Science.gov

Sample records for ac-dc power transmission

  1. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  2. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  3. First experimental results from DC/DC and AC/DC plasma-based power transformers

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Gibson, William; Nebel, Richard

    2016-10-01

    A plasma-based power transformer has been built and operated in both DC/DC and AC/DC mode. The proprietary Tibbar Plasma Technologies, Inc. transformer design consists of two cylindrically symmetric helical primary electrodes surrounding a low temperature plasma within which a secondary axial current is generated. Initial experimental results have compared well with simulations and moderate conversion efficiencies have been observed. A new proprietary device is currently being constructed that will utilize 3-phase 480 VAC input to achieve higher conversion efficiency and output power. A description of the apparatus and several potential applications will be presented along with preliminary experimental data demonstrating the DC/DC and AC/DC conversion processes. Work performed under ARPA-E contract DE-AR0000677.

  4. Very low noise AC/DC power supply systems for large detector arrays.

    PubMed

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  5. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  6. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  7. AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chowdhury, Badrul H.

    2005-01-01

    ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

  8. Power Quality Improvement in Bridgeless Ac-Dc Converter Based Multi-output Switched Mode Power Supply

    NASA Astrophysics Data System (ADS)

    Singh, Shihka; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2014-12-01

    Computer power supplies are required to have multiple isolated regulated dc voltages with low ripple content and high input power factor at the utility interface. A dc-dc converter is used for obtaining these isolated multi-output dc voltages with excellent regulation. In this paper, a non-isolated ac-dc converter is proposed as the first stage converter to obtain a regulated dc output rather than using a simple uncontrolled diode bridge rectifier at the front end. A dc-dc converter is used at the second stage that has a high frequency transformer with multiple secondary windings to obtain different dc voltage levels at the output. The proposed bridgeless converter based power supply is designed using fundamental design equations, and different component values are calculated. Extensive simulations are carried out to demonstrate the improved performance of the proposed bridgeless converter based multi-output computer power supply at varying source voltages and load conditions. Experimental validation of the power supply is carried on a developed hardware prototype, and the test results are compared with the simulated performance for design verification.

  9. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  10. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  11. AC/DC Smart Control And Power Sharing of DC Distribution Systems

    DTIC Science & Technology

    2012-02-10

    Thesis submitted in partial requirement for the degree of MASTER OF SCIENCE in ELECTRICAL ENGINEERING by Mohamed Anwar Elshaer 2012...will play vital role in electric power systems. It allows residents and businesses the potential to generate electrical energy to sell surplus power...better method for electrical power delivery. This concept is inspired by the possibility of efficient integration of small distributed generation

  12. AC/DC Power Systems with Applications in Future Human Habitat on Lunar and Mars Bases

    NASA Astrophysics Data System (ADS)

    Chowdhury, Badrul H.; Hossain, Sabbir A.; Lawrence, James T.; Barave, Sushant

    2006-01-01

    As NASA readies itself for new space exploration initiatives starting with a human return to the Moon by the year 2020 eventually leading to human exploration of Mars, the requirements for a safe, efficient and comprehensive power system to support the exploration missions as well human habitat will become important issues to consider. Certain issues dealing with electric power generation and distribution on board Mars-bound vehicles and those on Lunar and Martian surfaces are described. The requirements for lightweight power generation dictates the use of a high frequency ac machine. Preliminary results of investigating the design of a permanent magnet synchronous machine is presented.

  13. Development of a Portable AC/DC Welding Power Supply Module

    DTIC Science & Technology

    1975-03-01

    proper time sequence to the SCR contactor ( SCR1 to SCR3, Drawing NO . 1001, Figure IV-A). The zero crossover detector consists of a power supply (JR5...as far as circuit operation is concerned. The voltage on the anode of SCR1 then rises to a positive value as the line voltage crosses zero. When the...pulse to the gate of SCR1 C34 then rapidly d i s c h a r g e s . The power supply is a critical part of the circuit operation. The input power comes

  14. Isolated and Passive Power Factor Correction AC/DC Converter for Radioisotope Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Gutierrez, R.; Lizan, J. L.; Carrasco, J. A.; Maset, E.; Montalban, G.; Sanchis-Kilders, E.; Ejea, J. B.; Ferreres, A.

    2014-08-01

    A power processing system is described for low voltage, large inductance, single-phase alternator. This kind of electrical machine appears in Radioisotope Stirling Generators (RSG) as the electrical part attached to the thermodynamic system. The proposed power conditioning system splits into two independent stages; the front-end rectifier performs power factor control by adding a series capacitor in the AC side that forms a resonant filter with the alternator parasitic inductance. Further, the rectifier, thanks to the alternator inductance, behaves as a constant current source that supplies a current-fed, zero-voltage, zero-current push-pull stage. This approach takes advantage of all parasitic elements. Finally, some discussion about linear shunt and reconfigurable power factor filter is provided.

  15. High-frequency AC/DC converter with unity power factor and minimum harmonic distortion

    SciTech Connect

    Wernekinch, E.R.

    1987-01-01

    The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimental results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.

  16. Development of a 10 kW High Temperature High Power Density Three-Phase AC-DC-AC SiC Converter

    SciTech Connect

    Ning, Puqi

    2012-01-01

    This paper presents the development and experimental performance of a 10 kW, all SiC, 250 C junction temperature high-power-density three-phase ac-dc-ac converter. The electromagnetic interference filter, thermal system, high temperature package, and gate drive design are discussed in detail. Finally, tests confirming the feasibility and validating the theoretical basis of the prototype converter system are described.

  17. High power ac/dc variable R dynamic electrical load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1974-01-01

    A study program was undertaken to investigate various concepts and techniques for identifying and simulating both the steady-state and dynamic characteristics of electrical loads for use during integrated system test and evaluation. The development of hardware capable of providing the simulation capability is discussed. A general purpose simulator was developed with the capability of realizing a variety of models where element values were discretely variable. The different models, each corresponding to real spacecraft equipment, are set up manually for each case by suitable switching and patching. The models are capable of duplicating the dynamic and steady-state response of real loads at full power.

  18. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  19. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  20. Linear Averaged and Sampled Data Models for Large Signal Control of High Power Factor AC-DC Converters

    DTIC Science & Technology

    1990-06-01

    design a digital controller for the outer trol schemes for high power factor ac to dc converters, loop, including PI control , and presents simulation re...design of an analog control (e.g. PI control ) for by the current loop. If kin] is too large, then the inductor tam el (3) Isnoar ts ee lin at tne. Fcorl...with PI Control 6 mm am I m mmmmimmm~mmml r .14 _ _ _ _ _ _ _ _ _ _ O .12 SM .16 .p N 17 .6 Is , TV 240 6 F tic .04 113 .02 a I I ’ 190 0 0.973 I • 0

  1. Direct current power transmission systems

    SciTech Connect

    Padiyar, K.R.

    1991-01-01

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  2. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  3. Power transmission

    SciTech Connect

    Yale, O.S.

    1989-12-12

    This patent describes a power transmission. It comprises: in combination, a master gear having at least one annular tooth set, means for drivingly engaging the master gear with a power source, driven shaft, a yoke member attached to the shaft and including a screw pump housing extending radially with respect to the shaft with a pair of ports in spaced relation, a pump screw rotatable in the housing and a pump gear attached to the screw and engaging the annular tooth set, and a casing for transmission fluid. The pump housing being located for immersion in the fluid.

  4. Active AC/DC control for wideband piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Morel, A.; Grézaud, R.; Pillonnet, G.; Gasnier, P.; Despesse, G.; Badel, A.

    2016-11-01

    This paper proposes a simple interface circuit enabling resonant frequency tuning of highly coupled piezoelectric harvesters. This work relies on an active AC/DC architecture that introduces a tunable short-circuit sequence in order to control the phase between the piezoelectric current and voltage, allowing the emulation of a capacitive load. It is notably shown that this short-circuit time increases the harvested power when the piezoelectric operates outside of resonance. Measurements on a piezoelectric harvester exhibiting a large global coupling coefficient (k2 = 15.3%) have been realized and have proven the efficiency and potential of this technique.

  5. AC-DC Power Processor, Type I.

    DTIC Science & Technology

    1979-11-01

    LLI- >- Crto C) UU- LIJj LLJLJ Q 0d CC LJ CC LA exLLIW LL-13- c c. System Waveforms. Figure 6 shows the control system waveforms which includes the...C mJJ9 aJ mi oli o. o o a, aO ~ ~ ’ ’ 0 C. 1.0 r-.J a, 0) a, m- a, 00 00.0 0% (-> ) V - C - q r I 0D 0 0DC < cc 1.0 W 000 a LO~ r- LO Ul) U) Lo UO...o tt ; q ; t .. .. .. I -- ... ...... 0.. .. . . .. . . ~i31b~dI1Ik. ... ... LodA 3dV~~~~.. ....2 ..ZLI ~ ~O 63l t iJ w il. 4 N ... ... . . 4

  6. Power transmission

    SciTech Connect

    Ordo, J.P.; Raszkowski, J.A.; Klemen, D.

    1991-04-23

    This patent describes a transmission. It comprises a housing having first and second end covers; an input shaft rotatably mounted in the first end cover; an output shaft rotatably supported on the input shaft and in the second end cover; first and second countershafts rotatably supported in the end covers for rotation on respective axis parallel with the input shaft and the output shaft; a first head gear continuously rotatable with the input shaft; second and third head gears meshing with the first head gear and continuously rotatable with the first and second countershafts respectively; ratio gears rotatably supported on each of the countershafts including a first ratio gear on the first countershaft and a second ratio gear on the second countershaft; reverse gear means including a first ratio gear on the first countershaft and a second ratio gear on the second countershaft; reverse gear means including a first member rotatable with the first ratio gear means including a first member rotatable with the first ratio gear and a second member rotatably supported on the second countershaft; synchronizer clutch means selectively and alternatively connectible with the second ratio gear and the second member of the reverse gear means; output gear means drivingly connected with the output shaft and including a first ratio output gear meshing with the second ratio gear; first selectively engageable friction clutch means for connecting the first ratio gear with the first countershaft for completing a low forward drive ratio between the input and output shafts; and second selectively engageable friction clutch means for selectively connecting the synchronizer clutch means to the second countershaft and cooperating therewith to selectively alternatively complete a reverse drive ratio between the input shaft and the output shaft and another forward drive ratio between the input and output shafts.

  7. Unified active and reactive power modulation of HVDC transmission systems

    NASA Astrophysics Data System (ADS)

    Grund, C. E.; Pohl, R. V.

    1981-11-01

    The power modulation of a high voltage direct current (HVDC) system for stabilization of an ac/dc network was investigated. It was found that simultaneous modulation of both dc current and voltage was more effective than just current modulation by itself, since the dc voltage modulation could be used to minimize the reactive power changes resulting from a change of the dc current. This helps stabilize the ac busbar voltages at the converters, which reduces undesirable load flow changes to voltage dependent ac loads, thus improving the effectiveness of the dc power modulation. This unified modulation control concept was evaluated by means of digital computer studies as well as a special purpose HVDC simulator. Several combined ac/dc power transmission systems were synthesized for testing of different modulation controller concepts. An optimum controller design incorporating a linear quadratic control algorithm with full state feedback was first studied. This provided a basis for comparison of suboptimal controller designs utilizing reduced state feedback and a Kalman filter state reconstruction technique.

  8. Improving the dynamic performance of a complex AC/DC system by HVDC control modifications

    SciTech Connect

    Hammad, A.E. ); Gagnon, J. ); McCallum, D. )

    1990-10-01

    The power system of Hydro-Quebec has a peak load of approximately 27 GW. The great distance between the production sites and the load centers introduces stability limitations, which is the reason why the Quebec grid cannot be economically synchronized (through ac transmission with limited capacity) with the U.S. northeastern network. Power exports are therefore dependent on the use of HVDC links of which Hydro-Quebec now possesses five, for a capacity of over 2600 MW. Such a capacity will again soon increase. At the moment, the Chateauguay scheme has the largest HVDC capacity. It transfers 1000 MW by means of two Back-to-Back converter blocks. Various automatic control systems are installed on the Chateauguay scheme owing to the fact that a single circuit of a 765 kV ac line transmits the output of both the HVDC converter stations as well as the output from Beauharnois hydro generating station. Such controls have performed satisfactorily since 1984. However, a remarkable improvement of the overall ac/dc system dynamic performance can be gained by making certain modifications in some of these HVDC system controls. This paper presents the salient features of such control modifications, currently under consideration, using the results of an investigation by digital and analogue simulations that demonstrate the achieved improvements.

  9. Verification of low frequency ac-dc transfer differences of thermal converters using sampling with sine-wave fit

    NASA Astrophysics Data System (ADS)

    Funck, Torsten; Spiegel, Thomas

    2015-09-01

    Thermal converters show significant ac-dc transfer differences at low frequencies due to nonlinearities of the heat transport mechanism and of the thermal-to-electric conversion. It is assumed that the ac-dc transfer differences at low frequencies are proportional to the input power. We have proved this assumption by an independent method with sampling techniques. A novel approach based on sine-wave fitting is used to calculate the RMS value of the sampled signal from the samples. It makes use of the low noise in a metrological environment. Expanded uncertainties in the order of 1.2 μV/V have been achieved.

  10. Evaluation of modern IGBT-modules for hard-switched AC/DC/AC converters

    SciTech Connect

    Blaabjerg, F.; Pedersen, J.K.; Jaeger, U.

    1995-12-31

    The development of IGBT devices is still producing faster devices with lower losses. The applications become more advanced like a complete hard-switched AC/DC/AC converter with almost clean input current and regenerating capabilities. This paper will first focus on a detailed characterization and comparison of eight different IGBT-modules representing state-of-the-art for both PT and NPT technologies. The voltage level of the devices is 1,200V and 1,600V/1,700V. The characterization is done on an advanced measurement system which is briefly described. The characterization is based on static and dynamic tests for both IGBT and the diodes in the IGBT-modules at a junction temperature at 125 C. The comparison is first done directly based on conduction losses and switching losses, and later the measurements are used in a loss model for a complete AC/DC/AC converter application. In the AC/DC/AC converter the power losses are modelled, and different operating conditions are compared like different voltage levels in the DC-link. It is concluded dependent on operation conditions different devices will be preferable, but the high voltage devices have the highest losses even at a high operating voltage.

  11. Disrupted bandcount doubling in an AC-DC boost PFC circuit modeled by a time varying map

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; El Aroudi, Abdelali; Fournier-Prunaret, Danièle; Garcia, Germain; Mosekilde, Erik

    2016-02-01

    Power factor correction converters are used in many applications as AC-DC power supplies aiming at maintaining a near unity power factor. Systems of this type are known to exhibit nonlinear phenomena such as sub-harmonic oscillations and chaotic regimes that cannot be described by traditional averaged models. In this paper, we derive a time varying discretetime map modeling the behavior of a power factor correction AC-DC boost converter. This map is derived in closed-form and is able to faithfully reproduce the system behavior under realistic conditions. In the chaotic regime the map exhibits a sequence of bifurcation similar to a bandcount doubling cascade on the low frequency. However, the observed scenario appears in some sense incomplete, with some gaps in the bifurcation diagram, whose appearance to our knowledge has never been reported before. We show that these gaps are caused by high frequency oscillations.

  12. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  13. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  14. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  15. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

  16. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  17. Zigzag Connected Autotransformer-Based 24-pulse AC-DC Converter

    NASA Astrophysics Data System (ADS)

    Xiao-qiang, Chen; Hao, Qiu

    2015-02-01

    In this paper, a zigzag connected autotransformer-based 24-pulse AC-DC converter is designed, modeled and simulated to feed direct torque controlled induction motor drives. Winding arrangements and parameters of the autotransformer and interphase reactor are given. Moreover, the design procedure of the autotransformer is modified to make it suitable for retrofit applications. Simulation results indicate that the system is capable of eliminating up to 21st harmonics in the ac mains current. The effect of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 24-pulse converters. A set of power quality indices at ac mains and dc side are presented to compare the performance of 6-, 12- and 24-pulse converters.

  18. Simplified power shift transmission

    SciTech Connect

    Michael, R.A.

    1987-04-21

    A multi-speed transmission is described for transferring power between a first shaft and a second shaft, the transmission comprising: a compound planetary assembly including a sun gear, a ring gear concentric with the sun gear, a reaction gear concentric with the ring gear, a planetary gear carrier rotatably supporting first and second sets of planet gears, the first planet gear set intermeshing with the ring gear. The sun gear and the second planet gear set intermesh with the first planet gear set and the reaction gear, means for selectively coupling the first shaft with the sun gear and the reaction gear, and means for selectively preventing rotation of the ring gear, and reaction gear and the planetary carrier; a simple planetary assembly comprising a sun gear component concentric with the sun gear of the compound planetary assembly, a ring gear component concentric with both of the sun gears, and a planetary gear carrier component rotatably supporting a set of planet gears, the planet gear set meshing with the sun gear and the ring gear of the simple planetary.

  19. 77 FR 6554 - Zephyr Power Transmission, LLC; Pathfinder Power Transmission, LLC; Duke-American Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Energy Regulatory Commission Zephyr Power Transmission, LLC; Pathfinder Power Transmission, LLC; Duke-American Transmission Company, LLC; Notice of Petition for Declaratory Order Take notice that on January 30... (Commission), 18 CFR 381.302, Zephyr Power Transmission, LLC (Zephyr), Pathfinder Power Transmission, LLC...

  20. Free-Space Power Transmission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  1. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    SciTech Connect

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  2. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  3. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1995-01-01

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power now control which is unattainable with more conventional devices.

  4. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1994-12-31

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter-based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power flow control which is unattainable with more conventional devices.

  5. Power transmission line monitoring system

    SciTech Connect

    Seppa, T.O.

    1993-08-17

    A method for monitoring the sag of an overhead power transmission line comprising the steps of: measuring the tension of the power line; producing an electrical signal representative of the tension measurement; processing said electrical signal in accordance with a predetermined tension-sag relationship to produce a second signal which is a function of sag of the power line; transmitting said second electrical signal to a distant location in a predetermined transmission mode; receiving the second signal at the distant location whereby current in the power line is adjusted in accordance with the received second signal.

  6. HVDC power transmission technology assessment

    SciTech Connect

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  7. Development of an AC/DC transfer system at the INTI

    SciTech Connect

    Laiz, H.; Garcia, R.; Cioffi, J.

    1994-12-31

    This paper describes the work done at the INTI in order to improve the AC/DC transfer system. Thermal voltage and current converters were constructed by means of serial and parallel arrangements of Single Junction Thermal Converters. The frequency response of both arrangements are presented as well as a description of the design of the high voltage resistors and shunts.

  8. Dust particles precipitation in AC/DC electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Jaworek, A.; Marchewicz, A.; Krupa, A.; Sobczyk, A. T.; Czech, T.; Antes, T.; Śliwiński, Ł.; Kurz, M.; Szudyga, M.; Rożnowski, W.

    2015-10-01

    Submicron and nanoparticles removal from flue or exhaust gases remain still a challenge for engineers. The most effective device used for gas cleaning in power plants or industry is electrostatic precipitator, but its collection efficiency steeply decreases for particles smaller than 1 micron. In this paper, fractional collection efficiency of two-stage electrostatic precipitator comprising of alternating electric field charger and DC supplied parallel-plate collection stage has been investigated. The total number collection efficiency for PM2.5 particles was higher than 95% and mass collection efficiency >99%. Fractional collection efficiency for particles between 300 nm and 1 μm was >95%.

  9. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  11. Microwave transmission system for space power

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1976-01-01

    The system considered makes use of a combined dipole antenna and rectifier. The dipole elements feed a balanced transmission line low-pass filter. A description of a laboratory model microwave power transmission system is given and a higher-power project with a longer range is discussed. Space power transmission experiments are also considered. It is pointed out that the investigations have shown that high overall transmission link efficiencies are possible.

  12. Multiple piezo-patch energy harvesters integrated to a thin plate with AC-DC conversion: analytical modeling and numerical validation

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper

    2016-04-01

    Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.

  13. Feasibility study of wireless power transmission systems

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  14. Solar Power Satellite Microwave Transmission and Reception

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.

    1980-01-01

    Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.

  15. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  16. Space-to-earth power transmission system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Schuh, R.

    1976-01-01

    A preliminary analysis was conducted to establish the requirements of a space-to-earth microwave power transmission system. The need for accurate phase control on the transmitter was established and methods for assessing the impact of power density and thermal constraints on system performance were demonstrated. Potential radio frequency interference was considered. The sensitivity of transmission system scale to variations in power source, transportation and orbital fabrication and assembly costs was also determined.

  17. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  18. Laser power transmission concepts for Martian applications

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Conway, E. J.; Meador, W. E.; Humes, D. H.

    1989-01-01

    Long-term, highly reliable, flexible power will be required to support many diverse activities on Mars and for rapid development of the Mars environment. The potential of laser power transmission for supporting science, materials processing, transportation, and human habitats is discussed. Some advantageous locations for laser power stations in Mars orbit are developed.

  19. Evaluation of damage-induced permeability using a three-dimensional Adaptive Continuum/Discontinuum Code (AC/DC)

    NASA Astrophysics Data System (ADS)

    Fabian, Dedecker; Peter, Cundall; Daniel, Billaux; Torsten, Groeger

    Digging a shaft or drift inside a rock mass is a common practice in civil engineering when a transportation way, such as a motorway, railway tunnel or storage shaft is to be built. In most cases, the consequences of the disturbance on the medium must be known in order to estimate the behaviour of the disturbed rock mass. Indeed, excavating part of the rock causes a new distribution of the stress field around the excavation that can lead to micro-cracking and even to the failure of some rock volume in the vicinity of the shaft. Consequently, the formed micro-cracks modify the mechanical and hydraulic properties of the rock. In this paper, we present an original method for the evaluation of damage-induced permeability. ITASCA has developed and used discontinuum models to study rock damage by building particle assemblies and checking the breakage of bonds under stress. However, such models are limited in size by the very large number of particles needed to model even a comparatively small volume of rock. In fact, a large part of most models never experiences large strains and does not require the accurate description of large-strain/damage/post-peak behaviour afforded by a discontinuum model. Thus, a large model frequently can be separated into a strongly strained “core” area to be represented by a Discontinuum and a peripheral area for which continuum zones would be adequate. Based on this observation, Itasca has developed a coupled, three-dimensional, continuum/discontinuum modelling approach. The new approach, termed Adaptive Continuum/Discontinuum Code (AC/DC), is based on the use of a periodic discontinuum “base brick” for which more or less simplified continuum equivalents are derived. Depending on the level of deformation in each part of the model, the AC/DC code can dynamically select the appropriate brick type to be used. In this paper, we apply the new approach to an excavation performed in the Bure site, at which the French nuclear waste agency

  20. Solar Power Satellite Microwave Power Transmission System Description Executive Summary

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1980-01-01

    The history of the concept of microwave power beaming to Earth is reviewed with emphasis on transmission frequency selection. Constraints on the system power level results from (1) required rejection of waste heat resulting from inefficiencies in the cover conversion of dc electric power to microwave power; (2) the rf power intensity in the ionosphere; and (3) the effect of sidelobe level on aperture illumination factors. Transmitter arrangement, the power distribution system, attitude control, subarrays, waveguides, and alignment are discussed.

  1. Wireless power transmission for battery charging

    SciTech Connect

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy; Wang, Junhua; Li, Jiangui; Li, Weihan; Xu, Jun

    2016-11-15

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into m coil segments with capacitors interconnecting adjacent coil segments.

  2. Microwave transmission system for space power

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1976-01-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wavelength microwaves.

  3. ULTRA HIGH POWER TRANSMISSION LINE TECHNIQUES

    DTIC Science & Technology

    The ultra-high power transmission line techniques including both failure mechanisms and component design are discussed. Failures resulting from...a waveguide. In view of the many advantages of the low loss mode in circular waveguide for ultra-high power levels, a mode transducer and a two...percent of the peak power of a standard rectangular wave guide. Water cooling is provided for high average power operation. Analysis of mode sup pression

  4. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  5. Transmission Line Adapted Analytical Power Charts Solution

    NASA Astrophysics Data System (ADS)

    Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu

    2016-08-01

    The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.

  6. Potential of laser for SPS power transmission

    NASA Technical Reports Server (NTRS)

    Bain, C. N.

    1978-01-01

    Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.

  7. Rectangular coils optimization for wireless power transmission

    NASA Astrophysics Data System (ADS)

    Duan, Zhu; Guo, Yong-Xin; Kwong, Dim-Lee

    2012-01-01

    Wirelessly coupled coils are crucial for efficient power transmission in various applications. Previous design methods are only eligible for improving the efficiency of circular or square coils. This paper presents a method of characterizing and optimizing rectangular coils used in inductively coupled systems. After setting up a lumped component model for inductive coils, the efficiency can be expressed in terms of geometrical parameters of the coils. Subsequently, the power efficiency can be plotted versus these parameters in Matlab, thus getting the desired coils for optimum power transfer. With this design procedure from mathematical optimization, we eventually designed two rectangular coils spaced 10 mm apart, which achieves a power transmission efficiency of 46.4% at a frequency of 3 MHz. The design methodology is verified by simulation and measurement.

  8. Extension of the NIST AC-DC Difference Calibration Service for Current to 100 kHz.

    PubMed

    Kinard, Joseph R; Lipe, Thomas E; Childers, Clifton B

    1997-01-01

    The NIST calibration service for ac-dc difference of thermal current converters relies on multijunction thermal converters as the primary standards, and various thermal converters and thermoelements (TEs) as the reference and working standards. Calibrations are performed by comparing the ac-dc difference of a customer's thermal current converter to the ac-dc difference of a NIST standard current converter. Typical artifacts accepted for calibration include single-junction thermoelements, multijunction thermal converters, and transfer shunts for use with TEs. This paper describes the standards on which the calibration service is based and the results of the study to characterize the NIST standards over the extended frequency range from 50 kHz to 100 kHz at currents from 1 mA to 20 A. The general method for the frequency extension at high frequency involves the use of thermoelements in the 5 mA range, with small frequency dependence, as the starting point for build-up and build-down chains to cover the whole range from 1 mA to 20 A.

  9. How financial transmission rights curb market power

    SciTech Connect

    Stoft, S.

    1997-06-01

    This paper demonstrates that financial transmission rights allow their owners to capture at least a portion, and sometimes all, of the congestion rents. This extends work in this area by Shmuel Oren which was limited to the case in which generators could not purchase financial transmission rights. One form of financial rights, Transmission Congestion Contracts (TCCs), is shown to be so effective in reducing market power that as few as two generators facing a demand curve with zero elasticity may be forced to sell at marginal cost. The extent to which market power is limited depends on the extent to which total generation capacity exceeds export capacity and on the size of individual generators. A relationship is derived that determines when TCCs will eliminate market power. In the case of a three line network, it is shown that the reduction in market power that can be accomplished with {open_quotes}active transmission rights{close_quotes} can also be accomplished with simple contracts for differences.

  10. Termination for superconducting power transmission systems

    DOEpatents

    Forsyth, E.B.; Jensen, J.E.

    1975-08-26

    This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)

  11. Linear Models for Large Signal Control of High Power Factor AC-DC Converters

    DTIC Science & Technology

    1989-11-01

    PI controller , but some modeling aspects are left unclear. Williams [3] designs a controller using the small signal ’transfer function’ between...models for the dynamics of the outer voltage control loop. Finally Section 4 discusses the design of the outer control loop, including PI control , and...dy(t)/dt = -2y(t)/RC’ + (Vl2 k(t) - 2P)/(’ (6) This form already suffices to design controllers (e.g. PI controllers ) for large deviations in y(t

  12. Four speed ratio automatic power transmission

    SciTech Connect

    Daggett, W.E.; Zaracki, S.J.

