Science.gov

Sample records for ac-impedance spectroscopy ac-is

  1. Age-related changes in ac-impedance spectroscopy studies of normal human dentine: further investigations.

    PubMed

    Eldarrat, A H; High, A S; Kale, G M

    2010-01-01

    One of the age-related changes occurring in dentine structure is the formation of peritubular dentine on the inner walls of dentinal tubules leading to complete closure of tubules. Ac-impedance is safe, fast and non-invasive technique. In the last decade, the popularity of the technique has increased in dental research. Several investigators have used the technique to detect tooth cracks and caries. The results of in vitro studies showed that ac-impedance technique was more advanced for caries detection than visual and radiographic methods. However, other studies demonstrated that the accuracy of impedance measurements can be affected by many factors such as remineralization after tooth eruption. A study has been published on effect of age on impedance measurements by the authors for two age groups by employing ac-impedance spectroscopy. Therefore, the aim of this study was to demonstrate the importance of this technique by conducting further investigations on dentine samples of wider age groups. Dentine samples were prepared from extracted sound third molars of known patient age. The ac-impedance measurements were carried out over a wide range of frequency. After performing all electrical measurements, dentine samples were examined under SEM to correlate the electrical measurements with their structure. Impedance measurements showed that there were differences in impedance between young and old dentine. One-way ANOVA of the means of resistance and capacitance for all age groups (20, 25, 30, 40 and 50 years old dentine) revealed a significant difference (ANOVA, P < 0.0001) as a function of age. Applying Tukey's post hoc test, to the same data showed that this difference was due to the 50 years old dentine for resistance and was due to the 40 and 50 years old dentine for capacitance which were statistically different to all other groups. SEM investigation of dentine samples showed that young dentine is characterized by open dentinal tubules distributed all over the

  2. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  3. Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy.

    PubMed

    Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin

    2010-08-01

    An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface.

  4. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  5. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  6. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  7. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  8. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  9. ac impedance measurements of molten salt thermal batteries

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Guidotti, Ronald A.; Reisner c, David

    Non-destructive testing of thermal batteries without activating them is a challenging proposition. Molten salt thermal batteries are activated by raising their temperature to above the melting point of the salt constituting the electrolyte. One approach that we have considered is to raise the temperature of the molten salt electrolyte to a temperature below the melting point so that the battery does not get activated yet may provide sufficient mobility of the ionic species to be able to obtain some useful ac impedance measurements. This hypothesis was put to the test for two Li(Si)/FeS 2 molten salt batteries with two electrolytes of different melting points—a standard LiCl-KCl eutectic that melts at 352 °C and a LiBr-KBr-LiCl eutectic with a melting point of 319 °C. ac impedance measurements as a function of frequency and temperature below the melting point are presented for single cells and batteries.

  10. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  11. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  12. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  13. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  14. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  15. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  16. Corrosion behaviour of galvanized steel and electroplating steel in aqueous solution: AC impedance study and XPS

    NASA Astrophysics Data System (ADS)

    Lebrini, M.; Fontaine, G.; Gengembre, L.; Traisnel, M.; Lerasle, O.; Genet, N.

    2008-08-01

    The efficiency of a new triazole derivative, namely, 2-{(2-hydroxyethyl)[(4-methyl-1 H-1,2,3-benzotriazol-1-yl)methyl]amino}ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1 H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.

  17. AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar; Hakenjos, Alex; Schumacher, Jürgen O.

    A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2 , N2 , water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm × 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λmin . The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.

  18. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivity (σac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivity (σac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  19. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    PubMed

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  20. Use of AC Impedance Analysis to Study Membrane Changes Related to Acid Secretion in Amphibian Gastric Mucosa

    PubMed Central

    Clausen, Chris; Machen, Terry E.; Diamond, Jared M.

    1983-01-01

    We have applied transepithelial AC impedance techniques to gastric mucosa to reconcile ultrastructural and electrophysiological findings about gastric acid secretion and the mucosal barrier. By fitting impedance data measured at different HCl secretion rates to equivalent circuit models, we extracted capacitances and resistances (as measures of membrane area and ionic conductance, respectively) for the apical and basolateral membranes. The impedance measurements were found to be incompatible with earlier equivalent circuit models that modeled membrane electrical properties as lumped circuits based on one or two cell types. A distributed circuit model was developed that assumed only one dominant electrical pathway (i.e., one cell type), but that incorporated electrical effects arising from long and narrow membrane-lined structures present in the epithelium (e.g., gastric crypts, tubulovesicles, lateral intercellular spaces). This morphologically based model was found to represent the measured data accurately, and to yield values for membrane capacitances consistent with morphometric measurements of membrane areas. The main physiological conclusions from this analysis were as follows: (a) The dominant transepithelial current pathway may reside in the oxyntic cells. (b) The transepithelial conductance increase associated with the onset of acid secretion is entirely due to increased conductance of the apical membrane. This is in turn due entirely to increased area of this membrane, resulting from incorporation of tubulovesicular membrane. (c) When membrane conductances are normalized to actual membrane area by use of membrane capacitances, it turns out that acid secretion is not associated with a change in specific ionic conductance (change in conductance per unit area) at either the apical or basolateral membrane. (d) The puzzlingly low value of transepithelial resistance (≤400 Ω-cm2) arises because there are hundreds or thousands of square centimeters of actual

  1. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  2. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  3. A study of optothermal and AC impedance properties of Cr-doped Mn{sub 3}O{sub 4} sprayed thin films

    SciTech Connect

    Larbi, T.; Amara, A.; Ben Said, L.; Ouni, B.; Haj Lakhdar, M.; Amlouk, M.

    2015-10-15

    Highlights: • Outlining adequacy an original combination of several characterization means. • Structural, optical, thermal and electrical properties have been studied. • Opto- thermal analysis shows that band gap can be tuned through Cr doping. • Outlining physical properties for an eventual development of sensing components. - Abstract: Chrome-doped Mn{sub 3}O{sub 4} thin films were grown on the glass substrates by the spray pyrolysis technique at 350 °C. XRD diffraction and Raman spectroscopy analysis revealed that all samples have tetragonal spinel structure with a preferred orientation along the direction (1 0 1). Absorption coefficient has been measured using both transmission and mirage effect. The band gap energy decreases from 2.2 to 1.9 eV with Cr content while Urbach energy value increases from 354 to 473 meV. Also, thermal conductivity was evaluated. Finally, physical properties have been evaluated and discussed in terms of alteration of the band gap edges, electrical patterns and mirage effect.

  4. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  5. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  6. Electron transfer at the contact between Al electrode and gold nanoparticles of polymer: Nanoparticle resistive switching devices studied by alternating current impedance spectroscopy

    SciTech Connect

    Ouyang, Jianyong

    2013-12-02

    Electron transfer at the contact between an Al electrode and Au nanoparticles of polymer:nanoparticle devices is studied by ac impedance spectroscopy. The devices have a polystyrene layer embedded with Au nanoparticles capped with conjugated 2-naphthalenethiol sandwiched between Al and MoO{sub 3}/Al electrodes, and they exhibit electrode-sensitive resistive switches. The devices in the pristine or high resistance state have high capacitance. The capacitance decreases after the devices switch to a low resistance state by a voltage scan. The change in the capacitance is attributed to the voltage-induced change on the electronic structure of the contact between the Al electrode and Au nanoparticles.

  7. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  8. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  9. Origin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study

    PubMed Central

    2008-01-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  10. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  11. The Performance of ICDAS-II Using Low-Powered Magnification with Light-Emitting Diode Headlight and Alternating Current Impedance Spectroscopy Device for Detection of Occlusal Caries on Primary Molars

    PubMed Central

    Ari, Nilgun

    2013-01-01

    Early detection of occlusal caries in children is challenging for the dentists, because of the morphology of pit and fissures. The aim of this study was to compare in vitro the diagnostic performance of low-powered magnification with light-emitting diode headlight (LPMLED) using ICDAS-II criteria and AC Impedance Spectroscopy (ACIS) device, on occlusal surfaces of primary molars. The occlusal surfaces of 18 extracted primary molars were examined blindly by two examiners. The teeth were sectioned and examined under light microscopy using Downer's histological criteria as gold standard. Good to excellent inter- and intraexaminer reproducibility, higher sensitivity, specificity, and AUC values were achieved by LPMLED at D1 threshold. Also the relationship between histology and LPMLED was statistically significant. In conclusion visual aids have the potential to improve the performance of early caries detection and clinical diagnostics in children. Despite its potential, ACIS device should be considered as an adjunct method in detecting caries on primary teeth. PMID:23956865

  12. Frequency-dependent impedance spectroscopy on the 0.925(Bi0.5Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman

    2016-06-01

    The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.

  13. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition.

    PubMed

    Nakamura, Toshihiro; Homma, Kohei; Tachibana, Kunihide

    2011-09-01

    Polycrystalline Pr(1-x)CaxMnO3 (PCMO) films were prepared by liquid source metalorganic chemical vapor deposition using in situ infrared spectroscopic monitoring. The electric properties of the PCMO-based devices with Ni and Al electrodes (Ni-PCMO-Ni and Al-PCMO-Al devices) were studied by dc current-voltage (I-V) measurements and ac impedance spectroscopy. The current varied linearly with the applied voltage in Ni-PCMO-Ni devices, while nonlinear behavior was observed in I-V curves for Al-PCMO-Al devices. Impedance spectra were also different between Ni-PCMO-Ni and Al-PCMO-Al devices. The Cole-Cole plots for the Ni-PCMO-Ni devices showed only a single semicircular arc, which was assigned to the PCMO bulk impedance. Impedance spectra for the Al-PCMO-Al devices had two distinct components, which could be attributed to the PCMO bulk and to the interface between the PCMO film and the Al electrode, respectively. The bias dependence of the impedance spectra suggested that the resistance switching in the Al-PCMO-Al devices was mainly due to the resistance change in the interface between the film and the electrode. The metal electrode plays an important role in the resistance switching in the PCMO-based devices. The choice of the optimum metal electrodes is essential to the ReRAM application of the manganite-based devices.

  14. Failure of thin organic films by a combination of shearography and electrochemical impedance spectroscopy: the new concept of resistivity

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2012-04-01

    A critical (steady state) value of the resistivity of different organic coatings was determined by a combination of optical shearography and electrochemical impedance spectroscopy (EIS). The behavior of organic coatings, i.e., ACE premiumgray enamel, white enamel, beige enamel (spray coatings), a yellow acrylic lacquer, and a gold nail polish on a metallic alloy, i.e., a carbon steel, was investigated over a temperature range of 20-60 °C. The value of the resistivity of coatings was determined by correlating the in-plan displacement of the coating (by shearography over a temperature range of 20- 60 °C) and the value of the alternating current (A.C) impedance of the coating by EIS in 3% NaCl solution. The integrity of the coatings with respect to time was assessed by comparison the measured value of resistivity to the critical (steady state) or asymptotic value of resistivity. In other words, by shearography, measurement of coating properties could be performed independent of parameters such as UV exposure, humidity, presence of chemical species, and other parameters which may normally interfere with conventional methods of the assessing of the integrity of coatings. Therefore, one may measure the resistivity of coatings, regardless of the history of the coating, in order to assess the integrity of coatings. Also, the obtained shearography data were found to be in a reasonable trend with the data of electrochemical impedance spectroscopy (EIS) in 3%NaCl solution.

  15. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  16. Investigation of gas diffusion layer compression by electrochemical impedance spectroscopy on running polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dotelli, Giovanni; Omati, Luca; Gallo Stampino, Paola; Grassini, Paolo; Brivio, Davide

    Two gas diffusion layers based on the same carbon cloth substrate, produced by an Italian Company (SAATI), and coated with microporous layers of different hydrophobicities, were assembled in a polymer electrolyte membrane fuel cell and its performances assessed. For comparison the cell mounting the carbon cloth without microporous layer was also tested. The membrane electrode assembly was made of Nafion ® 212 with Pt load 0.3/0.6 mg cm -2 (anode/cathode). The cell testing was run at 60 °C and 80 °C with fully humidified air (100%RH) and 80%RH hydrogen feedings. The assembly of gas diffusion layers and membrane with electrodes was compressed to 30% and 50% of its initial thickness. For each configuration polarization and power curves were recorded; in order to evaluate the role of different GDLs, AC impedance spectroscopy of the running cell was also performed. The higher compression ratio caused the worsening of cell performances, partially mitigated when the operating temperature was raised to 80 °C. The presence of the microporous layer onto the carbon cloth resulted extremely beneficial for the operations especially at high current density; moreover, it sensibly reduces the high frequency resistance of the overall assembly.

  17. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy.

    PubMed

    Huang, Weimin; Zhang, Zheling; Han, Xiaojun; Tang, Jilin; Wang, Jianguo; Dong, Shaojun; Wang, Erkang

    2002-12-01

    Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.

  18. Quarkonium spectroscopy

    SciTech Connect

    Scharre, D.L.

    1981-06-01

    Recent experimental investigations of heavy quark-antiquark bound state systems are reviewed. Results from SPEAR on charmonium spectroscopy and from DORIS and CESR on bottomonium spectroscopy are presented. The current status of the search for top is also discussed.

  19. Mossbauer Spectroscopy.

    ERIC Educational Resources Information Center

    Stevens, John G.; Bowen, Lawrence H.

    1980-01-01

    Reviews current research in Mossbauer spectroscopy, including instrumentation and experimental techniques, spectral analysis, catalysts and surfaces, environmental studies, medical applications and atmospheric air studies. Cites 346 references. (CS)

  20. Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap

    2016-06-01

    The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

  1. Electrical transport properties of CoMn0.2-xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Lin, Yi-Hsiang; Wang, Yao-Ming; Chang, Horng-Yi; Lei, Chien-Ming; Jen, Shien-Uang

    2016-05-01

    In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2-xGaxFe1.8O4 (x=0, 0.1, and 0.2) prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z') and the imaginary part (Z") of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb) also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb) significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  2. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  3. Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wehling, Randy L.

    Infrared (IR) spectroscopy refers to measurement of the absorption of different frequencies of IR radiation by foods or other solids, liquids, or gases. IR spectroscopy began in 1800 with an experiment by Herschel. When he used a prism to create a spectrum from white light and placed a thermometer at a point just beyond the red region of the spectrum, he noted an increase in temperature. This was the first observation of the effects of IR radiation. By the 1940s, IR spectroscopy had become an important tool used by chemists to identify functional groups in organic compounds. In the 1970s, commercial near-IR reflectance instruments were introduced that provided rapid quantitative determinations of moisture, protein, and fat in cereal grains and other foods. Today, IR spectroscopy is used widely in the food industry for both qualitative and quantitative analysis of ingredients and finished foods.

  4. Modern Spectroscopy

    ERIC Educational Resources Information Center

    Barrow, Gordon M.

    1970-01-01

    Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)

  5. Space spectroscopy

    SciTech Connect

    Krupa, Tyler J.

    2000-02-01

    Los Alamos researchers have developed a technique to determine the composition of rock samples despite weather-induced mineral varnish deposited on the rocks. Using laser-induced breakdown spectroscopy (LIBS), the researchers determined the true elemental composition of a Mojave Desert rock sample with a thick weather-induced deposit on it. (AIP) (c)

  6. Ac Impedance Spectroscopic Studies on Li2xPb2xBaP2O7

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Selvasekarapandian, S.

    2002-12-01

    The complex diphosphate (P2O7)4- ions have been used as a building blocks in wide variety of crystal phases for a wide spectrum of physical and chemical properties. Lithium barium diphsophate doped with lead {Li2-xPb2xBaP2O7 (x = 0, 0.2 & 0.4)} has been prepared by solid state reaction method The conductivity is found to be decreasing with the doping of lead. The lithium ion dynamics parameters such as hopping frequency and relaxation frequency were calculated from the frequency dependent conductivity and modulus analysis.

  7. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    NASA Astrophysics Data System (ADS)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  8. Hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi, O. Hashimoto, J.J. LeRose, P. Markowitz, S.N. Nakamura, J. Reinhold, L. Tang

    2011-06-01

    A program of hypernuclear spectroscopy experiments encompassing many hypernuclei has been undertaken in both Halls A and C using complimentary approaches. Spectra with sub-MeV resolution have been obtained for Li, B, and N in Hall A, while results from Hall C include He, B, and Al with new data still under analysis for He, Li, Be, B and V. High resolution and high precision in the determination of the single Λ binding energy at various shell levels has been the key success of these experiments using the (e,e'K+) reaction to produce Λ hypernuclei.

  9. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo; Bergquist, James Charles; Kasevich, Mark A.

