, or ascorbic acid plus sulfate. 5. The sulfhydryl reagent, CdCl2, inhibits silicon utilization of unwashed cells at concentrations which do not affect respiration. This inhibition similarly is reversed by glutathione or cysteine. 6. However, sodium iodoacetate or sodium arsenite inhibits respiration and silicon utilization at the same concentrations. 7. The silicon taken up by deficient cells is deposited at the cell surface as a thickening of the existing silica frustules. 8. Sulfhydryl groups in the cell membrane may be involved in silicon uptake by diatoms. PMID:13163359

  4. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  5. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  6. Three-dimensional Diffusive Strip Method

    NASA Astrophysics Data System (ADS)

    Martinez-Ruiz, Daniel; Meunier, Patrice; Duchemin, Laurent; Villermaux, Emmanuel

    2016-11-01

    The Diffusive Strip Method (DSM) is a near-exact numerical method developed for mixing computations at large Péclet number in two-dimensions. The method consists in following stretched material lines to compute a-posteriori the resulting scalar field is extended here to three-dimensional flows, following surfaces. We describe its 3D peculiarities, and show how it applies to a simple Taylor-Couette configuration with non-rotating boundary conditions at the top end, bottom and outer cylinder. This flow produces an elaborate, although controlled, steady 3D flow which relies on the Ekman pumping arising from the rotation of the inner cylinder is both studied experimentally, and numerically modeled. A recurrent two-cells structure appears formed by stream tubes shaped as nested tori. A scalar blob in the flow experiences a Lagrangian oscillating dynamics with stretchings and compressions, driving the mixing process, and yielding both rapidly-mixed and nearly pure-diffusive regions. A triangulated-surface method is developed to calculate the blob elongation and scalar concentration PDFs through a single variable computation along the advected blob surface, capturing the rich evolution observed in the experiments.

  7. An improved rolled strip pulse forming line.

    PubMed

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  8. An improved rolled strip pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  9. Ram Pressure Stripping of Galaxy JO201

    NASA Astrophysics Data System (ADS)

    Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti

    2017-01-01

    Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.

  10. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  11. Magnetic strip patterns induced by focused ion beam irradiation

    SciTech Connect

    Makarov, D.; Tibus, S.; Rettner, C. T.; Thomson, T.; Terris, B. D.; Schrefl, T.; Albrecht, M.

    2008-03-15

    Focused ion beam exposure was used to locally alter the magnetic properties of a continuous Co/Pd multilayer film with perpendicular magnetic anisotropy. The saturation magnetization, coercivity, and magnetic anisotropy of the films can be tuned by Ga irradiation depending on exposure dose. As a result, a periodic strip pattern consisting of 80 nm wide exposed strips which are magnetically soft, separated by 170 nm wide magnetically hard, unexposed areas was created. Due to strong magnetostatic coupling between the strips, a number of magnetic domain configurations could be stabilized and these have been observed by magnetic force microscopy and magneto-optic Kerr effect measurements. The magnetic domain configurations and their reversal behavior were investigated by micromagnetic simulations as a function of exposure dose and strip period.

  12. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  13. Analysis of a unidirectional, symmetric buffer strip laminate with damage

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1984-01-01

    A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.

  14. Feasibility and energetic evaluation of air stripping for bioethanol production.

    PubMed

    Schläfle, Sandra; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2017-05-01

    Stripping of mashes with air as stripping gas and low ethanol contents between 3 and 5wt% was investigated in terms of its suitability for continuous bioethanol production. Experiments in a Blenke cascade system were carried out and the results were compared with values obtained from theoretical vapour-liquid-equilibrium calculations. The whole stripping process was energetically evaluated by a simulation in ChemCAD and compared to conventional distillation. Therefore several parameters such as temperature, air volume flow and initial ethanol load of the mash were varied. Air stripping was found to be a suitable separation method for bioethanol from mashes with low concentrations. However, energetic aspects have to be considered, when developing a new process.

  15. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  16. Coaxial cable stripping device facilitates RF cabling fabrication

    NASA Technical Reports Server (NTRS)

    Hughes, R. S.; Tobias, R. A.

    1967-01-01

    Coaxial cable stripping device assures clean, right angled shoulder for RF cable connector fabrication. This method requires minimal skill and creates a low voltage standing wave ratio and mechanical stability in the interconnecting RF Cables.

  17. Closeup view of leeds & northrup strip chart recorder for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of leeds & northrup strip chart recorder for monitoring and recording power usage. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  18. 222. NORTH END OF DIVIDING STRIP LOCATED NEAR LITTLE HUNTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    222. NORTH END OF DIVIDING STRIP LOCATED NEAR LITTLE HUNTING CREEK ON GWMP LOOKING SOUTH, 1946. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  19. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  20. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1998-01-01

    The use of multi-orifice rotary nozzles not only increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with the transverse velocity of the nozzle as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Since orifices at the outer edge of the nozzle head move at a faster rate than the orifice located near the center, the energy impact force of the water stream from the outer orifice is spread over a larger area than the water streams from the inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the energy impact to compensate for its wider force distribution. The total flow rate from the combination of orifices must be monitored and kept below the pump capacity while choosing an orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all orifices in the nozzle head pass through the center section, contributing to the stripping in this area while only the outer most orifice contributes to the stripping in the shell area at the extreme outside edge of the nozzle. From t he outer most shell to the center section, more orifices contribute to the stripping in each progressively reduced diameter shell. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation responds by graphically indicating the cumulative affect from each parameter selected. The results from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  1. Improvements in data analysis obtained by large-area silicon ΔE - E detector telescopes

    NASA Astrophysics Data System (ADS)

    Uroić, M.; Milin, M.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Lattuada, M.; Martel, I.; Miljanić, Đ.; Pellegriti, M. G.; Prepolec, L.; Sánchez Benítez, A. M.; Scuderi, V.; Soić, N.; Strano, E.; Torresi, D.

    2015-08-01

    The paper describes a few practical methods for the analysis of data obtained by standard thin-thick silicon detector telescopes used in nuclear reaction measurements. The addressed issues are: 1) improvement in double-sided silicon strip detector (DSSSD) calibration based on the fact that each event is registered twice, both in horizontal and vertical strips, 2) improvements in particle identification and 3) simplified mapping of the non-uniformity of the thin detector, without a dedicated measurement of the thickness. The proposed procedures are applied on experimental data obtained for 30MeV 7Li beam induced reactions on LiF and C targets, studied with a detection setup consisting of four telescopes placed at different angles and distances. The proposed methods aim at quicker and more reliable calibration and particle identification.

  2. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  3. Crystallization of silicon films on glass: a comparison of methods. [Flat panel displays

    SciTech Connect

    Lemons, R.A.; Bosch, M.A.; Herbst, D.

    1982-01-01

    The lure of flat panel displays has stimulated much research on the crystallization of silicon films deposited on large-area transparent substrates. In most respects, fused quartz is ideal. It has high purity, thermal shock resistance, and a softening point above the silicon melting temperature. Unfortunately, fused quartz has such a small thermal expansion that the silicon film cracks as it cools. This problem has been attacked by patterning with islands or moats before and after crystallization, by capping, and by using silicate glass substrates that match the thermal expansion of silicon. The relative merits of these methods are compared. Melting of the silicon film to achieve high mobility has been accomplished by a variety of methods including lasers, electron beams, and strip heaters. For low melting temperature glasses, surface heating with a laser or electron beam is essential. Larger grains are obtained with the high bias temperature, strip heater techniques. The low-angle grain boundaries characteristic of these films may be caused by constitutional undercooling. A model is developed to predict the boundary spacing as a function of scan rate and temperature gradient. 11 figures.