    1989-12-05

    This patent describes a multiple speed power transmission. It comprises: a power input shaft, a power output shaft and an intermediate shaft located between the input shaft and the output shaft, each shaft being coaxially aligned; first, second and third planetary gear units, each unit having a ring gear, a sun gear, a carrier and planet pinions mounted on the carrier in neshing engagement with the sun gear and ring gear; overdrive brake means; coast clutch means; direct clutch means; band brake means; intermediate brake means; a first overrunning brake; and a second overrunning clutch.

  13. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect

    Nozari, F.; Patel, H.S.

    1988-04-01

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  14. 1996 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    United States. Bonneville Power Administration.

    1996-10-01

    Bonneville Power Administration`s (BPA) 1996 Wholesale Power Rate Schedules, 1996 Ancillary Products and Services Rate Schedule, 1996 Transmission Rate Schedules, and General Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1996. These rate schedules and provisions were approved by the Federal Energy Regulatory Commission (FERC), United States Department of Energy, in September 1996 (Docket Nos EF96-2011-000 and EF96f-2021-000). These rate schedules and General Rate Schedule Provisions were approved on a final basis by the FERC July 30, 1997, in Dept. of Energy--Bonneville Power Administration, Docket Nos. EF96-2011-000 and EF96-2021-000. Except as noted elsewhere, these 1996 rate schedules and provisions supersede BPA`s Wholesale Power Rate Schedules and General Rate Schedule Provisions, and Transmission Rate Schedules and General Transmission Rate Schedule Provisions, effective October 1, 1995. These rate schedules and general rate schedule provisions include all errata.

  15. Acoustic Power Transmission Through a Ducted Fan

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  16. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to Space Station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered Space Station. Practical considerations of launch, deployment and assembly have led to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  17. Power transmission studies for tethered SP-100

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1988-01-01

    The tether and/or transmission line connecting the SP-100 to space station presents some unorthodox challenges in high voltage engineering, power transmission, and distribution. The line, which doubles as a structural element of this unusual spacecraft, will convey HVDC from SP-100 to the platform in low Earth orbit, and environment where the local plasma is sufficient to cause breakdown of exposed conductors at potentials of only a few hundred volts. Its anticipated several years operation, and continuously accumulating exposure to meteoroids and debris, raises an increasing likelihood that mechanical damage, including perforation, will be sustained in service. The present concept employs an array of gas insulated solid wall aluminum coaxial tubes; a conceptual design which showed basic feasibility of the SP-100 powered space station. Practical considerations of launch, deployment and assembly have lead to investigation of reel deployable, dielectric insulated coaxial cables. To be competitive, the dielectric would have to operate reliably in a radiation environment under electrical stresses exceeding 50 kV/cm. The SP-100 transmission line high voltage interfaces are also considered.

  18. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Power transmission lines. 644.431 Section 644... Power transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus... power transmission line and the right of way acquired for its construction is needed for or adaptable...

  19. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Power transmission lines. 644.431 Section 644... Power transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus... power transmission line and the right of way acquired for its construction is needed for or adaptable...

  20. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  1. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  2. KEY COMPARISON Final report on APMP international comparison APMP.EM-K9: High voltage AC-DC transfer standards

    NASA Astrophysics Data System (ADS)

    Wei, Yih-Cheng; Yeh, Hsin-Da

    2010-01-01

    The international key comparison APMP.EM-K9 of AC-DC high voltage transfer standards with 12 participants was carried out from June 2000 to January 2004. This comparison offers the same range and frequencies as BIPM key comparison CCEM-K9, voltages at 500 V and 1000 V, frequency from 1 kHz to 100 kHz. This comparison provides the national metrology institutes (NMIs) of the APMP member economies with an opportunity to link the values of their standards for AC-DC transfer difference to the international reference values. The results of the majority of the participating NMIs show an agreement with the reference value within the associated expanded uncertainty given by the individual NMI. The agreement of the results and the tables of the degree of equivalence of the participants are included. The results have been linked to the key comparison CCEM-K9. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  3. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  4. Final report on COOMET key comparison of AC/DC voltage transfer references (COOMET.EM-K6.a)

    NASA Astrophysics Data System (ADS)

    Velychko, O.; Darmenko, Yu

    2016-01-01

    An intercomparison of AC/DC voltage transfer references has taken place within the framework of COOMET. The intercomparison, piloted by State Enterprise 'Ukrmetrteststandard'-UMTS (Ukraine), has involved five laboratories, including one who is a member of another regional metrological organization-EURAMET (INM, Romania). The results presented in this report appear to show that there are significant differences between some laboratories' representations of the volt. However, the agreement demonstrated by the intercomparison provides confidence in maintaining traceability for the AC/DC voltage transfer references. Proposed to link the results from this key comparison to the CCEM-K6.a comparison. VNIIM (Russia) is linking NMI as far as they participated in CCEM-K6.a. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Davis, Dean; Born, Andrew; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near-term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 15 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  6. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  7. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John

    2002-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper two basic WPT options, using radio waves and light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.

  8. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, Mark; Potter, Seth; Howell, Joseph; Mankins, John

    2007-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this presentation, two basic WPT options, using radio waves an d light waves, are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term, we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in nearterm space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth.

  9. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Potter, Seth D.; Howell, J.; Mankins, J. C.; Fikes, John C. (Technical Monitor)

    2002-01-01

    Space Solar Power (SSP). combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In this paper WPT options using radio waves and light waves are considered for both long-term and near-term SSP applications. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even from the moon. Accordingly, radio- and light- wave WPT options are compared through a wide range of criteria, each showing certain strengths. In the near-term. we plan to beam power over more moderate distances, but still stretch the limits of today's technology. For the near-term, a 100 kWe-class 'Power Plug' Satellite and a 10 kWe-class Lunar Polar Solar Power outpost are considered as the first steps in using these WPT options for SSP. By using SSP and WPT technology in near-term space science and exploration missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from Space to Earth. Power Relay Satellites are also considered as a potential near- to mid-term means to transmit power from Earth to Space and back to distant receiving sites on Earth. This paper briefly considers microwave and laser beaming for an initial Power Relay Satellite system, and concludes that anticipated advancements in laser technology make laser-based concepts more attractive than microwave-based concepts. Social and economic considerations are briefly discussed, and a conceptual description for a laser-based system is offered for illustrative purposes. Continuing technological advances are needed if laser-based systems are to become practical and efficient or near- and far-term applications.

  10. Harmonic analysis of spacecraft power systems using a personal computer

    NASA Technical Reports Server (NTRS)

    Williamson, Frank; Sheble, Gerald B.

    1989-01-01

    The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.

  11. Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.

    2016-05-01

    As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.

  12. Auxiliary power controls on the Nelson River HVDC scheme

    SciTech Connect

    Chand, J. )

    1992-02-01

    This paper describes the auxiliary power controls on the Nelson River HVDC scheme. It shows how the fast control feature of the HVDC link can be utilized to enhance the operation of an integrated ac/dc power system.

  13. Microwave power - An energy transmission alternative for the year 2000

    NASA Technical Reports Server (NTRS)

    Nalos, E.; Sperber, R.

    1980-01-01

    Recent technological advances related to the feasibility of efficient RF-dc rectification make it likely that by the year 2000 the transmission of power through space will have become a practical reality. Proposals have been made to power helicopters, aircraft, balloons, and rockets remotely. Other proposals consider the transfer of power from point to point on earth via relay through space or a transmission of power from large power sources in space. Attention has also been given to possibilities regarding the transmission of power between various points in the solar system. An outline is provided of the microwave power transmission system envisaged for the solar power satellite, taking into account the transmitting antenna, the receiver on earth, aspects of beam formation and control, transmitter options, the receiving antenna design, and cost and efficiency considerations.

  14. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  15. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  16. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Power transmission lines. 644.431 Section 644.431... transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus Property Act of... transmission line and the right of way acquired for its construction is needed for or adaptable to...

  17. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  18. Ecological benefits of dc power transmission

    SciTech Connect

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  19. A feed-forward controlled AC-DC boost converter for biomedical implants.

    PubMed

    Jiang, Hao; Lan, Di; Lin, Dahsien; Zhang, Junmin; Liou, Shyshenq; Shahnasser, Hamid; Shen, Ming; Harrison, Michael; Roy, Shuvo

    2012-01-01

    Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF) is employed to deliver electrical power wirelessly. In this approach, a rectifier is needed to convert the received RF power to a stable DC one. To achieve high efficiency, the induced voltage of the receiving coil must be much higher than the turn-on voltage of the rectifying diode (which could be an active circuit for low turn-on voltage) [1]. In order to have a high induced voltage, the size of the receiving coil often is significantly larger than rest of the implant. A rotating magnets based wireless power transfer has been demonstrated to deliver the same amount of power at much lower frequency (around 100 Hz) because of the superior magnetic strength produced by rare-earth magnets [2]. Taking the advantage of the low operating frequency, an innovative feed-forward controlled AC to DC boost converter has been demonstrated for the first time to accomplish the following two tasks simultaneously: (1) rectifying the AC power whose amplitude (500 mV) is less than the rectifier's turn-on voltage (1.44 V) and (2) boosting the DC output voltage to a much higher level (5 V). Within a range, the output DC voltage can be selected by the control circuit. The standard deviation of the output DC voltage is less than 2.1% of its mean. The measured load regulation is 0.4 V/kΩ. The estimated conversion efficiency excluding the power consumption of the control circuits reaches 75%. The converter in this paper has the potential to reduce the size of the receiving coil and yet achieve desirable DC output voltage for powering biomedical implants.

  20. Demonstration of microwave power transmission in space

    NASA Technical Reports Server (NTRS)

    Chang, K.; Patton, A. D.; Kennedy, M. O.; Little, F. E.; Pollock, M. A.; Hummer, K. A.; Mccleary, J. C.; Wei, B. S.; Brown, A. M.; Mcspadden, J.O.

    1991-01-01

    Three experiments are proposed to demonstrate the feasibility of converting dc power into microwave or millimeter-wave beam and transmitting it to users through free space. The generator could be located on earth or on a utility power satellite. The received power would be converted back into dc or ac power. The success of the experiments could lead to the commercial use of this technology.

  1. Low noise, low heat dissipation, high gain AC-DC front end amplification for scanning probe microscopy.

    PubMed

    Messina, Paolo; Fradin, F Y; Pittana, Paolo

    2009-02-04

    We report here on the design, construction and testing of a vacuum compatible AC-DC amplification system for low signal measurements with scanning probes. The most important feature of this new amplification system is incorporated within the head of a scanning tunneling microscope (STM). This is achieved with a very low thermal dissipation radio frequency amplifier at the STM head. The amplifier gain is higher than 40 dB and has a 50 dB maximum. Further, the AC noise figure is 0.7 dB between 100 and 1000 MHz. The noise induced in the DC amplifier is less than 2 pA RMS (root mean square), which enables the microscope to scan over soft insulating molecular layers. Thermal drift at the STM tip-sample interface is below 0.1 nm min(-1) both in air and in vacuum operation. Atomic resolution on highly oriented pyrolytic graphite surfaces is reliably achieved. Spin noise measurements are provided as an example of an application.

  2. Low noise, low heat dissipation, high gain AC-DC front end amplification for scanning probe microscopy.

    SciTech Connect

    Messina, P.; Fradin, F. Y.; Pittana, P.

    2009-01-01

    We report here on the design, construction and testing of a vacuum compatible AC-DC amplification system for low signal measurements with scanning probes. The most important feature of this new amplification system is incorporated within the head of a scanning tunneling microscope (STM). This is achieved with a very low thermal dissipation radio frequency amplifier at the STM head. The amplifier gain is higher than 40 dB and has a 50 dB maximum. Further, the AC noise figure is 0.7 dB between 100 and 1000 MHz. The noise induced in the DC amplifier is less than 2 pA RMS (root mean square), which enables the microscope to scan over soft insulating molecular layers. Thermal drift at the STM tip-sample interface is below 0.1 nm min{sup -1} both in air and in vacuum operation. Atomic resolution on highly oriented pyrolytic graphite surfaces is reliably achieved. Spin noise measurements are provided as an example of an application.

  3. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  4. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  5. Enabling lunar and space missions by laser power transmission

    NASA Astrophysics Data System (ADS)

    De Young, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-09-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  6. Workshop on Microwave Power Transmission and Reception. Workshop Paper Summaries

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Microwave systems performance and phase control are discussed. Component design and reliability are highlighted. The power amplifiers, radiating elements, rectennas, and solid state configurations are described. The proper sizing of microwave transmission systems is also discussed.

  7. Interference-Aware Transmission Power Control for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Junseok; Kwon, Younggoo

    Maintaining the lowest possible transmission power in the wireless sensor networks (WSNs) is vulnerable to the interference fluctuations because of the bad signal-to-interference-plus-noise-ratio (SINR). The previous transmission power control (TPC) algorithms do not consider much for the interferences from other 2.4GHz devices, which can cause significant performance degradations in real world deployments. This paper proposes the interference-aware transmission power control (I-TPC) algorithm for WSNs. In the proposed algorithm, each node dynamically adjusts the transmission power and the received signal strength (RSS) target, hence the appropriate SINR is provided even when the wireless LAN (WLAN) interferences become strong. The experimental results show that the proposed algorithm outperforms the previous algorithms in terms of the energy and the packet reception ratio (PRR) performance in WLAN interference environments.

  8. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  9. Diode laser power module for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  10. Reception-Conversion Subsystem (RXCV) for microwave power transmission system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    As part of a program to demonstrate the feasibility of power transmission from space, an approximately 25 sq m Reception-Conversion Subsystem was designed and tested. The device collects high power microwave energy, converts it into dc, and dissipates it in an instrumented demonstration load.

  11. Power transmission and reception. An overview and perspective

    NASA Astrophysics Data System (ADS)

    Dietz, R. H.

    1980-07-01

    Systems definition and assessment of the microwave power transmission and reception (PTAR) system for the solar power satellite are surveyed. Five different options are discussed and the separate antenna concept using the linear beam klystron to convert from dc to RF energy is described in detail.

  12. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    NASA Technical Reports Server (NTRS)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  13. Power transmission and reception. An overview and perspective

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.

    1980-01-01

    Systems definition and assessment of the microwave power transmission and reception (PTAR) system for the solar power satellite are surveyed. Five different options are discussed and the separate antenna concept using the linear beam klystron to convert from dc to RF energy is described in detail.

  14. Gear synchronizer assembly for power transmission

    SciTech Connect

    Ikemoto, K.; Terakura, Y.; Funato, Y.

    1987-06-23

    This patent describes a gear synchronizer assembly comprising a gear member rotatable on a transmission shaft, a spline piece mounted on the gear member for rotation and formed at one side with a conical portion with external spline teeth. The improvement on the clutch sleeve is formed at an inner periphery with a first internal radial projection of large circumferential width. A pair of circumferentially spaced second internal radial projections of small circumferential width are arranged at opposite sides of the first internal radial projection. The first and second internal radial projections each are formed at one side with a pair of chamfers and axially movable in corresponding axial grooves in the cylindrical hub portion of the hub member. The synchronizer ring is formed with a pair of raised portions arranged to be engaged with the first internal radial projection. Synchronizer ring is further formed with another pair of raised portions which are arranged to be engaged with the second internal radial projections.

  15. Microwave Power Transmission System Studies. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.

    1975-01-01

    A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.

  16. Resonant ultrasonic wireless power transmission for bio-implants

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Youm, Woosub; Hwang, Gunn; Moon, Kee S.; Ozturk, Yusuf

    2014-03-01

    In this paper, we present the ultrasonic wireless power transmission system as part of a brain-machine interface (BMI) system in development to supply the required electric power. Making a small-size implantable BMI, it is essential to design a low power unit with a rechargeable battery. The ultrasonic power transmission system has two piezoelectric transducers, facing each other between skin tissues converting electrical energy to mechanical vibrational energy or vice versa. Ultrasound is free from the electromagnetic coupling effect and medical frequency band limitations which making it a promising candidate for implantable purposes. In this paper, we present the design of piezoelectric composite transducer, the rectifier circuit, and rechargeable battery that all packaged in biocompatible titanium can. An initial prototype device was built for demonstration purpose. The early experimental results demonstrate the prototype device can reach 50% of energy transmission efficiency in a water medium at 20mm distance and 18% in animal skin tissue at 18mm distance, respectively.

  17. Watt-level wireless power transmission to multiple compact receivers

    NASA Astrophysics Data System (ADS)

    Garraud, A.; Munzer, D. J.; Althar, M.; Garraud, N.; Arnold, D. P.

    2015-12-01

    This paper reports an electrodynamic wireless power transmission (EWPT) system using a low-frequency (300 Hz) magnetic field to transmit watt-scale power levels to multiple compact receivers. As compared to inductively or resonantly coupled coils, EWPT facilitates transmission to multiple non-interacting receivers with little restriction on their orientation. A single 3.0 cm3 receiver achieves 1.25 W power transmission with 8% efficiency at a distance of 1 cm (350 mW/cm3 power density) from the transmitter. The same prototype achieves 9 mW at a distance of 9 cm. Moreover, we demonstrate simultaneous recharge of two wearable devices, using two receivers located in arbitrary positions and orientations.

  18. Radiated microwave power transmission system efficiency measurements

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Brown, W. C.

    1975-01-01

    The measured and calculated results from determining the operating efficiencies of a laboratory version of a system for transporting electric power from one point to another via a wireless free space radiated microwave beam are reported. The system's overall end-to-end efficiency as well as intermediated conversion efficiencies were measured. The maximum achieved end-to-end dc-to-ac system efficiency was 54.18% with a probable error of + or - 0.94%. The dc-to-RF conversion efficiency was measured to be 68.87% + or - 1.0% and the RF-to-dc conversion efficiency was 78.67 + or - 1.1%. Under these conditions a dc power of 495.62 + or - 3.57 W was received with a free space transmitter antenna receiver antenna separation of 170.2 cm (67 in).

  19. Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr. (Inventor)

    1974-01-01

    A microwave, wireless, power transmission system is described in which the transmitted power level is adjusted to correspond with power required at a remote receiving station. Deviations in power load produce an antenna impedance mismatch causing variations in energy reflected by the power receiving antenna employed by the receiving station. The variations in reflected energy are sensed by a receiving antenna at the transmitting station and used to control the output power of a power transmitter.

  20. Gear synchronizer assembly for power transmission

    SciTech Connect

    Ikemoto, K.; Terakura, Y.

    1986-12-02

    This patent describes a gear synchronizer assembly comprising a gear member rotatable on a transmission shaft, a spline piece formed at one side thereof with a conical portion and thereon with external splines and mounted on a hub portion of the gear member for rotation therewith, and a synchronizer ring mounted on the conical portion of the spline piece for frictional engagement therewith. A hub member is fixedly mounted on the shaft for rotation therewith and has a cylindrical hub portion encircling the synchronizer ring and is formed thereon with external splines. A clutch sleeve encircles the cylindrical hub portion of the hub member and has internal splines in continual engagement with the external splines of the hub member. The clutch sleeve is axially shiftable toward and away from the gear member to be engaged at the internal splines thereof with the external splines of the spline piece. A thrust means is included for moving the synchronizer ring toward the spline piece in shifting operation of the clutch sleeve toward the gear member to effect the frictional engagement of the synchronizer ring with the spline piece. The improvement described here wherein the clutch sleeve is formed at its inner periphery with an internal radial projection axially movable in a corresponding axial groove formed in the cylindrical hub portion of the hub member, and wherein the thrust means comprises a radially contractible annular resilient member arranged in surrounding relationship with the synchronizer ring.

  1. Power transmission with parallel identical countershafts

    SciTech Connect

    Raszkowski, J.A.; Klemen, D.

    1991-04-23

    This patent describes an improvement in multiple countershaft transmissions. It includes a housing having a casing, a first end support and a second end support; an input shaft rotatably mounted in the first end support; an output shaft rotatably supported on the input shaft and in the casing; first and second countershafts rotatably supported in one of the end supports and in the casing for rotation on respective axis parallel with the input shaft and the output shaft; a first head gear continuously rotatable with the input shaft; a first head gear continuously rotatable with the input shaft; second and third head gears meshing with the first head gear and continuously rotatable with the first and second countershafts respectively; a plurality of ratio gears rotatably supported on each of the countershafts including a first ratio gear on the first countershaft and a second ratio gear on the second countershaft; reverse gear means including a first member rotatable with the first ratio gear and a second member rotatably supported on the second countershaft; synchronizer clutch means selectively and alternatively connectable with the second ratio gear and the second member of the reverse gear means; output gear means drivingly connected with the output shaft and including a first ratio output gear meshing with the first ratio gear and a second ratio output gear meshing with the second ratio gear; first selectively engageable friction clutch means for connecting the first ratio gear with the first countershaft for completing a low forward drive ratio between the input and output shafts.

  2. A sonic satellite power system microwave power transmission simulation

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.

    1981-01-01

    A simulator is described which generates and transmits a beam of audible sound energy mathematically similar to the SPS power beam. The simulator provides a laboratory means for analysis of ground based closed loop SPS phase control and of ionospheric effects on the SPS microwave power beam.

  3. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  4. Transmission grating stretcher for contrast enhancement of high power lasers.

    PubMed

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P

    2014-12-01

    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  5. Continuously-Variable Positive-Mesh Power Transmission

    NASA Technical Reports Server (NTRS)

    Johnson, J. L.

    1982-01-01

    Proposed transmission with continuously-variable speed ratio couples two mechanical trigonometric-function generators. Transmission is expected to handle higher loads than conventional variable-pulley drives; and, unlike variable pulley, positive traction through entire drive train with no reliance on friction to transmit power. Able to vary speed continuously through zero and into reverse. Possible applications in instrumentation where drive-train slippage cannot be tolerated.

  6. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  7. HVDC power transmission electrode siting and design

    SciTech Connect

    Holt, R.J.; Dabkowski, J.; Hauth, R.L.

    1997-04-01

    This research strives to shed light on the feasibility and practicality of using deep earth electrodes to permit their use for extended periods without adverse consequences. This report begins with a review of the fundamentals associated with current conduction in earth, including the various techniques available for measuring the earth`s electrical properties. The sources of existing data are discussed and some specific data for selected regions of the U.S. and Canada are reviewed as examples. Electrode technology and design issues are reviewed and recent experience gained by New England Power and Hydro-Quebec is discussed. The issues associated with direct current flowing in underground pipelines (and other facilities) are described and the present-day mitigation measures are evaluated. Suggestions are made for further R&D in the coordination of cathodic protection systems, an area that has evolved as an empirical, trial- and-error art more than a science.

  8. Meteorological effects on laser propagation for power transmission

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1982-01-01

    An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.

  9. Free-space microwave power transmission study, phase 3

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1975-01-01

    The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.

  10. European Transmission Interconnection; Eurasian power grid

    SciTech Connect

    Posch, J. )

    1991-09-01

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studies have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.

  11. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  12. Microwave beam power transmission at an arbitrary range

    NASA Technical Reports Server (NTRS)

    Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.

    1992-01-01

    The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.

  13. Study of power management technology for orbital multi-100KWe applications. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1980-01-01

    Mid to late 1980's power management technology needs to support development of a general purpose space platform, capable of suplying 100 to 250 KWe to a variety of users in low Earth orbit are examined. A typical, shuttle assembled and supplied space platform is illustred, along with a group of payloads which might reasonably be expected to use such a facility. Examination of platform and user power needs yields a set of power requirements used to evaluate power management options for life cycle cost effectivness. The most cost effective ac/dc and dc systems are evaluated, specifically to develop system details which lead to technology goals, including: array and transmission voltages, best frequency for ac power transmission, and advantages and disadvantages of ac and dc systems for this application. System and component requirements are compared with the state-of-the-art to identify areas where technological development is required.

  14. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    PubMed

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  15. Portable wireless power transmission system for video capsule endoscopy.

    PubMed

    Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu

    2014-10-01

    Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.

  16. Beamed microwave power transmission and its application to space

    NASA Technical Reports Server (NTRS)

    Brown, William C.; Eves, E. E.

    1992-01-01

    The general principles and special components of beamed microwave power transmission systems are outlined and their application to the space program are discussed. The beamed system is defined as starting with a dc source of power at the transmitting end, converting it to a microwave beam for transmission through space, and ending with the dc power output at the receiving end. An experimentally measured and certified dc-to-dc efficiency of 54 percent has been achieved, using this definition. The application discussed is that of a LEO to GEO transportation system that depends upon vehicles propelled by electric thrusters whose power is supplied by a microwave beam originating at the earth's surface. The advantages of the all-electronic system over a chemically propelled system are enumerated. The principles of space propulsion, particularly as they relate to electric propulsion, are outlined. Key components of the system and environmental considerations are discussed.

  17. Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference

    DOEpatents

    Mi, Chris; Li, Siqi

    2017-01-31

    A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.

  18. Case study on the US superconducting power transmission program

    SciTech Connect

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  19. Transmission Reinforcements in the Central American Regional Power System

    SciTech Connect

    Elizondo, Marcelo A.; Vallem, Mallikarjuna R.; Samaan, Nader A.; Makarov, Yuri V.; Vyakaranam, Bharat; Nguyen, Tony B.; Munoz, Christian; Herrera, Ricardo; Midence, Diego; Shpitsberg, Anna

    2016-07-25

    The Central American regional interconnected power system (SER) connects the countries members of the Central American regional electricity market (MER): Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. The SER was a result of a long term regional effort, and was initially conceived to transfer 300 MW between countries. However, the current transfer limits between countries range from 70 MW to 300 MW. Regional entities, like CRIE (Regional Commission of Electrical Interconnection), EOR (Central American Regional System Operator), and CDMER (Board of Directors of the Central American Market) are working on coordinating the national transmission expansion plans with regional transmission planning efforts. This paper presents experience in Central America region to recommend transmission reinforcements to achieve 300 MW transfer capacity between any pair of member countries of the Central American regional electricity market (MER). This paper also provides a methodology for technical analysis and for coordination among the regional and national entities. This methodology is unique for transmission systems of these characteristics.

  20. Lightning location system supervising Swedish power transmission network

    NASA Technical Reports Server (NTRS)

    Melin, Stefan A.

    1991-01-01

    For electric utilities, the ability to prevent or minimize lightning damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide lightning location system (LLS) for accurately locating lightning ground strikes. Lightning data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when lightning; rapid positioning of emergency crews to locate network damage at areas of detected lightning; and post analysis of power outages and transmission faults in relation to lightning, using archived lightning data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.

  1. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  2. Complex dynamics of blackouts in power transmission systems.

    PubMed

    Carreras, B A; Lynch, V E; Dobson, I; Newman, D E

    2004-09-01

    In order to study the complex global dynamics of a series of blackouts in power transmission systems a dynamical model of such a system has been developed. This model includes a simple representation of the dynamical evolution by incorporating the growth of power demand, the engineering response to system failures, and the upgrade of generator capacity. Two types of blackouts have been identified, each having different dynamical properties. One type of blackout involves the loss of load due to transmission lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackout over the other depends on operational conditions and the proximity of the system to one of its two critical points. The model displays characteristics such as a probability distribution of blackout sizes with power tails similar to that observed in real blackout data from North America.

  3. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  4. An automotive transmission for automotive gas turbine power plants

    NASA Technical Reports Server (NTRS)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  5. Computation of electric power production cost with transmission contraints

    NASA Astrophysics Data System (ADS)

    Earle, Robert Leonard

    The production cost in operating an electric power system is the cost of generation to meet the customer load or demand. Production costing models are used in analysis of electric power systems to estimate this cost for various purposes such as evaluating long term investments in generating capacity, contracts for sales, purchases, or trades of power. A multi-area production costing model includes the effects of transmission constraints in calculating costs. Including transmission constraints in production costing models is important because the electric power industry is interconnected and trades or sales of power amongst systems can lower costs. This thesis develops an analytical model for multi-area production costing. The advantage of this approach is that it explicitly examines the underlying structure of the problem. The major contributions of our research are as follows. First, we develop the multivariate model not just for transportation type models of electric power network flows, but also for the direct current power flow model. Second, this thesis derives the multi-area production cost curve in the general case. This new result gives a simple formula for determination of system cost and the gradient of cost with respect to transmission capacities. Third, we give an algorithm for generating the non-redundant constraints from a Gale-Hoffman type region. The Gale-Hoffman conditions characterize feasibility of flow in a network. We also gather together some existing and new results on Gale-Hoffman regions and put them in a unified framework. Fourth, in order to derive the multi-area production cost curves and also to perform the integration of the multivariate Edgeworth series, we need wedge shaped regions (a wedge is the affine image of an orthant). We give an algorithm for decomposing any polyhedral set into wedges. Fifth, this thesis gives a new method for one dimensional numerical integration of the trivariate normal. The best methods previously known

  6. Impedance matching wireless power transmission system for biomedical devices.

    PubMed

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  7. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  8. A Q-Modulation Technique for Efficient Inductive Power Transmission.