    2008-04-01

    Degenerate gases. Probing vortex pair sizes in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates / V. Schweikhard ... [et al.]. Interacting Bose-Einstein condensates in random potentials / P. Bouyer ... [et al.]. Towards quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- Precision measurement and fundamental physics. T-violation and the search for a permanent electric dipole moment of the mercury atom / E. N. Fortson -- Quantum information and control I. Quantum information processing and ramsey spectroscopy with trapped ions / C. F. Roos ... [et al.]. Quantum non-demolition counting of photons in a cavity / S. Haroche ... [et al.] -- Ultra-fast control and spectroscopy. Frequency-Comb- assisted mid-infrared spectroscopy / P. de Natale ... [et al.] -- Precision measurement and applications. Precision gravity tests by atom interferometry / G. M. Tino ... [et al.] -- Novel spectroscopic applications. On a variation of the proton-electron mass ratio / W. Ubachs ... [et al.] -- Quantum information and control II. Quantum interface between light and atomic ensembles / H. Krauter ... [et al.] -- Degenerate Fermi gases. An atomic Fermi gas near a P-wave Feshbach resonance / D. S. Jin, J. P. Gaebler and J. T. Stewart. Bragg scattering of correlated atoms from a degenerate Fermi gas / R. J. Ballagh, K. J. Challis and C. W. Gardiner -- Spectroscopy and control of atoms and molecules. Stark and Zeeman deceleration of neutral atoms and molecules / S. D. Hogan ... [et al.]. Generation of coherent, broadband and tunable soft x-ray continuum at the leading edge of the driver laser pulse / A. Jullien ... [et al.]. Controlling neural atoms and photons with optical conveyor belts and ultrathin optical fibers / D. Meschede. W. Alt and A. Rauschenbeutel -- Spectroscopy on the small scale. Wide-field cars-microscopy / C. Heinrich ... [et al.]. Atom nano-optics and nano-lithography / V. I. Balykin ... [et al

  10. Baryon spectroscopy

    SciTech Connect

    Klempt, Eberhard; Richard, Jean-Marc

    2010-04-15

    About 120 baryons and baryon resonances are known, from the abundant nucleon with u and d light-quark constituents up to the {Xi}{sub b}{sup -}=(bsd), which contains one quark of each generation and to the recently discovered {Omega}{sub b}{sup -}=(bss). In spite of this impressively large number of states, the underlying mechanisms leading to the excitation spectrum are not yet understood. Heavy-quark baryons suffer from a lack of known spin parities. In the light-quark sector, quark-model calculations have met with considerable success in explaining the low-mass excitations spectrum but some important aspects such as the mass degeneracy of positive-parity and negative-parity baryon excitations remain unclear. At high masses, above 1.8 GeV, quark models predict a very high density of resonances per mass interval which is not yet observed. In this review, issues are identified discriminating between different views of the resonance spectrum; prospects are discussed on how open questions in baryon spectroscopy may find answers from photoproduction and electroproduction experiments which are presently carried out in various laboratories.

  11. Amateur spectroscopy

    NASA Astrophysics Data System (ADS)

    Gavin, M. V.

    1998-06-01

    (The 1997 Presidential Address to the British Astronomical Association.) Auguste Comte is remembered for an unfortunate remark. In 1825 he said the chemical composition of stars would never be revealed. Within a decade or so the heart of the atom was being explored in remote stars through the science of spectroscopy. In simplistic terms one can regard the atom as a miniature solar system, but with the novel option that electrons (representing planets) having the ability to 'jump' from one orbit to another. In 'falling' to a lower orbit a photon of light of precise wavelength is released to travel outwards. When the electron 'jumps' to a higher orbit a photon of light is absorbed. This is taking place on a vast scale which we observe as lines in the spectrum - their position and prominence relates to the particular atomic element, temperature and pressure within the stellar atmosphere. It is beyond the scope of this Address to discuss the various processes that affect spectra, or to provide a mathematical explanation which can be found elsewhere. In any case the lack of a deep understanding does not preclude enjoyable or useful observations. Methods and results from amateurs conducting such observations are discussed in this paper.

  12. Chiroptical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurst, Jerome E.

    1995-09-01

    A brief review of the literature, and Chemical and Engineering News in particular, reveals that the determination and use of optical activity is of increasing importance in today's commercial and research laboratories. The classical technique is to measure [alpha]D using a manual or recording polarimeter to provide a single value, the specific rotation at 589 nm. A spectropolarimeter can be used to determine optical activity through the UV-Visible spectrum (Optical Rotatory Dispersion [ORD]). At wavelengths far removed from electronic absorption bands, optical activity arises from circular birefringence, or the difference in the refractive index for left- and right-circularly polarized light; i.e., nL - nR does not equal zero for chiral materials. If the optical activity is measured through an absorption band, complex behavior is observed (a Cotton Effect curve). At an absorption band, chiral materials exhibit circular dichroism (CD), or a difference in the absorption of left- and right-circularly polarized light; epsilon L minus epsilon R does not equal zero. If the spectropolarimeter is set for the measurement of CD spectra, one observes what appears to be a UV-Vis spectrum except that some absorption bands are positive while others may be negative. Just as enantiomers have specific rotations that are equal and opposite at 589 nm (sodium D line), rotations are equal and opposite at all wavelengths, and CD measurements are equal and opposite at all wavelengths. Figure 1 shows the ORD curves for the enantiomeric carvones while Figure 2 contains the CD curves. The enantiomer of carvone that has the positive [alpha]D is obtained from caraway seeds and is known to have the S-configuration while the R-enantiomer is found in spearmint oil. Figure 1. ORD of S-(+)- and R-(-)-carvones Figure 2. CD of S-(+)- and R-(-)-carvones While little can be done to correlate stereochemistry with [alpha]D values, chiroptical spectroscopy (ORD and/or CD) often can be used to assign

  13. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  14. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  15. Electron-impact spectroscopy

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1990-01-01

    The methods of electron impact spectroscopy and cross section measurements are discussed and compared to optical spectroscopy. A brief summary of the status of this field and the available data is given.

  16. BATSE spectroscopy analysis system

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.

  17. Imaging with Raman spectroscopy.

    PubMed

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2010-09-01

    Raman spectroscopy, based on the inelastic scattering of a photon, has been widely used as an analytical tool in many research fields. Recently, Raman spectroscopy has also been explored for biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. This review article will provide a brief summary of Raman spectroscopy-based imaging, which includes the use of coherent anti-Stokes Raman spectroscopy (CARS, primarily used for imaging the C-H bond in lipids), surface-enhanced Raman spectroscopy (SERS, for which a variety of nanoparticles can be used as contrast agents), and single-walled carbon nanotubes (SWNTs, with its intrinsic Raman signal). The superb multiplexing capability of SERS-based Raman imaging can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the interrogation of multiple biological events simultaneously in living subjects. The primary limitations of Raman imaging in humans are those also faced by other optical techniques, in particular limited tissue penetration. Over the last several years, Raman spectroscopy imaging has advanced significantly and many critical proof-of-principle experiments have been successfully carried out. It is expected that imaging with Raman Spectroscopy will continue to be a dynamic research field over the next decade.

  18. Metallomic EPR spectroscopy.

    PubMed

    Hagen, Wilfred R

    2009-09-01

    Based on explicit definitions of biomolecular EPR spectroscopy and of the metallome, this tutorial review positions EPR in the field of metallomics as a unique method to study native, integrated systems of metallobiomolecular coordination complexes subject to external stimuli. The specific techniques of whole-system bioEPR spectroscopy are described and their historic, recent, and anticipated applications are discussed.

  19. Ultrasensitive Laser Spectroscopy.

    ERIC Educational Resources Information Center

    Kliger, David S.

    1985-01-01

    Examines techniques used to make ultrasensitive spectroscopic measurements. They include excitation, thermal lens, photo acoustic, and ionization spectroscopies. Guidelines and methods are provided for each technique; common uses and applications are explained. (DH)

  20. Spectroscopy of divertor plasmas

    SciTech Connect

    Isler, R.C.

    1995-12-31

    The requirements for divertor spectroscopy are treated with respect to instrumentation and observations on present machines. Emphasis is placed on quantitative measurements.of impurity concentrations from the interpretation of spectral line intensities. The possible influence of non-Maxwellian electron distributions on spectral line excitation in the divertor is discussed. Finally the use of spectroscopy for determining plasma temperature, density, and flows is examined.

  1. Spectroscopy of D Mesons

    SciTech Connect

    Bianco, Stefano

    2006-02-11

    The scenario of heavy quark meson spectroscopy underwent recently a major revolution, after the observation of BABAR and CLEO, confirmed by BELLE, of DsJ L=1 excited states, and by further evidences by SELEX. These experimental results have cast doubts on the incarnations of the ideas of Heavy Quark Effective Theory in heavy quark spectroscopy. I shall review the status of experimental data, discuss implications and sketch an outlook.

  2. Auger resonant Raman spectroscopy

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    As noted above, traditional spectroscopy of the electronic structure of the inner shells of atoms, molecules, and solids is limited by the lifetime broadening of the core-excited states. This limitation can also be avoided with the non-radiative analog of X-ray Raman scattering - resonant Auger Raman spectroscopy. We have used this technique to study the K-shell excitation spectrum of argon as the photon energy is continuously scanned across threshold.

  3. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    SciTech Connect

    Thomas E. Springer

    1998-01-30

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of dilution of the feedstream with significant fractions of carbon dioxide and nitrogen and of mass transport losses in the gas diffusion backing. Not included in the anode model are ionic resistance and diffusion losses in the catalyst layer. They are looking to see if the overall pattern of polarization curves calculated based on such a purely kinetic model indeed mimics the central features of polarization curves observed for PEFCs operating on hydrogen with low levels of CO.

  4. Effect of counterions on the formation of ohmic contact between p-Si and poly(pyrrole) film - An ac impedance analysis

    NASA Technical Reports Server (NTRS)

    Nagsubramanian, G.; Distefano, S.; Moacanin, J.

    1986-01-01

    Conditions under which poly(pyrrole) (PP) films form ohmic contact with single-crystal p-Si are described. Counterions affect both the conductivity and flatband potential, V(FB), values of poly(pyrrole). While paratoluene-sulfonate-doped PP acts like a switch, the impedance behavior of PP films doped with ClO4(-), BF4(-), or PF6(-) allows evaluation of the V(FB) of these films. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP (ClO4) and PP films doped with other counterions, with p-Si, are explained in terms of conductivity of these films and V(FB) of PP films with respect to that of p-Si. PP film seems to passivate or block intrinsic surface states present on p-Si surface.

  5. Electronic Spectroscopy & Dynamics

    SciTech Connect

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  6. Defect Structure of Li-Doped BPO 4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jak, M. J. G.; Kelder, E. M.; Schoonman, J.

    1999-01-01

    In this paper the defect chemistry of Li-doped BPO4(BPO4-xLi2O, 0≤x≤0.1) is studied. This nanostructured ceramic electrolyte is used in all-solid-state Li-ion batteries. By changing the Li-doping level the influence on the crystal structure is studied and related to t he properties of the material. X-ray diffraction, Fourier-transformed infra-red spectroscopy (FT-IR),31P,11B, and7Li magic-angle-spinning solid state nuclear magnetic resonance, neutron diffraction, and inductively coupled plasma optical-emission spectroscopy measurements are used in order to study the structure. The electrical properties are studied with AC-impedance spectroscopy (AC-IS). The experimental data show that the defect structure of Li-doped BPO4can be described with two defect models, Li″B+2Li·iand V‴B+3Li·i, suggesting that the ionic conductivity takes place via interstitial Li ions.

  7. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  8. Vibrational Spectroscopy of Biomembranes

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2011-07-01

    Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.

  9. Cham and Charmoniium Spectroscopy

    SciTech Connect

    Petersen, Brian Aa.; /Stanford U., Phys. Dept.

    2006-10-20

    The last few years have seen a revival of interest in charm spectroscopy with more than a dozen new states being reported and hundreds of new theoretical investigations being published. The advent of the B-factories [1,2], with their large, charm-rich data samples, has proven crucial to the discovery and investigation of new charm hadron states, but other experiments have confirmed and complemented the B-factory observations. Much interest has been generated by several new states that do not appear to be easily incorporated in the conventional picture of charm and charmonium mesons. Here, the focus is on the latest experimental results in charm spectroscopy and the determination of the nature of the recently discovered states. Recent experimental results in charm and charmonium spectroscopy are reviewed.

  10. Spectroscopy for the Masses

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Hopkins, Scott; Power, William P.; Leung, Tong; Hepburn, John

    2015-06-01

    Undergraduate students in all areas of science encounter one or more types of spectroscopy as an essential tool in their discipline, but most never take the advanced physics or chemistry courses in which the subject is normally taught. To address this problem, for over 20 years our department has been teaching a popular Introductory Spectroscopy course that assumes as background only a one-term introductory chemistry course containing a unit on atomic theory, and a familiarity with rudimentary calculus. This survey course provides an introduction to microwave, infrared, Raman, electronic, photoelectron and NMR spectroscopy in a manner that allows students to understand many of these phenomena as intuitive generalizations of the problem of a particle in a 1-D box or a particle-on-a-ring, and does not require any high level mathematics.

  11. Spectroscopy of francium

    SciTech Connect

    Simsarian, J. E.; Grossman, J. S.; Orozco, L. A.; Pearson, M.; Sprouse, G. D.; Zhao, W. Z.

    1999-01-15

    Francium is the least studied of the alkali atoms because it has no stable isotopes. We have performed precision spectroscopy on cold Fr atoms in a magneto optical trap. We have determined the location of the first two excited states of the S series by two-photon spectroscopy. We have measured the lifetimes of the 7p levels with a precision better than 0.5%. Our measurements test the many-body perturbation theory ab initio calculations of the dipole matrix element to very high accuracy in this relativistic alkali.

  12. Submillimeter Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Serabyn, Eugene

    1998-07-01

    At submillimeter wavelengths, broadband spectroscopy is currently possible only with a Fourier transform spectrometer (FTS). As a result, FTSes are quite useful for observations of objects in which spectral lines either cover a large frequency range, or where lines are broadened either by pressure or kinematics. Sources matching these descriptions include galaxies, hot, dense cores in interstellar molecular clouds, and planetary atmospheres. In the following, a tour of the classes of observations enabled by broadband spectroscopy is presented. As meaningful results call for attention to calibration, relevant calibration issues are discussed in the context of these observations.

  13. Fourier transform infrared spectroscopy

    SciTech Connect

    Ferraro, J.R.; Basile, L.J.

    1985-01-01

    The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry. Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography-Fourier Transform Interferometry.

  14. Spectroscopy with Supersonic Jets.

    ERIC Educational Resources Information Center

    Skinner, Anne R.; Chandler, Dean W.

    1980-01-01

    Discusses a new technique that enables spectroscopists to study gas phase molecules at temperatures below 1 K, without traditional cryogenic apparatus. This technique uses supersonic jets as samples for gas molecular spectroscopy. Highlighted are points in the theory of supersonic flow which are important for applications in molecular…

  15. FTIR Rotational Spectroscopy.

    ERIC Educational Resources Information Center

    Woods, Ron; Henderson, Giles

    1987-01-01

    Presented are representative examples of the spectra and the analyses for a linear molecule (HC1), a symmetric top molecule (NH3), and an asymmetric top (H2O). Any combination of these projects could be incorporated in a physical chemistry or molecular spectroscopy laboratory. (RH)

  16. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  17. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  18. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  19. Photothermal deflection spectroscopy and detection

    SciTech Connect

    Jackson, W. B.; Amer, Nabil M.; Boccara, A. C.; Fournier, D.

    1981-04-15

    The theory for a sensitive spectroscopy based on the photothermal deflection of a laser beam is developed. We consider cw and pulsed cases of both transverse and collinear photothermal deflection spectroscopy for solids, liquids, gases, and thin films. The predictions of the theory are experimentally verified, its implications for imaging and microscopy are given, and the sources of noise are analyzed. The sensitivity and versatility of photothermal deflection spectroscopy are compared with thermal lensing and photoacoustic spectroscopy.

  20. Multidimensional spectroscopy of photoreactivity

    PubMed Central

    Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias

    2014-01-01

    Coherent multidimensional electronic spectroscopy is commonly used to investigate photophysical phenomena such as light harvesting in photosynthesis in which the system returns back to its ground state after energy transfer. By contrast, we introduce multidimensional spectroscopy to study ultrafast photochemical processes in which the investigated molecule changes permanently. Exemplarily, the emergence in 2D and 3D spectra of a cross-peak between reactant and product reveals the cis–trans photoisomerization of merocyanine isomers. These compounds have applications in organic photovoltaics and optical data storage. Cross-peak oscillations originate from a vibrational wave packet in the electronically excited state of the photoproduct. This concept isolates the isomerization dynamics along different vibrational coordinates assigned by quantum-chemical calculations, and is applicable to determine chemical dynamics in complex photoreactive networks. PMID:24639540

  1. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  2. Charm and Charm Spectroscopy

    SciTech Connect

    Santoro, Valentina; /Ferrara U.