  4. Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.

  5. Detection of bacteria using inkjet-printed enzymatic test strips.

    PubMed

    Creran, Brian; Li, Xiaoning; Duncan, Bradley; Kim, Chang Soo; Moyano, Daniel F; Rotello, Vincent M

    2014-11-26

    Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme-nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection.

  6. Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips

    PubMed Central

    2015-01-01

    Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme–nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection. PMID:25318086

  7. [Effectiveness of the preparation of Bayvarol-Strips (R) in control of Varroa jacobsoni mites].

    PubMed

    Jeliński, M

    1993-01-01

    There were investigated plastic strips with active ingredient flumethrin: Bayvarol-Strips (R). There were used 4 strips for a treatment. They were placed between combs of honey bee colony. The mean effectiveness of te medication was 95.6%. Bayvarol-Strips (R) were harmless for bees.

  8. Theoretical treatment of staircase voltammetric stripping from the thin film mercury electrode

    USGS Publications Warehouse

    Christie, J.H.; Osteryoung, R.A.

    1976-01-01

    Staircase voltammetric stripping is an attractive alternative to both differential pulse and linear scan voltammetric stripping. This paper presents a theoretical treatment of this new stripping mode applied to the thin-film mercury electrode. For equivalent scan rates the faradaic response is somewhat smaller than that obtained by linear scan stripping.

  9. 26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Stripped inflation-indexed debt instruments. 1....1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the Treasury's Separate Trading...

  10. 26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Stripped inflation-indexed debt instruments. 1... Losses § 1.1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the...

  11. Temperature dependence of the response of ultra fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Mulargia, R.; Arcidiacono, R.; Bellora, A.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Cirio, R.; Dalla Betta, G. F.; Durando, S.; Fadavi, A.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Kramberger, G.; Mandic, I.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F. W.; Seiden, A.; Sola, V.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2016-12-01

    The Ultra Fast Silicon Detectors (UFSD) are a novel concept of silicon detectors based on the Low Gain Avalanche Diode (LGAD) technology, which are able to obtain time resolution of the order of few tens of picoseconds. First prototypes with different geometries (pads/pixels/strips), thickness (300 and 50 μm) and gain (between 5 and 20) have been recently designed and manufactured by CNM (Centro Nacional de Microelectrónica, Barcelona) and FBK (Fondazione Bruno Kessler, Trento). Several measurements on these devices have been performed in laboratory and in beam test and a dependence of the gain on the temperature has been observed. Some of the first measurements will be shown (leakage current, breakdown voltage, gain and time resolution on the 300 μm from FBK and gain on the 50 μm-thick sensor from CNM) and a comparison with the theoretically predicted trend will be discussed.

  12. Efficient ozone, sulfate, and ammonium free resist stripping process

    NASA Astrophysics Data System (ADS)

    Dattilo, Davide; Dietze, Uwe

    2014-07-01

    In recent years, photomask resist strip and cleaning technology development was substantially driven by the industry's need to prevent surface haze formation through the elimination of sulfuric acid and ammonium hydroxide from these processes. As a result, conventional SPM (H2SO4 + H2O2) was replaced with Ozone water (DIO3) for resist stripping and organic removal to eliminate chemical haze formation [1, 2]. However, it has been shown that DIO3 basted strip and clean process causes oxidative degradation of photomask materials [3, 4]. Such material damage can affect optical properties of funcitional mask layers, causeing CD line-width, phase, transmission and reflection changes, adversely affecting image transfer during the Lithography process. To overcome Ozone induced surface damage, SUSS MicroTec successfully developed a highly efficient strip process, where photolysis of DIO3 is leading to highly reactive hydroxyl radical formation, as the main contribution to hydrocarbon removal without surface damage [5]. This technology has been further extended to a final clean process, which is utilizing pure DI water for residual organic material removal during final clean [6]. Recently, SUS MicroTec did also successfully release strip and clean processes which completely remove NH4OH, eliminating any chemicals known today to induce haze [7]. In this paper we show the benefits of these new technologies for highly efficient sulfate and ammonium free stripping and cleaning processes.

  13. Ammonia stripping for enhanced biomethanization of piggery wastewater.

    PubMed

    Zhang, Lei; Lee, Yong-Woo; Jahng, Deokjin

    2012-01-15

    In this study, the effects of ammonia removal by air stripping as a pretreatment on the anaerobic digestion of piggery wastewater were investigated. Ammonia stripping results indicated that ammonia removal was strongly dependent on pH and aeration rate, and the ammonia removal rate followed the pseudo-first-order kinetics. A significant enhancement of biomethanization was observed for wastewaters of which ammonia was air-stripped at pH 9.5 and pH 10.0. The methane productivity increased from 0.23 ± 0.08 L CH(4)/Ld of the control (raw piggery wastewater) to 0.75 ± 0.11 L CH(4)/Ld (ammonia-stripped at pH 9.5) and 0.57 ± 0.04 L CH(4)/Ld (ammonia-stripped at pH 10.0). However, the improvement of methane production from the piggery wastewater pretreated at pH 11.0 was negligible compared to the control, which was thought to be due to the high concentration of sodium ions supplied from sodium hydroxide for pH adjustment. From these results, it was concluded that ammonia removal through air stripping at the alkaline pH could be a viable option for preventing the failure of anaerobic digestion of the raw piggery wastewater. Additionally, it was also found that a high concentration of sodium ion originated from sodium hydroxide for pH adjustment inhibited methane production.

  14. Retention of Water and Sediment by Grass Strips

    NASA Astrophysics Data System (ADS)

    van Dijk, P. M.; Kwaad, F. J. P. M.; Klapwijk, M.

    1996-08-01

    This paper discusses aspects of grass vegetation in relation to soil erosion control. By means of a literature research, four options for using grass vegetation were recognized, each having its own requirements concerning maintenance, vegetation characteristics and field layout. The main filter mechanisms, application in the field and effects on runoff and soil loss are discussed. Field experiments on filter strips were carried out to determine whether literature data for water and sediment retention by vegetation can be applied to sloping loess soils in South Limburg (The Netherlands). The field experiments simulated a situation in which surface runoff carrying loess sediment from an upslope field enters a grass strip. The retention of water and sediment by grass strips was determined by measuring runoff discharge and the sediment concentration at the inflow and outflow points from bordered plots. Two locations with different grass age and agricultural management were studied. Results show that grass strips are effective in filtering sediment from surface runoff as long as concentrated flow is absent. Outflow sediment concentrations could be described as a function of inflow concentrations and strip width. Reductions of sediment discharge varied between 50-60, 60-90 and 90-99% for strips of 1, 4-5 and 10 m width, respectively. Old grass, extensively used as pasture, is more effective in reducing erosion than the younger grass which was often accessed by tractors for mowing. Differences in water retention between both grass locations appear to be caused mainly by differences in grass density.

  15. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  16. Development of a thin steel strip casting process. Final report

    SciTech Connect

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  17. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  18. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  19. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  20. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  1. Silicon Carbide Photoconductive Switches

    DTIC Science & Technology

    1994-09-01

    The optoelectronic properties of p-type 6-H silicon carbide (6H-SiC) have been investigated in an experiment that used lateral and vertical...and the bandgap was determined to be approximately 3.1 eV. 6H-SiC, Photoconductive, Photovoltaic, Absorption coefficient, Switch, Silicon carbide

  2. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  3. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  4. Silicones in medical electronics.