    PubMed

    Kiani, Mehdi; Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2015-12-01

    A fully-integrated power management ASIC for efficient inductive power transmission has been presented capable of automatic load transformation using a method, called Q-modulation. Q-modulation is an adaptive scheme that offers load matching against a wide range of loading (RL ) and coupling distance (d23 ) variations in inductive links to maintain high power transfer efficiency (PTE). It is suitable for inductive powering implantable microelectronic devices (IMDs), recharging mobile electronics, and electric vehicles. In Q-modulation, the zero-crossings of the induced current in the receiver (Rx) LC-tank are detected and a low-loss switch chops the Rx LC-tank for part of the power carrier cycle to form a high-Q LC-tank and store the maximum energy, which is then transferred to RL by opening the switch. By adjusting the duty cycle (D), the loaded-Q of the Rx LC-tank can be dynamically modulated to compensate for variations in RL . A Q-modulation power management (QMPM) prototype chip was fabricated in a 0.35-μm standard CMOS process, occupying 4.8 mm(2). In a 1.45 W wireless power transfer setup, using a class-E power amplifier (PA) operating at 2 MHz, the QMPM successfully increased the inductive link PTE and the overall power efficiency by 98.5% and 120.7% at d23 = 8 cm, respectively, by compensating for 150 Ω variation in RL at D = 45%.

  9. Transmission media appropriate laser-microwave solar power satellite system

    NASA Astrophysics Data System (ADS)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  10. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  11. Power transmission line operating modes calculation with controllable phase shifters

    NASA Astrophysics Data System (ADS)

    Astashev, M. G.; Novikov, M. A.; Panfilov, D. I.; Rashitov, P. A.; Remizevich, T. V.; Fedorova, M. I.

    2016-12-01

    The article contains the analysis of the influence of the phase shifter (PS) on the energy processes in the power transmission line in terms of the two-unit model of the electric network. The approach to synthesis of the models regulated by the phase shifter providing for both calculation of the steady operation modes of the electric networks with the phase shifters and research of the electromagnetic processes and designing of the device itself is offered.

  12. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  13. American lifelines alliance efforts to improve electric power transmission reliability

    USGS Publications Warehouse

    Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.; ,

    2002-01-01

    A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.

  14. Power transmission coefficients for multi-step index optical fibres.

    PubMed

    Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka; Arrue, Jon

    2006-02-20

    The aim of the present paper is to provide a single analytical expression of the power transmission coefficient for leaky rays in multi-step index (MSI) fibres. This expression is valid for all tunnelling and refracting rays and allows us to evaluate numerically the power attenuation along an MSI fibre of an arbitrary number of layers. We validate our analysis by comparing the results obtained for limit cases of MSI fibres with those corresponding to step-index (SI) and graded-index (GI) fibres. We also make a similar comparison between this theoretical expression and the use of the WKB solutions of the scalar wave equation.

  15. Power and signal transmission for mobile teleoperated systems

    SciTech Connect

    Morris, A.C. Jr.; Hamel, W.R.

    1985-01-01

    Appropriate means must be furnished for supplying power and for sending controlling commands to mobile teleoperated systems. Because a sizable number of possibilities are available for such applications, methods used in designing both the power and communications systems built into mobile vehicles that serve in radiological emergencies must be carefully selected. This paper describes a number of umbilical, on-board, and wireless systems used in tranmitting power that are available for mobile teleoperator services. The pros and cons of selecting appropriate methods from a list of possible communication systems (wired, fiber optic, and radio frequency) are also examined. Moreover, hybrid systems combining wireless power transmissions with command-information signals are also possible.

  16. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    PubMed

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  17. Lock-up control system for automobile automatic power transmissions

    SciTech Connect

    Matsuoka, T.; Sumida, S.

    1986-04-08

    This patent describes a lock-up control system for an automobile's automatic power transmission. This system consists of a hydraulic torque converter including an input member and an output member, multiple stage transmission gear, the transmission gear means being provided with gear stages which are selected by changing power transmitting paths therein. An engine speed sensor for sensing engine load. A gear stage selector connected with the engine speed sensing means and the load sensor to receive output signals from the speed sensor and the load sensing means. A lock-up zone discriminator is connected with the engine speed sensor and the load sensor to receive the output signals from each of the sensors. The lock-up zone discriminator includes lock-up control map means having at least one lock-up release data line and at least one lock-up engage data line which are drawn on the basis of engine speed and engine load for at least one of the gear stages. The lock-up engage data line is located at a higher engine speed side than the release data line. In the lock-up zone are discriminating means for comparing the output signals with the data lines and generating a control signal for controlling engagement of the lock-up means, gear shift means for selectively shifting the gear stage by changing the power transmitting path in the multiple stage transmission gear means. Electro-megnetic means are responsive to the signal from the gear stage selecting means for controlling the gear shift means. Lock-up control means for releasing the lock-up means are irrespective of the control signal from the lock-up zone discriminating means when en engine throttle valve is full closed and enlarging the lock-up zone so that the lock-up means is engaged when the engine throttle valve is opened again to a position included in the enlarged lock-up zone.

  18. A portable wireless power transmission system for video capsule endoscopes.

    PubMed

    Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang

    2015-01-01

    Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.

  19. Power transmission for four-wheel drive vehicle

    SciTech Connect

    Tsuzuki, I.

    1987-03-17

    A power transmission is described for a vehicle having front and rear wheel drive and a prime mover, the transmission comprising: a change-speed gearing operatively disposed in a transmission casing secured to the prime mover, the gearing including an input shaft drivingly connected to the prime mover, and an output shaft drivingly connected to the input shaft; a first drive shaft drivingly connected to the front wheels; a second drive shaft coaxial with the first drive shaft and drivingly connected to the rear wheels; and an intermediate differential unit drivingly interconnecting the output shaft and the first and second drive shafts, the differential unit comprising: an input gear coaxially surrounding the first drive shaft and drivingly connected to the output shaft; coaxial planetary gear sets providing a plurality of drive power trains at different gear ratios, each of the gear set including sun, planet and ring gears. The gear sets are drivingly connected to one of the input gear and second drive shaft, and a portion of the other of the input gear and second drive shaft coaxially surround and define the ring gears of the gear sets; and means drivingly connected to the first drive shaft for selectively engaging one of the gear sets into driving connection with the first and second drive shafts.

  20. Power transmission device for four wheel drive vehicle

    SciTech Connect

    Iwatsuki, T.; Kawamoto, M.; Kano, T.

    1988-12-13

    This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch for engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.

  1. Normalized power transmission between ABP and ICP in TBI.

    PubMed

    Shahsavari, S; Hallen, T; McKelvey, T; Ritzen, C; Rydenhag, B

    2009-01-01

    A new approach to study the pulse transmission between the cerebrovascular bed and the intracranial space is presented. In the proposed approach, the normalized power transmission between ABP and ICP has got the main attention rather than the actual power transmission. Evaluating the gain of the proposed transfer function at any single frequency can reveal how the percentage of contribution of that specific frequency component has been changed through the cerebrospinal system. The gain of the new transfer function at the fundamental cardiac frequency was utilized to evaluate the state of the brain in three TBI patients. Results were assessed using the reference evaluations achieved by a novel CT scan-based scoring scheme. In all three study cases, the gain of the transfer function showed a good capability to follow the trend of the CT scores and describe the brain state. Comparing the new transfer function with the traditional one and also the index of compensatory reserve, the proposed transfer function was found more informative about the state of the brain in the patients under study.

  2. 76 FR 4103 - Central Minnesota Municipal Power Agency, Midwest Municipal Transmission Group; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Central Minnesota Municipal Power Agency, Midwest Municipal Transmission... Municipal Power Agency and Midwest Municipal Transmission Group submitted an amendment to a petition for...

  3. 75 FR 81264 - Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent... (2006), Critical Path Transmission, LLC and Clear Power LLC (Complainants) filed a complaint...

  4. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  5. A Q-Modulation Technique for Efficient Inductive Power Transmission

    PubMed Central

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2015-01-01

    A fully-integrated power management ASIC for efficient inductive power transmission has been presented capable of automatic load transformation using a method, called Q-modulation. Q-modulation is an adaptive scheme that offers load matching against a wide range of loading (RL) and coupling distance (d23) variations in inductive links to maintain high power transfer efficiency (PTE). It is suitable for inductive powering implantable microelectronic devices (IMDs), recharging mobile electronics, and electric vehicles. In Q-modulation, the zero-crossings of the induced current in the receiver (Rx) LC-tank are detected and a low-loss switch chops the Rx LC-tank for part of the power carrier cycle to form a high-Q LC-tank and store the maximum energy, which is then transferred to RL by opening the switch. By adjusting the duty cycle (D), the loaded-Q of the Rx LC-tank can be dynamically modulated to compensate for variations in RL. A Q-modulation power management (QMPM) prototype chip was fabricated in a 0.35-μm standard CMOS process, occupying 4.8 mm2. In a 1.45 W wireless power transfer setup, using a class-E power amplifier (PA) operating at 2 MHz, the QMPM successfully increased the inductive link PTE and the overall power efficiency by 98.5% and 120.7% at d23 = 8 cm, respectively, by compensating for 150 Ω variation in RL at D = 45%. PMID:27087699

  6. Modeling and Power Flow Analysis for Herringbone Gears Power Dual-Branching Transmission System

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofang; Zhu, Yanxiang; Fang, Zongde; Gu, Jiangong

    Based on power dual-branching transmission system of herringbone gears, the mechanical structural model was established. This study represented the simplified algorithm to obtain its power flow situations through formulating the deformation compatibility condition for the linear relationship between the torque and transverse deformation of tooth surface and the torque equilibrium condition. Besides, the effects on the power flow of system were calculated under all kinds of the installation error and processing error of gear pairs. Finally, the power flow situations of dual branches were solved via Programming. A numerical example that illustrated the developed theory was provided. The research results can be applied to analyze the actual application of herringbone gears power split-path transmission system.

  7. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  8. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and... Equipment Standard (29 CFR 1910.137) and the Electric Power Generation, Transmission, and Distribution... the equipment-testing requirements of the Standard. Electric Power Generation, Transmission,...

  9. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  10. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  11. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  12. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  13. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  14. Multi-angle pinion and gear power transmission

    SciTech Connect

    Hart, F.M.

    1986-02-04

    This patent describes a worm and gear power transmission which consists of a housing, an input shaft, two axially aligned, different ratio worms formed on the input shaft in the housing. It also includes a pair of gears spaced apart in the housing such that a first gear of the pair meshes with one of the worms, and a second gear of the pair meshes with the other worm, the first and second gears positioned such that planes through the gears and the axis of the input shaft are at a right angle to one another, and output shafts extending out of the housing from the respective gears.

  15. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  16. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  17. The unified power flow controller: A new approach to power transmission control

    SciTech Connect

    Gyugyi, L.; Schauder, C.D.; Williams, S.L.; Rietman, T.R.; Torgerson, D.R.; Edris, A.

    1995-04-01

    This paper shows that the Unified Power Flow Controller (UPFC) is able to control both the transmitted real power and, independently, the reactive power flows at the sending-and the receiving-end of the transmission line. The unique capabilities of the UPFC in multiple line compensation are integrated into a generalized power flow controller that is able to maintain prescribed, and independently controllable, real power and reactive power flow in the line. The paper describes the basic concepts of the proposed generalized P and Q controller and compares it to the more conventional, but related power flow controller, such as the Thyristor-Controlled Series Capacitor and Thyristor-Controlled Phase Angle Regulator. The paper also presents results of computer simulations showing the performance of the UPFC under different system conditions.

  18. Risk measures for power failures in transmission systems.

    PubMed

    Cassidy, Alex; Feinstein, Zachary; Nehorai, Arye

    2016-11-01

    We present a novel framework for evaluating the risk of failures in power transmission systems. We use the concept of systemic risk measures from the financial mathematics literature with models of power system failures in order to quantify the risk of the entire power system for design and comparative purposes. The proposed risk measures provide the collection of capacity vectors for the components in the system that lead to acceptable outcomes. Keys to the formulation of our measures of risk are two elements: a model of system behavior that provides the (distribution of) outcomes based on component capacities and an acceptability criterion that determines whether a (random) outcome is acceptable from an aggregated point of view. We examine the effects of altering the line capacities on energy not served under a variety of networks, flow manipulation methods, load shedding schemes, and load profiles using Monte Carlo simulations. Our results provide a quantitative comparison of the performance of these schemes, measured by the required line capacity. These results provide more complete descriptions of the risks of power failures than the previous, one-dimensional metrics.

  19. Risk measures for power failures in transmission systems

    NASA Astrophysics Data System (ADS)

    Cassidy, Alex; Feinstein, Zachary; Nehorai, Arye

    2016-11-01

    We present a novel framework for evaluating the risk of failures in power transmission systems. We use the concept of systemic risk measures from the financial mathematics literature with models of power system failures in order to quantify the risk of the entire power system for design and comparative purposes. The proposed risk measures provide the collection of capacity vectors for the components in the system that lead to acceptable outcomes. Keys to the formulation of our measures of risk are two elements: a model of system behavior that provides the (distribution of) outcomes based on component capacities and an acceptability criterion that determines whether a (random) outcome is acceptable from an aggregated point of view. We examine the effects of altering the line capacities on energy not served under a variety of networks, flow manipulation methods, load shedding schemes, and load profiles using Monte Carlo simulations. Our results provide a quantitative comparison of the performance of these schemes, measured by the required line capacity. These results provide more complete descriptions of the risks of power failures than the previous, one-dimensional metrics.

  20. Performance evaluation of power transmission coils for powering endoscopic wireless capsules.

    PubMed

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2015-01-01

    This paper presents an analysis of H-field generated by a simple solenoid, pair of solenoids, pair of double-layer solenoids, segmented-solenoid, and Helmholtz power transmission coils (PTCs) to power an endoscopic wireless capsule (WC). The H-fields were computed using finite element analysis based on partial differential equations. Three parameters were considered in the analysis: i) the maximum level of H-field (Hmax) to which the patient's body would be exposed, ii) the minimum level of H-field (Hmin) effective for power transmission, and iii) uniformity of H-field. We validated our analysis by comparing the computed data with data measured from a fabricated Helmholtz PTC. This analysis disclosed that at the same excitation power, all the PTCs are able to transfer same amount of minimum usable power since they generated almost equal value of Hmin. The level of electromagnetic exposure and power transfer stability across all the PTCs would vary significantly which is mainly due to the different level of Hmax and H-field uniformity. The segmented solenoid PTC would cause the lowest exposure and this PTC can transfer the maximum amount of power. The Helmholtz PTC would be able to transfer the most stable power with a moderate level of exposure.

  1. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  2. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  3. EMTP modeling of CIGRE benchmark based HVDC transmission system operating with weak AC systems

    SciTech Connect

    Sood, V.K.; Khatri, V.; Jin, H.

    1995-12-31

    An EMTP based study of a CIGRE benchmark based HVDC system operating with weak ac systems is carried out. The modeled system provides a starting point for (a) educators teaching HVDC transmission courses and (b) for utility planners to develop their own low-cost dedicated digital simulators for training purposes. In this paper, modeling details of the ac-dc system, dc converters and control are presented. To validate the control schemes presented, the HVDC system is tested under ac-dc fault conditions. Results obtained from an EMTP-based study under these fault conditions are also presented in this paper.

  4. Self-powered system with wireless data transmission.

    PubMed

    Hu, Youfan; Zhang, Yan; Xu, Chen; Lin, Long; Snyder, Robert L; Wang, Zhong Lin

    2011-06-08

    We demonstrate the first self-powered system driven by a nanogenerator (NG) that works wirelessly and independently for long-distance data transmission. The NG was made of a free cantilever beam that consisted of a five-layer structure: a flexible polymer substrate, ZnO nanowire textured films on its top and bottom surfaces, and electrodes on the surfaces. When it was strained to 0.12% at a strain rate of 3.56% S(-1), the measured output voltage reached 10 V, and the output current exceeded 0.6 μA (corresponding power density 10 mW/cm(3)). A system was built up by integrating a NG, rectification circuit, capacitor for energy storage, sensor, and RF data transmitter. Wireless signals sent out by the system were detected by a commercial radio at a distance of 5-10 m. This study proves the feasibility of using ZnO nanowire NGs for building self-powered systems, and its potential application in wireless biosensing, environmental/infrastructure monitoring, sensor networks, personal electronics, and even national security.

  5. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  6. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  7. Ultra high performance connectors for power transmission applications

    DOEpatents

    Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

    2014-03-04

    Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

  8. Power Grids and Climate Information: supporting transmission system operators

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea; Catalano, Franco

    2015-04-01

    The activities of electricity transmission system operators (TSO) may be affected by weather conditions and for this reason the availability of accurate information about past and future states can be useful for power grids management. ENEA is supporting TERNA (Italian TSO) since 2012 providing them weather and climate information related to electricity demand and renewable energies management. The first task has been an assessment on the use of weather and climate information to predict electricity demand at short (1-5 days) and long (1-3 months) time scales. The second task was focused on the possibility to estimate and predict the electricity production coming from photovoltaic (PV) using different data sources (satellite, reanalysis, weather stations, climate models). The outcome of this collaboration has been two-fold: i) we had the occasion to evaluate the "quality" of weather/climate information considering power grid operational aspects and ii) more challenging questions, not considered at the beginning, have been raised, providing further interesting research goals.

  9. Thermoelectronic laser energy conversion for power transmission in space

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Yuen, C.

    1977-01-01

    Long distance transmission of power in space by means of laser beams is an attractive concept because of the very narrow beam divergence. Such a system requires efficient means to both generate the laser beam and to convert the light energy in the beam into useful electric output at the receiver. A plasma-type device known as a Thermo-Electronic Laser Energy Converter (TELEC) has been studied as a method of converting a 10.6 micron CO2 laser beam into electric power. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes with different areas. Since more electrons are collected by the larger electrode there is a net transport of current, and an EMF is generated in the external circuit. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the large electrode. A design for a TELEC system with an input 1 MW laser beam was developed as part of the study. The calculated performance of the system showed an overall efficiency of about 42%.

  10. Research progress of wireless power transmission technology and the related problems

    NASA Astrophysics Data System (ADS)

    Li, Jianliang

    2017-03-01

    Wireless Power Transfer (WPT) has been widely used in recent years, it has the advantages of high transmission efficiency, long transmission distance, and so on. Firstly, this paper introduces the application progress of transmission technology at home and abroad. Secondly, combined with the development of the current technology, this paper puts forward the basic problems of wireless power transmission technology from four aspects. Lastly, the paper summarizes and puts forward the current hot and difficult problems.

  11. 78 FR 76140 - Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line Project Draft... Hudson Power Express Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0447). The... permit to the Applicant, Champlain Hudson Power Express, Inc. (CHPEI), to construct, operate,...

  12. HTS DC Transmission Line for Megalopolis Grid Development

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Sytnikov, V.; Bemert, S.; Ivanov, Yu; Krivetskiy, I.; Romashov, M.; Shakaryan, Yu; Keilin, V.; Shikov, A.; Patrikeev, V.; Lobyntsev, V.; Shcherbakov, V.

    2014-05-01

    Using of HTS AC and DC cables in electric power grids allows increasing of the transferred power, losses diminishing, decreasing of exclusion zone areas, the enhancement of the environmental conditions and fire/explosion safety of electric power systems. However, the use of DC superconducting cable lines together with converters brings additional advantages as reduction of losses in cables and suitable lowering of refrigerating plant capacity, as well as the realization of the function of short-circuit currents limitation by means of the appropriate setting of converter equipment. Russian Federal Grid Company and its R&D Center started the construction of the DC HTS power transmission line which includes the cable itself, cryogenic equipment, AC/DC converters, terminals and cable coupling boxes. This line will connect two substations in Saint-Petersburg - 330 kV "Centralnaya" and 220 kV "RP-9". The length of this HTS transmission line will be about 2500 meters. Nowadays are developed all the elements of the line and technologies of the cable manufacturing. Two HTS cable samples, each 30 m length, have been made. This paper describes the results of cables tests.

  13. Choice of antenna geometry for microwave power transmission from solar power satellites

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  14. Status of the microwave power transmission components for the solar power satellite

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    During the 1970-1980 time period a substantial advance has been made in developing all portions of a microwave power transmission system for the solar power satellite (SPS). The most recent advances pertain to the transmitting portion of the system in the satellite and are based upon experimental observations of the use of the magnetron combined with a passive directional device to convert it into a highly efficient directional amplifier with excellent low-noise properties and potentially very long life. The ability of its microwave output to track a phase reference makes it possible to combine it with many other radiating units to provide a highly coherent microwave beam. The ability of its output to track an amplitude reference while operating from a dc power source with varying voltage makes it possible to eliminate most of the power conditioning equipment that would otherwise be necessary.

  15. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    PubMed

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.

  16. Development of integrated AC-DC magnetometer using high-Tc SQUID for magnetic properties evaluation of magnetic nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Takagi, Ryuki; Kusaka, Toki; Ishihara, Yuichi; Tsukamoto, Yuya; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-05-01

    We developed an integrated AC-DC magnetometer using a high critical temperature superconducting quantum interference device (high-Tc SQUID) to evaluate the static and dynamic magnetic properties of magnetic nanoparticles (MNPs) in solution. The flux-transformer method consisted of first-order planar and axial differential coils that were constructed for static and dynamic magnetization measurements, respectively. Vibrating-sample and harmonic detection techniques were used to reduce interference from excitation magnetic fields in the static and dynamic magnetization measurements, respectively. Static and dynamic magnetization measurements were performed on commercially available iron oxide nanoparticles in diluted solutions. The magnetic responses increased with the increase in concentration of the solutions in both measurement results. The magnetization curves showed that the diamagnetic signal due to the carrier liquid of the iron oxide nanoparticles existed in a dilute solution. Biasing with a proper DC magnetic field in the dynamic magnetization measurement resulted in improved signals of the second and third harmonics. Therefore, highly sensitive magnetic characterizations of MNPs utilizing the static and dynamic magnetization measurement are possible via the developed system.

  17. A Follow-up Study on Wireless Power Transmission for Unmanned Air Vehicles

    DTIC Science & Technology

    2007-12-01

    Popovic, “Wireless Powering for Low-Power Distributed Sensors,” Sixth International Symposium Nikola Tesla , 18-20 October 2006. [32] Avago...1 I. INTRODUCTION A. MICROWAVE WIRELESS POWER TRANSMISSION The concept of power transmission dates back to Heinrich Hertz [1] and Nikola ... Tesla [2]. Tesla aimed to develop a high power transmitter to ascertain the law of propagation of current through the earth and the atmosphere. Although

  18. Linear Algebraic Modeling of Power Flow in the HMP500-3 Transmission

    DTIC Science & Technology

    2012-08-01

    Vehicle. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable displacement hydrostatic...pump / motor units (HSUs). Power flow in the HMPT500-3 is extremely complex, with numerous feedback paths within the planetary gear train. Without a...tracked vehicle transmission. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable

  19. Linear Algebraic Modeling of Power Flow in the HMPT500-3 Transmission

    DTIC Science & Technology

    2012-08-01

    Vehicle. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable displacement hydrostatic...pump / motor units (HSUs). Power flow in the HMPT500-3 is extremely complex, with numerous feedback paths within the planetary gear train. Without a...tracked vehicle transmission. Power transmission and steering is accomplished through the interaction of six planetary gear sets and two variable

  20. Interference Cancellation for Coexisting Wireless Data and Power Transmission in the Same Frequency

    NASA Astrophysics Data System (ADS)

    Yamazaki, Keita; Sugiyama, Yusuke; Kawahara, Yoshihiro; Saruwatari, Shunsuke; Watanabe, Takashi

    2014-11-01

    Combining wireless transmission of data and power signals enables wireless sensor networks to drive perpetually without changing batteries. To achieve the simultaneous data and power transmission, the present paper proposes power signal interference cancellation for wireless data and power transmission at the same time in the same frequency. We evaluate the performance of the proposed power signal interference cancellation using Universal Software Radio Peripheral N200 (USRP N200) software defined radio. Evaluations show that the proposed interference cancellation is feasible to receive data while transmitting power.

  1. Face Gear Technology for Aerospace Power Transmission Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  2. [Design and optimization of wireless power and data transmission for visual prosthesis].

    PubMed

    Lei, Xuping; Wu, Kaijie; Zhao, Lei; Chai, Xinyu

    2013-11-01

    Boosting spatial resolution of visual prostheses is an effective method to improve implant subjects' visual perception. However, power consumption of visual implants greatly rises with the increasing number of implanted electrodes. In respond to this trend, visual prostheses need to develop high-efficiency wireless power transmission and high-speed data transmission. This paper presents a review of current research progress on wireless power and data transmission for visual prostheses, analyzes relative principles and requirement, and introduces design methods of power and data transmission.

  3. Novel binary PSO algorithm based optimization of transmission expansion planning considering power losses

    NASA Astrophysics Data System (ADS)

    Astuty; Haryono, T.

    2016-04-01

    Transmission expansion planning (TEP) is one of the issue that have to be faced caused by addition of large scale power generation into the existing power system. Optimization need to be conducted to get optimal solution technically and economically. Several mathematic methods have been applied to provide optimal allocation of new transmission line such us genetic algorithm, particle swarm optimization and tabu search. This paper proposed novel binary particle swarm optimization (NBPSO) to determine which transmission line should be added to the existing power system. There are two scenerios in this simulation. First, considering transmission power losses and the second is regardless transmission power losses. NBPSO method successfully obtain optimal solution in short computation time. Compare to the first scenario, the number of new line in second scenario which regardless power losses is less but produces high power losses that cause the cost becoming extremely expensive.

  4. Design study for a gound microwave power transmission system for use with a high-altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.

  5. Power transmission mechanism equipped with fluid and centrifugal clutch

    SciTech Connect

    Tamura, K.; Takeshita, S.; Fukunaga, T.

    1986-12-30

    This patent describes a power transmission mechanism equipped with a fluid coupling, an input shaft thereof interconnected to a power source being interconnected through the fluid coupling to an output shaft, and the output shaft being interconnected to a forward-rearward changeover mechanism including a speed changer. It is characterized in that the fluid coupling includes a shell, an impeller in the shell and a centrifugal clutch means in the shell for engaging the impeller and for driving the impeller when the shell is rotated by the input shaft at a speed above idle speed and for disengaging the impeller and the driving of the impeller when the shell is rotated by the input shaft at the idle speed. A turbine is included in the shell for standing idle in the shell when the centrifugal clutch means is disengaged and for drive by the impeller when the centrifugal clutch means is engaged and for driving the output shaft. The centrifugal clutch means comprises a support member fixed to the shell, a centrifugal shoe mounted on the support member for radial movement outwardly of the support member by centrifugal force and radial movement inwardly toward the support member. It also comprises spring means for moving the shoe inwardly toward the support member when the shell is rotated at idle speed, a cylindrical casing fixed to the impeller radially outward from the shoe and having an engaging surface for engagement by the centrifugal shoe when the shell is rotated at a speed above idle speed and the centrifugal shoe is moved radially outward by centrifugal force. The forward-rearward changeover mechanism, including the speed changer, is driven by the turbine when the centrifugal clutch means is engaged with the engaging surface and standing idle when the centrifugal clutch means is disengaged from the engaging surface and the turbine is standing idle.