    2011-11-23

    Recent developements in D mixing physics and charm spectroscopy will be discussed. Focus will be on the BaBar experimental results for the D mixing: first evidence of the D{sup 0}-mixing (hadronic D{sup 0} decays), lifetime difference and time-dependent Dalitz plot analysis of D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}. Then, recent results on charm spectroscopy will be presented with particular focus on the new Ds states that have been discovered in the last few years. Some of these states were not expected theoretically: their masses, widths, quantum numbers, and decay modes do not fit the existing spectroscopic classication, which is based mostly on potential model calculations.

  3. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  4. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  5. Theory and spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  6. Layman friendly spectroscopy

    NASA Astrophysics Data System (ADS)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  7. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  8. Vibrational spectroscopy of stichtite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.

    2004-11-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg 6Cr 2(CO 3)(OH) 16·4H 2O. Two bands are observed at 1087 and 1067 cm -1 with an intensity ratio of ˜2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm -1 and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm -1 and are assigned to the ν4 bending modes. Two Raman bands were observed at 539 and 531 cm -1 attributed to the ν2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.

  9. Euv spectroscopy in astrophysics

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Cruddace, R.; Wood, K.; Barstow, M.

    The bulk of radiation from million-degree plasmas is emitted at EUV wavelengths. Such plasmas are ubiquitous in astrophysics, and examples include the atmospheres of white dwarfs, accretion phenomena in cataclysmic variables, the coronae of active stars, and the interstellar medium (ISM) of our own galaxy and as well as that of others. EUV wavelengths encompass critical spectral features with diagnostic information often not available at other wavelengths. For example in the ISM the bound free continuum of He II (< 228 Angstroms) and the resonance line at 304 Angstroms are the only useful diagnostics of the He II density. EUVE and the ROSAT WFC left a tremendous legacy in broad-band photometry at EUV wavelengths, and the former introduced EUV spectroscopy. However the termination of EUVE left a gap that CHIPS fills only partially as it is optimized for diffuse emission. Moreover, while Chandra has demonstrated the promise of high-resolution X-ray spectroscopy, EUV spectrometers have had modest resolution and effective area (EUVE: 1 cm2, Resolution 400; CHIPS: Resolution 150) until recently. Our sounding rocket instrument J-PEX has now made the first successful high-resolution (effective area 3 cm2, Resolution 3000) spectral observation in the EUV, and future instruments with effective area >30 cm2 and Resolution>10,000 are now practical. We will highlight EUV spectroscopy results in non-solar astrophysics and trace the development of instrument capabilities that lead to the next generation of high-resolution EUV spectrometers. This work is supported by the Office of Naval Research and NRL, and by NASA Space Astrophysics and Research Analysis grants.

  10. Active Beam Spectroscopy

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  11. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  12. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  13. Spectroscopy of implants

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    1994-01-01

    The spectral criteria of selection of soft intraocular lens (IOL) implants of long service in an organism have been defined for ophthalmology. The analysis of Fourier Transform Infrared (FTIR) spectra provides the required and sufficient level of material polymerization for manufacturing non-toxic lenses for the eye. The spectral limits for determining the biocompatibility of samples can be related to the intensity ratio of two bands only in the FTIR spectra of siloxane. Siloxane-poly(urethane) block copolymers and other materials for implants have been studied. Passivated surfaces of implants have been obtained and registered by methods of Fourier Transform Spectroscopy.

  14. Standoff photo acoustic spectroscopy

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm{sup 2}.

  15. Nanosecond fluorescence spectroscopy

    SciTech Connect

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs.

  16. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence. PMID:19507812

  17. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  18. Wave mixing spectroscopy

    SciTech Connect

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  19. Array-based photoacoustic spectroscopy

    DOEpatents

    Autrey, S. Thomas; Posakony, Gerald J.; Chen, Yu

    2005-03-22

    Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. A photoacoustic spectroscopy sample array including a body having at least three recesses or affinity masses connected thereto is used in conjunction with a photoacoustic spectroscopy system. At least one acoustic detector is positioned near the recesses or affinity masses for detection of acoustic waves emitted from species of interest within the recesses or affinity masses.

  20. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  1. Nuclear resonant spectroscopy

    NASA Astrophysics Data System (ADS)

    Sturhahn, Wolfgang

    2004-02-01

    Nuclear resonant scattering techniques with synchrotron radiation (SR) are introduced on a basic level. We focus on the theoretical background and on experimental aspects of two popular methods with a widening range of applications, nuclear resonant inelastic x-ray scattering and synchrotron Mössbauer spectroscopy. The inelastic method provides specific vibrational information, e.g., the phonon density of states. The Mössbauer method permits determination of hyperfine interactions. All nuclear resonance techniques take full advantage of the unique properties of SR: intensity, collimation, time structure, and polarization. As a result both methods discussed here have led to novel applications for materials under extreme conditions, proteins with biological functionality, and magnetic nanostructures.

  2. Resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert

    1991-01-01

    A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.

  3. Transient infrared transmission spectroscopy

    SciTech Connect

    Jones, R.W.; McClelland, J.F. )

    1990-10-15

    Transient infrared transmission spectroscopy is a new method that can acquire analytically useful transmission spectra from moving, optically thick solids. No sample preparation is required. The spectra are of sufficient quality for accurate quantitative compositional analysis. The method works by the creation of a thin, short-lived, chilled layer at the sample surface. Blackbody-like thermal emission from the bulk of the sample is selectively absorbed as it passes through the chilled layer, so the transmission spectrum of the layer is superimposed on the observed thermal emission. Spectra of polycarbonate, beeswax, and copolymers of methyl and butyl methacrylate are presented. Compositional analysis of the methacrylate copolymers with a standard error or prediction of only 0.87 mol % is demonstrated.

  4. Transient infrared transmission spectroscopy.

    PubMed

    Jones, R W; McClelland, J F

    1990-10-15

    Transient infrared transmission spectroscopy is a new method that can acquire analytically useful transmission spectra from moving, optically thick solids. No sample preparation is required. The spectra are of sufficient quality for accurate quantitative compositional analysis. The method works by the creation of a thin, short-lived, chilled layer at the sample surface. Blackbody-like thermal emission from the bulk of the sample is selectively absorbed as it passes through the chilled layer, so the transmission spectrum of the layer is superimposed on the observed thermal emission. Spectra of polycarbonate, beeswax, and copolymers of methyl and butyl methacrylate are presented. Compositional analysis of the methacrylate copolymers with a standard error of prediction of only 0.87 mol % is demonstrated.

  5. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  6. Hadron spectroscopy at RHIC

    SciTech Connect

    Chung, S.U.; Kern, W.; Willutzki, H.J.

    1990-08-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the subprocesses pomeron + pomeron {yields} hadrons and {gamma}* + {gamma}* {yields} hadrons with the net effective mass of hadrons in the range of 1.0 to 3.0 GeV, in order to study the hadronic states composed of u, d, and s and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. A plethora of J{sup PC}-exotic mesons can be produced either directly in both types of interactions or in association with a single recoil photon in the final state. 8 refs., 2 figs.

  7. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  8. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  9. An Introductory Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H.

    1995-01-01

    Describes a project designed to introduce infrared spectroscopy as a structure-determination technique. Students are introduced to infrared spectroscopy fundamentals then try to determine the identity of an unknown liquid from its infrared spectrum and molecular weight. The project demonstrates that only rarely can the identity of even simple…

  10. Spectroscopy, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the electromagnetic…

  11. Wavelength-modulated photocapacitance spectroscopy

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.

  12. The light meson spectroscopy program

    SciTech Connect

    Smith, Elton S.

    2014-06-01

    Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.

  13. Meson spectroscopy at the Tevatron

    SciTech Connect

    Yi, Kai

    2010-04-01

    The Tevatron experiments have each accumulated about 6 fb{sup -1} good data since the start of RUN II. This large dataset provided good opportunities for meson spectroscopy studies at the Tevatron. This article will cover the recent new {Upsilon}(nS) polarization studies as well as exotic meson spectroscopy studies.

  14. Laser Spectroscopy and Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    2013-12-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation.

  15. Spectroscopy from Space

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Carlson, R.; Grundy, W.; Noll, K.

    2014-01-01

    This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together these systems are providing a wealth of data that will enable a better understanding of the composition of condensed matter bodies in the solar system. Minerals, ices, liquids, and other materials have been detected and mapped on the Earth and all planets and/or their satellites where the surface can be observed from space, with the exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, displays the greatest material diversity including the detection of amorphous and crystalline inorganic materials, organic compounds, water and water ice. Water ice is a very common mineral throughout the Solar System and has been unambiguously detected or inferred in every planet and/or their moon(s) where good spectroscopic data has been obtained. In addition to water ice, other molecular solids have been observed in the solar system using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice on some

  16. Operando fuel cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  17. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  18. Vibrational Echo Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbury, John B.; Steinel, Tobias; Fayer, M. D.

    Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (˜ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ˜ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

  19. Why Spectroscopy Went South

    NASA Astrophysics Data System (ADS)

    Mills Boyd, Nora

    2015-01-01

    All but forgotten, the first observatory established for astrophysical research in Chile sits atop Cerro San Cristóbal overlooking downtown Santiago. Now called the Manuel Foster Observatory and cared for by the Pontificia Universidad Católica de Chile, the equipment was originally brought to the country by staff of the Lick Observatory in California at the outset of the 20th century under the auspices of the D. O. Mills Expedition. The present paper explores the initial motivation for the expedition. Partial insight can be gained by situating the establishment of the observatory in the context of the so-called 'sidereal problem'—mapping the structure of the stellar system. However, the motivation for this expedition can be further elucidated by understanding the possibilities afforded by the instruments of the 'new astronomy'. Astronomical spectroscopy opened up new observational prospects that turn of the century astronomers simply exploited opportunistically. Understanding the motivation for the observatory will not only be important background for any comprehensive history of the observatory, but also serves to illuminate the exploratory approach characteristic of American astronomers in the early days of astrophysics.

  20. Taurid Compex reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Birlan, M.; Popescu, M.; Nedelcu, A.

    2014-07-01

    The Taurid complex is a massive stream of material in the inner part of the Solar System. Its name is related to the Taurid meteor shower. This complex is characterized by a cluster of objects having low-inclination (i < 12°), large-eccentricity (0.64--0.85) orbits with semimajor axes spanning the range 1.8--2.6 au. The largest body of the Taurid Complex is the comet P/Encke, and this complex contains more than 20 near-Earth asteroids (NEAs). There is an important lack of information concerning the physical parameters of the Taurid complex. The observational campaign for observing NEAs of the Taurid complex was started in 2011 in order to provide valuable spectroscopic data for characterizing the surfaces of the complex members. The paper presents near-infrared spectroscopy using IRTF/SpeX obtained remotely from Paris Observatory and Bucharest Observatory for the following asteroids: (2201) Oljato, (4183) Cuno, (4486) Mithra, (5243) Heracles, (6063) Jason, and (269690) 1996 RG_3. We will present a detailed analysis of these spectra which allows their association with several minerals and laboratory spectra of meteorites.

  1. Variable angle correlation spectroscopy

    SciTech Connect

    Lee, Y K

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  2. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  3. Resonance Raman spectroscopy.

    PubMed

    Li, Jiang; Kitagawa, Teizo

    2014-01-01

    Flavin is a general name given to molecules having the heteroaromatic ring system of 7,8-dimethylisoalloxazine but practically means riboflavin (Rfl), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) in biological systems, whose structures are illustrated in Fig. 1, together with the atomic numbering scheme and ring numbering of the isoalloxazine moiety. As the isoalloxazine skeleton cannot be synthesized in human cells, it is obtained from diet as Rfl (vitamin B2). FAD and FMN can act as cofactors in flavoenzymes but Rfl does not. Most flavoenzymes catalyze redox reactions of substrates (Miura, Chem Rec 1:183-194, 2001). When O2 serves as the oxidant in the oxidation half cycle of an enzymic reaction, the enzyme is called "flavo-oxidase" but when others do, the enzyme is called "flavo-dehydrogenase." The difference between the two types of oxidative catalysis arises from delicate differences in the π-electron distributions in the isoalloxazine ring, which can be revealed by Raman spectroscopy (Miura, Chem Rec 1:183-194, 2001). Since a flavin is an extremely versatile molecule, the scientific field including chemistry, biochemistry, and enzymology is collectively called "flavonology." It was found recently, however, that the flavin also acts as a chromophore to initiate light-induced DNA repair and signal transductions (Sancar, Chem Rev 103:2203-2237, 2003).

  4. Electron spectroscopy of iron disilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-09-01

    We have reported on the results of a complex investigation of iron disilicide FeSi2 using characteristic electron energy loss spectroscopy, inelastic electron scattering cross section spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that the main peak in the spectra of inelastic electron scattering for FeSi2 is a superposition of two unresolved peaks, viz., surface and bulk plasmons. An analysis of the fine structure of the spectra of inelastic electron scattering cross section by their decomposition into Lorentzlike Tougaard peaks has made it possible to quantitatively estimate the contributions of individual energy loss processes to the resulting spectrum and determine their origin and energy.

  5. Photoelectron Spectroscopy for Chemical Analysis.

    PubMed

    Rensmo, Håkan; Siegbahn, Hans

    2015-01-01

    Photoelectron spectroscopy started its modern development in the fifties based on techniques for studies of nuclear decay. Since then, photoelectron spectroscopy has undergone a dramatic expansion of application and is now a prime research tool in basic and applied science. This progress has been largely due to the concomitant development of photon sources, sample handling and electron energy analyzers. The present article describes some of the salient features of modern photoelectron spectroscopy and its applications with particular emphasis on energy relevant issues. PMID:26507085

  6. Broadband Transmission EPR Spectroscopy

    PubMed Central

    Hagen, Wilfred R.

    2013-01-01

    EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819

  7. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  8. PAH FIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattioda, Andrew; Ricca, A.; Tucker, J.; Bauschlicher, C., Jr.; Allamandola, L.

    2009-01-01

    The mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 µm. These features, formerly referred to as the Unidentified Infrared (UIR) Bands, are now generally thought to originate in free polycyclic aromatic hydrocarbon (PAH) molecules and closely related species. In addition to dominating the 3-20 µm region of the spectrum, they carry some 20-40% of the total IR luminosity from most of these objects. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (20 to 1000 mm) and these FIR features should be present in astronomical sources. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview of the FIR spectroscopy of PAHs.

  9. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  10. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  11. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  12. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  13. Delaminations Investigated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2003-01-01

    A previous study suggested that the ultrasonic spectroscopy technique identified possible disbonds or delaminations in polymer matrix composite (PMC) rings sectioned from flywheel rotors (ref. 1). These results went unsubstantiated by other nondestructive evaluation (NDE) methods. To explain the results, PMC rings were further investigated with ultrasonic spectroscopy (ref. 2). The ultrasonic spectroscopy system utilizes a continuous-swept sine waveform as the input. After the swept sine wave traverses the material, the captured waveform is subjected to two fast Fourier transforms. The second fast Fourier transform along with equalization of the frequency spectrum, allows for evaluation of the fundamental resonant frequency. The full-thickness resonance, the resonance corresponding to the location of the intentional disbond, and the frequency spectrum were examined in an effort to characterize the sensitivity of the NDE method to various delamination conditions.

  14. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  15. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  16. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  17. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  18. Current Trends in Atomic Spectroscopy.

    ERIC Educational Resources Information Center

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  19. Concentration-modulated absorption spectroscopy.

    PubMed

    Langley, A J; Beaman, R A; Baran, J; Davies, A N; Jones, W J

    1985-07-01

    Concentration modulation is demonstrated to be a technique capable of markedly extending sensitivity limits in absorption spectroscopy. The gain generated relates in such a manner to sample transmittance that for the first reported time direct spectroscopic concentration measurements become possible. When concentration modulation is used with picosecond lasers, state lifetimes can be determined to a limit of approximately 20 psec.

  20. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  1. Exciting Developments in Hadron Spectroscopy

    SciTech Connect

    Seth, Kamal K.

    2006-02-11

    There has been a renaissance in hadron spectroscopy during the last couple of years. Long lost states have been tracked down. Unexpected states are showing up all over, and numerous measurements with unprecedented precision are being reported. A review is presented.

  2. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  3. High-spin nuclear spectroscopy

    SciTech Connect

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  4. Spectroscopy on the Overhead Projector.

    ERIC Educational Resources Information Center

    Solomon, Sally; And Others

    1994-01-01

    Any overhead projector easily can be converted into a simple spectrometer by placing a piece of diffraction grating over the projecting lens. A detailed description of the apparatus and suggested spectroscopy experiments are included. Demonstrations can utilize solutions of cobalt chloride, potassium permanganate, potassium dichromate, or…

  5. Infrared Spectroscopy of Deuterated Compounds.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment (based on the potassium bromide pressed-pellet method) involving the infrared spectroscopy of deuterated compounds. Deuteration refers to deuterium-hydrogen exchange at active hydrogen sites in the molecule. (JN)

  6. Reflectance spectroscopy for soil analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last three decades or more, researchers have estimated soil properties using visible and near infrared (VNIR) diffuse reflectance spectroscopy (DRS), with varying results. This presentation reviews the history and state-of –the art of VNIR-DRS, including relative estimation accuracy for var...