    PubMed

    Bruner, Stephen

    2008-01-01

    The use of silicones, although already extensive, is set to grow in medical electronics. Silicones used in medical device applications as tubing or moulded parts should also be considered for electronic applications in the same device. This article outlines the potential reduction in complexity that this solution offers. Benefits include eliminating negative materials interactions and avoiding bonding problems.

  5. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  6. Attenuation of epsilon(sub eff) of coplanar waveguide transmission lines on silicon substrates

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Young, Paul G.

    1993-01-01

    Attenuation and epsilon(sub eff) of Coplanar Waveguide (CPW) transmission lines were measured on Silicon substrates with resistivities ranging from 400 to greater than 30,000 ohm-cm, that have a 1000 angstrom coating of SiO2. Both attenuation and epsilon(sub eff) are given over the frequency range 5 to 40 GHz for various strip and slot widths. These measured values are also compared to the theoretical values.

  7. Silicon telescope for prototype sensor characterization using particle beams and cosmic rays

    NASA Astrophysics Data System (ADS)

    Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Lazzaroni, M.; Merli, A.; Monti, M.; Neri, N.; Petruzzo, M.; Rachevskaia, I.; Terzi, D.

    2017-03-01

    We present the design and the performance of a silicon strip telescope that we have built and recently used as reference tracking system for prototype sensor characterization. The telescope was operated on beam at the CERN Super Proton Synchrotron and also using cosmic rays in the laboratory. We will describe also the data acquisition system, based on a custom electronic board that we have developed, and the online monitoring system to control the quality of the data in real time.

  8. Hydrological heterogeneity in agricultural riparian buffer strips

    NASA Astrophysics Data System (ADS)

    Hénault-Ethier, Louise; Larocque, Marie; Perron, Rachel; Wiseman, Natalie; Labrecque, Michel

    2017-03-01

    Riparian buffer strips (RBS) may protect surface water and groundwater in agricultural settings, although their effectiveness, observed in field-scale studies, may not extend to a watershed scale. Hydrologically-controlled leaching plots have often shown RBS to be effective at buffering nutrients and pesticides, but uncontrolled field studies have sometimes suggested limited effectiveness. The limited RBS effectiveness may be explained by the spatiotemporal hydrological heterogeneity near non-irrigated fields. This hypothesis was tested in conventional corn and soy fields in the St. Lawrence Lowlands of southern Quebec (Canada), where spring melt brings heavy and rapid runoff, while summer months are hot and dry. One field with a mineral soil (Saint-Roch-de-l'Achigan) and another with an organic-rich soil (Boisbriand) were equipped with passive runoff collectors, suction cup lysimeters, and piezometers placed before and after a 3 m-wide RBS, and monitored from 2011 to 2014. Soil topography of the RBS was mapped to a 1 cm vertical precision and a 50 cm sampling grid. On average, surface runoff intersects the RBS perpendicularly, but is subject to substantial local heterogeneity. Groundwater saturates the root zones, but flows little at the time of snowmelt. Groundwater flow is not consistently perpendicular to the RBS, and may reverse, flowing from stream to field under low water flow regimes with stream-aquifer connectivity, thus affecting RBS effectiveness calculations. Groundwater flow direction can be influenced by stratigraphy, local soil hydraulic properties, and historical modification of the agricultural stream beds. Understanding the spatiotemporal heterogeneity of surface and groundwater flows is essential to correctly assess the effectiveness of RBS in intercepting agro-chemical pollution. The implicit assumption that water flows across vegetated RBS, from the field to the stream, should always be verified.

  9. Silicone-containing composition

    DOEpatents

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  10. Intraventricular Silicone Oil

    PubMed Central

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  11. Silicon Nanocrystal Laser

    SciTech Connect

    Yu, J

    2005-03-09

    The purpose of this feasibility study project was to attempt to demonstrate the silicon-nanocrystal-based laser. Such a silicon laser (made using conventional silicon-manufacturing technologies) would provide the crucial missing link that would enable a completely-silicon-based photonic system. We prepared thin layers of silicon nanocrystal material by ion-implanting Si in fused silica substrates, followed by a high temperature anneal process. These Si nanocrystals produced intense photoluminescence when optically pumped with ultraviolet light. Laser structures based on Fabry-Perot cavity and distributed feedback (DFB) designs were fabricated using the Si nanocrystals as the ''lasing'' medium. We optically pumped the samples with CW lasers at 413nm wavelength to quickly assess the feasibility of making lasers out of the Nanocrystal Si material and to verify the gain coefficients reported by other research groups.

  12. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  13. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  14. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  15. Microstructure evolution of eutectic Al-Cu strips by high-speed twin-roll strip casting process

    NASA Astrophysics Data System (ADS)

    Sahoo, Seshadev; Ghosh, Sudipto

    2015-10-01

    In the present investigation, microstructural evolutions of functionally graded eutectic Al-Cu strips prepared by high-speed twin-roll strip caster at different casting speeds and liquid melt superheats were studied. The as-cast sample was subjected to scanning electron microscope to study the evolution of microstructure of the strip at different casting speeds and liquid melt superheats. At different casting speeds, non-equilibrium eutectic structure observed on the Al-Cu eutectic strip consists of lamellar as well as wavy structure with a distinct boundary. The lamellar microstructure consists of alternating layers of well-bonded α-Al phase and θ-Al2Cu phase. The globular flowery structure within the eutectic matrix was observed on the strip at different liquid melt superheats. The microhardness of the as-cast strip was studied by Vickers hardness tester, and it was found that hardness value increases with increasing casting speed and decreases with increasing liquid melt superheat.

  16. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  17. Synthesizing 3D Surfaces from Parameterized Strip Charts

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; Gomez, Julian; Morehouse, Michael; Gawdiak, Yuri

    2004-01-01

    We believe 3D information visualization has the power to unlock new levels of productivity in the monitoring and control of complex processes. Our goal is to provide visual methods to allow for rapid human insight into systems consisting of thousands to millions of parameters. We explore this hypothesis in two complex domains: NASA program management and NASA International Space Station (ISS) spacecraft computer operations. We seek to extend a common form of visualization called the strip chart from 2D to 3D. A strip chart can display the time series progression of a parameter and allows for trends and events to be identified. Strip charts can be overlayed when multiple parameters need to visualized in order to correlate their events. When many parameters are involved, the direct overlaying of strip charts can become confusing and may not fully utilize the graphing area to convey the relationships between the parameters. We provide a solution to this problem by generating 3D surfaces from parameterized strip charts. The 3D surface utilizes significantly more screen area to illustrate the differences in the parameters and the overlayed strip charts, and it can rapidly be scanned by humans to gain insight. The selection of the third dimension must be a parallel or parameterized homogenous resource in the target domain, defined using a finite, ordered, enumerated type, and not a heterogeneous type. We demonstrate our concepts with examples from the NASA program management domain (assessing the state of many plans) and the computers of the ISS (assessing the state of many computers). We identify 2D strip charts in each domain and show how to construct the corresponding 3D surfaces. The user can navigate the surface, zooming in on regions of interest, setting a mark and drilling down to source documents from which the data points have been derived. We close by discussing design issues, related work, and implementation challenges.