  6. Near field effects of millimeter-wave power transmission for medical applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Song, Kyo D.; Lee, Kunik; Kim, Jaehwan; Choi, Sang H.

    2011-04-01

    An integration of micro devices system and wireless power transmission (WPT) technology offers a great potential to revolutionize current health care devices. The system integration of wireless power transmission devices with smart microsensors is crucial for replacing a power storage devices and miniaturizing wireless biomedical systems. Our research goal is to replace battery power supply with an implantable millimeter-wave rectenna. Recently, a hat system with a small millimeter-wave antenna which can feed millimeter-wave power to thin-film rectenna array embedding Schottky diodes was introduced for neural sensing and stimulation applications. In order to prove the design concept and investigate wireless power coupling efficiency under the system design, near-field wireless power transmission was studied in terms of wave frequency and distance. Also, in this paper, we will present the influence of biological objects to the wireless power transmission, simulating the experimental conditions of human objects for future medical applications.

  7. [Research progress on key technology of power and signal transmission in neuroprosthetic].

    PubMed

    Wang, Xing; Peng, Chenglin; Liu, Tao; Wang, Rui; Hou, Wensheng; Zheng, Xiaolin; Zheng, Erxin

    2011-10-01

    The power and signal transmission technology is one of the key technologies in neuroprosthetic research. This paper proposes firstly the related theory of power and signal transmission technology in neuroprosthetic, then summarizes the three key aspects of the power and signal transmission technology in neuroprosthetic. After analyzed the development of the inductive wireless power harvesting technology, the wireless telemetry technology and the wireless power harvesting telemetry technology, the emphasis on research contents will be proposed and discussed, which will help accelerate the further research of prosthetic.

  8. An Insight on Right of Way and its Cost for Power Transmission Cable and Conventional Overhead Transmission Lines

    NASA Astrophysics Data System (ADS)

    Khandelwal, P.; Pachori, A.; Khandelwal, T.

    2013-12-01

    This paper provides the complete information related to Right of Way (RoW) for the construction of new power transmission line (TL) in terms of present cost for overhead transmission line and underground XLPE transmission cable. The former part of the paper describes the general procedure and rules for acquisition of land for RoW by transmission asset owner (TAO) while in the later part the cost associated to acquire RoW and its impact on the cost of adjacent land have been detailed. It also discusses the actual dismantling cost including the cost of waste metal what TAO get after completion of lifecycle of TL due to increase in metal prices. In this paper cost of RoW after completion of lifecycle of TL is also highlighted. This paper compares the cost of RoW for overhead transmission line and underground XLPE transmission cable for construction of new TL. Also for old transmission infrastructure cost of RoW for change from overhead transmission line to underground XLPE transmission cable is detailed by application of replacement model.

  9. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmission system facilities. 74.795 Section 74.795 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... translator transmission system facilities. (a) A digital low power TV or TV translator station shall operate... consumer receiving equipment based on the digital broadcast television transmission standard in §...

  10. A proposal to Improve Electric Power Transmission Efficiency of the Transmission line from Yekepa to Buchanan of the CLSG Power System Redevelopment Interconnection Project Using FACTS Devices

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel Mulbah

    This Work examined improving the electric power transmission efficiency of a portion of the CLSG (Cote d'Ivoire, Liberia, Sierra Leone, and Guinea) Interconnection Redevelopment Project of 1141 km high voltage transmission line. As with all ac transmission, present, new, and upgraded, they exhibit four electrical properties: resistance, inductance, capacitance, and conductance. These parameters affect the transmission line's ability to fulfil its function as part of the power system. A transmission system functions are to transport electric power from a generating source to a central point, to transport bulk power from a central point to wholesale delivery points (sub transmission substations), and to act as a tie points with interconnecting transmission lines from other power systems for emergency or economic reasons. In this work a portion of the CLSG Interconnection was simulated in MATLAB using different loading conditions. In determining voltage, current, and power, all sending end and receiving end quantities were determined at different sending end power levels. This was done on an incremental basis starting from 25 MW to 300 MW at 0.8 power factor. The results obtained from these produced data that were then used to plot graphs, among them the voltage profiles of the line at different loading conditions. The line loadability curves produced at different loading conditions were also plotted. So these curves provided illumination on the behavior and deficiencies of the line. Those deficiencies meant that there was a need for modification so as to keep the system in a safe operating voltage condition at different loading conditions. The line was compensated where needed, employing shunt capacitive compensation under different loading conditions for the purpose of making the receiving end voltage equal with the sending end voltage or within usable voltage levels. The line compensation provided a flat voltage profile at those loading conditions.

  11. 75 FR 6199 - Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Federal Energy Regulatory Commission Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc.; Notice of Filing February 1, 2010. Take notice that on January 25, 2010, Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc. (CMMPA/ MMTG) filed with...

  12. 76 FR 56428 - Southern Cross Transmission LLC; Pattern Power Marketing LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Cross Transmission LLC; Pattern Power Marketing LLC; Notice of..., Southern Cross Transmission, LLC (SCT) and Pattern Power Marketing LLC (PPM) jointly filed an...

  13. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

  14. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  15. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Digital low power TV and TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and TV translator transmission system facilities. (a) A digital low power TV or TV translator station shall...

  16. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Digital low power TV and TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and TV translator transmission system facilities. (a) A digital low power TV or TV translator station shall...

  17. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Digital low power TV and TV translator... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and TV translator transmission system facilities. (a) A digital low power TV or TV translator station shall...

  18. Design And Structural Analysis Of A Powered Wheelchair Transmission

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut Daniel; Dumitru, Nicolae; Margine, Alexandru

    2015-09-01

    In this paper are presented the author's researches on designing, dynamical and structural evaluation of a transmission for a wheelchair, intended to persons with locomotors disabilities. The kinematics of proposed transmission is analyzed in order to realize a proper synthesis and design of gears. A 3D model of the transmission and wheelchair are designed in Solid Works, and they will be used for the dynamic simulation of the wheelchair robotic system in Adams software. In Adams is analyzed wheelchair trajectory and dynamics for a combined trajectory: linear motion and steering. Dynamic parameters obtained from simulation are used to perform a finite element analysis of bevel and worm gears. Simulation results reveal the transmission dynamics parameters, emphasize the efficiency of the transmission and enable implementation of this design to a wheelchair model.

  19. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope

    NASA Astrophysics Data System (ADS)

    Rulevskiy, V. M.; Bukreev, V. G.; Shandarova, E. B.; Kuleshova, E. O.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A modeling problem of the power system, which provides an AC power transmission to a submersible device over the conducting rope, was considered. The power supply system units and their parameters are described. The system multi-dimensional mathematical model in the variables state space with regard to the nonlinear characteristic of system elements is proposed.

  20. Low-power system-on-chip implementation for respiratory rate detection and transmission.

    PubMed

    Padasdao, Bryson; Yee, Roxanne; Boric-Lubecke, Olga

    2012-01-01

    Recent biosensors can measure respiratory rate non-invasively, but limits patient mobility or requires regular battery replacement. Respiratory effort, which can scavenge mW, may power the sensor, but requires minimal sensor power usage. This paper demonstrates feasibility of respiratory rate measurement by using a comparator instead of ADC. A low-power system-on-chip can implement respiratory rate detection and wireless data transmission with a total power consumption under 82 µW. This approach produces significant power savings, and transmission uses under 30% of total power consumption.

  1. Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

    SciTech Connect

    Hutsel, Brian Thomas; Stoltzfus, Brian S.; Fowler, William E.; LeChien, Keith R.; Mazarakis, Michael G.; Moore, James K.; Mulville, Thomas D.; Savage, Mark E.; Stygar, William A.; McKenney, John L.; Jones, Peter A.; MacRunnels, Diego J.; Long, Finis W.; Porter, John L.

    2014-09-01

    An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

  2. A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course

    ERIC Educational Resources Information Center

    Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.

    2011-01-01

    The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…

  3. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  4. Space power by ground-based laser transmission

    SciTech Connect

    Landis, G.A. NASA, Lewis Research Center, Cleveland, OH )

    1992-07-01

    A new method for providing power to space vehicles consists of using high-power CW lasers on the ground to beam power to photovoltaic receivers in space. Such large lasers could be located at cloud-free sites at one or more ground locations, and use large mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. This can result in lower requirements for battery storage, due to continuous illumination of arrays even during periods of shadow by the earth, and higher power output, due to the higher efficiency of photovoltaic arrays under laser illumination compared to solar and the ability to achieve higher intensities of illumination. Applications include providing power for satellites during eclipse, providing power to resurrect satellites which are failing due to solar array degradation, powering orbital transfer vehicles or lunar transfer shuttles, and providing night power to a solar array on the moon. 22 refs.

  5. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  6. Location estimation of an in vivo robotic capsule relative to arrayed power transmission coils.

    PubMed

    Kim, Jong Dae; Ryu, Munho; Hwang, Ji Soo; Kim, Jongwon

    2008-06-01

    A tracking method is presented here for an in vivo robotic capsule with power supplied from one of the multiple power transmission coils. The proposed method aims to select the best coupled coil among the array of power transmission coils. It relies on the fact that the driving current of the power transmitter increases with inductive coupling of the receiver coil inside the capsule with the transmitter coil. Investigation of the current increase characteristic according to its location relative to the transmission coils allows development of a strategy for the in vivo robotic capsule. This study shows results with two transmission coils and a two-dimensional power receiver. Experimental results present the possibility of selecting the best coil by estimating the relative location of the capsule.

  7. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  8. 25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL NO. 1 CEILING. WATER-POWERED MACHINERY LOCATED IN BASEMENT RAN LEATHER BELTS THROUGH THESE HOLES. POWER WAS THEN TRANSMITTED TO SHAFTS AND PULLEYS TO RUN MACHINERY ON MILL FLOORS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  9. 76 FR 44320 - Buckeye Power, Inc. v. American Transmission Systems, Incorporated; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Energy Regulatory Commission Buckeye Power, Inc. v. American Transmission Systems, Incorporated; Notice of Complaint Take notice that on July 18, 2011, pursuant to sections 206 and 306 of the Federal Power... (Commission), Buckeye Power, Inc. (Buckeye or Complainant) filed a formal complaint against...

  10. 18 CFR 2.22 - Pricing policy for transmission services provided under the Federal Power Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Pricing policy for transmission services provided under the Federal Power Act. 2.22 Section 2.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...

  11. 18 CFR 2.22 - Pricing policy for transmission services provided under the Federal Power Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Pricing policy for transmission services provided under the Federal Power Act. 2.22 Section 2.22 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...

  12. 47 CFR 74.795 - Digital low power TV and TV translator transmission system facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator transmission system facilities. 74.795 Section 74.795 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.795 Digital low power TV and...

  13. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…

  14. Power transmission by laser beam from lunar-synchronous satellite

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  15. Power transmission by laser beam from lunar-synchronous satellite

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; De Young, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-11-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  16. Architecture Analysis of Wireless Power Transmission for Lunar Outposts

    DTIC Science & Technology

    2015-09-01

    kg. Completed in 2011, a group of academics studied the impact space solar power might have to satisfy the global energy demand in the 21st century...kg. These results show that a low energy and long duration transfer will be required for inefficient and therefore high mass solar power satellites...collecting and converting sunlight and transmitting this energy via wireless power transfer to a lunar outpost receiver. The user of this system will be

  17. 78 FR 65641 - Recommendation From the Western Area Power Administration To Pursue Regional Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... formal negotiations with the Southwest Power Pool (SPP), a Regional Transmission Organization (RTO... other stakeholders regarding its recommendation to pursue formal negotiations with SPP regarding... forward with formal negotiations with SPP will result in detailed membership discussions consistent...

  18. RSSI/LQI-based transmission power control for body area networks in healthcare environment.

    PubMed

    Kim, Seungku; Kim, Seokhwan; Eom, Doo-Seop

    2013-05-01

    This paper presents a novel transmission power control protocol for body area networks. Conventional transmission power control protocols adjust the transmission power on the basis of the received signal strength indication (RSSI). However, in case of the presence of interference, the RSSI is not a correct indicator to determine the link state. We first present the empirical evidence for this and then propose a practical protocol to discriminate between the signal attenuation and interference using the RSSI and link quality indication (LQI). This protocol controls the transmission power and avoids interference based on the link state. Finally, we discuss the implementation of the proposed protocol on Tmote Sky and evaluate the performance in the presence and absence of interference. The experimental results showed that the proposed protocol has high energy-efficiency and reliability, even in the presence of interference.

  19. Title V Operating Permit: Deseret Generation and Transmission Cooperative, Bonanza Power Plant

    EPA Pesticide Factsheets

    Response to Public Comments and Final Operating Permit for the Deseret Generation and Transmission Cooperative Bonanza Power Plant, located within the exterior boundaries of the Uintah and Ouray Indian Reservation in Uintah County, Utah.

  20. Critical points and transitions in an electric power transmission model for cascading failure blackouts.

    PubMed

    Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.

    2002-12-01

    Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.

  1. 75 FR 41895 - Emerson Power Transmission, a Division of Emerson Electric Co., Including On-Site Leased From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Employment and Training Administration Emerson Power Transmission, a Division of Emerson Electric Co..., 2010, applicable to workers of Emerson Power Transmission, a Division of Emerson Electric Co... were employed on-site at the Ithaca, New York, location of Emerson Power Transmission, a Division...

  2. 75 FR 9573 - Minnkota Power Cooperative, Inc: Bemidji-Grand Rapids 230kV Transmission Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... Rural Utilities Service Minnkota Power Cooperative, Inc: Bemidji-Grand Rapids 230kV Transmission Project... Minnkota Power Cooperative, Inc (Minnkota) for the construction of a 230 kilovolt (kV) kV transmission line... Minnesota Power, proposes to construct and operate a 230 kV transmission line between the Wilton...

  3. A study of electric power transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.; Gaustad, Krista L.

    1991-01-01

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include ac and dc for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both dc and ac transmission lines.

  4. Extra high voltage power transmission. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the design, construction, and use of extra high voltage power transmission lines. Both underground and overhead lines are discussed, as well as superconducting and resistive cryogenic lines. Health, safety, and psychological aspects of the electrical field, corona, ozone, and acoustic effects of these lines are discussed. New conductors, insulators, mounting, monitoring, control, and lightning protection of EHV power transmission lines are presented. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  5. An Improved Rectenna for Wireless Power Transmission for Unmanned Air Vehicles

    DTIC Science & Technology

    2011-09-01

    A. Background The concept of wireless power transmission (WPT) dates back to the days of Heinrich Hertz and Nikola Tesla [1], who discovered that...energy could be transported by electromagnetic waves in free space. Tesla considered the use of wireless power transmission employing low-frequency...his article, Brown wrote a description of the development of WPT and the milestones along the way. Previously, Tesla carried out numerous

  6. Evaluation of power system security and development of transmission pricing method

    NASA Astrophysics Data System (ADS)

    Kim, Hyungchul

    The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services. The introduction of competition into unbundled electricity services may lead system operation closer to its security boundaries resulting in smaller operating safety margins. The competitive environment is expected to lead to lower price rates for customers and higher efficiency for power suppliers in the long run. Under this deregulated environment, security assessment and pricing of transmission services have become important issues in power systems. This dissertation provides new methods for power system security assessment and transmission pricing. In power system security assessment, the following issues are discussed (1) The description of probabilistic methods for power system security assessment; (2) The computation time of simulation methods; (3) on-line security assessment for operation. A probabilistic method using Monte-Carlo simulation is proposed for power system security assessment. This method takes into account dynamic and static effects corresponding to contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning Vector Quantization, are employed to speed up the probabilistic method. The combination of Kohonen networks and Monte-Carlo simulation can reduce computation time in comparison with straight Monte-Carlo simulation. A technique for security assessment employing Bayes classifier is also proposed. This method can be useful for system operators to make security decisions during on-line power system operation. This dissertation also suggests an approach for allocating transmission transaction costs based on reliability benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line

  7. Reliability modeling and evaluation of HVDC power transmission systems

    SciTech Connect

    Dialynas, E.N.; Koskolos, N.C. . Dept. of Electrical and Computer Engineering)

    1994-04-01

    The objective of this paper is to present an improved computational method for evaluating the reliability indices of HVdc transmission systems. The developed models and computational techniques are described. These can be used to simulate the operational practices and characteristics of a system under study efficiently and realistically. This method is based on the failure modes and effects analysis and uses the event tree method and the minimal cut set approach to represent the system's operational behavior and deduce the appropriate system's failure modes. A set of five reliability indices is evaluated for each output node being analyzed together with the probability and frequency of encountering particular regions of system performance levels. The analysis of an assumed HVdc bipolar transmission system is also included.

  8. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  9. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  10. Transmission of High-Power Electron Beams Through Small Apertures

    SciTech Connect

    Tschalaer, Christoph; Alarcon, Ricardo O.; Balascuta, S.; Benson, Stephen V.; Bertozzi, William; Boyce, James R.; Cowan, Ray Franklin; Douglas, David R.; Evtushenko, Pavel; Fisher, Peter H.; Ihloff, Ernest E.; Kalantarians, Narbe; Kelleher, Aidan Michael; Legg, Robert A.; Milner, Richard; Neil, George R.; Ou, Longwu; Schmookler, Barak Abraham; Tennant, Christopher D.; Williams, Gwyn P.; Zhang, Shukui

    2013-11-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  11. The power supply system model of the process submersible device with AC power transmission over the cable-rope

    NASA Astrophysics Data System (ADS)

    Rulevskiy, V. M.; Bukreev, V. G.; Kuleshova, E. O.; Shandarova, E. B.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

  12. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    PubMed

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  13. Transmission Power Control using Small-Capacity UPFC under Output Voltage Saturation

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Takeshita, Takaharu; Fujita, Hideki

    This paper presents a fast transmission power control scheme using a UPFC (Unified Power Flow Controller) under the output voltage saturation. For practical use of the UPFC, the fast and stable power response and the reduced power converter capacity are desired. The authors propose the fast and stable control scheme under the output voltage saturation of the reduced capacity UPFC. The effectiveness of the proposed control algorithm of the UPFC has been verified by experiments.

  14. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  15. Assessment of research directions for high-voltage direct-current power systems. Final report

    SciTech Connect

    Long, W F

    1982-09-01

    High voltage direct current (HVDC) power transmission continues to be an emerging technology nearly thirty years after its introduction into modern power systems. To date its use has been restricted to either specialized applications having identifiable economic advantages (e.g., breakeven distance) or, rarely, applications where decoupling is needed. Only recently have the operational advantages (e.g., power modulation) of HVDC been realized on operating systems. A research project whose objective was to identify hardware developments and, where appropriate, system applications which can exemplify cost and operational advantages of integrated ac/dc power systems is discussed. The three principal tasks undertaken were: assessment of equipment developments; quantification of operational advantages; and interaction with system planners. Interest in HVDC power transmission has increased markedly over the past several years, and many new systems are now being investigated. The dissemination of information about HVDC, including specifically the symposium undertaken for Task 3, is a critical factor in fostering an understanding of this important adjunct to ac power transmission.

  16. Method and apparatus for power transmission from an engine

    SciTech Connect

    Gabriele, D.

    1986-04-01

    An apparatus for transmitting power is described consisting of: a first discrete source of rotary power having a first output coupling means; a second discrete source of rotary power having a second output coupling means; drive shaft velocity control means cooperable with at least one of the first and second sources of rotary power for controlling the absolute speed of at least one of the first and second sources without affecting the speed of the other; a pair of intercoupled planetary gear assemblies each having a ring gear, a sun gear and a planetary carrier cage, the pair of gear assemblies including: (a) a first planetary gear assembly having a primary driving member, a secondary driving member, and a driven follower member corresponding to one of the ring gear, sun gear and carrier cage; (b) a second planetary gear assembly having a primary driving member, a secondary driving member and a driven follower corresponding to one of the ring gear, sun gear, and carrier cage; (c) the primary driving member of the first assembly being coupled by the first coupling means to the first discrete source of rotary power, and the second driving members of both assemblies being coupled by means of the second coupling means to the second discrete source of rotary power; (d) the driven follower member of the first assembly being coupled to the primary driving member of the second assembly; (e) the driven follower member of the second assembly being other than the carrier cage; and (f) an output shaft coupled to the driven follower member of the second assembly for driving a load, the output shaft driven by the first and second sources of rotary power via the pair of planetary gear assemblies under most operation conditions.

  17. Wireless Power Transmission Technology State-Of-The-Art

    NASA Astrophysics Data System (ADS)

    Dickinson, R. M. T.

    2002-01-01

    This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion

  18. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter

    PubMed Central

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  19. Power Supply Reliability Assessment in UPFC-installed Transmission System for ATC Enhancement Considering Transient Stability

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Yokoyama, Akihiko

    With recent development of power electronics technology, power system stability enhancement and optimal power flow control by using Flexible AC Transmission System (FACTS) devices have so far been studied. The FACTS devices to relieve multiple constraints can also make it possible to enhance Available Transfer Capability (ATC) without construction of new transmission lines. The previous research revealed that ATC is expanded by avoiding multiple constraints in OPF using Unified Power Flow Controller (UPFC). For long-term operation of such ATC-expanded power system, it is necessary to evaluate power system reliability. In this paper, the evaluation method of supply reliability for UPFC-installed power system is proposed. Both thermal capacity and transient stability constraints are considered. The effectiveness of the proposed method is shown by numerical examples for IEEJ East10-machine test system.

  20. Adaptive low-power listening MAC protocol based on transmission rates.

    PubMed

    Hwang, Kwang-il; Yi, Gangman

    2014-01-01

    Even though existing low-power listening (LPL) protocols have enabled ultra-low-power operation in wireless sensor networks (WSN), they do not address trade-off between energy and delay, since they focused only on energy aspect. However, in recent years, a growing interest in various WSN applications is requiring new design factors, such as minimum delay and higher reliability, as well as energy efficiency. Therefore, in this paper we propose a novel sensor multiple access control (MAC) protocol, transmission rate based adaptive low-power listening MAC protocol (TRA-MAC), which is a kind of preamble-based LPL but is capable of controlling preamble sensing cycle adaptively to transmission rates. Through experiments, it is demonstrated that TRA-MAC enables LPL cycle (LC) and preamble transmission length to adapt dynamically to varying transmission rates, compensating trade-off between energy and response time.

  1. Enhanced Electric Power Transmission by Hybrid Compensation Technique

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Kiu, G. Q.

    2015-04-01

    In today's competitive environment, new power system engineers are likely to contribute immediately to the task, without years of seasoning via on-the-job training, mentoring, and rotation assignments. At the same time it is becoming obligatory to train power system engineering graduates for an increasingly quality-minded corporate environment. In order to achieve this, there is a need to make available better-quality tools for educating and training power system engineering students and in-service system engineers too. As a result of the swift advances in computer hardware and software, many windows-based computer software packages were developed for the purpose of educating and training. In line with those packages, a simulation package called Hybrid Series-Shunt Compensators (HSSC) has been developed and presented in this paper for educational purposes.

  2. Wireless power and data transmission system for a micro implantable intraocular vision aid.

    PubMed

    Hijazi, N; Krisch, I; Hosticka, B J

    2002-01-01

    Wireless power and data transmission system developed for an intraocular vision aid for blind patients will be described. This system is applicable for patients suffering from bilateral corneal opacification but with intact posterior ocular. The system consists of an external unit as well as an implant. The external unit is required for image acquisition, channel coding, IR data transmission, and RF power transmission to the implant. The implantable unit contains a CMOS receiver, a receiver antenna coil, and the microdisplay based on a LED array. The CMOS receiver serves for reception and decoding of image data as well as driving circuits for the miniaturized LED array. In this case, mechanical wiring between the external unit and the implant is neither useful nor comfortable. An optimal technical solution needs a wireless data transfer. If the power is transferred to the implant wireless, too, the solution grows ideal. The system described in this communication employs wireless power and data transmission using an 13.56 MHz RF link for power transmission and an near IR (NIR) optical link for data transmission from an external CMOS camera and telemetry unit to the implantable micro display.

  3. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  4. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  5. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  6. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  7. 78 FR 35017 - Prairie Power, Inc. v. Ameren Services Company, Ameren Illinois Company, Ameren Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Energy Regulatory Commission Prairie Power, Inc. v. Ameren Services Company, Ameren Illinois Company, Ameren Transmission Company of Illinois; Notice of Complaint Take notice that on May 31, 2013, pursuant to section 206 of the Federal Power Act (FPA), 16 USC 825(e) and Rule 206 of the Federal...

  8. 77 FR 10489 - Xcel Energy Services Inc., Northern States Power Company v. American Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Energy Regulatory Commission Xcel Energy Services Inc., Northern States Power Company v. American Transmission Company, LLC; Notice of Complaint Take notice that on February 14, 2012, pursuant to section 206 of the Federal Power Act and Rule 206 of the Rules of Practice and Procedure of the Federal...

  9. Research Plan for Study of Biological and Ecological Effects of the Solar Power Satellite Transmission System

    NASA Technical Reports Server (NTRS)

    Newsom, B. D.

    1978-01-01

    A programmatic research plan for a three year study is presented to generate knowledge on effects of the continuous wave 2.45 GHz microwave power transmission that the Solar Power Satellite might have on biological and ecological elements, within and around the rectenna receiving site.

  10. A survey of beam-combining technologies for laser space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  11. Solid state sandwich concept: Designs, considerations and issues. [solar power satellite transmission

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    Progress in analysis and design of solid state approaches to the solar power satellite microwave power transmission system is reviewed with special emphasis on the Sandwich concept and the issues of maintenance of low junction temperatures for amplifiers to assure acceptable lifetime. Ten specific issues or considerations are discussed and their resolution or status is presented.

  12. An efficient transmission power control scheme for temperature variation in wireless sensor networks.

    PubMed

    Lee, Jungwook; Chung, Kwangsue

    2011-01-01

    Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.

  13. An Efficient Transmission Power Control Scheme for Temperature Variation in Wireless Sensor Networks

    PubMed Central

    Lee, Jungwook; Chung, Kwangsue

    2011-01-01

    Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption. PMID:22163787

  14. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  15. Progress in Acoustic Transmission of Power through Walls

    NASA Technical Reports Server (NTRS)

    Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu

    2008-01-01

    A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.

  16. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    PubMed Central

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-01-01

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation. PMID:26694392

  17. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review.

    PubMed

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-12-15

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  18. 77 FR 24950 - Meeting Related to the Transmission Planning Activities of the Southwest Power Pool, Inc.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... transmission planning activities of the Southwest Power Pool, Inc. (SPP): Strategic Planning Committee Task... Independent Transmission System Operator, Inc. Docket No. ER11-3967-002, Southwest Power Pool, Inc. Docket No... Energy Regulatory Commission Meeting Related to the Transmission Planning Activities of the...

  19. Automatic power transmission mechanism for a four wheel drive vehicle

    SciTech Connect

    Garrett, R.J.

    1987-11-17

    In a transmission for a vehicle having two forward traction wheels and two rear traction wheels, this patent describes a multiple ratio transaxle having an input shaft adapted to be connected to an engine and arranged on a first axis and planetary gearing coaxially disposed relative to the input shaft and an output shaft; a first differential gear mechanism forming a part of the transaxle and having a torque output gear and side gears adapted to be connected to axle shafts for the forward wheels; a torque transfer drive means connecting the output shaft with the torque output gear including a first drive gear coaxially mounted relative to the torque output gear; an interaxle geared differential having a differential carrier and a pair of side gears, an interaxle torque input shaft having a third axis parallel to the second axis; a rear axle drive means connected to one of the interaxle differential side gears; a second drive gear and a third drive gear coaxially mounted with respect to the interaxle differential side gears; and first, second, third and fourth clutch means coaxially arranged with respect to the interaxle torque input shaft and independently actuatable for selectively connecting respectively (i) the third drive gear with the second drive gear, (ii) the second drive gear with the intermediate shaft, (iii) the third drive gear with the other side gear of the interaxle differential and (iv) the rear axle drive means with the carrier of the interaxle differential.