  7. Cavity-Enhanced Ultrafast Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas

    2016-05-01

    Ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D-spectroscopy, are widely used across many disciplines. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. Using a frequency comb laser and optical cavities, we present a new technique for performing ultrafast optical spectroscopy with high sensitivity, enabling work in dilute gas-phase molecular beams. Resonantly enhancing the probe pulses, we demonstrate transient absorption measurements with a detection limit of ΔOD = 2 ×10-10 (1 ×10-9 /√{Hz}). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD 10-8 , or column densities < 1010 molecules/ cm2. To our knowledge, this represents a 5,000-fold improvement of the state-of-the-art. This work was supported by the National Science Foundation under Grant Number 1404296.

  8. A Quantitative Infrared Spectroscopy Experiment.

    ERIC Educational Resources Information Center

    Krahling, Mark D.; Eliason, Robert

    1985-01-01

    Although infrared spectroscopy is used primarily for qualitative identifications, it is possible to use it as a quantitative tool as well. The use of a standard curve to determine percent methanol in a 2,2,2-trifluoroethanol sample is described. Background information, experimental procedures, and results obtained are provided. (JN)

  9. Autler-Townes multiplet spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.

    2014-03-01

    The Autler-Townes doublet and triplet spectroscopy are well known in the literature. Here, atomic systems for quartuplet, quintuplet emission spectroscopy and their linkages with the sodium atom are investigated for display of the corresponding spectra. We explore the involved fundamental processes of quantum interference in these systems by examining the Laplace transform of the corresponding state-vector subjected to steady coherent illumination in the rotating wave approximation and Weisskopf-Wigner treatment of spontaneous emission as a simplest probability loss. In the quartuplet (quintuplet), four (five) fields interact appropriately and resonantly with the five-level (six-level) atom. The spectral profile of the single decaying level, upon interaction with three (four) other levels, splits into four (five) destructively interfering dressed states generating three (four) dark lines in the spectrum. These dark lines divide the spectrum into four (five) spectral components (bright lines) whose widths are effectively controlled by the relative strength of the laser fields and the relative width of a single decaying level. The idea is also extended to higher-ordered spectroscopy. The apparent disadvantage of these schemes is the successive increase in the number of laser fields required for the strongly interactive atomic states. However, these complexities are naturally inherited and are the beauty of these atomic systems. They provide the foundations for the basic mechanisms of the quantum interference involved in the higher-ordered multiplet spectroscopy.

  10. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  11. Stark Spectroscopy of Rubrene. I. Electroabsorption Spectroscopy and Molecular Parameters.

    PubMed

    Iimori, Toshifumi; Ito, Ryuichi; Ohta, Nobuhiro; Nakano, Hideyuki

    2016-06-30

    Electroabsorption spectroscopy investigation and the determination of molecular parameters for rubrene dispersed in a poly(methyl methacrylate) (PMMA) matrix are reported. The features of the band system in the absorption spectrum in PMMA are analogous to those in solutions. The changes in the electric dipole moment and the polarizability between the excited and ground states are determined from analysis of the Stark effect in the absorption band. The change in the transition dipole moment in the presence of an external electric field is also observed. Although rubrene is predicted to be classified as a nonpolar molecule, there is a contribution of the difference in the electric dipole moment between the excited and ground states to the electroabsorption spectrum. The origin of the nonzero difference in the electric dipole moment is argued. Stark fluorescence spectroscopy investigation is reported in Part II of this series. PMID:27257765

  12. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  13. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  14. Optical spectroscopy of novel materials

    NASA Astrophysics Data System (ADS)

    Reijnders, Anjan A.

    Optical Spectroscopy is a well-established experimental technique for the study of solids, gasses, and liquids. This thesis focuses on two broad topics related to optical spectroscopy; experimental instrumentation, and its application to novel materials. The first half of the thesis discusses the design and construction of a novel, multifunctional magneto-optical spectroscopy apparatus with exceptional repeatability. Included are the operating principles of FTIR reflectance and transmittance spectroscopy, and the optical ray-tracing design, physical design, and characterization of a custom built magneto-optical spectroscopy apparatus. The second half of the thesis discusses the experimental results of a comprehensive spectroscopic study of Topological Insulators and thermoelectric Pb0.77Sn0.23Se. Topological Insulators (TIs) are a recently discovered phase of matter in which highly conductive free carriers are found on the surface of small band-gap insulators. A challenge in TI research is the experimental isolation of conductive surface states from the bulk states, which are frequently plagued by residual conductivity due to impurities. In this work, optical spectroscopy is used to simultaneously probe the bulk and surface states to study their individual optical properties, in addition to their coupling. Using variable temperature, crystal orientation, and a broad frequency range, we identify compounds with the most resistive bulk states, and provide new insights into carrier dynamics, surface state conductance suppression as a function of temperature, and practical material optimization guidelines for application purposes. A comprehensive optical investigation of Pb0.77Sn0.23Se is also discussed. This is a promising thermoelectric, which exhibits a temperature dependent band inversion, associated with a topological phase transition. We find clear evidence for this band inversion, and find a bulk carrier lifetime dominated by electron-acoustic phonon scattering

  15. Frequency Comb Velocity Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Sinclair, Laura C.; Coffey, Tyler; Cornell, Eric; Ye, Jun

    2011-06-01

    We have developed a novel technique for rapid ion-sensitive spectroscopy over a broad spectral bandwidth by combining the high sensitivity of velocity modulation spectroscopy (VMS) with the parallel nature and high frequency accuracy of cavity-enhanced direct frequency comb spectroscopy. Prior to this research, no techniques have been capable of high sensitivity velocity modulation spectroscopy on every parallel detection channel over such a broad spectral range. We have demonstrated the power of this technique by measuring the A^2Π_u - X^2Σ_g^+ (4,2) band of N_2^+ at 830 nm with an absorption sensitivity of 1×10-6 for each of 1500 simultaneous measurement channels spanning 150 Cm-1. A densely sampled spectrum consisting of interleaved measurements to achieve 75 MHz spacing is acquired in under an hour. This technique is ideally suited for high resolution survey spectroscopy of molecular ions with applications including chemical physics, astrochemistry, and precision measurement. Currently, this system is being used to map the electronic transitions of HfF^+ for the JILA electron electric dipole moment (eEDM) experiment. The JILA eEDM experiment uses trapped molecular ions to significantly increase the coherence time of the measurement in addition to utilizing the strong electric field enhancement available from molecules. Previous theoretical work has shown that the metastable ^3Δ_1 state in HfF^+ and ThF^+ provides high sensitivity to the eEDM and good cancellation of systematic effects; however, the electronic level structure of these species have not previously been measured, and the theoretical uncertainties are hundreds to thousands of wavenumbers. This necessitates broad-bandwidth, high-resolution survey spectroscopy provided by frequency comb VMS in the 700-900 nm spectral window. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) A. E. Leanhardt, et. al. arXiv:1008.2997v2 E. Meyer, J. L. Bohn, and M. P. Deskevich

  16. Trapping and spectroscopy of hydrogen

    NASA Astrophysics Data System (ADS)

    Cesar, Claudio Lenz

    1997-08-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 1012 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 1018. While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen.

  17. Liquid identification by Hilbert spectroscopy

    NASA Astrophysics Data System (ADS)

    Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.

    2009-11-01

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  18. Quantitative tunneling spectroscopy of nanocrystals

    SciTech Connect

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  19. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  20. Raman spectroscopy in halophile research.

    PubMed

    Jehlička, Jan; Oren, Aharon

    2013-12-10

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well.

  1. Raman spectroscopy in halophile research

    PubMed Central

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  2. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  3. Molecular Spectroscopy of Living Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Xin

    2016-06-01

    Molecular spectroscopy has been a powerful tool in the study of molecules in gas phase, condensed phase, and at interfaces. The transition from in vitro spectroscopy to spectroscopic imaging of living systems is opening new opportunities to reveal cellular machinery and to enable molecule-based diagnosis (Science 2015, 350: 1054). Such a transition involves more than a simple combination of spectrometry and microscopy. In this presentation, I will discuss the most recent efforts that have pushed the physical limits of spectroscopic imaging in terms of spectral acquisition speed, detection sensitivity, spatial resolution and imaging depth. I will further highlight significant applications in functional analysis of single cells and in label-free detection of diseases.

  4. Blood analysis by Raman spectroscopy.

    PubMed

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media. PMID:18033426

  5. Few-photon heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Amaral, G. C.; Ferreira da Silva, T.; Temporão, G. P.; von der Weid, J. P.

    2016-04-01

    We perform a high resolution Fourier Transform Spectroscopy of optical sources in the few-photon regime based on the phenomenon of two-photon interference in a beam splitter. From the heterodyne interferogram between test and reference sources it is possible to obtain the spectrum of the test source relative to that of the reference. The method proves to be a useful asset for spectral characterization of faint optical sources below the range covered by classical heterodyne beating techniques.

  6. Quantitative spectroscopy of hot stars

    NASA Technical Reports Server (NTRS)

    Kudritzki, R. P.; Hummer, D. G.

    1990-01-01

    A review on the quantitative spectroscopy (QS) of hot stars is presented, with particular attention given to the study of photospheres, optically thin winds, unified model atmospheres, and stars with optically thick winds. It is concluded that the results presented here demonstrate the reliability of Qs as a unique source of accurate values of the global parameters (effective temperature, surface gravity, and elemental abundances) of hot stars.

  7. Optical spectroscopy and tooth decay

    NASA Astrophysics Data System (ADS)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  8. Current trends in meteor spectroscopy

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The history of progress over more than a century in meteor spectroscopy is summarized. The observational data were originally visual records, but in the beginning of the 20th century photography of meteor spectra was undertaken. In the forties, 60 meteor spectra were photographed. Interest in the upper atmosphere led to the development of more efficient meteor cameras which employ replica gratings, and electronic image intensification systems recordings on video tape which resulted in the availability of several thousand meteor spectra.

  9. Spectroscopy, scattering, and KK molecules

    SciTech Connect

    Weinstein, J.

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  10. Heavy quark production and spectroscopy

    SciTech Connect

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.

  11. Vibrational spectroscopy of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric

    2008-08-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a σ-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  12. Isotope effects in ESR spectroscopy.

    PubMed

    Stößer, Reinhard; Herrmann, Werner

    2013-06-07

    In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  13. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  14. Modulated orientation sensitive terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Rohit

    The energies of protein correlated motions lie in the far infrared or THz frequency range (lambda = 1 cm -- 50 mm, f = 0.03 -- 6 THz). The existence of correlated motions has been confirmed by neutron and inelastic x-ray scattering measurements. These techniques require large sample volumes and specialized facilities, limiting their application to systematic studies of changes in correlated motions with functional state and allosteric interactions. Standard terahertz time domain spectroscopy measurements have shown sensitivity to protein-ligand binding, oxidation state, conformation, temperature and hydration. However, the response is broad, in part from the large vibrational density of states and in part from the dielectric response contribution from surface water and side-chains. As an overall strategy to measure the correlated structural motions in protein, we use anisotropic and birefringent behavior of molecular crystals to develop a new technique called MOSTS (Modulated Orientation Sensitive Terahertz Spectroscopy). We achieve high sensitivity and mode separation, by using single molecular crystal such as sucrose and oxalic acid, and rapid modulation of the relative alignment of the terahertz polarization and the crystal axes by rotating the sample. By locking into the signal at the rotation frequency, we determine the polarization sensitive signal and map out the optically active vibrational resonances. To illustrate the technique, we compare our measured spectra with the calculated, and find a close agreement. We measure dielectric properties of oxalic acid, sucrose and protein crystals and polycarbonate sheet using standard terahertz time domain spectroscopy. We determine the absorbances in oxalic acid and sucrose crystals, using MOSTS technique. We compare the resonances in these two distinct methods. Then, we develop a protein model sample by sticking together two thin plates of sucrose and polycarbonate. We carry out standard THz-TDS and MOSTS

  15. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  16. Development of MEMS photoacoustic spectroscopy

    SciTech Connect

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  17. Raman spectroscopy of shocked water

    SciTech Connect

    Holmes, N.C.; Mitchell, A.C.; Nellis, W.J.; Graham, W.B.; Walrafen, G.E.

    1983-07-01

    Raman scattering has been used extensively to study the vibrational and rotational properties of molecules under a variety of conditions. Here, interest is in the behavior of water molecules shocked to high pressures and temperatures. Behind the shock front the water molecules undergo changes in bonding and the molecules may become ionized. Raman spectroscopy can be used to determine the molecular species behind the shock front. In addition, changes in Raman spectra can yield information regarding inter- and intramolecular potentials and the temperature behind the shock front.

  18. Isotope-edited infrared spectroscopy.

    PubMed

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  19. Spectroscopy of blue stellar objects

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Warnock, A., III; Nations, H. L.; Barden, S. C.

    1983-01-01

    Spectra have been obtained for the brightest objects from a list of blue stellar objects found in a Palomar Schmidt field centered on Kapteyn Selected Area 28. Four of the objects presented here comprise a complete sample of objects with UV excess and magnitudes brighter than or equal to B = 16.3 mag. The object with the largest UV excess is a previously undiscovered quasar of redshift 0.25 and cataloged B magnitude of 15.6 mag. The object shows some evidence of variability. Spectroscopy for one bright object in a companion field centered on Selected Area 29 is also presented.

  20. Simultaneous beta and gamma spectroscopy

    DOEpatents

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  1. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  2. Nonlinear spectroscopy of trapped ions

    NASA Astrophysics Data System (ADS)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  3. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  4. Examining pharmaceuticals using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulovská, Kateřina; Křesálek, Vojtěch

    2015-10-01

    Pharmaceutical trafficking is common issue in countries where they are under stricter dispensing regime with monitoring of users. Most commonly smuggled pharmaceuticals include trade names Paralen Plus, Modafen, Clarinase repetabs, Aspirin complex, etc. These are transported mainly from Eastern Europe (e.g. Poland, Ukraine, Russia) to countries like Czech Republic, which is said to have one of the highest number of methamphetamine producers in Europe. The aim of this paper is to describe the possibility of terahertz spectroscopy utilization as an examining tool to distinguish between pharmaceuticals containing pseudoephedrine compounds and those without it. Selected medicaments for experimental part contain as an active ingredient pseudoephedrine hydrochloride or pseudoephedrine sulphate. Results show a possibility to find a pseudoephedrine compound spectra in samples according to previously computed and experimentally found ones, and point out that spectra of same brand names pills may vary according to their expiration date, batch, and amount of absorbed water vapours from ambience. Mislead spectrum also occurs during experimental work in a sample without chosen active ingredient, which shows persistent minor inconveniences of terahertz spectroscopy. All measurement were done on the TPS Spectra 3000 instrument.

  5. Probing biological systems with terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Pickwell-MacPherson, Emma; Sun, Yiwen; Parrott, Edward P. J.

    2012-10-01

    Terahertz spectroscopy is able to probe several aspects of biological systems. Most well known is its sensitivity to water due to the strong water absorptions at terahertz frequencies. However an increasing number of studies have shown that it is not just water content that terahertz is sensitive to and that other factors such as tissue structure, molecular arrangement or even temperature can also affect the signal. Examples ranging from breast cancer spectroscopy to antibody protein spectroscopy will be presented and discussed.

  6. Photoacoustic spectroscopy for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Pellegrino, Paul M.

    2012-06-01

    The Global War on Terror has made rapid detection and identification of chemical and biological agents a priority for Military and Homeland Defense applications. Reliable real-time detection of these threats is complicated by our enemy's use of a diverse range of materials. Therefore, an adaptable platform is necessary. Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace detection of gaseous media. This method routinely exhibits detection limits at the parts-per-billion (ppb) or sub-ppb range. The versatility of PAS also allows for the investigation of solid and liquid analytes. Current research utilizes quantum cascade lasers (QCLs) in combination with an air-coupled solid-phase photoacoustic cell design for the detection of condensed phase material films deposited on a surface. Furthermore, variation of the QCL pulse repetition rate allows for identification and molecular discrimination of analytes based solely on photoacoustic spectra collected at different film depths.