  18. Cardiovascular, diabetes, and cancer strips: evidences, mechanisms, and classifications

    PubMed Central

    Wu, Qing-Hua; Hu, Da-Yi

    2014-01-01

    Objectives To report and name firstly that there are cardiovascular disease (CVD), diabetes mellitus (DM) and cancers (CDC) strips; and disclose their mechanisms, classifications, and clinical significances. Study design Narrative and systematic review study and interpretive analysis. Methods Data sources and study selection: to collect and present related evidences on CDC strips from evidence-based, open-access, both Chinese- and English-language literatures in recent 10 years on clinical trials from PubMed according to keywords “CVD, DM and cancers” as well as authors’ extensive clinical experience with the treatment of more than fifty thousands of patients with CVD, diabetes and cancers over the past decades, and analyze their related mechanisms and categories which based on authors’ previous works. Data extraction: data were mainly extracted from 48 articles which are listed in the reference section of this review. Qualitative, quantitative and mixed data were included, narratively and systematically reviewed. Results With several conceptual and technical breakthrough, authors present related evidences on CDC strips, these are, CVD and DM, DM and cancers, cancers and CVD linked, respectively; And “Bad SEED” +/– “bad soil” theory or doctrine may explain this phenomenon due to “internal environmental injure, abnormal or unbalance” in human body resulting from the role of risk factors (RFs) related multi-pathways and multi-targets, which including organ & tissue (e.g., vascular-specific), cell and gene-based mechanisms. Their classifications include main strips/type B, and Branches/type A as showed by tables and figures in this article. Conclusions There are CDC strips and related mechanisms and classifications. CDC strips may help us to understand, prevent, and control related common non-communicable diseases (NCDs) as well as these high risk strips. PMID:25276377

  19. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  20. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.

  1. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  2. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  3. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  4. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  5. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  6. FRONT-END ASIC FOR A SILICON COMPTON TELESCOPE.

    SciTech Connect

    DE GERONIMO,G.; FRIED, J.; FROST, E.; PHLIPS, B.; VERNON, E.; WULF, E.A.

    2007-10-27

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detector process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.

  7. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  8. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph.

    PubMed

    Moskal, P; Rundel, O; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Giergiel, K; Gorgol, M; Jasińska, B; Kamińska, D; Kapłon, Ł; Korcyl, G; Kowalski, P; Kozik, T; Krzemień, W; Kubicz, E; Niedźwiecki, Sz; Pałka, M; Raczyński, L; Rudy, Z; Sharma, N G; Słomski, A; Silarski, M; Strzelecki, A; Wieczorek, A; Wiślicki, W; Witkowski, P; Zieliński, M; Zoń, N

    2016-03-07

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the [Formula: see text] configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the [Formula: see text] matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of [Formula: see text]0.170 ns for 15 cm axial field-of-view (AFOV) and [Formula: see text]0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  9. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  10. Optimization of Focusing by Strip and Pixel Arrays

    SciTech Connect

    Burke, G J; White, D A; Thompson, C A

    2005-06-30

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting strips and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.

  11. Prototype indicator strip for tank ammunition. Final report

    SciTech Connect

    Bates, B.; Griest, W.

    1993-10-31

    Combustible nitrocellulose ordnance casings offer advantages of: light weight, low cost, low detectability, and quick cycling of rounds by immediate disposal. However, mechanical strength is degraded with time by the action of humidity and nitroester diffusion through the casing to adhesives. The primary development effort of this study is a means to detect nitroester migration to the crucial skive joint which binds an assortment of warhead choices to propellant casings. This work has developed a prototype colorimetric indicator strip which, when applied in a field environment, produces a purple tint proportional to casing nitroester concentration, and inversely proportional to remaining adhesive joint strength. This work addressed the three steps in indicator strip use: (1) A suggested protocol for indicator strip preparation was developed. Various coatings, support reagents, and backings were examined resulting in a choice of polyethylene tape coating over separate AB- and C-impregnated cellulose punches. Various methods of punch creation and impregnation were tried resulting in stirred aqueous solutions and suspensions of AB and C, respectively. (2) Suggested protocols for indicator strip application to lab backings and field casings were developed. After chemical stripper was applied to the alumina-polyurethane paint on casings, C and AB punches were stacked and double-tape sealed. (3) A means for indicator strip monitoring was developed. From known time of indicator reaction, casing humidity, and indicator color, a means for field concentration determination was determined. Lab time-lapse photography was used to calibrate the indicator at a single level of humidity.

  12. The Instability Strip of ZZ Ceti White Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Brassard, P.; Dupret, M.-A.

    2015-06-01

    The determination of the location of the theoretical ZZ Ceti instability strip in the log g-Teff diagram has remained a challenge over the years, due to the lack of a suitable treatment for convection in these stars. We report here a detailed stability survey over the whole ZZ Ceti regime, including the low and extremely low masses. We computed to this aim 29 evolutionary sequences of DA models with various masses, chemical layering, and core compositions. These models are characterized by the so-called ML2/α=1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We computed pulsation spectra for these models with the Liège nonadiabatic pulsation code MAD, which is the only one to conveniently incorporate a full time-dependent convection treatment and, thus, provides the best available description of the blue edge of the instability strip. On the other hand, given the failure of all nonadiabatic codes to account properly for the red edge of the strip, including MAD, we tested the idea that the red edge is due to energy leakage through the atmosphere. Using this approach, we found that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip.

  13. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Ilin, A. S.

    2016-08-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa93/Si3N4 and SiN0.8/Si3N4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals.

  14. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  15. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  16. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  17. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  18. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  19. Roll casting of Al-SiCp strip

    NASA Astrophysics Data System (ADS)

    Haga, Toshio

    2016-10-01

    A steel roll with a devised cooling water channel for a vertical type high speed twin roll caster was devised, and was used for strip casting of Al-30vol%SiCp. In the proposed roll caster, the thickness of the wall from the water cooling channel to the roll surface was 4 mm to obtain good cooling conditions. The water cooling channel was machined in the roll core in the lateral direction to prevent convex deformation of the roll. The concave thickness distribution of the strip was improved by the proposed roll. The Al-30vol%SiCp strip had a uniform thickness distribution and could be cast at a speed of 60 m/min. The SiC particles were found to be uniformly distributed, with no obvious agglomeration. The eutectic Si particles were globular and smaller than 3 µm due to the rapid solidification.

  20. Explosive Nucleosynthesis of Ultra-Stripped Type Ic Supernovae

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Suwa, Yudai; Umeda, Hideyuki; Shibata, Masaru; Takahashi, Koh

    We investigate the explosive nucleosynthesis of ultra-stripped Type Ic supernovae (SNe) evolved from 1.45 and 1.5 M ȯ CO stars. We calculate the SN explosions using two-dimensional neutrino-radiation hydrodynamics code. The explosion energy of these SNe is about 1050 erg and the ejecta mass is about 0.1 M ȯ . The 56Ni yield is (6-10) × 10-3 M ȯ . Light curve of ultra-stripped SNe would be fast-fading and subluminous like SN 2005ek. Neutrino-driven winds contain neutron-rich materials and the first-peak r-process elements are produced. Ultra-stripped SNe and sub-energetic SNe evolved from single stars having a small CO core could be sources of light r-elements.