  20. A role for high frequency superconducting devices in free space power transmission systems

    NASA Technical Reports Server (NTRS)

    Christian, Jose L., Jr.; Cull, Ronald C.

    1988-01-01

    Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.

  1. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.

    PubMed

    Mohammadi, Ali; Redoute, Jean-Michel; Yuce, Mehmet R

    2015-01-01

    Biomedical implants require an electronic power conditioning circuitry to provide a stable electrical power supply. The efficiency of wireless power transmission is strongly dependent on the power conditioning circuitry specifically the rectifier. A cross-connected CMOS bridge rectifier is implemented to demonstrate the impact of thresholds of rectifiers on wireless power transfer. The performance of the proposed rectifier is experimentally compared with a conventional Schottky diode full wave rectifier over 9 cm distance of air and tissue medium between the transmitter and receiver. The output voltage generated by the CMOS rectifier across a 1 KΩ resistive load is around twice as much as the Schottky rectifier.

  2. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    NASA Astrophysics Data System (ADS)

    McLinko, Ryan M.; Sagar, Basant V.

    2009-12-01

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages

  3. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  4. Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission.

    PubMed

    Yi, Huaxiang; Long, Qifeng; Tan, Wei; Li, Li; Wang, Xingjun; Zhou, Zhiping

    2012-12-03

    We demonstrate error-free 80km transmission by a silicon carrier-depletion Mach-Zehnder modulator at 10Gbps and the power penalty is as low as 1.15dB. The devices were evaluated through the bit-error-rate characterizations under the system-level analysis. The silicon Mach-Zehnder modulator was also analyzed comparatively with a lithium niobate Mach-Zehnder modulator in back-to-back transmission and long-haul transmission, respectively, and verified the negative chirp parameter of the silicon modulator through the experiment. The result of low power penalty indicates a practical application for the silicon modulator in the middle- or long-distance transmission systems.

  5. Rocket experiment on microwave power transmission with Furoshiki deployment

    NASA Astrophysics Data System (ADS)

    Kaya, Nobuyuki; Iwashita, Masashi; Tanaka, Kohei; Nakasuka, Shinichi; Summerer, Leopold

    2009-07-01

    Huge antennas has many useful applications in space as well as on the ground, for example, Solar Power Satellite to provide electricity to the ground, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. The S-310-36 sounding rocket was successfully launched on 22 January 2006 to verify our newly proposed scheme to construct huge antennas under microgravity condition in space. The rocket experiment has three main objectives, the first objective of which is to verify the Furoshiki deployment system [S. Nakasuka, R. Funase, K. Nakada, N. Kaya, J. Mankins, Large membrane "FUROSHIKI Satellite" applied to phased array antenna and its sounding rocket experiment, in: Proceedings of the 54th International Astronautical Congress, 2003. [1

  6. Decorative power generating panels creating angle insensitive transmissive colors

    NASA Astrophysics Data System (ADS)

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-02-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to +/-70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  7. Decorative power generating panels creating angle insensitive transmissive colors

    PubMed Central

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-01-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ±70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications. PMID:24577075

  8. Decorative power generating panels creating angle insensitive transmissive colors.

    PubMed

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L Jay

    2014-02-28

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ± 70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  9. Comprehensive evaluation of power grid projects' investment benefits under the reform of transmission and distribution price

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng

    2017-03-01

    On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.

  10. Investigation of energy harvesting for magnetic sensor arrays on Mars by wireless power transmission

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Qiu, Chun; Lin, Fei

    2014-05-01

    This paper proposes the energy harvesting for magnetic sensor arrays on Mars, which can receive the power from Mars Rover by wireless power transmission (WPT). The schematic idea is presented with the energy receiver as the magnetic sensor and the energy transmitter as the transducer on Mars Rover. The key is to adopt the resonant inductive power transmission (IPT) topology between the magnetic sensor and Mars Rover. The basic topology and its operating principle are discussed. By using the magnetic frequency analysis with the finite element method, the output power and efficiency of the WPT system are calculated. The results show that Mars Rover could flexibly transmit its power to different types of small-size magnetic sensors based on their energy on demand using different resonant frequencies and distances.

  11. Toward space solar power: Wireless energy transmission experiments past, present and future

    NASA Astrophysics Data System (ADS)

    Little, Frank E.; McSpadden, James O.; Chang, Kai; Kaya, Nobuyuki

    1998-01-01

    Solar power is a reality. Today, increasing numbers of photovoltaic and other solar-powered installations are in service around the world and in space. These uses range from the primary electric power source for satellites, remote site scientific experiments and villages in developing countries to augmenting the commercial electric grid and providing partial power for individual businesses and homeowners in developed countries. In space, electricity generated by photovoltaic conversion of solar energy is the mainstay of power for low Earth and geostationary satellite constellations. Still, for all its acceptance as a benign and environmentally friendly energy source, terrestrial solar power has yet to be seriously considered a viable technology for providing base electrical generating capacity. The obvious reason is sunshine on Earth is too unreliable. In addition to the diurnal and seasonal cycles, inclement weather reduces the average daily period and intensity of insolation. However, the Sun shines constantly in space. The challenge is to harvest and transmit the energy from space to Earth. The concept of space solar power based on microwave wireless energy transmission was first put forth more than 25 years ago by Dr. Peter Glaser. We review historical experiments in wireless energy transmission which have brought the technology from a laboratory curiosity to its present status. Results from recent experiments and their implications for wireless energy transmission as an enabling technology for space solar power are reviewed. Current developments are discussed along with proposed terrestrial and space experiments.

  12. Modeling the Impacts of Geomagnetic Disturbances on the New York State Power Transmission System

    NASA Astrophysics Data System (ADS)

    Ouedraogo, D.; Castillo, O. L.; Mohamed, A.; Damas, M. C.; Ngwira, C. M.

    2015-12-01

    Our society today relies heavily on electricity in order to meet its essential basic needs. However, to meet the rising demands for this energy, all power companies require smooth and efficient delivery of services to the consumers. The US power grid is a complex electrical apparatus that has well known sensitivities to space weather disturbances. Events produced by space weather includes solar storms or geomagnetic disturbances [GMD]. The propagation of such events in the direction of Earth perturbs the electric currents in the magnetosphere and the ionosphere, causing a unique effect known as a Geomagnetically Induced Current [GIC]. GICs are known to saturate and overheat transformers in the power grid, threatening the safe operation of the power system. A GMD induces a geoelectric field in high-voltage and extra high-voltage transmission circuits. This geoelectric field represents electromotive force, and causes GICs to circulate through transmission circuits and transformers. Power models are being developed using MATLAB/Simulink® software to simulate the propagation of GIC flows in a power system, while using New York State (NYS) power transmission network as an example. We will present results of the models used to assess the impacts of possible GMD strikes on the various parts of the power network.

  13. Proactive and Reactive Transmission Power Control for Energy-Efficient On-Body Communications

    PubMed Central

    Vallejo, Mónica; Recas, Joaquín.; Ayala, José L.

    2015-01-01

    In wireless body sensor network (WBSNs), the human body has an important effect on the performance of the communication due to the temporal variations caused and the attenuation and fluctuation of the path loss. This fact suggests that the transmission power must adapt to the current state of the link in a way that it ensures a balance between energy consumption and packet loss. In this paper, we validate our two transmission power level policies (reactive and predictive approaches) using the Castalia simulator. The integration of our experimental measurements in the simulator allows us to easily evaluate complex scenarios, avoiding the difficulties associated with a practical realization. Our results show that both schemes perform satisfactorily, providing overall energy savings of 24% and 22% for a case of study, as compared to the maximum transmission power mode. PMID:25769049

  14. Proactive and reactive transmission power control for energy-efficient on-body communications.

    PubMed

    Vallejo, Mónica; Recas, Joaquín; Ayala, José L

    2015-03-11

    In wireless body sensor network (WBSNs), the human body has an important effect on the performance of the communication due to the temporal variations caused and the attenuation and fluctuation of the path loss. This fact suggests that the transmission power must adapt to the current state of the link in a way that it ensures a balance between energy consumption and packet loss. In this paper, we validate our two transmission power level policies (reactive and predictive approaches) using the Castalia simulator. The integration of our experimental measurements in the simulator allows us to easily evaluate complex scenarios, avoiding the difficulties associated with a practical realization. Our results show that both schemes perform satisfactorily, providing overall energy savings of 24% and 22% for a case of study, as compared to the maximum transmission power mode.

  15. Design and application research of implantable wireless power transmission micro electro mechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Longbin; Shao, Xiaotao; Wu, Fan; Huo, Xingying; Li, Weiyuan; Mo, Ling

    2011-05-01

    With the rapid development of medical technology currently, the types of medical micro system which can be embedded to human body and satisfied with different purposes of treatment and diagnosis are in increasing numbers, and how to provide long-term, stable and effective electric energy is a key problem. The research illustrates the design and realization of Micro Electro Mechanical System (MEMS) planar inductor; method of design and manufacture of planar and circular spiral inductor of printed board with high quality factor is introduced; a set of MEMS which is suitable for implantable wireless power transmission is developed in order to realize the conversion from magnetic energy to electric energy. With theoretical analysis and experimental data, the scheme is confirmed to be suitable for the wireless power transmission to the implantable micro parts, which provides important reference value for the research of implantable wireless power transmission in the future.

  16. Design and application research of implantable wireless power transmission micro electro mechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Longbin; Shao, Xiaotao; Wu, Fan; Huo, Xingying; Li, Weiyuan; Mo, Ling

    2010-12-01

    With the rapid development of medical technology currently, the types of medical micro system which can be embedded to human body and satisfied with different purposes of treatment and diagnosis are in increasing numbers, and how to provide long-term, stable and effective electric energy is a key problem. The research illustrates the design and realization of Micro Electro Mechanical System (MEMS) planar inductor; method of design and manufacture of planar and circular spiral inductor of printed board with high quality factor is introduced; a set of MEMS which is suitable for implantable wireless power transmission is developed in order to realize the conversion from magnetic energy to electric energy. With theoretical analysis and experimental data, the scheme is confirmed to be suitable for the wireless power transmission to the implantable micro parts, which provides important reference value for the research of implantable wireless power transmission in the future.

  17. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    PubMed

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system.

  18. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  19. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

    SciTech Connect

    Ni, Y.X.; Vittal, V.; Kliemann, W.; Fouad, A.A.

    1996-11-01

    In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

  20. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    PubMed

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  1. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    PubMed

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  2. Study of power management technology for orbital multi-100KWe applications. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1980-01-01

    The preliminary requirements and technology advances required for cost effective space power management systems for multi-100 kilowatt requirements were identified. System requirements were defined by establishing a baseline space platform in the 250 KE KWe range and examining typical user loads and interfaces. The most critical design parameters identified for detailed analysis include: increased distribution voltages and space plasma losses, the choice between ac and dc distribution systems, shuttle servicing effects on reliability, life cycle costs, and frequency impacts to power management system and payload systems for AC transmission. The first choice for a power management system for this kind of application and size range is a hybrid ac/dc combination with the following major features: modular design and construction-sized minimum weight/life cycle cost; high voltage transmission (100 Vac RMS); medium voltage array or = 440 Vdc); resonant inversion; transformer rotary joint; high frequency power transmission line or = 20 KHz); energy storage on array side or rotary joint; fully redundant; and 10 year life with minimal replacement and repair.

  3. Study of power management technology for orbital multi-100KWe applications. Volume 2: Study results

    NASA Astrophysics Data System (ADS)

    Mildice, J. W.

    1980-07-01

    The preliminary requirements and technology advances required for cost effective space power management systems for multi-100 kilowatt requirements were identified. System requirements were defined by establishing a baseline space platform in the 250 KE KWe range and examining typical user loads and interfaces. The most critical design parameters identified for detailed analysis include: increased distribution voltages and space plasma losses, the choice between ac and dc distribution systems, shuttle servicing effects on reliability, life cycle costs, and frequency impacts to power management system and payload systems for AC transmission. The first choice for a power management system for this kind of application and size range is a hybrid ac/dc combination with the following major features: modular design and construction-sized minimum weight/life cycle cost; high voltage transmission (100 Vac RMS); medium voltage array or = 440 Vdc); resonant inversion; transformer rotary joint; high frequency power transmission line or = 20 KHz); energy storage on array side or rotary joint; fully redundant; and 10 year life with minimal replacement and repair.

  4. Design and application of a test rig for super-critical power transmission shafts

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Smalley, A.

    1979-01-01

    The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.

  5. Control system and method for a power delivery system having a continuously variable ratio transmission

    DOEpatents

    Frank, Andrew A.

    1984-01-01

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

  6. Control system and method for a power delivery system having a continuously variable ratio transmission

    DOEpatents

    Frank, A.A.

    1984-07-10

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.

  7. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  8. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    PubMed

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  9. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  10. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  11. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  12. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    SciTech Connect

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails, and a

  13. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    SciTech Connect

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  14. High precision ultrasonic guided wave technique for inspection of power transmission line

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Qiu, Jinhao; Ji, Hongli; Wang, Enrong; Takagi, Toshiyuki; Uchimoto, Tetsuya

    2017-01-01

    Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.

  15. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs

    PubMed Central

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042

  16. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    PubMed

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  17. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  18. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  19. Factors influencing efficiency of laser wireless power transmission system for micro unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Hua, Wenshen; Liu, Xun

    2014-12-01

    Micro unmanned aerial vehicle, mostly powered by electricity, plays an important role in many military and civil applications, e.g. military detection, communication relay et al. But restricted endurance ability severely limits its applications. To solve the problem, laser wireless power transmission system is proposed. However, overall efficiency of the system is quite low. This paper describes basic structure of laser wireless power transmission system and its working process. The system consists of two major modules: a high power laser source transmitting energy and a photovoltaic receiver converting optical energy into electricity. Then factors influencing efficiency of the system are analyzed. It suggests that electro-optical efficiency of laser, atmospheric impact on laser beam and photo-electric efficiency of photovoltaic receiver play significant role in overall efficiency of the system. Atmospheric impact on laser beam mostly derived from refraction, absorption, scattering and turbulence effects, leads to drop in energy and quality of laser beam. Efficiency of photovoltaic receiver is affected by photovoltaic materials. In addition, matching degree between intensity distribution of laser beam and layout of photovoltaic receiver also obviously influence efficiency of photovoltaic receiver. Experiment results suggest that under non-uniform laser beam illumination, efficiency of photovoltaic receiver mostly depends on layout of photovoltaic receiver. Through optimizing the layout of photovoltaic receiver based on intensity distribution of laser beam, output power is significantly improved. The analysis may help to take corresponding measures to alleviate negative effects of these factors and improve performance of laser wireless power transmission system.

  20. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  1. Experimental study on guide friction contribution in global power loss of a tooth chain transmission

    NASA Astrophysics Data System (ADS)

    Velicu, R.; Papuc, R.; Gavrila, C. C.; Popa, S.

    2017-02-01

    The subject of the paper is the friction between a tooth chain and the guide. An experimental study is developed with the aim of determining the contribution of chain-guide friction on the global friction of a basic tooth chain transmission. The measurements have been made on a chain friction rig, testing a basic tooth chain transmission with transmission ratio equal to 1, with a controlled tensioning device. The following parameters can be adjusted and measured: rotational speed, tensioning force in the chain, position of the guide, temperature and pressure of the oil used for lubrication. Friction torque at the input shaft is a sum of friction torques coming from bearings, chain and guide. The paper presents the contribution of the guide in the power loss by friction, as percent of the power loss from friction in chain and guide together. Influences of speed, tensioning force and oil temperature are presented.

  2. One-phase dual converter for two quadrant power control of superconducting magnets

    SciTech Connect

    Ehsani, M.; Kustom, R.I.; Boom, R.W.

    1985-01-01

    This paper presents the results of theoretical and experimental development of a new dc-ac-dc converter for superconducting magnet power supplies. The basic operating principles of the circuit are described followed by a theoretical treatment of the dynamics and control of the system. The successful results of the first experimental operation and control of such a circuit are presented and discussed.

  3. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.

    1991-01-01

    The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.

  4. Asymptotically Optimal Transmission Policies for Large-Scale Low-Power Wireless Sensor Networks

    SciTech Connect

    I. Ch. Paschalidis; W. Lai; D. Starobinski

    2007-02-01

    We consider wireless sensor networks with multiple gateways and multiple classes of traffic carrying data generated by different sensory inputs. The objective is to devise joint routing, power control and transmission scheduling policies in order to gather data in the most efficient manner while respecting the needs of different sensing tasks (fairness). We formulate the problem as maximizing the utility of transmissions subject to explicit fairness constraints and propose an efficient decomposition algorithm drawing upon large-scale decomposition ideas in mathematical programming. We show that our algorithm terminates in a finite number of iterations and produces a policy that is asymptotically optimal at low transmission power levels. Furthermore, we establish that the utility maximization problem we consider can, in principle, be solved in polynomial time. Numerical results show that our policy is near-optimal, even at high power levels, and far superior to the best known heuristics at low power levels. We also demonstrate how to adapt our algorithm to accommodate energy constraints and node failures. The approach we introduce can efficiently determine near-optimal transmission policies for dramatically larger problem instances than an alternative enumeration approach.

  5. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    PubMed

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  6. Link-state-estimation-based transmission power control in wireless body area networks.

    PubMed

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  7. RF beam center location method and apparatus for power transmission system

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    The receiving element in wireless power transmission systems intercepts the greatest possible portion of the transmitted energy beam. Summing the output energy of all receivers in a planar array makes it possible to determine the location of the center of energy of the incident beam on a receiving array of antenna elements so that the incident beam is in the microwave region.

  8. Comprehensive evaluation of power grid enterprises' credit rating under the reform of transmission and distribution price

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Wei, Jiaxiang

    2017-03-01

    On March 15, 2015, the central office issued the "Opinions on Further Deepening the Reform of Electric Power System" (in the 2015 No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid enterprises' credit rating under the reform of transmission and distribution price to reduce the impact of the reform on the company's international rating results and the ability to raise funds.

  9. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission

    PubMed Central

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402

  10. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  11. Impact of power allocation strategies in long-haul few-mode fiber transmission systems.

    PubMed

    Rafique, Danish; Sygletos, Stylianos; Ellis, Andrew D

    2013-05-06

    We report for the first time on the limitations in the operational power range of few-mode fiber based transmission systems, employing 28 Gbaud quadrature phase shift keying transponders, over 1,600 km. It is demonstrated that if an additional mode is used on a preexisting few-mode transmission link, and allowed to optimize its performance, it will have a significant impact on the pre-existing mode. In particular, we show that for low mode coupling strengths (weak coupling regime), the newly added variable power mode does not considerably impact the fixed power existing mode, with performance penalties less than 2dB (in Q-factor). On the other hand, as mode coupling strength is increased (strong coupling regime), the individual launch power optimization significantly degrades the system performance, with penalties up to ~6 dB. Our results further suggest that mutual power optimization, of both fixed power and variable power modes, reduces power allocation related penalties to less than 3 dB, for any given coupling strength, for both high and low differential mode delays.

  12. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  13. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  14. Development of a PLC modem for data transmission over a PWM power supply

    NASA Astrophysics Data System (ADS)

    Batard, Christophe; Ginot, Nicolas; Mannah, Marc Anthony; Millet, Christophe; Poitiers, Frédéric

    2014-04-01

    In variable-speed electrical drive and online conditioning monitoring, a feedback loop is required in order to transmit the sensor information from the motor to the controller close to the inverter. Additional cabling is used for signalling. This extra cabling has a significant cost and data transmission may not be reliable. Thus, the use of power line communication (PLC) technology to transmit data in motor drive application is quite interesting. The use of a PLC modem dedicated to the home network in a three-phase inverter-fed motor power cable does not work. Therefore, specific coupling interfaces are developed to transmit data through a pulse-width modulated power supply. Laboratory tests have shown that the couplers are operating properly. They ensure reliable data transmission in a motor drive application.

  15. 75 FR 75170 - Minnkota Power Cooperative, Inc.: Bemidji to Grand Rapids 230 kV Transmission Line Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... Rural Utilities Service Minnkota Power Cooperative, Inc.: Bemidji to Grand Rapids 230 kV Transmission... to Grand Rapids 230 kV Transmission Line Project (Project) in Beltrami, Hubbard, Itasca, and Cass... construct the 230 kilovolt (kV) transmission line between the Wilton Substation near Bemidji, Minnesota...

  16. Analysis of a Mars-stationary orbiting microwave power transmission system

    NASA Technical Reports Server (NTRS)

    Long, Kenwyn J.

    1990-01-01

    To determine the feasibility of providing efficient RF power transmission from a Mars-stationary orbit to the surface of the planet, an assessment was made focussing on RF propagation in the 2.45- to 300-GHz range. The proposed orbiting system configuration provides for power generation by either photovoltaic array or nuclear reactor, the conversion of the dc output to RF, and subsequent propagation of RF energy from the orbiting array to the Martian surface. On the planet, a rectenna array will convert RF to dc power to be distributed for planetary power needs. Total efficiency of the energy conversion chain from dc to RF in orbit through RF to dc on the planetary surface was derived for several representative frequencies in the range of study. Tradeoffs between component efficiency and transmitting antenna requirements were considered for each of these frequencies. Rectenna element power density thresholds and desired received power levels were used to determine receiving antenna criteria. Recommendations are presented for research into developing technologies which may afford enhanced viability of the proposed microwave power transmission system.

  17. Design and fabrication of the high-power RF transmission line into the PEFP linac tunnel

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub

    2012-07-01

    The 100-MeV proton linear accelerator (linac) for the Proton Engineering Frontier Project (PEFP) has been developed and will be installed at the Gyeong-ju site. For the linac, a total of 11 sets of RF systems are required, and the waveguide layout was fixed to install high-power RF (HPRF) systems. One of the important interfaces with the building construction is the high-power radio-frequency (HPRF) transmission line embedded in the tunnel, which is used to transmit 1-MW RF power to each cavity in the tunnel. The waveguide section penetrating into the linac tunnel was designed with a bending structure for radiation shielding, and the dependence of its voltage standing-wave ratio (VSWR) on the chamfer length of the bending was calculated. The HPRF transmission line was fabricated into a piece of waveguide to prevent moisture and any foreign debris inside the 2.5-m thick concrete block. Air leakage was checked with a pressure of 0.25 psig of nitrogen gas, and a maximum VSWR of 1.196 was obtained by measuring the vector reflection coefficients with the quarter-wave transmission section. In this paper, the design and the fabrication of the HPRF transmission line into the PEFP linac tunnel are presented.

  18. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    NASA Astrophysics Data System (ADS)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  19. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  20. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  1. Space Weather Impact on the European Interconnected Power Transmission System at High Latitudes

    NASA Astrophysics Data System (ADS)

    Piccinelli, Roberta; Krausmann, Elisabeth

    2016-04-01

    High voltage power transmission grids can suffer outages or blackouts during geomagnetic storms (GMS). More specifically, GMS can inject geomagnetically induced currents (GICs) into the power network. Transformers were identified as the most vulnerable components of the power networks: GICs cause transformers to work in saturation regions generating voltage instabilities and eventually driving the system to collapse. Since GMS are expected to cause more pronounced disturbances at high latitudes, we addressed the effects of extreme GMS on the Scandinavian 400 kV interconnected power transmission grid, including Finland, Sweden and Norway. By applying extreme 100-year-benchmark scenarios, we analyzed potential space-weather triggered voltage instabilities in the power grid considering mono-phase transformers, which are known to be more vulnerable to GIC injection, and three-phase transformers, which are more resistant. We assumed that every node of the grid included either transformers of the mono-phase type, or three-phase transformers.Our simulations indicate that the three-phase configuration of the network is significantly more robust than the mono-phase one. Our study indicates that for a system with only three-phase transformers the likelihood of grid collapse is very low, and collapse only occurs for the worst-case scenario with extremely high geoelectric field intensities. In such a case, the increase in reactive power demand caused by transformer saturation is too high for the system to continue to provide power. Our results indicate that lines that experience higher reactive power losses during normal operation are more likely to increase losses during a GMS event. According to our study, the portion of the Scandinavian interconnected power transmission grid most vulnerable to extreme space weather is the part where the highest reactive losses in transmission lines and in voltage magnitudes are observed. This corresponds to the southern parts of Sweden and

  2. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    SciTech Connect

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installation of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)

  3. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    SciTech Connect

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  4. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  5. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  6. Measurements of the Ech Power and of the Transmission Line Losses on Diii-D

    NASA Astrophysics Data System (ADS)

    Cengher, M.; Lohr, J.; Gorelov, I. A.; Grosnickle, W. H.; Ponce, D.; Johnson, P.

    2009-04-01

    The measurement of the power injected by the electron cyclotron heating (ECH) system in the DIII-D tokamak is a critical requirement for analysis of experiments, for tuning the gyrotrons for maximum power and efficiency, for tracking long-term operational trends and for providing a warning of problems with the system. The ECH system at General Atomics consists of six 110 GHz, 1 MW class gyrotrons. The rf power generated by each gyrotron is determined from calorimetry, using the relevant temperature and flow measurements from the cooling circuits of cavity, matching optics unit and dummy loads. The rf pulse length and time dependence are measured using an rf monitor at the first miter bend in the transmission line. The direct measurement of the efficiencies of four of the transmission lines was performed using a high power, small dummy load (SDL) placed alternately in 2 positions of each DIII-D waveguide line, at accessible points close the beginning and the end of each line. Total losses in the transmission lines range from 21.2% to 30.7%. Experimental results are compared to theoretical predictions of the performance of the components and waveguide lines.

  7. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  8. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  9. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2009-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current.

  10. Wireless power and data transmission strategies for next-generation capsule endoscopes

    NASA Astrophysics Data System (ADS)

    Puers, R.; Carta, R.; Thoné, J.

    2011-05-01

    Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules.

  11. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  12. Laser power beaming: an emerging technology for power transmission and propulsion in space

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.

    1997-05-01

    A ground based laser beam transmitted to space can be used as an electric utility for satellites. It can significantly increase the electric power available to operate a satellite or to transport it from low earth orbit (LEO) to mid earth or geosynchronous orbits. The increase in electrical power compared to that obtainable from the sun is as much as 1000% for the same size solar panels. An increase in satellite electric power is needed to meet the increasing demands for power caused by the advent of 'direct to home TV,' for increased telecommunications, or for other demands made by the burgeoning 'space highway.' Monetary savings as compared to putting up multiple satellites in the same 'slot' can be over half a billion dollars. To obtain propulsion, the laser power can be beamed through the atmosphere to an 'orbit transfer vehicle' (OTV) satellite which travels back and forth between LEO and higher earth orbits. The OTV will transport the satellite into orbit as does a rocket but does not require the heavy fuel load needed if rocket propulsion is used. Monetary savings of 300% or more in launch costs are predicted. Key elements in the proposed concept are a 100 to 200 kW free- electron laser operating at 0.84 m in the photographic infrared region of the spectrum and a novel adaptive optic telescope.

  13. Transmission power requirements for novel ZigBee implants in the gastrointestinal tract.

    PubMed

    Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2008-06-01

    In this paper, a novel multinode wireless monitoring platform, based on ZigBee communication standard, is presented and tested in vivo. The transmission power levels needed to establish a reliable connection from the different gastrointestinal districts are reported and compared with safety levels from international guidelines. These findings can be useful to evaluate the effectiveness of a commercial and standardized approach to implantable and miniaturized monitoring of physiological parameters.

  14. Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.

    1992-01-01

    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.

  15. Design and test of a squeeze-film damper for a flexible power transmission shaft

    NASA Technical Reports Server (NTRS)

    Darlow, M. S.; Smalley, A. J.

    1978-01-01

    For a flexible shaft designed to pass through a number of bending critical speeds, a squeeze-film damper has been designed and tested. The damper properties were selected to provide control of all critical speeds, while meeting additional constraints of high power transmission requirements and damper simplicity. The damper was fabricated and installed and its ability to control flexible shaft vibrations was demonstrated by the comparison of vibration amplitudes both with and without the damper.