  7. Mossbauer spectroscopy of moon samples.

    PubMed

    Muir, A H; Housley, R M; Grant, R W; Abdel-Gawad, M; Blander, M

    1970-01-30

    Lunar bulk sample 10084,85 (< 1 mm size dust), and samples from rocks 10017,17 (fine grained, vesicular), 10046,17 (breccia), 10057,59 (fine grained, vesicular, top surface), 10057,60 (fine grained, vesicular, interior), and 10058,24 (medium grained, not vesicular) have been investigated by (57)Fe Mössbauer spectroscopy. Iron metal and the Fe(2+) minerals ilmenite, pyroxene, troilite, and iron containing glass have been identified. An iron line of sample 10084,85 (originally sealed in nitrogen) showed no significant intensity change when the sample was exposed to air. The antiferromagnetic transition in several lunar ilmenites at 57(0) +/- 2 degrees K corresponds to stoichiometric FeTiO,. Magneticallv separated 10057 showed troilite and somne metallic iron.

  8. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  9. Probing zeolites by vibrational spectroscopies.

    PubMed

    Bordiga, Silvia; Lamberti, Carlo; Bonino, Francesca; Travert, Arnaud; Thibault-Starzyk, Frédéric

    2015-10-21

    This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.

  10. Spectroscopy of 215Rn86

    SciTech Connect

    Debray, M. E.; Davidson, M.; Davidson, J.; Hojman, D.; Kreiner, A. J.; Cardona, M. A.; Lenzi, S.; Napoli, D.

    2007-02-12

    The yrast level structure of 215,216Rn has been studied using in beam spectroscopy {alpha} - {gamma} - {gamma} coincidence techniques mainly through the 207Pb(18O, 2{alpha}2n) and 208Pb(18O, 2{alpha}2n) reactions in the 91-93 MeV energy range, using the 8{pi} GASP-ISIS spectrometer at Legnaro. The obtained low lying level scheme of 215Rn does not exhibit the alternating parity structure observed in their heavier known isotones 216Fr, 217Ra and 218Ac. The level scheme of 216Rn resulting from this study shows >From this result, the lightest nucleus showing evidence for reflection asymmetry is 216Fr defining one lowest-mass corner for this kind of phenomenon as N{>=}129 and Z{>=}87.

  11. Terahertz spectroscopy of plasmonic fractals.

    PubMed

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(<2). Furthermore, a sum rule for the transmission resonances and antiresonances in plasmonic fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  12. Laser spectroscopy of muonic deuterium.

    PubMed

    Pohl, Randolf; Nez, François; Fernandes, Luis M P; Amaro, Fernando D; Biraben, François; Cardoso, João M R; Covita, Daniel S; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L; Graf, Thomas; Hänsch, Theodor W; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A M; Ludhova, Livia; Monteiro, Cristina M B; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M F; Schaller, Lukas A; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F C A; Antognini, Aldo

    2016-08-12

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ(-). We measured three 2S-2P transitions in μd and obtain r(d) = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value r(d) = 2.1424(21) fm. The μd value is also 3.5σ smaller than the r(d) value from electronic deuterium spectroscopy. The smaller r(d), when combined with the electronic isotope shift, yields a "small" proton radius r(p), similar to the one from muonic hydrogen, amplifying the proton radius puzzle. PMID:27516595

  13. Field spectroscopy of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Daughtry, C. S. T.; Biehl, L. L.; Kanemasu, E. T.; Hall, F. G.

    1986-01-01

    The development of the full potential of multispectral data acquired from satellites, requires quantitative knowledge, and physical models of the spectral properties of specific earth surface features. Knowledge of the relationships between spectral-radiometric characteristics and important biophysical parameters of agricultural crops and soils can best be obtained by carefully controlled studies of fields or plots. It is important to select plots where data describing the agronomic-biophysical properties of the crop canopies and soil background are attainable, taking into account also the feasibility of frequent timely calibrated spectral measurements. The term 'field spectroscopy' is employed for this research. The present paper is concerned with field research which was sponsored by NASA as part of the AgRISTARS Supporting Research Project. Attention is given to field research objectives, field research instrumentation, measurement procedures, spectral-temporal profile modeling, and the effects of cultural and environmental factors on crop reflectance.

  14. Programmable spectroscopy enabled by DLP

    NASA Astrophysics Data System (ADS)

    Rose, Bjarke; Rasmussen, Michael; Herholdt-Rasmussen, Nicolai; Jespersen, Ole

    2015-03-01

    Ibsen Photonics has since 2012 worked to deploy Texas Instruments DLP® technology to high efficiency, fused silica transmission grating based spectrometers and programmable light sources. The use of Digital Micromirror Devices (DMDs) in spectroscopy, allows for replacement of diode array detectors by single pixel detectors, and for the design of a new generation of programmable light sources, where you can control the relative power, exposure time and resolution independently for each wavelength in your spectrum. We present the special challenges presented by DMD's in relation to stray light and optical throughput, and we comment on the possibility for instrument manufacturers to generate new, dynamic measurement schemes and algorithms for increased speed, higher accuracy, and greater sample protection. We compare DMD based spectrometer designs with competing, diode array based designs, and provide suggestions for target applications of the technology.

  15. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  16. Surface inspection using FTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M., III; Barber, T. E.; Marrero-Rivera, M.

    1995-01-01

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces with detection limits under the best of conditions in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer range, and useful performance for films tens of microns thick. Examples of discovering and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques associated with quantitatively applying oils to metals, subsequently verifying the application, and non-linear relationships between reflectance and the quantity oil are described.

  17. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  18. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  19. Coherent frequency combs and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2010-03-01

    Optical frequency combs maintain precise phase coherence across the entire visible spectrum and they have profoundly changed optical frequency metrology and ultrafast science, with breakthrough developments in optical atomic clocks, optical frequency synthesis, direct frequency comb spectroscopy (DFCS), high-resolution quantum control, coherent pulse synthesis and amplification, and control of sub-femtosecond electron dynamics in atoms and molecules. DFCS [1] is a new spectroscopic approach that realizes simultaneously broad spectral coverage, high spectral resolution, many parallel detection channels, ultrahigh sensitivity, and real-time analysis [2]. These powerful capabilities have been demonstrated in a series of experiments where identification and quantification of many different molecular states or species are achieved in a massively parallel fashion [3].[4pt] [1] A. Marian et al., Science 306, 2063 (2004). [0pt] [2] M. J. Thorpe et al., Science 311, 1595 (2006). [0pt] [3] M. J. Thorpe & J. Ye, Appl. Phys. B 91, 397 (2008).

  20. Coherent frequency combs and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2010-03-01

    Optical frequency combs possessing precise phase coherence across the entire visible spectrum have profoundly changed optical frequency metrology and ultrafast science, with breakthrough developments in optical atomic clocks, optical frequency synthesis, direct frequency comb spectroscopy (DFCS), high-resolution quantum control, coherent pulse synthesis and amplification, and control of sub-femtosecond electron dynamics in atoms and molecules. DFCS [1] is a new spectroscopic approach that embraces simultaneously broad spectral coverage, fine spectral resolution, numerous detection channels, ultrahigh sensitivity, and real-time analysis [2]. These powerful capabilities have been demonstrated in a series of experiments where identification and quantification of many different molecular states or species are achieved in a massively parallel fashion [3]. A range of interesting scientific applications will be discussed. [4pt] [1] A. Marian et al., Science 306, 2063 (2004). [0pt] [2] M. J. Thorpe et al., Science 311, 1595 (2006). [0pt] [3] M. J. Thorpe & J. Ye, Appl. Phys. B 91, 397 (2008).

  1. Screening spectroscopy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.

    2015-11-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.

  2. Laser spectroscopy and its applications

    SciTech Connect

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed.

  3. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ-. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  4. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  5. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  6. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  7. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  8. Raman spectroscopy peer review report

    SciTech Connect

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs.

  9. Photoacoustic spectroscopy sample array vessels and photoacoustic spectroscopy methods for using the same

    DOEpatents

    Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.

    2006-02-14

    Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically positioned near the sample cells. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.

  10. Photoacoustic spectroscopy sample array vessel and photoacoustic spectroscopy method for using the same

    DOEpatents

    Amonette, James E.; Autrey, S. Thomas; Foster-Mills, Nancy S.; Green, David

    2005-03-29

    Methods and apparatus for analysis of multiple samples by photoacoustic spectroscopy are disclosed. Particularly, a photoacoustic spectroscopy sample array vessel including a vessel body having multiple sample cells connected thereto is disclosed. At least one acoustic detector is acoustically coupled with the vessel body. Methods for analyzing the multiple samples in the sample array vessels using photoacoustic spectroscopy are provided.

  11. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  12. Nonlinear Spectroscopy of Rubidium: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Jacques, V.; Hingant, B.; Allafort, A.; Pigeard, M.; Roch, J. F.

    2009-01-01

    In this paper, we describe two complementary nonlinear spectroscopy methods which both allow one to achieve Doppler-free spectra of atomic gases. First, saturated absorption spectroscopy is used to investigate the structure of the 5S[subscript 1/2] [right arrow] 5P[subscript 3/2] transition in rubidium. Using a slightly modified experimental…

  13. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  14. Heavy Flavor Spectroscopy at the Tevatron

    SciTech Connect

    Yi, Kai; /Iowa U.

    2010-05-01

    The Tevatron experiments have each accumulated about 6 fb{sup -1} of good data since the start of Run II. This large dataset provides excellent opportunities for heavy flavor spectroscopy studies at the Tevatron. This article will cover the latest {Upsilon}(nS) polarization studies as well as exotic meson spectroscopy results.

  15. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    PubMed

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PMID:25226262

  16. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    PubMed

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  17. Ultrafast spectroscopy of novel materials

    NASA Astrophysics Data System (ADS)

    Hardison, Lindsay M.

    My research focused on steady state and time-resolved photophysical characterization of a series of semiconductor nanoparticles and water soluble conjugated polyelectrolytes. Several studies have shown that the electronic structure and relaxation dynamics in CdSe nanocrystals are not only size but are also shape and passivation dependent; however, there is no detailed comparison of the photophysical properties of ZnCdSe particles with different relative amounts of Zn. This dissertation presents data collected for colloidal CdSe, CdSe/ZnSe and ZnCdSe nanoparticles with rod-like architectures synthesized and investigated in our labs to determine how size, shape, passivation and composition affect the quantum confinement and dynamics. In addition, a series of different polymer repeat unit lengths of a linear conjugated polyelectrolyte (CPE) with a carboxylate ionic side chain have been synthesized and their photophysical properties have been explored. Spectral shifts and line broadening exhibited within the Raman spectroscopy, UV-Vis spectroscopy and photoluminescence aided in determining the extent of alloying and compositional disorder created during the alloying process. The photoluminescence quantum yield of ZnCdSe nanorods is higher than that from pristine CdSe nanorods indicating a higher binding energy of the exciton. This effect is speculated to be due to increased localization of the exciton as a result of fluctuations in the composition, ultimately resulting in increases in luminescence efficiencies. Moreover, time-resolved photoluminescence characterized lifetimes of nanoparticles with similar shape but different composition. Emission of an inhomogeneous population distribution (different sizes, shapes or composition) leads to the simultaneous probing of particles with different decaying rates. A stretched exponential function, I(t)= A*exp[-(t/tau) beta], can be used to describe these systems, where beta <1 corresponds to disperse populations. In the

  18. Modulation Spectroscopy of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Stokes, Kevin L.

    1995-11-01

    The optical and electro-optical properties of nanometer-sized CdS_{X}Se _{1-X} crystallites embedded in a glass matrix are investigated. The goal of this study is to understand not only the effect of confinement on the electronic energy levels, but also the nature of the electron-hole excited states and their response to electric field. Electro- and photo- modulated absorption spectroscopies are the primary experimental tools. The electric-field response of CdS_ {0.44}Se_{0.56} nanoparticles in glass is studied as a function of particle size using electroabsorption spectroscopy. New transitions appear as confinement increases--up to six quantum-size levels can be observed in the data. The evolution of the transitions through many particle sizes provides evidence for mixing of the valence bands due to quantum confinement. Transitions involving electron-hole envelope functions with S-like symmetry are the most sensitive to electric field. The electromodulated absorption data were fit with a first-derivative lineshape function to separate the effects of the electric field on the energy level, width, and oscillator strength associated with each electron -hole state. The electroabsorption magnitude is a strong function of particle size and the modulation mechanisms also change with particle size. Frequency-, intensity- and temperature-dependent photoabsorption were used to study deep trap states in CdS_{0.44}Se_ {0.56} particles in glass. The photo -induced change in absorption consists of two components: (1) bleaching, due to phase-space filling of the lowest excited state and (2) a carrier-induced electric-field effect involving a long-lived trap state. The electroabsorption lineshape in the large (R = 6.2 nm) particles is found to be sensitive to the intensity of an additional pump beam. This effect is caused by the formation of two electron-hole pair states in the nanoparticle. One electron-hole pair is bound to a long-lived trap and the second electron-hole state

  19. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  20. HET Spectroscopy of Extragalactic Novae

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Coelho, E. A.; Misselt, K. A.; Bode, M. F.; Darnley, M. J.

    2006-12-01

    We are currently involved in a multifaceted campaign to study extragalactic novae in the optical and IR using a variety of instruments: The Mount Laguna 1m, the Steward 2.3m, and the Liverpool 2m telescopes for optical imaging, the Hobbey-Eberly Telescope (HET) for optical spectroscopy, and the Spitzer Space Telescope for IR photometry and spectroscopy. Here, we report the initial results from our program of spectroscopic observations obtained with the LRS on the HET. Thus far, we have obtained spectra of three novae: Nova M31-2006#9 (ATEL 887), Nova M32-2006#1 (CBET 591), and Nova M33-2006#1 (CBET 655), which were taken on 24-Sep-2006 UT, 30-Sep-2006 UT, and 02-Oct-2006 UT, approximately 6, 65, and 4 days post discovery, for the three novae respectively. The spectra of Nova M31-2006#9 and Nova M33-2006#1 revealed prominent Balmer (FWHM 1600 km/s) and Fe II emission lines typical of the "Fe II" class in the classification system of Williams (1992 AJ, 104, 725). The spectrum of Nova M32-2006#1, which was obtained much longer after eruption, showed strong H-alpha (FWHM 1300 km/s), along with weaker H-beta, Fe II, and [N II] 5755, indicating that this nova is also a member of the Fe II class, and that it had entered the nebular phase at the time of our observations. In addition to these three novae, we also attempted to obtain a spectrum of Nova M31-2006#7 (CBET 615) on 23-Sep-2006 UT, approximately three weeks after discovery. However, by the time of our observations, the nova had faded to invisibility. An 1800s integration at the reported position reveled no trace of the nova. It is likely that this optical transient was an unusually fast nova, possibly of the "He/N" class. This work is being supported in part by NSF grant AST-0607682.

  1. The effects of lithium doping level on the structural, electrical properties of Li{sup +}-doped BPO{sub 4} solid electrolyte

    SciTech Connect

    Gao, Shan; Shui, Miao Zheng, Weidong; Yang, Tianci; Shu, Jie; Cheng, Liangliang; Feng, Lin; Ren, Yuanlong

    2013-08-01

    Graphical abstract: - Highlights: • Better ionic conductivities when 0.05 ≤ x ≤ 0.13. • V{sup ‴}{sub B}+3Li{sub i} model was preferred. • Grain size, lattice strain and Li{sup +}conductivity are closely related. - Abstract: A series of lithium ion conducting solid electrolytes Li{sub x}B{sub 1−x/3}PO{sub 4}(x = 0.01, 0.05, 0.09, 0.13, 0.17, 0.20) is synthesized by a soft-chemistry route. FTIR and XRD measurements reveal that the electrolyte is pure phase of tetragonal structure. AC-impedance spectroscopy (AC-IS) at room temperature shows that Li{sub x}B{sub 1−x/3}PO{sub 4} exhibits higher ionic conductivities in the range 0.05 ≤ x ≤ 0.13, beyond which, the ionic conductivities decrease quickly. Maximum ionic conductivity of the Li{sub x}B{sub 1−x/3}PO{sub 4} reaches 3.35 × 10{sup −5} S cm{sup −1} at room temperature for x = 0.05. Direct current polarizing (DCP) measurement indicates that the decomposition voltage for the solid electrolyte reaches up to 3.7 V. Micro-structure parameters of synthesized Li{sub x}B{sub 1−x/3}PO{sub 4} samples are calculated by Rietveld refinement of X-ray diffraction spectra. The unit-cell parameters, lattice strain, crystal grain size and ionic conductivities of the samples are correlated with the lithium ion doping level x.

  2. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  3. Fluorescence Spectroscopy in a Shoebox

    NASA Astrophysics Data System (ADS)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  4. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  5. Spectroscopy of {sup 257}Rf

    SciTech Connect

    Qian, J.; Heinz, A.; Winkler, R.; Khoo, T. L.; Janssens, R. V. F.; Peterson, D.; Seweryniak, D.; Ahmad, I.; Back, B. B.; Carpenter, M. P.; Greene, J. P.; Jiang, C. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Robinson, A.; Savard, G.; Scott, R.; Vondrasek, R.; Wang, X.