  1. Visualization of a ferromagnetic metallic edge state in manganite strips.

    PubMed

    Du, Kai; Zhang, Kai; Dong, Shuai; Wei, Wengang; Shao, Jian; Niu, Jiebin; Chen, Jinjie; Zhu, Yinyan; Lin, Hanxuan; Yin, Xiaolu; Liou, Sy-Hwang; Yin, Lifeng; Shen, Jian

    2015-02-04

    Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct appearance of ferromagnetic metallic phase is observed along the edge of manganite strips by magnetic force microscopy. The edge states have strong influence on the transport properties of the strips, leading to higher metal-insulator transition temperatures and lower resistivity in narrower strips. Model calculations show that the edge states are associated with the broken symmetry effect of the antiferromagnetic charge-ordered states in manganites. Besides providing a new understanding of the broken symmetry effect in complex oxides, our discoveries indicate that novel edge state physics may exist in strongly correlated oxides beyond the current two-dimensional electronic systems.

  2. T Strip Properties Fabricated by Powder Rolling Method

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Keun; Lee, Chae-Hun; Kim, Jeoung-Han; Yeom, Jong-Taek; Park, Nho-Kwang

    In the present study, the characteristics of the Ti powders fabricated by Hydride-Dehydride (HDH) were analyzed in terms of particle shape, size and size distribution. Ti powders were subjected to roll compaction and their microstructure and green densities were evaluated in terms of particle size, powder morphology, roll gap and rolling speed. Effects of blending elements having different powder sizes on densification properties were analyzed. The strip thickness was proportional to the roll gap up to 0.9 mm and the density of titanium strip was decreased with the increase in roll gap. As the roll speed increased, the strip density and thickness were decreased by using -200 mesh Ti powder. However, the effect of rolling speed for -400 mesh Ti powder was not greater than that of -200 mesh powder. The highest density by 93% was achieved by using -400 mesh Ti powder at 0.1 mm roll gap, however edge cracks and alligator cracks were occurred.

  3. Strip casting with fluxing agent applied to casting roll

    SciTech Connect

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  4. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  5. Experimental evidence that wildflower strips increase pollinator visits to crops

    PubMed Central

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-01-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time

  6. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  7. High chemical abundances in stripped Virgo spiral galaxies

    NASA Astrophysics Data System (ADS)

    Skillman, E. D.; Kennicutt, R. C.; Shields, G. A.

    1993-01-01

    Based on a comparison of the oxygen abundances in H 2 regions in field and Virgo cluster late type spiral galaxies, Shields, Skillman, & Kennicutt (1991) suggested that the highly stripped spiral galaxies in the Virgo cluster have systematically higher abundances than comparable field galaxies. In April 1991 and May 1992 we used the blue channel spectrograph on the MMT to obtain new observations of 30 H 2 regions in Virgo spiral galaxies. These spectra cover the wavelength range from (O II) lambda 3727 to (S II) lambda 6731. We now have observed at least 4 H II regions in 9 spiral galaxies in the Virgo cluster. Combining (O II) and (O III) line strengths, we calculate the H II region oxygen abundances based on the empirical calibration of Edmunds & Pagel (1984). These observations show: (1) The stripped, low luminosity Virgo spirals (N4689, N4571) truly have abundances characteristic of much more luminous field spirals; (2) Virgo spirals which show no evidence of stripping (N4651, N4713) have abundances comparable to field galaxies; and (3) Evidence for transition galaxies (e.g., N4254, N4321), with marginally stripped disks and marginal abundance enhancements. The new observations presented here confirm the validity of the oxygen over-abundances in the stripped Virgo spirals. Shields et al. (1991) discussed two different mechanisms for producing the higher abundances in the disks of stripped galaxies in Virgo. The first is the supression of infall of near-primordial material, the second is the suppression of radial inflow of metal-poor gas. Distinguishing between the two cases will require more observations of the Virgo cluster spirals and a better understanding of which parameters determine the variation of abundance with radius in field spirals (cf., Garnett & Shields 1987).

  8. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  9. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  10. CZT strip detectors for imaging and spectroscopy: collimated beam and ASIC readout experiments.

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Krizmanic, J. F.; Stahle, C. M.; Parsons, A.; Palmer, D. M.; Bartlett, L. M.; Barthelmy, S. D.; Birsa, F.; Gehrels, N.; Odom, J.; Hanchak, C.; Shu, P.; Teegarden, B. J.; Tueller, J.; Barbier, L. M.

    The authors report the status of ongoing investigations into Cadmium Zinc Telluride (CZT) strip detectors for application in hard X-ray astronomy. They have instrumented a nine strip by nine strip region of a two sided strip detector. In order to measure the position resolution of the detectors, they have implemented a collimated beam that concentrates radiation to a spot size less than the strip width of the detector. The detectors exhibited excellent strip uniformity in terms of photon count rate and spectroscopic information.

  11. Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits.

    PubMed

    Wood, Michael; Sun, Peng; Reano, Ronald M

    2012-01-02

    We demonstrate coupling from tapered optical fibers to 450 nm by 250 nm silicon strip waveguides using compact cantilever couplers. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers. Finite difference time domain simulations are used to design the length of the silicon inverse width taper to as short as 6.5 μm for a cantilever width of 2 μm. Modeling of various strip waveguide taper profiles shows reduced coupling losses for a quadratic taper profile. Infrared measurements of fabricated devices demonstrate average coupling losses of 0.62 dB per connection for the quasi-TE mode and 0.50 dB per connection for the quasi-TM mode across the optical telecommunications C band. In the wavelength range from 1477 nm to 1580 nm, coupling losses for both polarizations are less than 1 dB per connection. The compact, broadband, and low-loss coupling scheme enables direct access to photonic integrated circuits on an entire chip surface without the need for dicing or cleaving the chip.

  12. Track finding in silicon trackers with a small number of layers

    NASA Astrophysics Data System (ADS)

    Frühwirth, Rudolf; Glattauer, Robin; Lettenbichler, Jakob; Mitaroff, Winfried; Nadler, Moritz

    2013-12-01

    We present software based on novel techniques, aiming at track finding in silicon trackers with a small number of layers. The core algorithm is a cellular automaton, followed by a Kalman filter and a Hopfield neural network. The first of two test cases is the forward tracking detector (FTD) of the International Large Detector (ILD) at a future linear collider, which covers the forward and backward regions between beam tube and a TPC. It consists of seven disk-shaped silicon detectors (pixels and strips) on either side. Results presented on simulated events without and with background show that our method performs better than a previous one in terms of efficiency, ghost rate and processing speed. The second test case is the silicon vertex detector (SVD) of the Belle II experiment at the B factory at KEK, which is a new device located between a vertex pixel detector and a central drift chamber. It consists of only four cylindrical layers of silicon strip sensors. The focus of this study is on the reconstruction of tracks with very low momentum that miss the surrounding drift chamber. We present results from simulated data, including ghost hits and hits from the machine background.

  13. Treatment of Strip Perforation Using Root MTA: A Case Report

    PubMed Central

    Froughreyhani, Mohammad; Salem Milani, Amin; Barakatein, Behnaz; Shiezadeh, Vahhab

    2013-01-01

    Root perforations are an undesired complication of endodontic treatment which result in loss of integrity of the root, and adversely affect the prognosis of the treatment. Recently, Iranian mineral trioxide aggregate [Root MTA] has been introduced as an ideal material for perforation repair. In this article a successful repair of strip root perforation of mandibular molar using Root MTA is presented with 15-month follow-up. This case suggests that Root MTA may be a substitute material for the treatment of strip perforation; however, more clinical studies with larger sample size and longer follow-ups are needed. PMID:23717336

  14. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  15. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  16. Design and development of equipment for laser wire stripping

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1977-01-01

    Three laser wire strippers have been built for the stripping of Kapton-insulated wire, the baseline wire of the space shuttle orbiter. The strippers are: (1) a bench-model stripper powered with a cw CO2 10.6-micron laser, (2) a hand-held stripper powered with a cw 1.06-micron Nd-YAG laser with an output of 5-7 watts, and (3) a hand-held stripper with a five-inch-long CO2 laser inside the stripping head.