  16. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOEpatents

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  17. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOEpatents

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  18. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  19. Power-efficient method for IM-DD optical transmission of multiple OFDM signals.

    PubMed

    Effenberger, Frank; Liu, Xiang

    2015-05-18

    We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.

  20. Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint

    SciTech Connect

    Ibanez, E.; Milligan, M.

    2012-02-01

    Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

  1. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase.

    PubMed

    Junge, Wolfgang; Sielaff, Hendrik; Engelbrecht, Siegfried

    2009-05-21

    Adenosine triphosphate (ATP), the universal fuel of the cell, is synthesized from adenosine diphosphate (ADP) and inorganic phosphate (P(i)) by 'ATP synthase' (F(O)F(1)-ATPase). During respiration or photosynthesis, an electrochemical potential difference of protons is set up across the respective membranes. This powers the enzyme's electrical rotary nanomotor (F(O)), which drives the chemical nanomotor (F(1)) by elastic mechanical-power transmission, producing ATP with high kinetic efficiency. Attempts to understand in detail the mechanisms of torque generation in this simple and robust system have been both aided and complicated by a wealth of sometimes conflicting data.

  2. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    NASA Technical Reports Server (NTRS)

    Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.

    1981-01-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  3. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    SciTech Connect

    Magi, M.; Freivald, A.; Anderson, I.

    1981-05-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  4. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  5. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  6. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils.

    PubMed

    Ibrahim, Ahmed; Kiani, Mehdi

    2016-08-01

    The operation frequency (f) has been a key parameter in optimizing wireless power transmission links for biomedical implants with millimeter (mm) dimensions. This paper studies the feasibility of using printed spiral coils (PSCs) for powering mm-sized implants with high power transmission efficiency (PTE) at different fps. Compared to wire-wound coils (WWCs), using a PSC in the implant side allows batch fabrication on rigid or flexible substrates, which can also be used as a platform for integrating implant components. For powering an implant with 1 mm diameter, located 10 mm inside the tissue, the geometries of transmitter (Tx) and receiver (Rx) PSCs were optimized at different fPs of 50 MHz, 200 MHz, and 500 MHz using a commercial field solver (HFSS). In simulations, PSC- and WWC-based links achieved maximum PTE of 0.13% and 3.3%, and delivered power of 65.7 μW and 720 μW under specific absorption rate (SAR) constraints at the optimal fp of 50 MHz and 100 MHz, respectively, suggesting that the performance of the PSC-based link is significantly inferior to that of the WWC-based link.

  7. Application of wireless power transmission systems in wireless capsule endoscopy: an overview.

    PubMed

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2014-06-19

    Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.

  8. Application of Wireless Power Transmission Systems in Wireless Capsule Endoscopy: An Overview

    PubMed Central

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2014-01-01

    Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects. PMID:24949645

  9. Islanding the power grid on the transmission level: less connections for more security

    NASA Astrophysics Data System (ADS)

    Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard

    2016-10-01

    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids.

  10. Islanding the power grid on the transmission level: less connections for more security.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard

    2016-10-07

    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid's stability. These facts should be taken into account in the design of future power grids.

  11. Alleviation SSR and Low Frequency Power Oscillations in Series Compensated Transmission Line using SVC Supplementary Controllers

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjiv; Kumar, Narendra

    2016-07-01

    In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.

  12. Islanding the power grid on the transmission level: less connections for more security

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard

    2016-01-01

    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids. PMID:27713509

  13. Performance Of The DIII-D ECH High Power Transmission Lines And Launching Systems

    NASA Astrophysics Data System (ADS)

    Cengher, Mirela; Lohr, J.; Gorelov, Y.; Torrezan, A.; Ponce, D.; Moeller, C.; Ellis, R. A.; Kolemen, E.

    2015-11-01

    The Electron Cyclotron Heating (ECH) transmission system on the DIII D tokamak consists of corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. Total power injected into plasma can reach up to 3.5 MW, with pulse length up to 5 seconds. The ECH power injected to the tokamak from each gyrotron is measured on a shot-to-shot basis and shows individual average injected powers from a gyrotron into the plasma between 540 and 700 kW. The transmission coefficient including the waveguide line and the MOU is between -1.04 dB and -1.43 dB. The maximum ECH energy injected into DIII-D is 16.6 MJ. The HE11 mode content is over 85 % for all the lines. The four dual waveguide launchers have increased poloidal scanning speed, and can steer the RF beams 40 degrees poloidally in 200 ms, with real-time poloidal motion control by the plasma control system. A new method of in-situ calibration of the mirror angle was used in conjunction with the upgrading of the encoders and motors for the launchers. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  14. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  15. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  16. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  17. Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Wu, Yue Grace; Bruss, C Bayan

    2016-01-01

    The U.S. federal government regulates the reliability of bulk power systems, while the reliability of power distribution systems is regulated at a state level. In this article, we review the history of regulating electric service reliability and study the existing reliability metrics, indices, and standards for power transmission and distribution networks. We assess the foundations of the reliability standards and metrics, discuss how they are applied to outages caused by large exogenous disturbances such as natural disasters, and investigate whether the standards adequately internalize the impacts of these events. Our reflections shed light on how existing standards conceptualize reliability, question the basis for treating large-scale hazard-induced outages differently from normal daily outages, and discuss whether this conceptualization maps well onto customer expectations. We show that the risk indices for transmission systems used in regulating power system reliability do not adequately capture the risks that transmission systems are prone to, particularly when it comes to low-probability high-impact events. We also point out several shortcomings associated with the way in which regulators require utilities to calculate and report distribution system reliability indices. We offer several recommendations for improving the conceptualization of reliability metrics and standards. We conclude that while the approaches taken in reliability standards have made considerable advances in enhancing the reliability of power systems and may be logical from a utility perspective during normal operation, existing standards do not provide a sufficient incentive structure for the utilities to adequately ensure high levels of reliability for end-users, particularly during large-scale events.

  18. Wind power development in the United States: Effects of policies and electricity transmission congestion

    NASA Astrophysics Data System (ADS)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  19. Solar power satellite system definition study. Part 2, volume 4: Microwave power transmission systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.

  20. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam

    2011-07-14

    Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

  1. Optimal wireless receiver structure for omnidirectional inductive power transmission to biomedical implants.

    PubMed

    Gougheri, Hesam Sadeghi; Kiani, Mehdi

    2016-08-01

    In order to achieve omnidirectional inductive power transmission to biomedical implants, the use of several orthogonal coils in the receiver side (Rx) has been proposed in the past. In this paper, the optimal Rx structure for connecting three orthogonal Rx coils and the power management is found to achieve the maximum power delivered to the load (PDL) in the presence of any Rx coil tilting. Unlike previous works, in which a separate power management has been used for each coil to deliver power to the load, different resonant Rx structures for connecting three Rx coils to a single power management are studied. In simulations, connecting three Rx coils with the diameters of 3 mm, 3.3 mm, and 3.6 mm in series and resonating them with a single capacitor at the operation frequency of 100 MHz led to the maximum PDL for large loads when the implant was tilted for 45o. This optimal Rx structure achieves higher PDL in worst-case scenarios as well as reduces the number of power managements to only one.

  2. A Study on Modeling of Transmission Line in Digital Type Real-Time Power System Simulator

    NASA Astrophysics Data System (ADS)

    Yasuda, Yuji; Yokoyama, Akihiko; Tada, Yasuyuki

    In modern power systems, it is important to analyze various kindes of dynamic phenomena which appear in the system. When the effectiveness of new power electronics based apparatus, protective relay systems and etc. is tested, a real-time power system simulator is becoming a very effective tool. In general, however, it is very expensive and it is very difficult for beginners to understand how to use it. Therefore, studies on low-cost and easy-use real-time power system simulators have so far been done. We have developed models of power system components for the real-time power system simulator using DSP (Digital Signal Processor) combined with commercial CAD (Computer Aided Design) soft "MATLAB/SIMULINK". The use of commercial softwares can drastically decrease the development cost of the simulator. In this paper, a simplified reduction model of unbalanced three-phase transmission network with mutual impedance is proposed for analysis of various kinds of stability phenomena by use of the digital simulator. The proposed network model is constructed automatically and efficiently even for connection of both current source type models and voltage source type models of power apparatus such as generators, FACTS devices and loads.

  3. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject.

    PubMed

    Kiani, Mehdi; Kwon, Ki Yong; Zhang, Fei; Oweiss, Karim; Ghovanloo, Maysam

    2011-01-01

    This paper presents in vivo experimental results for a closed loop wireless power transmission system to implantable devices on an awake behaving animal subject. In this system, wireless power transmission takes place across an inductive link, controlled by a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (TRF7960) operating at 13.56 MHz. Induced voltage on the implantable secondary coil is rectified, digitized by a 10-bit analog to digital converter, and transmitted back to the primary via back telemetry. Transmitter (Tx) and receiver (Rx) circuitry were mounted on the back of an adult rat with a nominal distance of ~7 mm between their coils. Our experiments showed that the closed loop system was able to maintain the Rx supply voltage at the designated 3.8 V despite changes in the coils' relative distance and alignment due to animal movements. The Tx power consumption changed between 410 ~ 560 mW in order to deliver 27 mW to the receiver. The open loop system, on the other hand, showed undesired changes in the Rx supply voltage while the Tx power consumption was constant at 660 mW.

  4. Design of an effective energy receiving adapter for microwave wireless power transmission application

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Wang, Shen-Yun; Geyi, Wen

    2016-10-01

    In this paper, we demonstrate the viability of an energy receiving adapter in a 8×8 array form with high power reception efficiency with the resonator of artificial electromagnetic absorber being used as the element. Unlike the conventional reported rectifying antenna resonators, both the size of the element and the separations between the elements are electrically small in our design. The energy collecting process is explained with an equivalent circuit model, and a RF combining network is designed to combine the captured AC power from each element to one main terminal for AC-to-DC conversion. The energy receiving adapter yields a total reception efficiency of 67% (including the wave capture efficiency of 86% and the AC-to-DC conversion efficiency of 78%), which is quite promising for microwave wireless power transmission.

  5. Multivariable time series prediction for the icing process on overhead power transmission line.

    PubMed

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters.

  6. Power Distortion Optimization for Uncoded Linear Transformed Transmission of Images and Videos.

    PubMed

    Xiong, Ruiqin; Zhang, Jian; Wu, Feng; Xu, Jizheng; Gao, Wen

    2017-01-01

    Recently, there is a resurgence of interest in uncoded transmission for wireless visual communication. While conventional coded systems suffer from cliff effect as the channel condition varies dynamically, uncoded linear-transformed transmission (ULT) provides elegant quality degradation for wide channel SNR range. ULT skips non-linear operations, such as quantization and entropy coding. Instead, it utilizes linear decorrelation transform and linear scaling power allocation to achieve optimized transmission. This paper presents a theoretical analysis for power-distortion optimization of ULT. In addition to the observation in our previous work that a decorrelation transform can bring significant performance gain, this paper reveals that exploiting the energy diversity in transformed signal is the key to achieve the full potential of decorrelation transform. In particular, we investigated the efficiency of ULT with exact or inexact signal statistics, highlighting the impact of signal energy modeling accuracy. Based on that, we further proposed two practical energy modeling schemes for ULT of visual signals. Experimental results show that the proposed schemes improve the quality of reconstructed images by 3~5 dB, while reducing the signal modeling overhead from hundreds or thousands of meta data to only a few meta data. The perceptual quality of reconstruction is significantly improved.

  7. Power-Distortion Optimization for Uncoded Linear-Transformed Transmission of Images and Videos.

    PubMed

    Xiong, Ruiqin; Zhang, Jian; Wu, Feng; Xu, Jizheng; Gao, Wen

    2016-10-26

    Recently there is a resurgence of interest in uncoded transmission for wireless visual communication. While conventional coded systems suffer from cliff effect as the channel condition varies dynamically, uncoded linear-transformed transmission (ULT) provides elegant quality degradation for wide channel SNR range. ULT skips non-linear operations such as quantization and entropy coding. Instead, it utilizes linear decorrelation transform and linear scaling power allocation to achieve optimized transmission. This paper presents a theoretical analysis for power-distortion optimization of ULT. In addition to the observation in our previous work that a decorrelation transform can bring significant performance gain, this work reveals that exploiting the energy diversity in transformed signal is the key to achieve the full potential of decorrelation transform. In particular, we investigated the efficiency of ULT with exact or inexact signal statistics, highlighting the impact of signal energy modeling accuracy. Based on that, we further proposed two practical energy modeling schemes for ULT of visual signals. Experimental results show that the proposed schemes improve the quality of reconstructed images by 3 5dB, while reducing the signal modeling overhead from hundreds or thousands of meta data to only a few meta data. The perceptual quality of reconstruction is significantly improved.

  8. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect

    Not Available

    1992-10-01

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

  9. Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line

    PubMed Central

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  10. The voltage profile improvement using static var compensator (SVC) in power system transmission

    NASA Astrophysics Data System (ADS)

    Ramdan, G. M.; Mulyadi, Y.; Hasbullah

    2016-04-01

    In transmission system named ‘Subsistem Bandung Selatan dan New Ujungberung’ there are the voltage drop which relatively high and the voltage profile at the receiving ends below 0.95 p.u. Therefore, this research proposed a method to improve the voltage profile in the transmission system using one of Flexible Alternating Current Transmission System (FACTS) technology which is Static Var Compensator (SVC) and ‘Subsistem Bandung Selatan and New Ujungberung’ as the object. This research aims to get the voltage profile in ‘Subsistem Bandung Selatan dan New Ujungberung’ before and after connected to SVC and to set optimal location and rating of SVC to maintain the voltage profile at the system that has desire range (0.95 p.u - 1.05 p.u). To get the result in accordance with these objects, Newton -Raphson power flow solution is applied to the system. The result of Newton- Raphson power flow solution of the system shows the voltage profile before connecting to SVC are averagely 140.95 kV or 0.94 p.u while after connecting to SVC are 145.28 kV or 0.97 p.u. The SVC installation is connected to ‘Bandung Utara I’ as the weakest bus, and the SVC rating is -250 Mvar to 300 Mvar.

  11. Analysis and design of power efficient semi-passive RFID tag

    NASA Astrophysics Data System (ADS)

    Wenyi, Che; Shuo, Guan; Xiao, Wang; Tingwen, Xiong; Jingtian, Xi; Xi, Tan; Na, Yan; Hao, Min

    2010-07-01

    The analysis and design of a semi-passive radio frequency identification (RFID) tag is presented. By studying the power transmission link of the backscatter RFID system and exploiting a power conversion efficiency model for a multi-stage AC-DC charge pump, the calculation method for semi-passive tag's read range is proposed. According to different read range limitation factors, an intuitive way to define the specifications of tag's power budget and backscatter modulation index is given. A test chip is implemented in SMIC 0.18 μm standard CMOS technology under the guidance of theoretical analysis. The main building blocks are the threshold compensated charge pump and low power wake-up circuit using the power triggering wake-up mode. The proposed semi-passive tag is fully compatible to EPC C1G2 standard. It has a compact chip size of 0.54 mm2, and is adaptable to batteries with a 1.2 to 2.4 V output voltage.

  12. Self-tuning wireless power transmission scheme based on on-line scattering parameters measurement and two-side power matching.

    PubMed

    Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng

    2014-04-10

    Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.

  13. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare.

    PubMed

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2015-03-01

    This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.

  14. Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.

    PubMed

    Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam

    2016-03-01

    A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.

  15. Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants

    PubMed Central

    Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam

    2015-01-01

    A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx. PMID:27034913

  16. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  17. Energy harvesting and wireless energy transmission for powering SHM sensor nodes

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R

    2009-01-01

    In this paper, we present a feasibility study of using energy harvesting and wireless energy transmission systems to operate SHM sensor nodes. The energy harvesting approach examines the use of kinetic energy harvesters to scavenge energy from the ambient sources. Acceleration measurements were made on a bridge, and serve as the basis for a series of laboratory experiments that replicate these sources using an electromagnetic shaker. We also investigated the use of wireless energy transmission systems to operate SHM sensor nodes. The goal of this investigation is to develop SHM sensing systems which can be permanently embedded in the host structure and do not require on-board power sources. This paper summarizes considerations needed to design such systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  18. Transmission line design for a power distribution system at 20 kHz for aircraft

    NASA Technical Reports Server (NTRS)

    Zelby, L. W.; Mathes, J. B.; Shawver, J. W.

    1986-01-01

    A low inductance, low characteristic impedance transmission line was designed for a 20 kHz power distribution system. Several different conductor configurations were considered: strip lines, interdigitated metal ribbons, and standard insulated wires in multiwire configurations (circular and rectangular cylindrical arrangements). The final design was a rectangular arrangement of multiple wires of the same gauge with alternating polarities from wire to wire. This offered the lowest inductance per unit length (on the order of several nanohenries/meter) and the lowest characteristic impedance (on the order of one Ohm). Standard multipin connectors with gold-plated elements were recommended with this transmission line, the junction boxes to be internally connected with flat metal ribbons for low inductance, and the line to be constructed in sections of suitable length. Computer programs for the calculation of inductance of multiwire lines and of capacitances of strip lines were developed.

  19. A Preliminary Study of Building a Transmission Overlay for Regional US Power Grid

    SciTech Connect

    Lei, Yin; Li, Yalong; Liu, Yilu; Tomsovic, Kevin; Wang, Fei

    2015-01-01

    Many European countries have taken steps toward a Supergrid in order to transmit large amount of intermittent and remote renewable energy over long distance to load centers. In the US, as the expected increase in renewable generation and electricity demand, similar problem arises. A potential solution is to upgrade the transmission system at a higher voltage by constructing a new overlay grid. This paper will first address basic requirements for such an overlay grid. Potential transmission technologies will also be discussed. A multi-terminal VSC HVDC model is developed in DSATools to implement the overlay grid and a test case on a regional NPCC system will be simulated. Another test system of entire US power grid, with three different interconnections tied together using back-to-back HVDC, is also introduced in this paper. Building an overlay system on top of this test case is ongoing, and will be discussed in future work.

  20. Transmissive concentrator multijunction solar cells with over 47% in-band power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Ji, Yaping; Krut, Dimitri D.; Ermer, Jim H.; Escarra, Matthew D.

    2016-11-01

    Transmissive concentrator multijunction (TCMJ) solar cells with over 47% in-band power conversion efficiency (PCE) have been designed and realized. These TCMJ solar cells have been characterized under 1 sun and concentrated 500 sun solar spectra, showing that the PCE for in-band light (photon energies above the cell's lowest bandgap) can reach up to 47.6% (29.5% for the full solar spectrum). Temperature coefficients of electrical parameters (Voc, Jsc, fill factor) have been derived from measurements within the temperature range of 20 °C-130 °C, showing linear variations versus temperature change. Optical measurements demonstrate that the cells show 76.5% solar-weighted optical transmission for the out-of-band light (photon energy below the cell's lowest bandgap). This TCMJ solar cell exhibits promising spectrum splitting capability, which has the potential for use in hybrid photovoltaic-solar thermal applications.

  1. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  2. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system

    NASA Astrophysics Data System (ADS)

    Erinmez, I. Arslan; Kappenman, John G.; Radasky, William A.

    2002-03-01

    The National Grid Company plc (NGC) is the owner and operator of one of the world's largest privatised high-voltage electric power transmission systems in England and Wales at 400 and 275kV. As owner operator it is responsible for the secure and reliable delivery of electrical energy to all the 25 million electricity supply customers in England and Wales. The transmission and distribution systems in UK have experienced significant effects during past geomagnetic storm events especially during solar cycles 21 and 22. These effects included generator reactive power output swings, voltage dips, negative sequence alarms and transformer failures. Geomagnetically induced current (GIC) monitoring was installed in 1989 and operational procedures were put in place based on global solar weather forecasts. These measures were not capable of delivering reliable information and thus gave many false operational alarms. Their only real use was for post event forensic purposes. Since the cycle 22 solar peak activity the UK transmission system has developed to become more meshed, heavily loaded and dependent on the availability of reactive compensation equipment for voltage control. NGC carried out GIC impact risk assessment in 1998. This reviewed available options for managing this risk including investigation of blocking measures, a reliable local GIC forecast, GIC monitoring, a review of transmission equipment capabilities to withstand GIC conditions and operational procedures to manage the risk. As a result of the risk assessment NGC completed installation of a Metatech Spacecast/Powercast space weather forecasting system in May 1999. EPRI Sunburst 2000 based transformer monitoring systems were fully integrated in January 2000 in time for peak solar storm activity in solar cycle 23. This paper will describe the risk analysis undertaken, the risk management processes put in place and the performance of the forecasting and monitoring systems, respectively.

  3. An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    We present an adaptive reconfigurable active voltage doubler (VD)/rectifier (REC) (VD/REC) in standard CMOS, which can adaptively change its topology to either a VD or a REC by sensing the output voltage, leading to more robust inductive power transmission over an extended range. Both active VD and REC modes provide much lower dropout voltage and far better power conversion efficiency (PCE) compared to their passive counterparts by adopting offset-controlled high-speed comparators that drive the rectifying switches at proper times in the high-frequency band. We have fabricated the active VD/REC in a 0.5-µm 3-metal 2-poly CMOS process, occupying 0.585 mm2 of chip area. In an exemplar setup, VD/REC extended the power transmission range by 33% (from 6 to 8 cm) in relative coil distance and 41.5% (from 53° to 75°) in relative coil orientation compared to using the REC alone. While providing 3.1-V dc output across a 500-Ω load from 2.15- (VD) and 3.7-V (REC) peak ac inputs at 13.56 MHz, VD/REC achieved measured PCEs of 70% and 77%, respectively. PMID:24633369

  4. 41 CFR 102-75.380 - May power transmission lines and rights-of-way be disposed of in other ways?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May power transmission... REGULATION REAL PROPERTY 75-REAL PROPERTY DISPOSAL Surplus Real Property Disposal Power Transmission Lines § 102-75.380 May power transmission lines and rights-of-way be disposed of in other ways? Yes,...

  5. BPA/Puget Power Northwest Washington Transmission Project Final Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-08-01

    Bonneville Power Administration (BPA) and Puget Sound Power & Light Company (Puget Power) propose to upgrade the existing high-voltage transmission system in the Whatcom and Skagit counties area between the towns of Custer and Sedro Woolley, including some areas within the City of Bellingham, starting in 1995. A Draft Environmental Impact Statement (DEIS) for the project was issued in November 1993, followed by a 45-day public comment period. Public response to the DEIS included the identification of several new transmission route alternatives in the Lake Whatcom area. BPA issued a Supplemental DEIS in April 1995 to provide a second public review-and-comment period. Rebuilding an existing 230-kV line to a double-circuit 230-kV transmission line was identified in the Supplemental DEIS as the Proposed Action. The Supplemental DEIS also examined in detail a North Shore Road alternative which was proposed by some members of the public. Public comments on the EIS were listed and responded to in the Supplemental DEIS. In May 1995, a second set of open houses and public meetings was held to review the Supplemental DEIS. Electromagnetic field (EMF) effects raised as an issue in the DEIS continued to be an issue of public concern in the meetings. The EIS has identified impacts that would generally be classified as low to moderate and localized. Effects on soils and water resources in sensitive areas (e.g., near Lake Whatcom) would be low to moderate; there would be little change in magnetic fields; noise levels would remain at existing levels; and land use and property value impacts would be minimal. Threatened and endangered species would not be adversely affected, and all proposed actions in wetlands would be covered by a Corps of Engineers Nationwide Permit. Visual and socioeconomic would be low to moderate. There would be no effect on cultural resources.

  6. On-Line Condition Monitoring of a Power Transmission Unit of a Rail Vehicle

    NASA Astrophysics Data System (ADS)

    Deuszkiewicz, P.; Radkowski, S.

    2003-11-01

    The paper addresses the issue of selection of diagnostic parameters and methods of an object's condition classification. The research was conducted for a power transmission unit of a commuter train. We analysed the vibration of the axle box as measured on the track for systems before and after an overhaul. In the final part of the paper, we proposed an algorithm that can be used to identify the technical condition of a machine while using neural networks and we also described the operation of an on-line diagnostic system.

  7. Efficiencies of photovoltaic cell receivers for laser power transmission under the lunar environment

    SciTech Connect

    Yugami, H.; Naito, H.; Itagaki, H.

    1998-07-01

    Major space activities in the next century will substantially increase the demand for power. The system of powering a very diverse set of remote missions will be an important infrastructure in space. Especially, the nighttime power supply to a space base placed on the Moon is a central problem in the development and utilization of the Moon, because the period of the nighttime on the Moon corresponds to 15 Earth-days. Photovoltaic cells could potentially be used as power receivers for several lasers at visible and near infrared regions. Several paper studies on the solar-cell response to laser illumination are available. However, the efficiency and response of cells would be quite different if these were used on the nighttime Moon surface since the temperature of lunar environment drops very low during the nighttime (about {minus}170 C). A feasibility of a laser energy transmission concept for a first stage lunar mission on 2005--2015 has been studied by NASDA. The lunar energy system consists of a small battery and a receiver (solar cell panel) on the lunar surface and a laser power transmission satellite on the moon orbit. In order to study the plausible lunar laser energy transmission system based on the state of the art of lasers and PV cell technologies, the authors report the cell efficiencies illuminated with several kinds of CW and pulsed lasers under the temperature range from {minus}190 C to 60 C. Solar cells of c-Si, GaAs for space use, CuInSe{sub 2} and infrared enhanced c-Si photodiode have been tested by changing the laser power from 3mW/cm{sup 2} to 1000mW/cm{sup 2}. The authors observed that the temperature dependence of the efficiency for YAG fundamental laser light is quite different from that for LD and Ar ion laser. In the latter cases, the efficiency increases with decreasing temperature. This is the general feature for the efficiency of conventional solar cells. In contrast with those, the PV cell efficiency under YAG fundamental light

  8. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  9. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-11-16

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

  10. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  11. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  12. Wholesale Power and Transmission Rate Projections 1993--2014 and Historical Wholesale Power Rates 1939--1992.

    SciTech Connect

    US Bonneville Power Administration

    1993-11-01

    This document provides a range of high, medium, and low case long-term projections of Bonneville Power Administration`s (BPA) wholesale power rates and a medium case long-term projection of BPA`s wheeling rates. These projections are produced annually by BPA. BPA uses these projections in long-term marketing, resource, transmission, and financial planning assessments. BPA`s projections also are used by public utility commissions, utilities, and others for a variety of planning purposes. The analysis used for these rate projections assumes that current rate making methodologies continue into the future and are further based on certain assumptions about regional loads, extra-regional markets, the costs of resources, BPA`s financial requirements, and the capability of the region`s power plants. While these projections are intended to address the overall uncertainty in rate levels, BPA realizes that the future will not reflect any specific set of assumptions. The rate projections in this document have been prepared prior to the Draft 1993 BPA Marketing Plan, the implementation of which is almost certain to push BPA away from any set of assumptions in this document. Therefore, this document can be thought of as representing the ``old`` BPA with its products and policies. It can be viewed as a starting point or reference point to measure the impact of the ``new`` BPA with its Marketing Plan, and the broader undertaking referred to as the Competitiveness Project.

  13. Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry

    SciTech Connect

    1998-01-01

    This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

  14. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    PubMed

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.