    2009-06-15

    The isotope {sup 257}Rf was produced in the fusion-evaporation reaction {sup 208}Pb({sup 50}Ti,n){sup 257}Rf. Reaction products were separated and identified by mass. Delayed spectroscopy of {sup 257}Rf and its decay products was performed. A partial decay scheme with configuration assignments is proposed based on {alpha} hindrance factors. The excitation energy of the 1/2{sup +}[620] configuration in {sup 253}No is proposed. The energy of this 1/2{sup +} state in a series of N=151 isotones increases with nuclear charge, reflecting an increase in the N=152 gap. This gap is deduced to grow substantially from 850 to 1400 keV between Z=94 and 102. An isomeric state in {sup 257}Rf, with a half-life of 160{sub -31}{sup +42} {mu}s, was discovered by detecting internal conversion electrons followed by {alpha} decay. It is interpreted as a three-quasiparticle high-K isomer. A second group of internal conversion electrons, with a half-life of 4.1{sub -1.3}{sup +2.4} s, followed by {alpha} decay, was also observed. These events might originate from the decay of excited states in {sup 257}Lr, populated by electron-capture decay of {sup 257}Rf. Fission of {sup 257}Rf was unambiguously detected, with a branching ratio of b{sub Rf}{sup SF}=0.02{+-}0.01.

  6. PAC spectroscopy of electronic ceramics

    SciTech Connect

    Gardner, J.A.; Wang, Ruiping; Schwenker, R. . Dept. of Physics); Evenson, W.E. . Dept. of Physics and Astronomy); Rasera, R.L. . Dept. of Physics); Sommers, J.A. )

    1991-01-01

    Dilute indium dopants in cerium oxides and YBa{sub 2}Cu{sub 3}O{sub x} have been studied by{sup 111}In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by {sup 111}Cd after the radioactive decay of the {sup 111}In parent. In YBa{sub 2}Cu{sub 3}O{sub x} the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 {degree}C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen.

  7. PAC spectroscopy of electronic ceramics

    SciTech Connect

    Gardner, J.A.; Wang, Ruiping; Schwenker, R.; Evenson, W.E.; Rasera, R.L.; Sommers, J.A.

    1991-12-31

    Dilute indium dopants in cerium oxides and YBa{sub 2}Cu{sub 3}O{sub x} have been studied by{sup 111}In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by {sup 111}Cd after the radioactive decay of the {sup 111}In parent. In YBa{sub 2}Cu{sub 3}O{sub x} the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 {degree}C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen.

  8. THz Spectroscopy of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    2000-01-01

    THz spectroscopy of the atmosphere has been driven by the need to make remote sensing measurements of OH. While the THz region can be used for sensitive detection on many atmospheric molecules, the THz region is the best region for measuring the diurnal behavior of stratospheric OH by remote sensing. The infrared region near 3 microns suffers from chemiluminescence and from spectral contamination due to water. The ultraviolet region near 300 nm requires solar illumination. The three techniques for OH emission measurements in the THz region include Fourier Transform interferometry, Fabry-Perot interferometry, and heterodyne radiometry. The first two use cryogenic direct detectors while the last technique uses a local oscillator and a mixer to down convert the THz signal to GHz frequencies. All techniques have been used to measure stratospheric OH from balloon platforms. OH results from the Fabry-Perot based FILOS instrument will be given. Heterodyne measurement of OH at 2.5 THz has been selected to be a component of the Microwave Limb Sounder on the Earth Observing System CHEM-1 polar satellite. The design of this instrument will be described. A balloon-based prototype heterodyne 2.5 THz radiometer had its first flight on, 24 May 1998. Results form this flight will be presented.

  9. Differentiating tissue by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Woessner, Stefan; Huen, Julien; Malthan, Dirk

    2004-03-01

    A common problem in several surgical applications is the lack of navigational information. Most often, the only source of information about the location of crucial structures, in relation to the surgical instrument, is the visible and tactile sensory input of the surgeon. In some cases, this leads to time-consuming procedures and a high risk for the patient. Therefore, we developed a spectroscopic sensor system for automatic differentiation between several tissue types. For example in milling processes, a sensor that is able to detect bone in contrast to nerve or vein tissue can be used to control the milling process. We showed exemplarily for the cochlea implant, a typical ENT-surgery, that with the help of our sensor system, the milling of bone can be accelerated without increasing the risk for the patient. It is also possible to use this type of sensor system in the area of medical robotics in soft-tissue applications. With real-time information, a continuous registration can take place, in contrast to a registration that is done using static preoperatively acquired images. We showed that our sensor system can be used to dynamically update the location of the patient in relation to CT or MR-images. In conclusion, we have been able to show that well-known spectroscopy sensors can be used to open new possibilities in medical treatment with and without the use of robotics.

  10. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  11. Ultraviolet Spectroscopy of Narrow CMEs

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Biesecker, D. A.; Li, J.; Ciaravella, A.

    2002-12-01

    Coronal mass ejections (CMEs) are commonly described as new, discrete, bright features appearing in the field of view of a white light coronagraph and moving outward over a period of minutes to hours. Apparent angular widths of the CMEs cover a wide range, from few to 360°. The very narrow structures (narrower than ~15-20°) form only a small subset of all the observed CMEs and are usually referred to as rays, spikes, fans, etc. Recently, Gilbert et al. (2001, ApJ, 550, 1093) reported LASCO white light observations of 15 selected narrow CMEs. We extended the study and analyzed ultraviolet spectroscopy of narrow ejections, including several events listed by Gilbert et al. The data were obtained by the Ultraviolet Coronagraph Spectrometer (UVCS/SOHO). We present comparison of narrow and large CMEs and discuss the relation of the narrow CMEs to coronal jets and/or other narrow transient events. This work is supported by NASA under Grant NAG5-11420 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by PRODEX (Swiss contribution).

  12. In-cell NMR spectroscopy.

    PubMed

    Serber, Zach; Corsini, Lorenzo; Durst, Florian; Dötsch, Volker

    2005-01-01

    The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations. PMID:15808216

  13. INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.

    SciTech Connect

    GRIFFITHS, P.R.; HOMES, C.

    2001-05-04

    Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

  14. Mass resolved resonance ionization spectroscopy of combustion radicals

    SciTech Connect

    Not Available

    1992-06-23

    This report discusses the following topics: REMPI spectroscopy of HCO and DCO; Rempi spectroscopy of the ethynyl radical; REMPI spectroscopy of new electronic states of C{sub 2}; and a flame sampling laser ionization mass spectrometer.

  15. Frequency comb velocity-modulation spectroscopy.

    PubMed

    Sinclair, Laura C; Cossel, Kevin C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-08-26

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150  cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001  cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

  16. Synchronous luminescence spectroscopy of human breast tissues

    NASA Astrophysics Data System (ADS)

    Majumdar, S. K.; Gupta, P. K.

    1998-06-01

    We report, to our knowledge, the first use of synchronous luminescence (SL) spectroscopy for autofluorescence diagnosis of cancer. The spectral narrowing effect of the SL spectroscopy led to an easier identification of the different fluorophores present in human breast tissues and provided relative estimate of their concentration in qualitative agreement with the estimates obtained from conventional excitation and emission spectroscopy. Further, the SL spectra from human breast tissues could discriminate cancerous tissues from benign tumors and normal tissues with a sensitivity and specificity of 100% in a study involving 34 patients with breast tumor (19 ductal carcinomas and 15 fibroadenomas).

  17. Method and apparatus for optoacoustic spectroscopy

    DOEpatents

    Amer, Nabil M.

    1979-01-01

    A method and apparatus that significantly increases the sensitivity and flexibility of laser optoacoustic spectroscopy, with reduced size. With the method, it no longer is necessary to limit the use of laser optoacoustic spectroscopy to species whose absorption must match available laser radiation. Instead, "doping" with a relatively small amount of an optically absorbing gas yields optoacoustic signatures of nonabsorbing materials (gases, liquids, solids, and aerosols), thus significantly increasing the sensitivity and flexibility of optoacoustic spectroscopy. Several applications of this method are demonstated and/or suggested.

  18. Enzyme dynamics from NMR spectroscopy.

    PubMed

    Palmer, Arthur G

    2015-02-17

    CONSPECTUS: Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  19. Enzyme Dynamics from NMR Spectroscopy

    PubMed Central

    2016-01-01

    Conspectus Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond–nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond–millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  20. New magnetic material spectroscopy (abstract)

    SciTech Connect

    Hogenboom, D.; Widom, A.; Vittoria, C.

    1997-04-01

    Sensitive commercial electron paramagnetic resonance (EPR) spectrometers are able to measure 10{sup AND}13 spins. Using a high T{sub c} weak link, we were able to measure FMR on yttrium ion garnet (YIG) films which were exposed to an effective area of 3 nm by 15 micrometers. Given that this is the area of excitation and the thickness of the YIG was 0.5 micrometers, we could measure less than 10{sup AND}9 spins in a YIG film. Our weak link was fabricated by patterning a 0.5 micrometer thick film of YBCO down to a 15 micrometer wide bridge across an artificial grain boundary in an MgO substrate. Our technique uses the ac Josephson effect to generate a microwave field which couples into a YIG film which is placed in intimate contact atop the link. The frequency of this microwave field is proportional to the voltage across the weak link. The absorption of the microwaves by the YIG will affect the voltage versus current behavior across the weak link. For a YIG film of 0.5 micrometers thickness, we measured an in-plane linewidth of 125 Gauss using the weak link technique. The FMR linewidth measured by a conventional EPR technique was 40 Gauss. This implies that the excitation by the weak link may be nonuniform. We present data which illustrate this effect and numerical results for the corresponding circuit model. Our conclusions are that we have developed a viable spectroscopy to characterize extremely local magnetic interactions. {copyright} {ital 1997 American Institute of Physics.}

  1. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  2. Spectroscopy of high redshift sightlines

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba

    2011-04-01

    This thesis deals with the absorption studies of two cosmological objects: Gamma-ray bursts (GRBs) and quasars (QSO), using spectroscopy and spectral energy distribution (SED) analysis. GRBs are the most powerful explosions in the Universe. After the discovery of these cosmological events in 1967, a lot of progress has been made in investigating their properties which divided them into two subcategories of long and short bursts. Both GRB classes have different origins and properties. Long duration GRBs are signposts of star formation due to their association with the deaths of short-lived massive stars. The launch of the Swift satellite in 2004, mainly devoted to GRB observations, has marked a dramatic improvement in our understanding of GRB physics. The initial burst of gamma-rays should be followed by slowly fading emission at low frequencies, which is termed the "afterglow". GRB afterglows are excellent and sensitive probes of gas and dust in star-forming galaxies at all epochs. The X-ray to optical/near-infrared SED analysis of GRB afterglows can reveal intrinsic host galaxy properties. The brightness of these transient sources and their occurrence in young, blue galaxies make them excellent tools to study star forming regions in the distant Universe. The first chapter presents an introduction to the history of GRB research, different progenitor models and afterglow phases. It also summarizes the different dust models used for afterglow SED modeling. The chapter also provides an introduction to the Damped Ly-alpha absorbers (DLAs) usually seen in the spectra of background QSOs.

  3. News from Online: More Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sweeney Judd, Carolyn

    1999-09-01

    on to Evaporative Cooling at http://www.colorado.edu/physics/2000/bec/evap_cool.html. The cartoon professors begin the explanation with a picture of steam rising from a cup of hot coffee. Next is an applet with atoms in a parabolic magnetic trap at http://www.colorado.edu/physics/2000/applets/bec.html. The height of the magnetic trap can be changed in order to allow for escape of the most energetic atoms, resulting in cooling so that the Bose-Einstein Condensate is formed. Physics 2000 demands robust computing power. Check the system requirements on the introductory screen before venturing too far into this site. Martin V. Goldman, from the University of Colorado at Boulder, is the Director of Physics 2000, which received support from the Colorado Commission on Higher Education and the National Science Foundation. David Rea is the Technical Director, and many others help make this excellent site possible. Mark your calendars: October 31 through December 3, 1999! Bookmark this site-- http://www.ched-ccce.org/confchem/1999/d/index.html --and sign up. The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum. Scott Van Bramer of Widener University is the conference chair. Experts will present six papers, each to be followed by online discussions. CONFCHEM Online Conferences are sponsored by the American Chemical Society Division of Chemical Education's Committee on Computers in Chemical Education (CCCE). Several Online Conferences are held each year--all are well worth your time. World Wide Web Addresses EMSpectrum Explorer http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum/emspectrum.html Light and Energy http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html Emission Spectrum Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html Absorption Java Applet http://mc2.cchem

  4. Active beam spectroscopy for ITER

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Barnsley, R.; Biel, W.; Delabie, E.; Hawkes, N.; Jaspers, R.; Johnson, D.; Klinkhamer, F.; Lischtschenko, O.; Marchuk, O.; Schunke, B.; Singh, M. J.; Snijders, B.; Summers, H. P.; Thomas, D.; Tugarinov, S.; Vasu, P.

    2010-11-01

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1> r/ a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0< r/ a<0.7) using a top observation port. Thus optimum radial resolution is ensured for each system with better than a/30 resolution. Finally, the US will develop a dedicated MSE system making use of the HNBs and two equatorial ports. With appropriate modification, these systems could also potentially provide information on alpha particle slowing-down features. . On the engineering side, comprehensive preparations were made involving the development of an observation periscope, a neutron labyrinth optical system and design studies for remote maintenance including the exchange of the first mirror assembly, a critical issue for the operation of the CXRS diagnostic in the harsh ITER environment. Additionally, an essential change of the orientation of the DNB injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  5. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  6. Tip-Enhanced Raman Spectroscopy (TERS)

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno

    Tip-enhanced Raman spectroscopy is a vibrational spectroscopy with hitherto unprecedented sensitivity and spatial resolution. Since the enhancement is mainly provided by the near-field excited at the apex of a suitable tip, TERS appears to be a widely applicable spectroscopy and microscopy tool, in contrast to its parents, surface-enhanced Raman spectroscopy (SERS) and scanning near-field optical microscopy (SNOM). TER scattering has been observed for a number of molecules adsorbed at various substrates, including single-crystalline metal surfaces, showing thereby a more than million-fold enhancement of the Raman scattering. It is important to note that the field-enhancement provides, beyond TERS, promising avenues for applications to other optical techniques, such as tip-enhanced CARS, two-photon fluorescence and infrared scattering-type near-field microscopy.

  7. Terahertz imaging and spectroscopy for landmine detection

    NASA Astrophysics Data System (ADS)

    Fitch, Michael J.; Schauki, Dunja; Kelly, Craig A.; Osiander, Robert

    2004-04-01

    Pulsed THz (100 GHz - 30 THz) Imaging Spectroscopy combines three ways of mine detection in one system, high resolution radar, depth ranging, and infrared spectroscopy. It allows minefield detection, single mine imaging, and near-zero false alarm due to the capabilities of explosives / plastic identification using spectroscopy with working distances to 1000 feet. We have previously demonstrated imaging capabilities with 1 mm spatial resolution on a rubber O-ring embedded in sand. The estimated transmission depth in moist sand is 1 to 3 cm, which should be sufficient for imaging anti-personnel mines. In this work, we present initial results investigating the feasibility of THz spectroscopy in the frequency range from 1 to 10 THz to detect and identify explosives and related compounds (ERCs). A major component of this effort is chemical modeling to obtain spectroscopic information on ERCs and environmental background. A time-domain THz system using femtosecond laser pulses is also being developed.

  8. How Much Inorganic Spectroscopy and Photochemistry?

    ERIC Educational Resources Information Center

    Gray, Harry B.

    1980-01-01

    Describes three levels of courses to treat adequately the ground state electronic structures, the spectroscopy, and the photochemistry of inorganic molecules. Suggests sequences for the courses without repeating material taught in previous courses. (Author/JN)

  9. Photoassociative Spectroscopy of Ultracold Argon and Krypton

    NASA Astrophysics Data System (ADS)

    Omar, M. K.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    We report on photoassociative spectroscopy experiments performed separately on ultracold 40 Ar and ultracold 84 Kr with the spectroscopy laser tuned around the trapping transition for each species (ns[ 3 / 2 ] 2 --> np[ 5 / 2 ] 3 where n = 4 for argon and n = 5 for krypton). Previous studies in argon observed several discrete features in the spectrum that have now been positively identified as arising from otherwise undetectable frequency sidebands on the spectroscopy laser and not from molecular structure. Spectra have been taken over a range of laser intensities and show a broad (several GHz) signature of single photon photo-association, but with no individual vibrational levels resolved. We will discuss our results and compare our spectra to those obtained in ultracold, noble gas photoassociative spectroscopy experiments conducted by other groups in recent years. Supported in part by the National Science Foundation, Award, No. PHY-0855290.

  10. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  11. Diffraction-limited ultrabroadband terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-05-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields.