  17. In-well vapor stripping drilling and characterization work plan

    SciTech Connect

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  18. High resolution cross strip anodes for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Tremsin, A. S.; Vallerga, J. V.; Abiad, R.; Hull, J.

    2003-05-01

    A new photon counting, imaging readout for microchannel plate sensors, the cross strip (XS) anode, has been investigated. Charge centroiding of signals detected on two orthogonal layers of sense strip sets are used to derive photon locations. The XS anode spatial resolution (<3 μm FWHM) exceeds the spatial resolution of most direct charge sensing anodes, and does so at low gain (<2×10 6). The image linearity and fidelity are high enough to resolve and map 7 μm MCP pores, offering new possibilities for astronomical and other applications.

  19. A plane mirror experiment inspired by a comic strip

    NASA Astrophysics Data System (ADS)

    Lúcio Prados Ribeiro, Jair

    2016-01-01

    A comic strip about a plane mirror was used in a high school optics test, and it was perceived that a large portion of the students believed that the mirror should be larger than the object so the virtual image could be entirely visible. Inspired on the comic strip, an experimental demonstration with flat mirrors was developed, in order to readdress this topic learning. Students were encouraged to create their own investigation of the phenomenon with a simple instrumental apparatus and also suggest different experimental approaches.

  20. A fast, low-power, 6-bit SAR ADC for readout of strip detectors in the LHCb Upgrade experiment

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2014-07-01

    The readout of silicon strip sensors in the upgraded Tracker System of Large Hadron Collider beauty (LHCb) experiment will require a novel complex Application Specific Integrated Circuit (ASIC). The ASIC will extract and digitise analogue signal from the sensor and subsequently will perform digital processing and serial data transmission. One of the key processing blocks, placed in each channel, will be an Analogue to Digital Converter (ADC). A prototype of fast, low-power 6-bit Successive Approximation Register (SAR) ADC was designed, fabricated and tested. The measurements of ADC prototypes confirmed simulation results showing excellent overall performance. In particular, very good resolution with Effective Number Of Bits (ENOB) 5.85 was obtained together with very low power consumption of 0.35 mW at 40 MS/s sampling rate. The results of the performed static and dynamic measurements confirm excellent ADC operation for higher sampling rates up to 80 MS/s.

  1. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  2. Scar management by means of occlusion and hydration: a comparative study of silicones versus a hydrating gel-cream.

    PubMed

    Hoeksema, Henk; De Vos, Marie; Verbelen, Jozef; Pirayesh, Ali; Monstrey, Stan

    2013-11-01

    Despite the worldwide use of silicones in scar management, its exact working mechanism based on a balanced occlusion and hydration, is still not completely elucidated. Moreover, it seems peculiar that silicones with completely different occlusive and hydrating properties still could provide a similar therapeutic effect. The objective of the first part of this study was to compare the occlusive and hydrating properties of three fluid silicone gels and a hydrating gel-cream. In a second part of the study these results were compared with those of silicone gel sheets. Tape stripped skin was used as a standardized scar like model on both forearms of 40 healthy volunteers. At specific times, trans epidermal water loss (TEWL) and the hydration state of the stratum corneum were measured and compared with intact skin and a scar-like control over a 3-4h period. Our study clearly demonstrated that fluid silicone gels and a hydrating gel-cream have comparable occlusive and hydrating properties while silicone gel sheets are much more occlusive, reducing TEWL values far below those of normal skin. A well-balanced, hydrating gel-cream can provide the same occlusive and hydrating properties as fluid silicone gels, suggesting that it could eventually replace silicones in scar treatment.

  3. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    NASA Astrophysics Data System (ADS)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  4. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  5. Research on Silicon, Carbon, and Silicon Carbide Heterostructures

    DTIC Science & Technology

    1990-09-14

    0Innr Jc9&9b 1. TITLE (Include Security Classification) Research on Silicon, Carbon, and Silicon Carbide Heterostructures Z. PERSONAL AUTHOR(S) W. D...and identify by block number) FIELD I GROUP SUB-GROUP PLASMAS. DEPOSITION. THIN FILMS. SILICON CARBIDE . DIAMOND. SURFACES. DESORPTION. CHARACTERIZATION...AND SILICON CARBIDE HETEROSTRUCTURES W. D. Partlow (P.I.), W. J. Choyke, J. T. Yates, Jr., C. C. Cheng, H. Gutleben, L. E. Kline, R. R. Mitchell, J

  6. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  7. Strip tillage for single and twin-row peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil degradation and rising production costs have prompted grower interest in conservation tillage with high residue cover crops for peanut (Arachis hypogaea L.). The objective was to evaluate single and twin-row peanut production across three different strip tillage implements with and without a c...

  8. Restoration of decayed primary incisors using strip crowns.

    PubMed

    Pollard, M A; Curzon, J A; Fenlon, W L

    1991-05-01

    Caries of the primary incisors is a common problem that can be arrested if recognized early enough. However, the arrested decay is unsightly. Celluloid 'strip' crown forms, used with composite resin, now allow the restoration of even the most badly decayed primary incisors. The authors describe this quick and efficient technique.

  9. Evaluation of an automated urine chemistry reagent-strip analyzer.

    PubMed

    Lott, J A; Johnson, W R; Luke, K E

    1995-01-01

    We evaluated the Miles Inc., Clinitek Atlas Automated Urine Chemistry Analyzer for 11 tests: bilirubin, color, glucose, ketones, leukocyte esterase, nitrite, occult blood, pH, protein, specific gravity, and urobilinogen. The instrument uses a roll of reagent strips affixed to a clear plastic support; urine specimens are automatically pipetted onto these strips. The instrument measures the pads' color using reflectance colorimetry. Specific gravity is measured using a fiberoptic refractive index method. Four hospitals participated in the evaluation, and tests were performed only on fresh urine samples. We found the instrument easy to use; it has walk-away capability with up to 40-specimen loading capacity plus spaces for STATs, calibrators and controls. We found good comparability with chemical tests and other nonreagent strip procedures, as well as good agreement with the Miles Inc. Clinitek 200+ urine chemistry analyzer and visual reading of the Miles Inc. Multistix Reagent Strips. The Clinitek Atlas is rugged and reliable, and is suitable for a high-volume urinalysis laboratory.

  10. Microbial community diversity in agroforestry and grass vegetative filter strips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative filter strips (VFS) have long been promoted as a soil conservation practice that yields many additional environmental benefits. Most previous studies have focused primarily on the role of vegetation and/or soil physical properties in these ecosystem services. Few studies have investigated...

  11. Metrics for Litho Photography, Offset Stripping, Offset Platemaking.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in litho photography, offset stripping, and offset platemaking, this instructional package is one of six for the communication media occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students…

  12. View from second level looking down on embedded weld strips ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from second level looking down on embedded weld strips and plugged, threaded anchors in the foundation slab. These were put in place to assist in adapting to future configurations of the test stand. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  13. A visual strip sensor for determination of iron.