  15. Characterizing the topological and controllability features of U.S. power transmission networks

    NASA Astrophysics Data System (ADS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Berryhill, Benjamin; Yazdani, Alireza

    2016-07-01

    Understanding the controllability of complex networks continues to gain traction across disciplinary fields, including the exploration of infrastructure systems such as power grids. Through topological principles, this paper investigates the controllability features of an ensemble of 58 U.S. city-level power transmission networks in seven U.S. states. To perform structural controllability analyses, the topological characteristics of the ensemble of networks are first quantified, including degree, shortest path length, clustering coefficient, meshedness and betweenness centrality, as well as the uncertainty associated with these and related properties. Then, the paper focuses on the controllability features of complex networks so as to detect the minimal sets of driver nodes to possibly control the networks given system linearity assumptions. Accordingly, a node is critical, intermittent or redundant if it acts as a driver node in all, some, or none of the potentially controllable system configurations. Moreover, this paper constructs a new methodology to quantify the probability of being a driver node among the intermittent nodes, and reveals the controllability importance of system components. Results show that a small proportion of driver nodes can provide the conditions for controlling the slow dynamics of entire power transmission networks from a topological perspective, despite variations in network sizes and configurations. This paper also reveals that the driver nodes tend to avoid high degree nodes and high triangulation sub-graph nodes as well as high betweenness centrality nodes. The identification of topological differences for different categories of nodes (critical, intermittent or redundant) could help researchers and utilities understand the conditions for future functional controllability of power networks while improving their reliability and resilience as well as facilitating their transition into smart grid systems.

  16. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    PubMed

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  17. Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission

    PubMed Central

    Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey

    2014-01-01

    Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190

  18. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    NASA Astrophysics Data System (ADS)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  19. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  20. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  1. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.

    PubMed

    Miao Meng; Kiani, Mehdi

    2016-08-01

    In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.

  2. Effects of neutral gas collisions on the power transmission factor at the divertor sheath

    NASA Astrophysics Data System (ADS)

    Futch, A. H.; Hill, D. N.; Jong, R. A.; Porter, G. D.; Matthews, G. F.; Buchenauer, D.

    1992-03-01

    We show that charge-exchange and other ion-neutral collisions can reduce the power transmission factor of the plasma sheath, thereby lowering the ion impact energy and target plate sputtering. The power transmission factor relates the heat flux reaching the divertor target to the surface: Delta= Q(sub surf)/n(sub e)T(sub e)C(sub s). Experimental data from the D3-D tokamak suggest that Delta could be as low as 2-3 near the region of peak divertor particle flux, instead of the 7-8 expected from usual sheath theory. Several effects combine to allow ion-neutral interactions to be important in the divertor plasma sheath. The shallow angle of incidence of the magnetic field (1-3 degrees in D3-D) leads to the spatial extension of the sheath from approximately (pi)i approximately = 1 mm normal to the plate to several centimeters along the field lines. Ionization reduces the sheath potential, and collisions reduce the ion impact energy.

  3. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  4. Cooling test of the 500 m class superconducting DC power transmission system

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Ivanov, Yury V.; Chikumoto, Noriko; Inoue, Noriyuki; Takano, Hirohisa; Yamaguchi, Satarou; Ishiyama, Kotaro; Oishi, Zenji; Koshizuka, Hiromi; Watanabe, Michihiko; Masuda, Takato; Hayashi, Kazuhiko; Sawamura, Toru

    2017-02-01

    Recently, 500 m and 1000 m class superconducting DC power transmission systems were constructed in the Ishikari area in Japan and the cooling test of the 500 m system was performed. The heat leak of the cryogenic pipe and the total heat load of the system were estimated in the cooling test. The cryogenic pipe of the system has two inner pipes in one outer pipe for circulation. The heat leak was 0.98 W/m and 0.44 W/m for each inner pipe. The total heat load of the system was 1.37 kW except for the heat load by the current feeding and the circulation pumps, while the total cooling power of the system was approximately 3 kW. The pressure drop of the circulation was measured to be 19.5 kPa at the rated flow rate of 30 L/min for the 1000 m circulation both ways in the 500 m transmission line. By the cooling test, it was confirmed that the system can be operated stably.

  5. Design and cost estimate of an 800 MVA superconducting power transmission

    SciTech Connect

    Alex, P.; Ernst, A. ); Forsyth, E.; Gibbs, R.; Thomas, R.; Muller, T. )

    1990-10-18

    Numerous studies involving cost estimates have been performed for superconducting power transmission systems. As these systems were usually aimed at providing transmission from large clusters of generation the base power rating of the corridor was very high; in the case of the most comprehensive study it was 10,000 MVA. The purpose of this study is to examine a system which is very closely based on the prototype 1000 MVA system which was operated at Brookhaven National Laboratory over a four year period. The purpose of the study is to provide cost estimates for the superconducting system and to compare these estimates with a design based on the use of advanced but conventional cable designs. The work is supported by funding from the Office of Energy Research's Industry/Laboratory Technology Exchange Program. This program is designed to commercialize energy technologies. The technical design of the superconducting system was prepared by the BNL staff, the design of the 800 MVA conventional cable system was done by engineers from Underground Systems Incorporated. Both institutions worked on the cost estimate of the superconducting system. The description and cost estimate of the conventional cable system is given in the Appendix. 5 refs.

  6. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  7. Estimating magnetic fields of homes near transmission lines in the California Power Line Study.

    PubMed

    Vergara, Ximena P; Kavet, Robert; Crespi, Catherine M; Hooper, Chris; Silva, J Michael; Kheifets, Leeka

    2015-07-01

    The California Power Line Study is a case-control study investigating the relation between residences near transmission lines and risk of childhood leukemia. It includes 5788 childhood leukemia cases and 5788 matched primary controls born between 1986 and 2007. We describe the methodology for estimating magnetic fields at study residences as well as for characterizing sources of uncertainty in these estimates. Birth residences of study subjects were geocoded and their distances to transmission lines were ascertained. 302 residences were deemed sufficiently close to transmission lines to have non-zero magnetic fields attributable to the lines. These residences were visited and detailed data, describing the physical configuration and dimensions of the lines contributing to the magnetic field at the residence, were collected. Phasing, loading, and directional load flow data for years of birth and diagnosis for each subject as well as for the day of site visit were obtained from utilities when available; when yearly average load for a particular year was not available, extrapolated values based on expert knowledge and prediction models were obtained. These data were used to estimate the magnetic fields at the center, closest and farthest point of each residence. We found good correlation between calculated fields and spot measurements of fields taken on site during visits. Our modeling strategies yielded similar calculated field estimates, and they were in high agreement with utility extrapolations. Phasing was known for over 90% of the lines. Important sources of uncertainty included a lack of information on the precise location of residences located within apartment buildings or other complexes. Our findings suggest that we were able to achieve high specificity in exposure assessment, which is essential for examining the association between distance to or magnetic fields from power lines and childhood leukemia risk.

  8. An implantable neural sensing microsystem with fiber-optic data transmission and power delivery.

    PubMed

    Park, Sunmee; Borton, David A; Kang, Mingyu; Nurmikko, Arto V; Song, Yoon-Kyu

    2013-05-10

    We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device.

  9. Optical retrodirective tracking system approach using an array of phase conjugators for communication and power transmission.

    PubMed

    Schäfer, Christian A; Matoba, Osamu; Kaya, Nobuyuki

    2007-07-20

    A new concept for a retrodirective tracking system applicable for communication and power transmission is proposed. In the proposed concept, the power transmitter utilizes a receiver's pilot signal to obtain information about its direction by conjugating the signal's phase inside a nonlinear medium. Power is therefore transmitted back to the receiver by the phase-conjugated signal beam. The power can be concentrated by an array of phase conjugators, which provides a large aperture so that the intensity can be increased on the receiver's photovoltaic panels compared to a single element. Controlling the phase and the direction of the readout beams in the four-wave-mixing process provides control over the interference pattern, its position, and its size. A numerical analysis is given for the phase and spot size control, and measurements with two Co-doped Sr(x)Ba(1-x)Nb(2)O(6) (Co:SBN) crystals confirm the occurrence of interference that is achieved for the case of two beams.

  10. A wireless transmission low-power radiation sensor for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Gabrielli, A.; Baldazzi, G.; Campana, R.; Valentinetti, S.; Crepaldi, M.; Demarchi, D.; Villani, G.

    2014-02-01

    The aim of the paper is to illustrate the design and the performance of a microelectronic circuit composed of a dosimeter, an oscillator, a modulator, a transmitter and an antenna. The device was designed for specific in vivo dosimetry applications. However, the layout area of less than 1 mm2 makes it suitable for a large variety of applications, from spot radiation monitoring systems in medicine to accurate measurements of radiation level in high-energy physics experiments. Moreover, due to its extremely low-power budget, it might be also of interest for space applications. The chip embeds a re-programmable floating-gate transistor configured as a radiation sensor and a read-out circuit. Prototype chips have been fabricated and tested exploiting a commercial 180 nm, four-metal CMOS technology. Characterization tests of the performance of the Ultra-Wide Band transmission are summarized. The dosimeter prototype has an estimated sensitivity of 1 mV/rad within a total absorbed dose range up to 10 krad. The read-out circuit is powered with 3.3 V and the total power consumption is very low, i.e. about 165 μW, making it also upgradable with a remote power system.

  11. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    SciTech Connect

    Romanchenko, I. V. Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-07

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  12. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery

    PubMed Central

    Park, Sunmee; Borton, David A.; Kang, Mingyu; Nurmikko, Arto V.; Song, Yoon-Kyu

    2013-01-01

    We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device. PMID:23666130

  13. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  14. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    SciTech Connect

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; Liu, Yilu

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation method can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.

  15. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Meng, Miao; Kiani, Mehdi

    2017-02-01

    Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (RL) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (fc) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic fcs is found based on the Rx thickness constrain. For a chosen fc within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different fcs to find the optimal fc and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm(3) implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at fc of 1.8 MHz was achieved for RL of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm(3) piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at fc of 1.1 MHz for RL of 2.5 [Formula: see text] at [Formula: see text], respectively.

  16. Investigation of potential driver modules and transmission lines for a high frequency power system on the space station

    NASA Technical Reports Server (NTRS)

    Brush, Harold T.

    1986-01-01

    The feasibility of using Series Resonant Inverter as the driver module for high frequency power system on the Space Station was assessed. The performance of the Series Resonant Inverter that was used in the testing of the single-phase, 2.0-kw resonant AC power system breadboard is summarized. The architecture is descirbed and the driver modules of the 5.0 kw AC power system breadboard are analyzed. An investigation of the various types of transmission lines is continued. Measurements of equivalent series resistor and inductor and equivalent parallel capacitors are presented. In particular, a simplified approach is utilized to describe the optimal transmission line.

  17. Harmonic Resonance in Power Transmission Systems due to the Addition of Shunt Capacitors

    NASA Astrophysics Data System (ADS)

    Patil, Hardik U.

    Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues. For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy intended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC. The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of 'forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented. Specific key results for the study indicated include: (1) The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus. (2) The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be

  18. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Ahn, Dukju; Ghovanloo, Maysam

    2016-02-01

    This paper presents a design methodology for RF power transmission to millimeter-sized implantable biomedical devices. The optimal operating frequency and coil geometries are found such that power transfer efficiency (PTE) and tissue-loss-constrained allowed power are maximized. We define receiver power reception susceptibility (Rx-PRS) and transmitter figure of merit (Tx-FoM) such that their multiplication yields the PTE. Rx-PRS and Tx-FoM define the roles of the Rx and Tx in the PTE, respectively. First, the optimal Rx coil geometry and operating frequency range are identified such that the Rx-PRS is maximized for given implant constraints. Since the Rx is very small and has lesser design freedom than the Tx, the overall operating frequency is restricted mainly by the Rx. Rx-PRS identifies such operating frequency constraint imposed by the Rx. Secondly, the Tx coil geometry is selected such that the Tx-FoM is maximized under the frequency constraint at which the Rx-PRS was saturated. This aligns the target frequency range of Tx optimization with the frequency range at which Rx performance is high, resulting in the maximum PTE. Finally, we have found that even in the frequency range at which the PTE is relatively flat, the tissue loss per unit delivered power can be significantly different for each frequency. The Rx-PRS can predict the frequency range at which the tissue loss per unit delivered power is minimized while PTE is maintained high. In this way, frequency adjustment for the PTE and tissue-loss-constrained allowed power is realized by characterizing the Rx-PRS. The design procedure was verified through full-wave electromagnetic field simulations and measurements using de-embedding method. A prototype implant, 1 mm in diameter, achieved PTE of 0.56% ( -22.5 dB) and power delivered to load (PDL) was 224 μW at 200 MHz with 12 mm Tx-to-Rx separation in the tissue environment.

  19. Joint optimization of sensing threshold and transmission power in wideband cognitive radio with energy detection

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Bi, Guoan; Jia, Min; Guan, Yong Liang; Zhong, Weizhi; Lin, Rui

    2013-07-01

    this paper, we consider a wideband cognitive radio system that operates over multiple idle subchannels. A joint optimization of sensing threshold and transmission power is proposed, which maximizes the total throughput subject to the constraints on the total interference, the total power, and the probabilities of false alarm and detection of each subchannel. An alternative joint optimization is proposed, which minimizes the total interference under the constraint of the total throughput. The bilevel optimization method is used to solve the proposed optimization problems with a minimized iteration complexity. The mixed-variable optimization problem is divided into two single-variable convex optimization subproblems: the upper level for threshold optimization and the lower level for power optimization. Weighed cooperative sensing is proposed to maximize the detection probability by choosing the optimal weighed factors. The simulations show that the proposed joint optimization algorithm can achieve desirable improvement on the throughput of cognitive radio at the same interference level to primary user, or vice versa within the limits on the probabilities of false alarm and miss detection, and the weighed cooperative sensing can considerably improve sensing performance compared with the unweighed cooperative sensing and single-user sensing.

  20. Vibration transmission through periodic structures using a mobility power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    The transmission of vibrational power (time averaged) through multiple coupled (periodic) structures is examined. The analysis is performed in the frequency domain and the coupling between the sub-elements of the periodic structure is expressed in terms of structural mobility functions for the junction points and between the junction points of the sub-elements. Equal length spans between stiffeners or supports of the periodic structure are considered. Through the use of the mobility power flow approach, the influence of sub-element and junction parameters, including damping at the joints, can be investigated. The results from the analysis can be in the form of either structural intensity or alternatively structural power content for each of the sub-elements. The examples discussed are for a thin, perfectly periodic beam with a finite number of spans with different types of stiffeners and/or supports between the spans. The excitation of the structure is by a point load located midway along the first span.

  1. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  2. Intelligent Video Surveillance for Detecting Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines

    NASA Astrophysics Data System (ADS)

    Gu, Irene Y. H.; Sistiaga, Unai; Berlijn, Sonja M.; Fahlström, Anders

    One of the problems for electrical power delivery through power lines in northern countries is when snow or ice accumulates on electrical insulators. This could lead to snow or ice-induced outages and voltage collapse, causing huge economic loss. This paper proposes a novel real-time intelligent surveillance and image analysis system for detecting and estimating the snow and ice coverage on electric insulators using images captured from an outdoor 420 kV power transmission line. In addition, the swing angle of insulators is estimated, as large swing angles due to wind cause short circuits. Hybrid techniques by combining histogram, edges, boundaries and cross-correlations are employed for handling a broad range of scenarios caused by changing weather and lighting conditions. Experiments have been conducted on the captured images over several month periods. Results have shown that the proposed system has provided valuable estimation results. For image pixels related to snows on the insulator, the current system has yielded an average detection rate of 93% for good quality images, and 67.6% for images containing large amount of poor quality ones, and the corresponding average false alarm ranges from 9% to 18.1%. Further improvement may be achieved by using video-based analysis and improved camera settings.

  3. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.

  4. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Ye, Tan; Jianmin, Zeng; Xu, Han; Xin, Cheng; Guangjun, Xie

    2016-09-01

    A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration. Project supported by the National Natural Science Foundation of China (Nos. 61404043, 61401137), the Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Nos. IIMDKFJJ-13-06, IIMDKFJJ-14-03), and the Fundamental Research Funds for the Central Universities (No. 2015HGZX0026).

  5. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  6. Vegetation Height Estimation Near Power transmission poles Via satellite Stereo Images using 3D Depth Estimation Algorithms

    NASA Astrophysics Data System (ADS)

    Qayyum, A.; Malik, A. S.; Saad, M. N. M.; Iqbal, M.; Abdullah, F.; Rahseed, W.; Abdullah, T. A. R. B. T.; Ramli, A. Q.

    2015-04-01

    Monitoring vegetation encroachment under overhead high voltage power line is a challenging problem for electricity distribution companies. Absence of proper monitoring could result in damage to the power lines and consequently cause blackout. This will affect electric power supply to industries, businesses, and daily life. Therefore, to avoid the blackouts, it is mandatory to monitor the vegetation/trees near power transmission lines. Unfortunately, the existing approaches are more time consuming and expensive. In this paper, we have proposed a novel approach to monitor the vegetation/trees near or under the power transmission poles using satellite stereo images, which were acquired using Pleiades satellites. The 3D depth of vegetation has been measured near power transmission lines using stereo algorithms. The area of interest scanned by Pleiades satellite sensors is 100 square kilometer. Our dataset covers power transmission poles in a state called Sabah in East Malaysia, encompassing a total of 52 poles in the area of 100 km. We have compared the results of Pleiades satellite stereo images using dynamic programming and Graph-Cut algorithms, consequently comparing satellites' imaging sensors and Depth-estimation Algorithms. Our results show that Graph-Cut Algorithm performs better than dynamic programming (DP) in terms of accuracy and speed.

  7. [Study on no-load running-in wear of power-shift steering transmission based on oil spectrum analysis].

    PubMed

    Li, He-yan; Wang, Li-yong; Ma, Biao; Zheng, Chang-song; Chen, Man

    2009-04-01

    The running-in process wear rule of power-shift steering transmission can be studied conveniently and timely by using spectral analysis of oil. The configuration characteristic and the running-in mechanism of power-shift steering transmission were introduced firstly in the present paper. According to the discussion of running-in wear factors such as load, rotation speed, time, oil temperature, shifting number and original concentration of running-in oil, the wear calculation mode was established. The no-load running-in experiments of two power-shift steering transmissions were done, with different rotation speed and time. Based on the spectrum analysis of experiment result, the function relation between running-in wear and the oil original concentration and running-in speed was obtained, so the no-load running-in process wear calculation mode of power-shift steering transmission was confirmed. Through the experiment of other two power-shift steering transmissions, it was validated that the Cu element concentration can be calculated accurately by the wear calculation mode, which included the parameters such as oil original concentration, running-in speed, running-in time and gear shift alternate time. So the reference to evaluate the running-in quality and to constitute running-in regulations was gained.

  8. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.

    PubMed

    Sardar, Tridip; Saha, Bapi

    2017-03-06

    In the last few years, fractional order derivatives have been used in epidemiology to capture the memory phenomena. However, these models do not have proper biological justification in most of the cases and lack a derivation from a stochastic process. In this present manuscript, using theory of a stochastic process, we derived a general time dependent single strain vector borne disease model. It is shown that under certain choice of time dependent transmission kernel this model can be converted into the classical integer order system. When the time-dependent transmission follows a power law form, we showed that the model converted into a vector borne disease model with fractional order transmission. We explicitly derived the disease-free and endemic equilibrium of this new fractional order vector borne disease model. Using mathematical properties of nonlinear Volterra type integral equation it is shown that the unique disease-free state is globally asymptotically stable under certain condition. We define a threshold quantity which is epidemiologically known as the basic reproduction number (R0). It is shown that if R0 > 1, then the derived fractional order model has a unique endemic equilibrium. We analytically derived the condition for the local stability of the endemic equilibrium. To test the model capability to capture real epidemic, we calibrated our newly proposed model to weekly dengue incidence data of San Juan, Puerto Rico for the time period 30th April 1994 to 23rd April 1995. We estimated several parameters, including the order of the fractional derivative of the proposed model using aforesaid data. It is shown that our proposed fractional order model can nicely capture real epidemic.

  9. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOEpatents

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  10. Development of Face Gear Technology for Industrial and Aerospace Power Transmission

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Filler, Robert R.; Tan, Jie

    2002-01-01

    Tests of a 250 horsepower proof-of-concept (POC) split torque face gear transmission were completed by The Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) This report provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA Design, manufacture and testing of the scaled-power TRP split torque gearbox followed preliminary evaluations of the concept performed early in the program The testing demonstrated the theory of operation for the concentric, tapered face gear assembly The results showed that the use of floating pinions in a concentric face gear arrangement produces a nearly even torque split The POC split torque tests determined that, with some improvements, face gears can be applied effectively in a split torque configuration which yields significant weight, cost and reliability improvements over conventional designs.

  11. Terahertz laminated-structure polarizer with high extinction ratio and transmission power

    NASA Astrophysics Data System (ADS)

    Kishi, Yudai; Nagai, Masaya; Young, John C.; Takano, Keisuke; Hangyo, Masanori; Suzuki, Takehito

    2015-03-01

    A terahertz polarizer consisting of a laminated metal-slit array on a polymer film is presented. Here, the iterative design is efficiently performed with a mode-matching method; the proposed polarizer’s characteristics are shown to be superior to those of conventional polarizers. To verify the proposed design, a copper metal-slit array was fabricated on a cyclo-olefin polymer film by sputtering and punching. Measurements confirm a high extinction ratio, below -50 dB from 0.28 to 1.09 THz and below -40 dB from 0.2 to 1.98 THz, with a TM-mode transmission power that averages 76% from 0.2 to 1.95 THz.

  12. [Study on fault diagnosis of power-shift steering transmission based on spectrometric analysis and SVM].

    PubMed

    Zhang, Ying-Feng; Ma, Biao; Zhang, Jin-Le; Chen, Man; Fan, Yu-Heng; Li, Wen-Chang

    2010-06-01

    Spectrometric oil analysis is an important method to study the running state of Power-Shift Steering Transmission (PSST). A method of multiple out least squares support vector regression was developed using spectrometric oil analysis data and SVM (Support Vector Machine). The spectrometric oil analysis data were studied using multiple out least squares support vector regression. It has been proved that the regression data are good in approximation effect for No. 1 PSST. And the predictive values for No. 2 PSST are highly veracious with the test data. The fault information was found and the fault position was determined through compar4tive analysis. This method has been proved to have practice significance for finding fault-hidden dangers and judging fault positions.

  13. Low power wireless ultra-wide band transmission of bio-signals

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Bastianini, S.; Crepaldi, M.; D'Amen, G.; Demarchi, D.; Lax, I.; Motto Ros, P.; Zoccoli, G.

    2014-12-01

    The paper shows the design of microelectronic circuits composed of an oscillator, a modulator, a transmitter and an antenna. Prototype chips were recently fabricated and tested exploiting commercial 130 nm [1] and 180 nm [2,3] CMOS technologies. Detected signals have been measured using a commercial Ultra-Wide-Band amplifier connected to custom designed filters and a digital demodulator. Preliminary results are summarized along with some waveforms of the transmitted and received signals. A digital Synchronized On-Off Keying (S-OOK) was implemented to exploit the Ultra-Wide-Band transmission. In this way, each transmitted bit is coded with a S-OOK protocol. Wireless transmission capabilities of the system have been also evaluated within a one-meter distance. The chips fit a large variety of applications like spot radiation monitoring, punctual measurements of radiation in High-Energy Physics experiments or, since they have been characterized as low-power components, readout of the system for medical applications. These latter fields are those that we are investigating for in-vivo measurements on small animals. In more detail, if we refer to electromyographic, electrocardiographic or electroencephalographic signals [4], we need to handle very small signal amplitudes, of the order of tens of μV, overwhelmed with a much higher (white) noise. In these cases the front-end of the readout circuit requires a so-called amplifier for instrumentation, here not described, to interface with metal-plate sensor's outputs such those used for electrocardiograms, to normal range of amplitude signals of the order of 1 V. We are also studying these circuits, to be also designed on a microelectronic device, without adding further details since these components are technically well known in the literature [5,6]. The main aim of this research is hence integrating all the described electronic components into a very small, low-powered, microelectronic circuit fully compatible with in

  14. Applications of Microwave Antenna Array for Wireless Power Transmission and Radar Imaging in Complex Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ce

    The focus of my research interests lies in the application of microwave antenna array system and array signal processing techniques to problems in wireless power transmission and radar imaging. The two research areas share the same underlying mathematical principle of time reversality of electromagnetic wave propagation. Based on this principle, the array antenna system and the associated signal processing algorithm are further improved to adapt to different scenarios. In my dissertation, the rest part presents an optimal algorithm for wireless power transmission with beamforming array. The optimal weight distribution on antenna array elements is found based on time reversal eigenmode technique. Our method is adaptive to the medium of the channel and can be applied to arbitrarily positioned antenna without degradation of efficiency. This novel method is analytically studied and verified with numerical electromagnetic simulations. The second part presents a new problem called "Hard-Wall Radar Imaging" (HWRI) has been proposed when the electromagnetic waves cannot penetrate the shielding walls (such as metallic walls). The research methodology involves algorithm development combined with experimental results to gain more insights into the real microwave imaging system. First, we implemented the imaging system with the conventional time reversal DORT (Decomposition of Time-Reversal Operator) imaging algorithm and adapted it into a new signal processing technique (multiplicative array technique) to obtain the image in the proposed scenario. Second, after having identified the drawbacks of the rest imaging system, the imaging system is improved to distributed MIMO radar configuration. The new imaging algorithm is also developed based on the techniques of Direction-of-Arrival(DoA) estimation and adaptive nulling. From this algorithm, the experimental results show that the new imaging system can localize two targets correctly. To resolve the problem of spurious clutter

  15. Soft x-ray blazed transmission grating spectrometer with high resolving power and extended bandpass

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander Robert; Schattenburg, Mark

    2016-04-01

    A number of high priority questions in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology. Still significantly higher performance can be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles. We show x-ray data from metal-coated CAT gratings and demonstrate efficient blazing to higher energies and larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, to be

  16. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    PubMed

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  17. Treatment of biodiversity issues in impact assessment of electricity power transmission lines: A Finnish case review

    SciTech Connect

    Soederman, Tarja . E-mail: tarja.soderman@ymparisto.fi

    2006-05-15

    The Environmental Impact Assessment (EIA) process concerning the route of a 400 kV power transmission line between Loviisa and Hikiae in southern Finland was reviewed in order to assess how biodiversity issues are treated and to provide suggestions on how to improve the effectiveness of treatment of biodiversity issues in impact assessment of linear development projects. The review covered the whole assessment process, including interviews of stakeholders, participation in the interest group meetings and review of all documents from the project. The baseline studies and assessment of direct impacts in the case study were detailed but the documentation, both the assessment programme and the assessment report, only gave a partial picture of the assessment process. All existing information, baseline survey and assessment methods should be addressed in the scoping phase in order to promote interaction between all stakeholders. In contrast to the assessment of the direct effects, which first emphasized impacts on the nationally important and protected flying squirrel but later expanded to deal with the assessment of impacts on ecologically important sites, the indirect and cumulative impacts of the power line were poorly addressed. The public was given the opportunity to become involved in the EIA process. However, they were more concerned with impacts on their properties and less so on biodiversity and species protection issues. This suggests that the public needs to become more informed about locally important features of biodiversity.

  18. Power and signal transmission protocol for a contactless subdural spinal cord stimulation device.

    PubMed

    Song, Suk-Heung; Gillies, George T; Howard, Matthew A; Kuhnley, Brian; Utz, Marcel

    2013-02-01

    Wireless signal transmission will play a critical role in developing reliable subdural spinal cord stimulation systems. We have developed an approach to inductively coupling signals across the epidural spacing between the pial and epidural surfaces. The major design constraints include tolerance of coil misalignments from spinal cord geometries in addition to reasonable power efficiencies within the expected range of movement. The design of the primary side as a driving circuit is simplified by several turns of commercial magnetic wire, whereas the implanted secondary side is implemented in a micro-planar spiral coil tuned to a resonant frequency of 1.6 MHz. We present the results of wireless inductive coupling experiments that demonstrate the ability to transmit and receive a frequency modulated 1.6 MHz carrier signal between primary and secondary coil antennae scaled to 10 mm. Power delivery is in the range of 400 mW at a link efficiency of 32 % for strong coupling (coil separations of 0.5 mm ) and in the range of 70 mW at 4 % efficiency for weak coupling (coil separations of 10 mm).