  12. Teaching the Rovibronic Spectroscopy of Molecular Iodine

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2007-01-01

    The rovibronic spectroscopy of molecular iodine provides a clearer understanding of the electronic potential parameters of various systems to the undergraduate students. The technique also helps them to test the various other quantum mechanical concepts.

  13. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  14. Diffraction-limited ultrabroadband terahertz spectroscopy

    PubMed Central

    Baillergeau, M.; Maussang, K.; Nirrengarten, T.; Palomo, J.; Li, L. H.; Linfield, E. H.; Davies, A. G.; Dhillon, S.; Tignon, J.; Mangeney, J.

    2016-01-01

    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields. PMID:27142959

  15. Sensors Based on Spectroscopy of Guided Waves

    NASA Astrophysics Data System (ADS)

    Homola, Jiří

    The last two decades have witnessed remarkable progress in the develpment of affinity biosensors and their applications in areas such as environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security. An affinity biosensor consists of a transducer and a biological recognition element which is able to interact with a selected analyte. Various optical methods have been exploited in biosensors including fluorescence spectroscopy, interferometry (reflectometric white light interferometry, modal interferometry in optical waveguide structures), and spectroscopy of guided modes of optical waveguides. Optical biosensors based on spectroscopy of guided modes of optical waveguides - grating coupler, resonant mirror, and surface plasmon resonance (SPR) - rely on the measurement of binding-induced refractive index changes and thus are label-free technologies. This paper reviews fundamentals of optical sensors based on spectroscopy of guided modes of optical waveguides and their applications.

  16. Medical diagnostics using terahertz pulsed spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Kudrin, Konstantin G.; Koroleva, Svetlana A.; Fokina, Irina N.; Volodarskaya, Svetlana I.; Novitskaya, Ekaterina V.; Perov, Artem N.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2014-03-01

    The paper contains recent results of studying the ability of human body disease diagnosis with terahertz time-domain spectroscopy. In vitro skin cancer samples (squamous cell carcinoma, epithelioid cell melanoma, infiltrating carcinoma) were studied experimentally with terahertz pulsed spectrometer. The parametrical in vitro images of skin cancers are presented. The ability to make early tooth cariosity diagnosis with terahertz time-domain spectroscopy was also shown experimentally. The results of studying the in vitro tooth samples are presented and discussed.

  17. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  18. Photoacoustic spectroscopy of man infecting protozoans

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1998-08-01

    In this paper the fundamentals of photothermal spectroscopy are presented, special emphasis is done in the obtention of the optical absorption spectra. It is shown that this spectroscopy can be used successfully for the monitoring of protozoans that could infect the human. The usefulness of the technique is illustrated in the special case of Leishmania, where it is possible to find that the stage when the protozoan infect vertebrate cells show important differences in relation to the protozoans infecting insects.

  19. Spectroscopy and terahertz imaging for sigillography applications

    NASA Astrophysics Data System (ADS)

    Mounaix, P.; Younus, A.; Delagnes, J. C.; Abraham, E.; Canioni, L.; Fabre, M.

    2011-02-01

    Sigillography is the science that studies the manifold aspects of the seals. A seal can be defined as an imprint obtained on a malleable medium by imprinting an incised matrix, which transfers on it the characteristic signs of a person or an institution. We use THz spectroscopy and imaging for non-destructive evaluation of natural seals. Using a time domain THz spectroscopy and imaging system, THz transmission images are generated in the 0.1-3 THz range.

  20. Meson Spectroscopy at CLAS and CLAS12

    SciTech Connect

    Carlos Salgado

    2011-10-01

    We report on meson spectroscopy using the CLAS at Jefferson Lab. We study photo-production of exotic mesons and strangeonia on the largest data sample ever to be produced at photon energies of about 5 GeV. We also describe an experiment to continue meson spectroscopy at CLAS12 (CLAS energy upgrade) using electroproduction at very low Q2 ('quasireal photons') up to photon energies of 10 GeV.

  1. Cancer diagnosis by infrared spectroscopy: methodological aspects

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Kim, Keith; Tetteh, John; Mansfield, James R.; Dolenko, Brion; Somorjai, Raymond L.; Orr, F. W.; Watson, Peter H.; Mantsch, Henry H.

    1998-04-01

    IR spectroscopy is proving to be a powerful tool for the study and diagnosis of cancer. The application of IR spectroscopy to the analysis of cultured tumor cells and grading of breast cancer sections is outlined. Potential sources of error in spectral interpretation due to variations in sample histology and artifacts associated with sample storage and preparation are discussed. The application of statistical techniques to assess differences between spectra and to non-subjectively classify spectra is demonstrated.

  2. Photoacoustic spectroscopy of man infecting protozoans

    SciTech Connect

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1998-08-28

    In this paper the fundamentals of photothermal spectroscopy are presented, special emphasis is done in the obtention of the optical absorption spectra. It is shown that this spectroscopy can be used successfully for the monitoring of protozoans that could infect the human. The usefulness of the technique is illustrated in the special case of Leishmania, where it is possible to find that the stage when the protozoan infect vertebrate cells show important differences in relation to the protozoans infecting insects.

  3. Raman spectroscopy for identification of wood species

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gurovich, A. M.; Kostrin, D. K.; Selivanov, L. M.; Simon, V. A.; Stuchenkov, A. B.; Paltcev, A. V.; Uhov, A. A.

    2016-08-01

    This article discusses the application of Raman spectroscopy for identification of wood species. Use of Raman spectroscopy allows increasing the certainty of determining the type of wood compared to the analysis of spectra of diffuse reflectance. Raman spectrums of different wood samples when irradiated by laser radiation are shown. Ways to improve the determination reliability of wood species due to the modernization of the identification technique are discussed. The stages of data processing, allowing carrying out correct further analysis are described.

  4. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  5. Rotational spectroscopy at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Drouin, Brian J.

    2005-01-01

    Environmental monitoring, atmospheric remote sensing and astrophysical studies promoted by NASA require a strong basis of spectroscopic information. The rotational spectroscopy capabilities at NASAs Jet Propulsion Laboratory (JPL) are currently maintained for the measurement of key mission priorities that enable modeling and retrieval of geophysical data from the atmosphere as well as validation of the space-borne instruments in the Earth Observing System, particularly the Microwave Limb Sounder. Rotational spectra are measured using a variety of spectroscopic techniques including pulsed-beam Fourier transform microwave spectroscopy (at CalTech); millimeter wavelength Stark spectroscopy; millimeter, submillimeter and THz FM spectroscopy; laser sideband spectroscopy and Fourier Transform far-infrared spectroscopy. Remote measurements of atmospheric rotational spectra are made using two limb-sounder instruments in the submillimeter and THz. Recent advances in the direct synthesis of THz radiation that enable more efficient laboratory science will be presented. Software for comprehensive and systematic study of different molecular systems is maintained at JPL, the software is freely available via http://spec.jpl.nasa.gov and is used by our group to create and sustain the JPL spectral line catalog also available online.

  6. Extraterrestrial Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Klingelhöfer, Göstar

    To understand the origin of the Solar system and the origin of Life itself is one of the longest standing goals of human thought. Our Sun and its planets have formed out of an interstellar cloud which collapsed due to gravitational forces, forming a disk shaped so-called protosolar nebula, with the young star in the centre. Such disk shaped and dust grain containing protosolar nebulae have been observed. One of them is surrounding the young star Beta pictoris [1, 2]. Silicates, carbon and metal grains, oxides and sulfides should have been present. One of the important elements with relatively high abundance is iron. It is believed that simple molecules, such as water (H2O), carbon monoxide (CO), and hydrocarbons, were formed in this protosolar nebula [3]. As we know very well, at least in one case - our own Solar system - a variety of different objects were formed: planets, asteroids, and comets. At least on one of these planets, the Earth, life has formed. Today comets are believed to be remnants of the protosolar nebula, and the Sun and the planets are processed bodies, whereas asteroids are supposed to be only partially processed. The process of birth and evolution of our Solar system can be investigated indirectly by studying all the different members of the planetary system by means of remote sensing and planetary robotic space missions. One of the key elements in the evolution of the Solar system, and life itself, is iron. The chemistry of iron is strongly coupled to the chemistry of abundant elements as hydrogen, oxygen, and carbon. For instance, the oxidation state of iron in surface rocks of the planets is an important aspect because according to theoretical studies, iron contained in a planetary body should be the more oxidized the farther away from the sun this body has formed. By studying the cosmic history of iron, we have the possibility of understanding the chemical evolution of matter and life itself. Here, Mössbauer spectroscopy is the obvious

  7. Reactivity of nonaqueous organic electrolytes towards lithium

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.

    1990-01-01

    The successful operation of an ambient temperature secondary lithium cell is primarily dependent on the stability of the electrolyte towards lithium. The lithium electrode on open circuit must be inert towards the electrolyte to achieve a long shelf life. The reactivity of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes with additives such as 2-methylfuran, ethylene carbonate, propylene carbonate, and 3-methylsulfolane was investigated by microcalorimetry and ac impedance spectroscopy techniques. Also the stability of electrolytes by open circuit stand tests was studied. Addition of ethylene carbonate and 2-methylfuran additives was found to improve the stability of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes. Long term microcalorimetry and ac impedance data clearly confirmed the higher stability of ethylene carbonate/2-methyltetrahydrofuran electrolyte compared to the 2-methyltetrahydrofuran and propylene carbonate/2-methyltetrahydrofuran electrolytes.

  8. Effect of Zn-Ti double substitution on the electrical properties of Bi4V2O11

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Salami, Nabil S.

    2016-02-01

    New samples of the Bi2Zn0.1-xTixV0.9O5.35+x; 0.02 ≤ x ≤ 0.08 system have been synthesized through a standard solid-state reaction route. XRD analysis and differential thermal analysis have been used to characterize the phase structure of samples. The γ‧ phase is stabilized to room temperature in all investigated samples. The electrical properties of the BIZNTIVOX system have been studied by using AC impedance spectroscopy. An AC impedance response as a function of frequency (20 Hz-1 MHz) has been used to investigate the electrical conductivity and the dielectric permittivity in the temperature range of 150 °C-700 °C. In this temperature range, the phase transition γ‧ to γ has been observed in all the compositions studied. AC impedance spectroscopy indicates that the resistance of samples decreases with increase of temperature. The ionic conductivity of samples appeared as a two-line region in Arrhenius dependence. At 300 °C, the highest ionic conductivity is shown by the composition x = 0.05 (σ300 = 1.35 × 10-4 S cm-1).

  9. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  10. Fast nuclear magnetic resonance correlation spectroscopy without diagonal peaks: the "2-1" correlation spectroscopy.

    PubMed

    Liu, Huili; Jiang, Bin; Liu, Maili; Mao, Xi-an

    2008-02-01

    A fast NMR experiment is proposed for measuring correlation spectroscopy (COSY) spectra with diagonal peaks completely removed or largely suppressed. This new pulse sequence is based on double quantum spectroscopy but with delayed detection, so that the double quantum coherence is effectively transferred to single quantum coherence. Therefore, the pulse sequence can be named "2-1" COSY.

  11. Raman spectroscopy: the gateway into tomorrow's virology.

    PubMed

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-06-28

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  12. Raman spectroscopy: the gateway into tomorrow's virology

    PubMed Central

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  13. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  14. Review of optical breast imaging and spectroscopy.

    PubMed

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy. PMID:27403837

  15. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  16. Assessment of skin flap viability using visible diffuse reflectance spectroscopy and auto-fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Liu, Quan

    2012-12-01

    The accurate assessment of skin flap viability is vitally important in reconstructive surgery. Early identification of vascular compromise increases the change of successful flap salvage. The ability to determine tissue viability intraoperatively is also extremely useful when the reconstructive surgeon must decide how to inset the flap and whether any tissue must be discarded. Visible diffuse reflectance and auto-fluorescence spectroscopy, which yield different sets of biochemical information, have not been used in the characterization of skin flap viability simultaneously to our best knowledge. We performed both diffuse reflectance and fluorescence measurements on a reverse MacFarlane rat dorsal skin flap model to identify the additional value of auto-fluorescence spectroscopy to the assessment of flap viability. Our result suggests that auto-fluorescence spectroscopy appears to be more sensitive to early biochemical changes in a failed flap than diffuse reflectance spectroscopy, which could be a valuable complement to diffuse reflectance spectroscopy for the assessment of flap viability.

  17. Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming

    2013-09-01

    Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.

  18. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches.

  19. Circular dichroism spectroscopy of membrane proteins.

    PubMed

    Miles, A J; Wallace, B A

    2016-09-21

    Circular dichroism (CD) spectroscopy is a well-established technique for studying the secondary structures, dynamics, folding pathways, and interactions of soluble proteins, and is complementary to the high resolution but generally static structures produced by X-ray crystallography, NMR spectroscopy, and cryo electron microscopy. CD spectroscopy has special relevance for the study of membrane proteins, which are difficult to crystallise and largely ignored in structural genomics projects. However, the requirement for membrane proteins to be embedded in amphipathic environments such as membranes, lipid vesicles, detergent micelles, bicelles, oriented bilayers, or nanodiscs, in order for them to be soluble or dispersed in solution whilst maintaining their structure and function, necessitates the use of different experimental and analytical approaches than those employed for soluble proteins. This review discusses specialised methods for collecting and analysing membrane protein CD data, highlighting where protocols for soluble and membrane proteins diverge.

  20. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  1. Mobile Raman spectroscopy in astrobiology research.

    PubMed

    Vandenabeele, Peter; Jehlička, Jan

    2014-12-13

    Raman spectroscopy has proved to be a very useful technique in astrobiology research. Especially, working with mobile instrumentation during fieldwork can provide useful experiences in this field. In this work, we provide an overview of some important aspects of this research and, apart from defining different types of mobile Raman spectrometers, we highlight different reasons for this research. These include gathering experience and testing of mobile instruments, the selection of target molecules and to develop optimal data processing techniques for the identification of the spectra. We also identify the analytical techniques that it would be most appropriate to combine with Raman spectroscopy to maximize the obtained information and the synergy that exists with Raman spectroscopy research in other research areas, such as archaeometry and forensics.

  2. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  3. Alpha Coincidence Spectroscopy studied with GEANT4

    SciTech Connect

    Dion, Michael P.; Miller, Brian W.; Tatishvili, Gocha; Warren, Glen A.

    2013-11-02

    Abstract The high-energy side of peaks in alpha spectra, e.g. 241Am, as measured with a silicon detector has structure caused mainly by alpha-conversion electron and to some extent alphagamma coincidences. We compare GEANT4 simulation results to 241Am alpha spectroscopy measurements with a passivated implanted planar silicon detector. A large discrepancy between the measurements and simulations suggest that the GEANT4 photon evaporation database for 237Np (daughter of 241Am decay) does not accurately describe the conversion electron spectrum and therefore was found to have large discrepancies with experimental measurements. We describe how to improve the agreement between GEANT4 and alpha spectroscopy for actinides of interest by including experimental measurements of conversion electron spectroscopy into the photon evaporation database.

  4. RF Spectroscopy on a Homogeneous Fermi Gas

    NASA Astrophysics Data System (ADS)

    Yan, Zhenjie; Mukherjee, Biswaroop; Patel, Parth; Struck, Julian; Zwierlein, Martin

    2016-05-01

    Over the last two decades RF spectroscopy has been established as an indispensable tool to probe a large variety of fundamental properties of strongly interacting Fermi gases. This ranges from measurement of the pairing gap over tan's contact to the quasi-particle weight of Fermi polarons. So far, most RF spectroscopy experiments have been performed in harmonic traps, resulting in an averaged response over different densities. We have realized an optical uniform potential for ultracold Fermi gases of 6 Li atoms, which allows us to avoid the usual problems connected to inhomogeneous systems. Here we present recent results on RF spectroscopy of these homogeneous samples with a high signal to noise ratio. In addition, we report progress on measuring the contact of a unitary Fermi gas across the normal to superfluid transition.

  5. Broadband single-molecule excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy.

  6. Circular dichroism spectroscopy of membrane proteins.

    PubMed

    Miles, A J; Wallace, B A

    2016-09-21

    Circular dichroism (CD) spectroscopy is a well-established technique for studying the secondary structures, dynamics, folding pathways, and interactions of soluble proteins, and is complementary to the high resolution but generally static structures produced by X-ray crystallography, NMR spectroscopy, and cryo electron microscopy. CD spectroscopy has special relevance for the study of membrane proteins, which are difficult to crystallise and largely ignored in structural genomics projects. However, the requirement for membrane proteins to be embedded in amphipathic environments such as membranes, lipid vesicles, detergent micelles, bicelles, oriented bilayers, or nanodiscs, in order for them to be soluble or dispersed in solution whilst maintaining their structure and function, necessitates the use of different experimental and analytical approaches than those employed for soluble proteins. This review discusses specialised methods for collecting and analysing membrane protein CD data, highlighting where protocols for soluble and membrane proteins diverge. PMID:27347568

  7. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  8. Evaluating minerals of environmental concern using spectroscopy

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.; Higgins, C.T.; Kokaly, R.F.; Eric, Livo K.; Hoefen, T.M.; Ong, C.; Kruse, F.A.