    PubMed

    Kumar, Sanjukta A; Thakur, Neha; Parab, Harshala J; Pandey, Shailaja P; Shinde, Rakesh N; Pandey, Ashok K; Kumar, Sangita D; Reddy, A V R

    2014-12-03

    A visual strip has been developed for sensing iron in different aqueous samples like natural water and fruit juices. The sensor has been synthesized by UV-radiation induced graft polymerization of acrylamide monomer in microporous poly(propylene) base. For physical immobilization of iron selective reagent, the in situ polymerization of acrylamide has been carried out in the presence of 1,10-phenanthroline. The loaded strip on interaction with Fe(II) in aqueous solution turned into orange red color and the intensity of the color was found to be directly proportional to the amount of Fe(II) in the aqueous sample. The minimal sensor response with naked eye was found for 50ngmL(-1) of Fe in 15min of interaction. However, as low as 20ngmL(-1) Fe could be quantified using a spectrophotometer. The detection limit calculated using the 3s/S criteria, where 's' is the standard deviation of the absorbance of blank reagent loaded strip and 'S' is the slope of the linear calibration plot, was 1.0ngmL(-1). The strip was applied to measure Fe in a variety of samples such as ground water and fruit juices.

  14. 54. VIEW OF STRIP CHART RECORDERS LOCATED ON NORTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VIEW OF STRIP CHART RECORDERS LOCATED ON NORTH WALL OF CONTROL ROOM. THESE MAY BE ORIGINAL INSTRUMENTS. BEARINGS ARE MADE OF LIGNUM VITAE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  15. Consideration of Factors Affecting Strip Effluent PH and Sodium Content

    SciTech Connect

    Peters, T.

    2015-07-29

    A number of factors were investigated to determine possible reasons for why the Strip Effluent (SE) can sometimes have higher than expected pH values and/or sodium content, both of which have prescribed limits. All of the factors likely have some impact on the pH values and Na content.

  16. Results of Laboratory Testing of Advanced Power Strips

    SciTech Connect

    Earle, L.; Sparn, B.

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  17. Nutrient removal by prairie filter strips in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen and phosphorus from agricultural landscapes have been identified as a primary source of excess nutrients in aquatic systems. The primary objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds...

  18. Reference strip location for in-season nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reference strips (areas that have more than adequate nitrogen applied) have been used to normalize SPAD chlorophyll as well as canopy reflectance measurements to determine nitrogen (N) sufficiency of field areas to assess the need for additional N during vegetative growth periods. Fields that have ...

  19. Levitating a strip of paper by blowing over it

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2016-11-01

    It is shown that if you blow vigorously over a curved strip of paper, it levitates into the shape of a catenary. This result quantifies a common classroom demonstration and is a pedagogically useful addition to other studies of catenaries in an intermediate classical mechanics course.

  20. Closeup view of leeds and northrup strip chart recorders used ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of leeds and northrup strip chart recorders used to indicate power usage on certain portions of the system. Note model board builders plaque which reads Kellogg Switchboard and Supply Company- Chicago, USA at left center of photograph. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  1. Graphic Arts: Process Camera, Stripping, and Platemaking. Third Edition.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This document contains teacher and student materials for a course in graphic arts concentrating on camera work, stripping, and plate making in the printing process. Eight units of instruction cover the following topics: (1) the process camera and darkroom equipment; (2) line photography; (3) halftone photography; (4) other darkroom techniques; (5)…

  2. Graphic Arts: Book Two. Process Camera, Stripping, and Platemaking.

    ERIC Educational Resources Information Center

    Farajollahi, Karim; And Others

    The second of a three-volume set of instructional materials for a course in graphic arts, this manual consists of 10 instructional units dealing with the process camera, stripping, and platemaking. Covered in the individual units are the process camera and darkroom photography, line photography, half-tone photography, other darkroom techniques,…

  3. Suppression of geometric barrier in type-II superconducting strips

    NASA Astrophysics Data System (ADS)

    Willa, R.; Geshkenbein, V. B.; Blatter, G.

    2014-03-01

    We study the magnetic response of a superconducting double strip, i.e., two parallel coplanar thin strips of width 2w, thickness d ≪w, and infinite length, separated by a gap of width 2s and subject to a perpendicular magnetic field H. The magnetic properties of this system are governed by the presence of a geometric energy barrier for vortex penetration which we investigate as a function of applied field H and gap parameter s. The new results deal with the case of a narrow gap s ≪w, where the field penetration from the inner edges is facilitated by large flux focusing. Upon reducing the gap width 2s, we observe a considerable rearrangement of the screening currents, leading to a strong reduction of the penetration field and the overall magnetization loop, with a suppression factor reaching ˜(d/w)1/2 as the gap drops below the sample thickness, 2sstrips, we determine the specific sequence of flux penetrations into the different strips. Our studies are relevant for the understanding of platelet-shaped samples with cracks or the penetration into layered superconductors at oblique magnetic fields.

  4. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems

    PubMed Central

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I.; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R2 = 98.78%). PMID:27367694

  5. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Wu, Yuanyuan; Zhu, Yihua; Yang, Xiaoling; Jiang, Xin; Xiao, Jingfan; Zhang, Yuanxing; Li, Chunzhong

    2014-03-01

    Here, we report a simple and ultrasensitive upconversion fluorescent strip sensor based on NaYF4:Yb,Er nanoparticles (NPs) and the lateral flow immunochromatographic assay (LFIA). Carboxyl-modified β-NaYF4:Yb,Er NPs were successfully synthesized by a facile one-pot solvothermal approach, upon further coupling with monoclonal antibody, the resultant UCNPs-antibody conjugates probes were used in LFIA and served as signal vehicles for the fluorescent reporters. V. anguillarum was used as a model analyte to demonstrate the use of this strip sensor. The limit of the detection for the fluorescent strip was determined as 102 CFU mL-1, which is 100 times lower than those displayed by enzyme-linked immunosorbent assays, while the time needed for the detection was only 15 min. Furthermore, no cross-reaction with other eight pathogens was found, indicating the good specificity of the strip. This developed LFIA would offer the potential as a useful tool for the quantification of pathogens analysis in the future.

  6. Triple-stack multigap resistive plate chamber with strip readout

    NASA Astrophysics Data System (ADS)

    Babkin, V.; Basilev, S.; Buryakov, M.; Golovatyuk, V.; Lobastov, S.; Petrov, V.; Rumyantsev, M.; Schipunov, A.; Shutov, A.; Slepnev, I.; Slepnev, V.

    2016-07-01

    A triple-stack MRPC for the TOF system of the BM@N and the MPD experiments at the future collider NICA was tested. We use three stacks of glass to have symmetrical construction which allows to decrease dispersion and reflections of the signal from the readout strip.

  7. Cropland filter strip removal of cattle manure constituents in runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little scientifically-derived information available to help identify setback distances required to effectively reduce contaminants from incoming runoff on cropland areas. The objective of this study was to determine the effects of cropland filter strip (CFS) length and runoff rate on concen...

  8. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-06-29

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

  9. Propellers And Fans Based On The Moebius Strip

    NASA Technical Reports Server (NTRS)

    Seiner, John Milton; Gilinsky, Mikhail Markovich

    1996-01-01

    Moebius strip proposed as basis for optimally shaped airplane and boat propellers, fans, helicopter rotors, mixing screws, coffee grinders, and concrete mixers. Basic idea of optimal shaping of such device to increase working efficiency by increasing area for capture of still medium without increasing power needed for rotation.