  19. Investigation of potential driver modules and transmission lines for a high frequency power system on the space station

    NASA Technical Reports Server (NTRS)

    Brush, H. T.

    1986-01-01

    The objective was to assess the feasibility of using the Series Resonant inverter as the driver module for the high frequency power system on the Space Station. This study evaluates the performance of the Series Resonant driver when it was operated with a dc input voltage and run through a series of tests to determine its start-up performance, response to load changes, load regulation, and efficiency. Also, this study compares the Series Resonant driver to another kind of driver that uses a Power Transistor snubber. An investigation of the various types of transmission lines is initiated. In particular, a simplified approach is utilized to describe the optimal transmission line.

  20. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    SciTech Connect

    Werley, Kenneth Alan; Mccown, Andrew William

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  1. Power and transmission rate orders and related documents. Office of Power Marketing Coordination, data compiled January 1, 1980-December 31, 1981

    SciTech Connect

    1982-08-01

    This publication contains the power and transmission rate orders and related documents issued by the Department of Energy. It covers calendar years 1980 and 1981. The first publication, DOE/CE-007 covering the period from March through December 1979, was published July 1981. This publication is a compilation of all rate orders issued by the Assistant Secretary for Resource Applications and the Assistant Secretary for Conservation and Renewable Energy during calendar years 1980 and 1981 under Delegation Order No. 0204-33. It also includes all final approvals, remands, and disapprovals by the FERC, and a petition to the FERC for reconsideration by a Power Marketing Administration during 1980 and 1981. Also included are two delegation orders along with an amendment and a supplement to one delegation order, a departmental order on financial reporting, and Power and Transmission Rate Adjustment Procedures relating to federal power marketing.

  2. Transmission characteristics of high-power 589-nm laser beam in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ito, Meguru; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Saito, Yoshihiko; Takazawa, Akira; Takami, Hideki; Iye, Masanori; Wada, Satoshi; Colley, Stephen A.; Dinkins, Matthew C.; Eldred, Michael; Golota, Taras I.; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto

    2006-06-01

    We are developing Laser Guide Star Adaptive Optics (LGSAO) system for Subaru Telescope at Hawaii, Mauna Kea. We achieved an all-solid-state 589.159 nm laser in sum-frequency generation. Output power at 589.159 nm reached 4W in quasi-continuous-wave operation. To relay the laser beam from laser location to laser launching telescope, we used an optical fiber because the optical fiber relay is more flexible and easier than mirror train. However, nonlinear scattering effect, especially stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), will happen when the inputted laser power increases, i.e., intensity at the fiber core exceed each threshold. In order to raise the threshold levels of each nonlinear scattering, we adopt photonic crystal fiber (PCF). Because the PCF can be made larger core than usual step index fiber (SIF), one can reduce the intensity in the core. We inputted the high power laser into the PCF whose mode field diameter (MFD) is 14 μm and the SIF whose MFD is 5 μm, and measured the transmission characteristics of them. In the case of the SIF, the SRS was happen when we inputted 2 W. On the other hand, the SRS and the SBS were not induced in the PCF even for an input power of 4 W. We also investigated polarization of the laser beam transmitting through the PCF. Because of the fact that the backscattering efficiency of exciting the sodium layer with a narrowband laser is dependent on the polarization state of the incident beam, we tried to control the polarization of the laser beam transmitted the PCF. We constructed the system which can control the polarization of input laser and measure the output polarization. The PCF showed to be able to assume as a double refraction optical device, and we found that the output polarization is controllable by injecting beam with appropriate polarization through the PCF. However, the Laser Guide Star made by the beam passed through the PCF had same brightness as the state of the polarization.

  3. PLANETSYS, a Computer Program for the Steady State and Transient Thermal Analysis of a Planetary Power Transmission System: User's Manual

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Kleckner, R. J.; Ragen, M. A.; Dyba, G. J.; Sheynin, L.

    1981-01-01

    The material presented is structured to guide the user in the practical and correct implementation of PLANETSYS which is capable of simulating the thermomechanical performance of a multistage planetary power transmission. In this version of PLANETSYS, the user can select either SKF or NASA models in calculating lubricant film thickness and traction forces.

  4. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating

    SciTech Connect

    Vernon, R.J.

    1991-08-01

    This progress report is for the sixth year of a grant from the US Department of Energy for the design, development, and fabrication of ECRH transmission and mode conversion systems to transport microwave power from a gyrotron to a magnetically confined plasma. The design and low-power testing of new and improved components for such systems and development of underlying theory is the focus of this project. Devising and improving component testing and diagnostic techniques is also an important part of this effort. The development of possible designs for sections of gyrotrons themselves, such as tapers or Vlasov-type launchers, in support of the Varian gyrotron development program is also considered when appropriate. We also provide support to other groups working on ECR heating of magnetically confined plasmas such as the groups at General Atomics, the University of Texas at Austin, and Lawrence Livermore National Laboratory. During the last year, we designed and had fabricated a two-dimensional Vlasov antenna system for a 110 GHz TE{sub 15,2} mode gyrotron for possible use at General Atomics. The system included the launcher section, a visor, main reflector, and focusing reflector. Programs to generate the tool-path profiles to cut the General Atomics'' Vlasov components on a milling machine were developed. We have also developed state-of-the art theory and programs for three-dimensional whispering-gallery-mode Vlasov antenna systems. A design for a 110 GHz TE{sub 01}-TE{sub 15,2} mode converter system for cold testing WGM Vlasov antenna systems was developed and is currently being fabricated also.

  5. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    NASA Astrophysics Data System (ADS)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  6. Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading

    NASA Astrophysics Data System (ADS)

    Winkelmann, Karol; Jakubowska, Patrycja; Soltysik, Barbara

    2017-03-01

    The study focuses on the reliability of a transmission tower OS24 ON150 + 10, an element of an OVH HV power line, under seismic loading. In order to describe the seismic force, the real-life recording of the horizontal component of the El Centro earthquake was adopted. The amplitude and the period of this excitation are assumed random, their variation is described by Weibull distribution. The possible space state of the phenomenon is given in the form of a structural response surface (RSM methodology), approximated by an ANOVA table with directional sampling (DS) points. Four design limit states are considered: stress limit criterion for a natural load combination, criterion for an accidental combination (one-sided cable snap), vertical and horizontal translation criteria. According to these cases the HLRF reliability index β is used for structural safety assessment. The RSM approach is well suited for the analysis - it is numerically efficient, not excessively time consuming, indicating a high confidence level. Given the problem conditions, the seismic excitation is shown the sufficient trigger to the loss of load-bearing capacity or stability of the tower.

  7. Balancing of a power-transmission shaft with the application of axial torque

    NASA Technical Reports Server (NTRS)

    Zorzi, E. S.; Flemming, D.

    1980-01-01

    Evaluation of power transmission shafting for high-speed balancing has shown that when axial torque is applied, the imbalance response is altered. An increase in synchronous excitation always occurs if the axial torque level is altered from the value used during balancing; this was the case even when the shaft was balanced with torque applied. The twisting of the long slender shaft produces a change in the imbalance distribution sufficient to disrupt the balanced state. This paper presents a review of the analytic development of a weighted least squares approach to influence coefficient balancing and a review of experimental results. The analytic approach takes advantage of the fact that the past testing has shown that the influence coefficients are not significantly affected by the application of axial torque. The 3.60-m (12-ft) long aluminum shaft, 7.62 cm (3 in.) in diameter was run through the first flexural critical speed at torque levels ranging from zero-torque to 903.8 N-M (8000 lb-in.) in 112.9 N-M (1000 lb-in.) increments. Good comparison was achieved between predicted and experimental results.

  8. Environmental justice: a contrary finding for the case of high-voltage electric power transmission lines.

    PubMed

    Wartenberg, Daniel; Greenberg, Michael R; Harris, Gerald

    2010-05-01

    Environmental justice is the consideration of whether minority and/or lower-income residents in a geographic area are likely to have disproportionately higher exposures to environmental toxins than those living elsewhere. Such situations have been identified for a variety of factors, such as air pollution, hazardous waste, water quality, noise, residential crowding, and housing quality. This study investigates the application of this concept to high-voltage electric power transmission lines (HVTL), which some perceive as a health risk because of the magnetic fields they generate, and also as esthetically unpleasing. We mapped all 345 kV and higher voltage HVTL in New York State and extracted and summarized proximate US Census sociodemographic and housing characteristic data into four categories on the basis of distances from HVTL. Contrary to our expectation, people living within 2000 ft from HVTL were more likely to be exposed to magnetic fields, white, of higher income, more educated and home owners, than those living farther away, particularly in urban areas. Possible explanations for these patterns include the desire for the open space created by the rights-of-way, the preference for new homes/subdivisions that are often located near HVTL, and moving closer to HVTL before EMFs were considered a risk. This study suggests that environmental justice may not apply to all environmental risk factors and that one must be cautious in generalizing. In addition, it shows the utility of geographical information system methodology for summarizing information from extremely large populations, often a challenge in epidemiology.

  9. [Failure Prediction of Power-Shift Steering Transmission Based on Oil Spectral Analysis with Wiener Process].

    PubMed

    Liu, Yong; Ma, Biao; Zheng, Chang-song; Xie, Shang-yu

    2015-09-01

    The most common methodology used in element concentration measurement and analyzing of wear particles is Atomic emission (AE) spectroscopy. As an indirect measuring method, the oil spectral data is introduced to indicate the performance degradation and the residual life prediction in the reliability evaluation of Power shift steering transmission (PSST). Stochastic methods especially the Wiener process is convenient in solving and analyzing the unitary degradation failure indicated by the oil spectral data. The oil data have been sampled in the real operating condition, and the data set has more than 50 samples taken from PSST. The mean values and time-dependent characteristics of three indicating elements are statistically obtained by the linear regression analysis. The model of the degradation and failure prediction has been proposed based on the Wiener process with the positive drift. For modeling and simulation the software R was used. Therefore, the trend curves of diffusion process with their First Hitting Time have been predicted. Through comparison, the time intervals of condition-based maintenance have been extended as 27 Mh (15.9%). This will save the cost of maintenances by eliminate the preventive maintained cycles. The advantage and novelty of the outcomes presented in the article are that the stochastic process might be applied for predicting the degradation failure occurrence and also for optimizing the maintenance intervals and the cost-benefit. As might be expected, the method can be extended to other cases of wear prediction and evaluation in complex mechanical system.

  10. Folsom-Nimbus 115 kV transmission line replacement for Western Area Power Administration: Environmental assessment

    SciTech Connect

    Not Available

    1980-07-01

    The Western Area Power Administration (Western) proposes to replace the existing Folsom-Nimbus 115 kV electrical transmission line along the American River between Folsom Dam and Nimbus Dam in Sacramento County, California. The need to replace the line is attributed to the deterioration of the existing wood pole structures by the acorn woodpecker; thus resulting in increased maintenance and hazard potential. The need for the replacement of the Folsom-Nimbus transmission line has resulted in the evaluation by Western of various routing alternatives. These alternatives were evaluated in terms of design, economic and environmental considerations. 60 refs., 19 figs., 4 tabs.

  11. Electric Power High-Voltage Transmission Lines: Design Options, Cost, and Electric and Magnetic Field Levels

    SciTech Connect

    Stoffel, J. B.; Pentecost, E. D.; Roman, R. D.; Traczyk, P. A.

    1994-11-01

    The aim of this report is to provide background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist preparers and reviewers of the section on alternatives in environmental documents. This report will give the reviewing individual a better appreciation of the factors affecting EMF strengths near high-voltage transmission lines and the approaches that might be used to reduce EMF impacts on humans and other biological species in the vicinity of high-voltage overhead or underground alternating-current (ac) or direct-current (dc) transmission lines.

  12. Bonneville Power Administration Transmission System Vegetation Management Program - Final Environmental Impact Statement

    SciTech Connect

    N /A

    2000-06-23

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from our electric facilities; (2) increase our program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This Final Environmental Impact Statement (FEIS) establishes Planning Steps for managing vegetation for specific projects (to be tiered to this Environmental Impact Statement (EIS)). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed manual, mechanical, herbicide, and biological. Also evaluated are 23 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, we consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides

  13. Bonneville Power Administration Transmission System Vegetation Management Program Draft Environmental Impact Statement

    SciTech Connect

    N /A

    1999-08-20

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from the electric facilities; (2) increase the program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This DEIS establishes Planning Steps for managing vegetation for specific projects (to be tiered to this EIS). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed: manual, mechanical, herbicide, and biological. Also evaluated are 24 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, they consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would factor a management approach that

  14. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community.

    PubMed

    Dunham, A; Pegg, J R; Carolsfeld, W; Davies, S; Murfitt, I; Boutillier, J

    2015-06-01

    We examined the effects of submarine power transmission cable installation and operation on glass sponge reef condition and associated megafauna. Video and still imagery were collected using a Remotely Operated Vehicle twice a year for 4 years following cable installation. The effects of cables on glass sponges were assessed by comparing sponge cover along fixed transects and at marked index sites. Megafauna counts along transects were used to explore the effects on associated community. We found no evidence of cable movement across the sponge reef surface. Live sponge cover was found to be consistently lower along cable transects and at cable index sites compared to controls. Live sponge cover was the lowest (55 ± 1.1% decrease) at cable index sites 1.5 years after installation and recovered to 85 ± 30.6% of the original size over the following 2 years. Our data suggest 100% glass sponge mortality along the direct cable footprint and 15% mortality in the surrounding 1.5 m corridor 3.5 years after cable installation. Growth rate of a new glass sponge was 1 and 3 cm/year in first and second year, respectively, and appeared to be seasonal. We observed a diverse megafaunal community with representatives from 7 phyla and 14 classes. Total megafauna, spot prawn, and other Arthropoda abundances were slightly lower along cable transects although the effect of cable presence was not statistically significant. The following measures could be taken to reduce the amount of damage to glass sponge reefs and associated fauna: routing the cable around reefs, whenever possible, minimizing cable movement across the surface of the reef at installation and routine operation, and assessing potential damage to glass sponges prior to decommissioning.

  15. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  16. Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz

    NASA Astrophysics Data System (ADS)

    Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin

    2012-08-01

    Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min-1 and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

  17. Fully roll-to-roll gravure printed rectenna on plastic foils for wireless power transmission at 13.56 MHz.

    PubMed

    Park, Hyejin; Kang, Hwiwon; Lee, Yonggil; Park, Yongsu; Noh, Jinsoo; Cho, Gyoujin

    2012-08-31

    Wireless power transmission to inexpensive and disposable smart electronic devices is one of the key issues for the realization of a ubiquitous society where sensor networks such as RFID tags, price tags, smart logos, signage and sensors could be fully interconnected and utilized by DC power of less than 0.3 W. This DC power can be provided by inductively coupled AC from a 13.56 MHz power transmitter through a rectenna, consisting of an antenna, a diode and a capacitor, which would be cheap to integrate with inexpensive smart electronic devices. To integrate the rectenna with a minimum cost, a roll-to-roll (R2R) gravure printing process has been considered to print the rectenna on plastic foils. In this paper, R2R gravure printing systems including printing condition and four different nanoparticle based inks will be reported to print the rectenna (antenna, diode and capacitor) on plastic foils at a printing speed of 8 m min(-1) and more than 90% device yield for a wireless power transmission of 0.3 W using a standard 13.56 MHz power transmitter.

  18. Analysis of dc harmonics using the three-pulse model for the intermountain power project HVDC transmission

    SciTech Connect

    Dickmander, D.L.; Peterson, K.J.

    1989-04-01

    The harmonic analysis of the dc-side of an HVDC line transmission requires realistic models of the converters, the dc line, and other relevant equipment. These models must include all important paths for harmonic current, and appropriate sources of harmonic voltage generation. The classical converter modeling technique has been demonstrated to be insufficient in field measurements and analysis of the harmonic spectra found on recent HVDC line transmission. For this reason, a new model of the converter bridge which takes into account the major stray capacitances in the converter (the three-pulse model) has been developed, and is described in detail elsewhere. This paper presents comparisons between the classical and three-pulse calculations for the Intermountain Power Project (IPP) HVDC transmission. The calculation results from the three-pulse model agree favorably with the harmonics found in field measurements.

  19. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    SciTech Connect

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces the number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.

  20. Aerosol Impacts on Cirrus Clouds and High-Power Laser Transmission: A Combined Satellite Observation and Modeling Approach

    DTIC Science & Technology

    2010-02-28

    Subject: Final Report for AFOSR Grant FA9550-09-1-0386, “Aerosol Impacts on Cirrus Clouds and High-Power Laser Transmission: A Combined Satellite...of the Weather Research Forecast (WRF) model for cirrus cloud simulation and prediction in conjunction with satellite observations to support the...features, the Fu-Liou-Gu scheme is now an ideal tool for the simulation of radiative transfer associated with cirrus clouds in weather and climate

  1. Real-time simulation of power transmission lines using Marti model with optimal fitting on dual-DSP card

    SciTech Connect

    Dufour, C.; Le-Huy, H.; El Hakimi, A.; Soumagne, J.C.

    1996-01-01

    Real-time simulation of a small power network containing a Marti modeled transmission line is made using 2 parallel DSP`s. A new fitting method is used in the modeling of the Marti line which is optimized with regards to the fitting error curve. Results are presented which show the time costs of the Marti line modeling versus constant-parameter line modeling and the time savings by using two parallel DSP`s.

  2. Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity

    NASA Astrophysics Data System (ADS)

    Son Pham, Thanh; Kumara Ranaweera, Aruna; Dinh Lam, Vu; Lee, Jong-Wook

    2016-04-01

    In this letter, we propose a magneto-inductive wave (MIW) metamaterial cavity for enhanced mid-range wireless power transfer (WPT) applications. Cavity operation is achieved by controlling the propagation of MIWs at lower megahertz frequencies. The cavity is realized by omitting a cell and thereby breaking the periodicity of the closely coupled metamaterial slabs. The cavity in the proposed metamaterial effectively confines the MIWs into a subwavelength region. Consequently, it localizes the magnetic field in the WPT region and provides enhanced power transmission. When the proposed MIW metamaterial cavity is used, the measured efficiency improves significantly from 8.7 to 54.9%.

  3. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  4. Simulation study on the operating characteristics of a hybrid hydraulic passenger car with a power split transmission

    NASA Astrophysics Data System (ADS)

    Ji, Changwei; Zhu, Yongming; Liang, Chen; Liu, Xiaolong

    2013-10-01

    In this paper, a hybrid hydraulic passenger car (HHPC) coupled with a power split continuously variable transmission (P-CVT) is proposed. This P-CVT is capable of splitting the power from the internal combustion engine into mechanical and hydraulic power flows. By adjusting the ratio of the mechanical power to hydraulic power, the P-CVT enables the transmission ratio to be changed continuously. Meanwhile, the P-CVT system can capture the braking energy and store it in the hydraulic accumulator for the next assistant driving. In order to quantitatively investigate the effect of applying P-CVT on improving the fuel economy and operating performance for the HHPC, a numerical simulation is conducted under typical city driving conditions. The simulation results demonstrate that, the P-CVT permits the engine to be run under a more efficient operating range. The total fuel consumption of the HHPC is reduced by 16.4% under the test conditions, compared with that of the original car.

  5. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Ibrahim, Ahmed; Kiani, Mehdi

    2016-12-01

    Power transmission efficiency (PTE) has been the key parameter for wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. It has been suggested that for mm-sized implants increasing the power carrier frequency (fp) of the WPT link to hundreds of MHz improves PTE. However, increasing fp significantly reduces the maximum allowable power that can be transmitted under the specific absorption rate (SAR) constraints. This paper presents a new figure-of-merit (FoM) and a design methodology for optimal WPT to mm-sized implants via inductive coupling by striking a balance between PTE and maximum delivered power under SAR constraints (PL,SAR). First, the optimal mm-sized receiver (Rx) coil geometry is identified for a wide range of fp to maximize the Rx coil quality factor (Q). Secondly, the optimal transmitter (Tx) coil geometry and fp are found to maximize the proposed FoM under a low-loss Rx matched-load condition. Finally, proper Tx coil and tissue spacing is identified based on FoM at the optimal fp. We demonstrate that fp in order of tens of MHz still offer higher PL,SAR and FoM, which is key in applications that demand high power such as optogenetics. An inductive link to power a 1 mm (3) implant was designed based on our FoM and verified through full-wave electromagnetic field simulations and measurements using de-embedding method. In our measurements, an Rx coil with 1 mm diameter, located 10 mm inside the tissue, achieved PTE and PL,SAR of 1.4% and 2.2 mW at fp of 20 MHz, respectively.

  6. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  7. a High-Power Microwave Transmission and Launching System for Plasma Heating on the Ornl ATF Experiment.

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy Stuart

    1990-01-01

    A high power microwave transmission and launching system has been developed for Electron Cyclotron Heating (ECH) of plasmas in the Advanced Toroidal Facility (ATF) fusion confinement experiment at Oak Ridge National Laboratory. Microwave power is generated by two 53 GHz, 200 KW cw gyrotron tubes. A waveguide transmission and launching system for each tube has been designed and built with the goal of depositing the maximum amount of power at the center of the plasma. Centralized deposition of the microwave power is possible at high frequencies by use of a launcher with a narrow radiated beamwidth and carefully controlled polarization to couple to electrons at the cyclotron resonant surface. In order for the transmission systems to operate at this high frequency and power level, highly over-moded waveguides have been used to reduce losses and arcing. To produce a narrow, polarized beam, the waveguide system was designed for minimum parasitic mode conversion so that the launcher can operate with nearly a single input mode. Several waveguide components were developed for the waveguide system including: a waveguide mode analyzing directional coupler, a rippled-wall mode converter, improved miter bends, and vacuum pumpout sections. To determine the mode purity of these components and efficiency of the system, laboratory measurement techniques for over-moded waveguide component evaluation were developed. A polarization controlled beam launcher was developed which launches a ~ 12 cm (-20 dB) beamwidth linearly polarized beam. The plane of polarization can be rotated to allow optimum coupling to either extra-ordinary or ordinary plasma waves. The transmission and launching system performed reliably. Modeling of electromagnetic wave propagation in the ATF plasma and measurement of beam absorption and plasma parameters were performed to determine the overall effectiveness of the ECH system. A coupled-mode wave propagation code was written to investigate the effect of magnetic

  8. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2015-02-01

    A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.

  9. High power free space optical link for rapid energy and data transmission

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip

    2016-05-01

    Design and experimental data for a high power laser diode based free space point-to-point optical power/data link is presented. In time critical power up applications, such as providing power and guidance information to a munition shell just prior to deployment, energy of the order of 100 J needs to be transferred in under 10 s. Current inductive technology is slow and broadcasts a radio-frequency signal which is undesirable for stealth operation. Rapid energy transfer times require high irradiance levels at the surface of the photovoltaic cells, typically, exceeding 1000X suns. Through efficient thermal design of heat sinks, high optical to electrical power conversion efficiencies of 50%, which are usually attainable at low power levels of 1 W, are achievable at higher power levels.

  10. Safe inductive power transmission to millimeter-sized implantable microelectronics devices.

    PubMed

    Ibrahim, Ahmed; Kiani, Mehdi

    2015-08-01

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are key inductive link design parameters for powering millimeter-sized implants. While several groups have suggested increasing the power carrier frequency (fp) of inductive links to 100s of MHz to maximize PTE, we have demonstrated that operating at 10s of MHz offers higher allowable PDL under the safety absorption rate (SAR) constraints. We have proposed a closed-form power function that relates maximum power levels that can safely be transferred at different frequencies under the SAR constraints. Three sets of inductive links at different frequencies of 50 MHz, 200 MHz, and 400 MHz have been optimized for powering a 1 mm(3)-sized implant. We have shown in simulations that reducing fp from 200 MHz to 50 MHz along with shrinking the size of the transmitter coil results in ~7.8 times higher PDL under SAR constraints, at the cost of only 52% drop in PTE.

  11. Microwave Power Transmission Using Electromagnetic Coupling of Open-Ring Resonators

    DTIC Science & Technology

    2012-11-01

    micro - strip line with the same distance between the connectors. Fig.4.4. Transmission through de-ionized water. “0” indicates the case of no sheets...for 2.45GHz signal transmission. The ring diameter is 9.9mm. The signal is fed through a 50Ω micro - strip line. The rings are connected to an SMA...connector through the micro - strip line with 18 μm thick copper. The back side of the board is covered with copper which is used as a ground plane. To

  12. Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    NASA Astrophysics Data System (ADS)

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2016-06-01

    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.

  13. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  14. Power transmission by laser beam from lunar-synchronous satellites to a lunar rover

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1992-01-01

    This study addresses the possibility of beaming laser power from synchronous lunar orbits (L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.

  15. Power transmission by laser beam from lunar-synchronous satellites to a lunar rover

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; De Young, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    This study addresses the possibility of beaming laser power from synchronous lunar orbits (L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.

  16. Specific features of waveguide heating due to transmission of high-power microwave signals

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, I. V.; Gotselyuk, O. B.; Novikov, E. S.; Demin, V. G.

    2017-01-01

    Waveguide heating due to transmission of microwave signals is studied. Mathematical models are developed to evaluate heat liberation, and differential equations of thermal balance are derived with allowance for different working conditions of waveguides. The results prove the necessity of the further study of the effect of heat liberation in waveguides on strength and functional characteristics.

  17. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    We study transmission of electric energy through an elastic plate by acoustic wave propagation and piezoelectric transducers. Our mechanics model consists of an elastic plate with finite piezoelectric patches on both sides of the plate. A theoretical analysis using the equations of elasticity and piezoelectricity is performed. Energy trapping that describes the confinement and localization of the vibration energy is examined.

  18. Analytic power and sample size calculation for the genotypic transmission/disequilibrium test in case-parent trio studies.

    PubMed

    Neumann, Christoph; Taub, Margaret A; Younkin, Samuel G; Beaty, Terri H; Ruczinski, Ingo; Schwender, Holger

    2014-11-01

    Case-parent trio studies considering genotype data from children affected by a disease and their parents are frequently used to detect single nucleotide polymorphisms (SNPs) associated with disease. The most popular statistical tests for this study design are transmission/disequilibrium tests (TDTs). Several types of these tests have been developed, for example, procedures based on alleles or genotypes. Therefore, it is of great interest to examine which of these tests have the highest statistical power to detect SNPs associated with disease. Comparisons of the allelic and the genotypic TDT for individual SNPs have so far been conducted based on simulation studies, since the test statistic of the genotypic TDT was determined numerically. Recently, however, it has been shown that this test statistic can be presented in closed form. In this article, we employ this analytic solution to derive equations for calculating the statistical power and the required sample size for different types of the genotypic TDT. The power of this test is then compared with the one of the corresponding score test assuming the same mode of inheritance as well as the allelic TDT based on a multiplicative mode of inheritance, which is equivalent to the score test assuming an additive mode of inheritance. This is, thus, the first time the power of these tests are compared based on equations, yielding instant results and omitting the need for time-consuming simulation studies. This comparison reveals that these tests have almost the same power, with the score test being slightly more powerful.

  19. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    PubMed

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.

  20. Benefit and cost competitiveness analysis of wind and solar power inter-continent transmission under global energy interconnection mode

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoxia; Ding, Jian; Liu, Jie; Wei, Tiezhong

    2017-01-01

    Relying on the global energy Interconnection, considering the energy implementation, carrying out clean energy alternative is mainly to use the clean energy to take place of fossil energy. Under the green development scenario, This research gives the global energy interconnection development model, makes the Artic and the Equation as the connection points, gives the Northern hemisphere interconnection model and equator interconnection model unite the whole world energy. This research also identifies the factors effecting the transmission changes cost, including generation cost, transmission cost and landing cost. And take two continents connection as the prediction example, estimate these two continents cost benefit and variable power-jointed scheme cost competitiveness. It showed that under the global energy interconnection mode, the trans-continent mode had better benefit, and the landing cost is good to be used, can solve the pollution and energy restriction.