  10. Strip-Search Case Testing Balance between Privacy, Student Safety

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2009-01-01

    As it weighs the high-profile case of a 13-year-old girl strip-searched at school, the U.S. Supreme Court is grappling with where to draw the line between protecting student privacy rights and allowing school officials to take steps to ensure a safe environment. During oral arguments, several of the justices seemed sympathetic to the challenges…

  11. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R.; Mitselmakher, G.; Gordeev, A.; Johnson, C.V. |; Polychronakos, V.A.; Golutvin, I.A.

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  12. Delta XTE Spacecraft Arrives at CCAS Skid Strip

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Footage shows the U.S Air Force Aircraft "Air Mobility Command" approaching, and landing at the Cape Canaveral Air Station Skid Strip (CCAS). The truck carrying the Delta XTE Spacecraft is also shown as it leaves the Air Mobility Command.

  13. Low material budget floating strip Micromegas for ion transmission radiography

    NASA Astrophysics Data System (ADS)

    Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.

    2017-02-01

    Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.

  14. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  15. An assessment of buffer strips for improving damage tolerance of composite laminates at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1981-01-01

    Buffer strips greatly improve the damage tolerance of graphite/epoxy laminates loaded in tension. Graphite/polyimide buffer strip panels were made and tested to determine their residual strength at ambient and elevated (177 C) temperature. Each panel was cut in the center to represent damage. Panels were radiographed and crack-opening displacements were recorded to indicate fracture, fracture arrest, and the extent of damage in the buffer strip after arrest. All panels had the same buffer strip spacing and width. The buffer strip material was 0 deg S-glass/PMR-15. The buffer strips were made by replacing narrow strips of the 0 deg graphite plies with strips of the 0 deg S-glass on either a one-for-one or a two-for-one basis. Half of the panels were heated to 177 + or - 3 C before and during the testing. Elevated temperature did not alter the fracture behavior of the buffer configuration.

  16. 78 FR 48147 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ...] Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Countervailing Duty... the countervailing duty (CVD) order on polyethylene terephthalate film, sheet and strip (PET film..., the products covered are all gauges of raw, pretreated, or primed polyethylene terephthalate...

  17. 76 FR 39855 - Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in Part, of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in... administrative review of the antidumping duty order on polyethylene terephthalate film, sheet and strip...

  18. 76 FR 39855 - Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in Part, of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, in... administrative review of the countervailing duty order on polyethylene terephthalate film, sheet and strip...

  19. 76 FR 58248 - Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, In Part, of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Rescission, In... (CVD) order on polyethylene terephthalate film, sheet and strip from India covering the period...

  20. 78 FR 9668 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results... polyethylene terephthalate film (PET Film) from Taiwan.\\1\\ This review covers two respondents, Shinkong.... \\1\\ See Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Preliminary Results...

  1. 75 FR 81570 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary... semiannual new shipper review (NSR) under the antidumping duty order on polyethylene terephthalate film... Fair Value and Antidumping Duty Order: Polyethylene Terephthalate Film, Sheet, and Strip from India,...

  2. 78 FR 48651 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan; Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan; Preliminary... conducting an administrative review of the antidumping duty order on polyethylene terephthalate film, sheet... preliminary results. \\1\\ See Polyethylene Terephthalate Film, Sheet and Strip from Taiwan: Partial...

  3. 75 FR 6634 - Polyethylene Terephthalate Film, Sheet, and Strip from India: Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip from India: Final Results... the preliminary results of administrative review of the countervailing duty order on polyethylene..., 2007. See Polyethylene Terephthalate Film, Sheet, and Strip from India: Preliminary Results...

  4. 76 FR 76365 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab...) is conducting an administrative review of the antidumping duty order on polyethylene terephthalate... from the UAE. See Polyethylene Terephthalate Film, Sheet, and Strip From Brazil, the People's...

  5. 76 FR 76948 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... International Trade Administration Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results...) issued the preliminary results of the administrative review of polyethylene terephthalate film, sheet and... Polyethylene Terephthalate Film, Sheet, and Strip From India: Preliminary Results of Countervailing...

  6. 78 FR 2369 - Polyethylene Terephthalate Film, Sheet and Strip From India: Partial Rescission of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Partial... (CVD) order on polyethylene terephthalate film, sheet and strip from India covering the period...

  7. 78 FR 47276 - Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... International Trade Administration Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final... of the countervailing duty order on polyethylene terephthalate (PET) film, sheet, and strip (``PET film'') from India. The Department finds that revocation of this countervailing duty order...

  8. 76 FR 18156 - Polyethylene Terephthalate Film, Sheet and Strip From India: Extension of Time Limit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Polyethylene Terephthalate Film, Sheet and Strip From India: Extension of... polyethylene terephthalate film, sheet and strip from India covering the period January 1, 2009,...

  9. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    SciTech Connect

    Qiu, Feng; Spring, Andrew M.; Sato, Hiromu; Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke; Aoki, Isao; Otomo, Akira; Yokoyama, Shiyoshi

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  10. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    NASA Astrophysics Data System (ADS)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  11. Bondability of RTV silicon rubber

    NASA Technical Reports Server (NTRS)

    Delollis, N. J.; Montoya, O.

    1972-01-01

    Glow discharge method for producing a bondable Room Temperature Vulcanizing (RTV) silicone is described. Mechanical and chemical properties of silicone specimens are described. Theory concerning the relationship between surface characteristics and bondability is examined with respect to the polymer specimen.

  12. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  13. Comparison of blood glucose test strips in the detection of neonatal hypoglycaemia

    PubMed Central

    Wilkins, B H; Kalra, D

    1982-01-01

    Blood glucose levels were estimated in 101 neonatal blood samples using three glucose test strip methods and the results compared with those from a laboratory. BM-test-glycemie 20-800 test strips and Reflotest-hypoglycemie test strips gave a rapid and reliable estimate of blood glucose level in the range 0-8 mmol/l (0-140 mg/100 ml). Dextrostix test strips tended to overestimate all blood glucose levels. PMID:7181526

  14. Anodic Stripping Voltametry at Mercury Film Deposited on Ultrasmall Carbon Ring Electrodes

    DTIC Science & Technology

    1990-11-05

    ABSTRACT ’Mas-,im 2?0 wC!OS) Anodic stripping voltammetry of lead and cadmium without deliberately added electrolytes has been studied at ultrasmall...ANODIC STRIPPING VOLTAMMETRY AT MERCURY FILMS DEPOSITED ON ULTRASMALL CARBON RING ELECTRODES ABSTRACT Anodic stripping voltammetry of lead and cadmium ...electroac- tive species to the electrode region then arises. Golas and Osteryoung [11,12] have performed anodic stripping square - wave voltam- metry in

  15. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  16. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  17. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  18. Crystalline oxides on silicon.

    PubMed

    Reiner, James W; Kolpak, Alexie M; Segal, Yaron; Garrity, Kevin F; Ismail-Beigi, Sohrab; Ahn, Charles H; Walker, Fred J

    2010-07-20

    This review outlines developments in the growth of crystalline oxides on the ubiquitous silicon semiconductor platform. The overall goal of this endeavor is the integration of multifunctional complex oxides with advanced semiconductor technology. Oxide epitaxy in materials systems achieved through conventional deposition techniques is described first, followed by a description of the science and technology of using atomic layer-by-layer deposition with molecular beam epitaxy (MBE) to systematically construct the oxide-silicon interface. An interdisciplinary approach involving MBE, advanced real-space structural characterization, and first-principles theory has led to a detailed understanding of the process by which the interface between crystalline oxides and silicon forms, the resulting structure of the interface, and the link between structure and functionality. Potential applications in electronics and photonics are also discussed.

  19. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  20. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.