    2006-01-01

    Imaging spectroscopy has been successfully used to aid researchers in characterizing potential environmental impacts posed by acid-rock drainage, ore-processing dust on mangroves, and asbestos in serpentine mineral deposits and urban dust. Many of these applications synergistically combine field spectroscopy with remote sensing data, thus allowing more-precise data calibration, spectral analysis of the data, and verification of mapping. The increased accuracy makes these environmental evaluation tools efficient because they can be used to focus field work on those areas most critical to the research effort. The use of spectroscopy to evaluate minerals of environmental concern pushes current imaging spectrometer technology to its limits; we present laboratory results that indicate the direction for future designs of imaging spectrometers.

  9. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  10. Estimating atomic sizes with Raman spectroscopy.

    PubMed

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

  11. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    SciTech Connect

    Gollu, Sankara Rao; Sharma, Ramakant G, Srinivas Gupta, Dipti

    2014-10-15

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  12. A Brief History of Spectroscopy on EBIT

    SciTech Connect

    Beiersdorfer, P

    2007-02-28

    In the autumn of 1986, the first electron beam ion trap, EBIT, was put into service as a light source for the spectroscopy of highly charged ions. On the occasion of the twentieth anniversary of EBIT, we review its early uses for spectroscopy, from the first measurements of x rays from L-shell xenon ions in 1986 to its conversion to SuperEBIT in 1992 and rebirth as EBIT-I in 2001. Together with their sibling, EBIT-II, these machines have been used at Livermore to perform a multitude of seminal studies of the physics of highly charged ions.

  13. Applications of Raman spectroscopy to library heritage.

    PubMed

    Bicchieri, M; Nardone, M; Sodo, A

    2001-01-01

    This work reports some different applications of Raman spectroscopy, a high sensitive non-destructive technique, to the conservation of Library Heritage. By Raman spectroscopy we were able to detect the chemical mechanisms leading to cellulose degradation, identifying the different functional groups formed during the paper ageing. This kind of information is fundamental to choose a suited restoration treatment. A second reported application is the identification of pigments used to decorate paper and parchments. We report some results obtained from analysis of a XV and a XIII century illuminations.

  14. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  15. Spectroscopy of element 115 decay chains

    SciTech Connect

    Rudolph, Dirk; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L.-L.; Di Nitto, A.; Duehllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, Carl J; Hessberger, F. P.; Herzberg, R.-D; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, Krzysztof Piotr; Schaedel, M.; Aberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thoerle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Tuerler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  16. Absorption spectroscopy: technique provides extremely high sensitivity.

    PubMed

    Provencal, R A; Paul, J B; Michael, E; Saykally, R J

    1998-06-01

    Technology associated with cavity ringdown laser absorption spectroscopy is reviewed. The technique is used to study general trace analysis, free radicals in flames and chemical reactors, molecular ions in electrical discharges, biological molecules and water clusters in supersonic jets, and vibrational overtones of stable molecules. Its specific enough to detect about 1-ppm fractional absorption by a gaseous sample in about 10 microseconds. The use of mirrors in ringdown sepctroscopy is explained. Other topics include the generation of pulsed infrared rays and the adaptation of ringdown spectroscopy for use with narrow-bandwidth continuous-wave lasers. PMID:11541906

  17. Raman spectroscopies in shock-compressed materials

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Spontaneous Raman spectroscopy, stimulated Raman scattering and coherent anti-Stokes Raman scattering have been used to measure temperatures and changes in molecular vibrational frequencies for detonating and shocked materials. Inverse Raman and Raman induced Kerr effect spectroscopies have been suggested as diagnostic probes for determining and phenomenology of shock-induced chemical reactions. The practicality, advantages, and disadvantages of using Raman scattering techniques as diagnostic probes of microscopic phenomenology through and immediately behind the shock front of shock-compressed molecular systems are discussed.

  18. Trap-assisted decay spectroscopy with ISOLTRAP

    NASA Astrophysics Data System (ADS)

    Kowalska, M.; Naimi, S.; Agramunt, J.; Algora, A.; Beck, D.; Blank, B.; Blaum, K.; Böhm, Ch.; Borgmann, Ch.; Breitenfeldt, M.; Fraile, L. M.; George, S.; Herfurth, F.; Herlert, A.; Kreim, S.; Lunney, D.; Minaya-Ramirez, E.; Neidherr, D.; Rosenbusch, M.; Rubio, B.; Schweikhard, L.; Stanja, J.; Zuber, K.

    2012-10-01

    Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements.

  19. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  20. Identification of residues by infrared spectroscopy

    SciTech Connect

    Barber, T.E.; Ayala, N.L.; Jin, Hong; Drumheller, C.T.

    1997-12-31

    Mid-infrared spectroscopy of surfaces can be a very powerful technique for the qualitative and quantitative analysis of surface residues. The goal of this work was to study the application of diffuse reflectance mid-infrared spectroscopy to the identification of pesticide, herbicide, and explosive residues on surfaces. A field portable diffuse reflectance spectrometer was used to collect the mid-infrared spectra of clean surfaces and contaminated surfaces. These spectra were used as calibration sets to develop automated data analysis to classify or to identify residues on samples. In this presentation, the instrumentation and data process algorithms will be discussed.

  1. Spectroscopy of element 115 decay chains.

    PubMed

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  2. The ROSPHERE γ-ray spectroscopy array

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.

    2016-11-01

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  3. Explosive detection using infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  4. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  5. Applications of Raman spectroscopy to library heritage.

    PubMed

    Bicchieri, M; Nardone, M; Sodo, A

    2001-01-01

    This work reports some different applications of Raman spectroscopy, a high sensitive non-destructive technique, to the conservation of Library Heritage. By Raman spectroscopy we were able to detect the chemical mechanisms leading to cellulose degradation, identifying the different functional groups formed during the paper ageing. This kind of information is fundamental to choose a suited restoration treatment. A second reported application is the identification of pigments used to decorate paper and parchments. We report some results obtained from analysis of a XV and a XIII century illuminations. PMID:11836947

  6. Spectroscopy of element 115 decay chains.

    PubMed

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation. PMID:24074079

  7. X-ray spectroscopy: Enlightened state

    NASA Astrophysics Data System (ADS)

    McCusker, James K.

    2014-07-01

    Determining the sequence of events following photon absorption by a molecule can be a surprisingly challenging task. An innovative use of time-resolved X-ray spectroscopy has revealed an important insight into the ultrafast excited-state dynamics of a well-known inorganic chromophore.

  8. Surface enhanced Raman spectroscopy on copper hydrosols.

    PubMed

    Angebranndt, M J; Winefordner, J D

    1992-06-01

    Surface enhanced Raman spectroscopy (SERS) allows the detection of trace quantities of molecular species adsorbed onto a surface. The potential use of silver colloids as substrates for analytical SERS measurements is demonstrated. Detection limits and other analytical figures of merit for pyridine, p-aminobenzoic acid and p-nitrobenzoic acid are presented.

  9. Planar diode multiplier chains for THz spectroscopy

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank W.; Drouin, Brian J.; Pearson, John C.; Mehdi, Imran; Lewena, Frank; Endres, Christian; Winnewisser, Gisbert

    2005-01-01

    High-resolution laboratory spectroscopy is utilized as a diagnostic tool to determine noise and harmonic content of balanced [9]-[11] and unbalanced [12]-[14] multiplier designs. Balanced multiplier designs suppress unintended harmonics more than -20dB. Much smaller values were measured on unbalanced multipliers.

  10. Results and Frontiers in Lattice Baryon Spectroscopy

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K.Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.

  11. Results and Frontiers in Lattice Baryon Spectroscopy

    SciTech Connect

    Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.

    2007-10-26

    The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.

  12. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    PubMed

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  13. Ir Spectroscopy and Nickel (II) Hexammines

    ERIC Educational Resources Information Center

    Reedijk, J.; And Others

    1975-01-01

    Describes an experiment, for the general chemistry laboratory, intended to introduce the student to infrared spectroscopy. After being introduced to the theory of molecular vibrations on an elementary level, each student receives a list of 5-7 nickel (II) ammines to be prepared, analyzed and characterized by infrared spectoscopy. (MLH)

  14. Laser spectroscopy and dynamics of transient species

    SciTech Connect

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  15. Terahertz homodyne self-mixing transmission spectroscopy

    SciTech Connect

    Mohr, Till Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang; Simonetta, Marcello; Deninger, Anselm; Giuliani, Guido

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  16. Spectroscopy of Sound Transmission in Solid Samples

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Peterson, Joshua P.; Fitzjarrald, Tamara J.

    2013-01-01

    These laboratory experiments are designed to familiarize students with concepts of spectroscopy by using sound waves. Topics covered in these experiments include the structure of nitinol alloys and polymer chain stiffness as a function of structure and temperature. Generally, substances that are stiffer or have higher symmetry at the molecular…

  17. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  18. Photoelectron Spectroscopy of U Oxide at LLNL

    SciTech Connect

    Tobin, J G; Yu, S; Chung, B W; Waddill, G D

    2010-03-02

    In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.

  19. Charmed baryon spectroscopy from CLEO at CESR

    SciTech Connect

    Alam, M. Sajjad

    1999-02-17

    Charmed baryon spectroscopy has been unfolding since the discovery of the first charmed baryon in 1975. The Cornell Electron Storage Ring (CESR) has now established itself as a charmed particle factory. In this report, we present results on charmed baryon production at CESR using the CLEO detector.

  20. Fabrication methods for compact atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hawkins, Aaron R.; Hulbert, John F.; Carroll, Brandon T.; Wu, Bin; Schmidt, Holger

    2008-02-01

    Atomic spectroscopy relies on photons to probe the energy states of atoms, typically in a gas state. In addition to providing fundamental scientific information, this technique can be applied to a number of photonic devices including atomic clocks, laser stabilization references, slow light elements, and eventually quantum communications components. Atomic spectroscopy has classically been done using bulk optics and evacuated transparent vapor cells. Recently, a number of methods have been introduced to dramatically decrease the size of atomic spectroscopy systems by integrating optical functionality. We review three of these techniques including: 1) photonic crystal fiber based experiments, 2) wafer bonded mini-cells containing atomic vapors and integrated with lasers and detectors, and 3) hollow waveguides containing atomic vapors fabricated on silicon substrates. In the context of silicon photonics, we will emphasize the hollow waveguide platform. At the heart of these devices is the anti-resonant reflecting optical waveguide (ARROW). ARROW fabrication techniques will be described for both hollow and solid core designs. Solid-core waveguides are necessary to direct light on and off the silicon chip while confining atomic vapors to hollow-core waveguides. We will also discuss the methods and challenges of attaching rubidium vapor reservoirs to the chip. Experimental results for optical spectroscopy of rubidium atoms on a chip will be presented.

  1. Raman Spectroscopy of Bone and Cartilage

    NASA Astrophysics Data System (ADS)

    Morris, Michael

    This chapter will reviews the Raman spectroscopy of the subject tissues. After a brief introduction to the structure, biology, and function of these tissues, we will describe the spectra and band assignments of the tissues and then summarize applications to studies of tissue development, mechanical function and competence, and pathology. Both metabolic diseases and genetic disorders will be covered.

  2. Using GPU Programming for Inverse Spectroscopy

    SciTech Connect

    David Gerts; N. Fredette; H. Wimberly

    2010-07-01

    The Idaho National Laboratory (INL) has developed a detector that relies heavily on computationally expensive inverse spectroscopy algorithms to determine probabilistic three dimensional mappings of the source and its intensity. This inverse spectroscopy algorithm applies to material accountability due to the potential to determine where nuclear sources are present as a function of time and space. And yet because the novel algorithm can become prohibitively expensive on a standard desktop PC, the INL has incorporated new hardware from the commercial graphics community. General programming for graphics processing units (GPUs) is not a new concept. However, the application of GPUs to evidence theory-based inverse spectroscopy is both novel and particularly apropos. Improvements while using a (slightly upgraded) standard PC are approximately three orders of magnitude, making a ten hour computation in less than four seconds. This significantly changes the concept of prohibitively expensive calculations and makes application to materials accountability possible in near real time. Indeed, the sensor collection time is now expected to dominate the time required to determine the source and its intensity, instead of the inverse spectroscopy method.

  3. A New Spin on Photoemission Spectroscopy

    SciTech Connect

    Jozwiak, Chris

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  4. Axillary lymph node analysis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Jenny; Christie-Brown, Jonathan; Sammon, Alastair; Stone, Nicholas

    2004-07-01

    Raman Spectroscopy is an optical diagnostic technique applied in this study to classify axillary lymph nodes from breast cancer patients as positive or negative for metastases. The mapping technique in this study is 81% sensitive and 97% specific for the correct classification of positive lymph nodes. Raman spectral images of lymph node sections are constructed to facilitate interpretation of tissue features.

  5. Recent progress in in vivo ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Ozawa, Toshihiko

    2004-09-01

    The generation of free radicals and redox status is related to various diseases and injuries that are related to radiation, aging, ischemia-reperfusion, and other oxidative factors. In vivo electron spin resonance (ESR) spectroscopy is noninvasive and detects durable free radicals in live animals. ESR spectrometers for in vivo measurements operate at a lower frequency (approximately 3.5 GHz, approximately 1 GHz, 700 MHz, and approximately 300 MHz) than usual (9-10 GHz). Several types of resonators have been designed to minimize the dielectric loss of electromagnetic waves caused by water in animal bodies. In vivo ESR spectroscopy and its imaging have been used to analyze radical generation, redox status, partial pressure of oxygen and other conditions in various disease and injury models related to oxidative stress with probes, such as nitroxyl radicals. Through these applications, the clarification of the mechanisms related to oxidative diseases (injuries) and the accumulation of basic data for radiological cancer therapy are now ongoing. In vivo ESR measurement is performed in about 10 laboratories worldwide, including ours. To introduce in vivo ESR spectroscopy to life scientists, this article reviews the recent progress of in vivo ESR spectroscopy in instrumentation and its application to the life sciences.

  6. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  7. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  8. Variational method for lattice spectroscopy with ghosts

    SciTech Connect

    Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.

    2006-01-01

    We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson.

  9. Pear quality characteristics by Vis / NIR spectroscopy.

    PubMed

    Machado, Nicácia P; Fachinello, José C; Galarça, Simone P; Betemps, Débora L; Pasa, Mateus S; Schmitz, Juliano D

    2012-09-01

    Recently, non-destructive techniques such as the Vis / NIR spectroscopy have been used to evaluate the characteristics of maturation and quality of pears. The study aims to validate the readings by the Vis / NIR spectroscopy as a non-destructive way to assess the qualitative characteristics of pear cultivars 'Williams', 'Packams' and 'Carrick', produced according to Brazilian conditions. The experiment was conducted at the Pelotas Federal University, UFPel, in Pelotas / RS, and the instrument used to measure the fruit quality in a non-destructive way was the NIR- Case spectrophotometer (SACMI, Imola, Italy). To determine pears' soluble solids (SS) and pulp firmness (PF), it was established calibration equations for each variety studied, done from the evaluations obtained by a non-destructive method (NIR-Case) and a destructive method. Further on, it was tested the performance of these readings by linear regressions. The results were significant for the soluble solids parameter obtained by the Vis / NIR spectroscopy; however, it did not achieve satisfactory results for the pear pulp firmness of these cultivars. It is concluded that the Vis / NIR spectroscopy, using linear regression, allows providing reliable estimates of pears' quality levels, especially for soluble solids.

  10. Fourier transform stimulated emission pumping spectroscopy

    NASA Astrophysics Data System (ADS)

    Felker, P. M.; Henson, B. F.; Corcoran, T. C.; Connell, L. L.; Hartland, G. V.

    1987-12-01

    Theoretical and experimental results that demonstrate a new technique of non-linear interferometry based on stimulated emission pumping spectroscopy (SEPS) are presented. It is shown that splittings between the initial and final states in SEP processes can be measured by the method. Advantages and disadvantages of the technique relative to spectral domain SEPS are discussed.

  11. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  12. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  13. Spectroscopy and decays of charm and bottom

    SciTech Connect

    Butler, J.N.

    1997-10-01

    After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays.

  14. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  15. Demonstration of Berry Phase in Optical Spectroscopy

    NASA Technical Reports Server (NTRS)

    Xia, Hui-Rong; Zhang, Yong; Jiang, Hong-Ji; Ding, Liang-En

    1996-01-01

    In this paper we demonstrate that the observed phase shift of the RF signal and its intensity dependence under extreme low pump and probe laser field conditions are dominated by Berry phase effect in optical spectroscopy with good adiabatic approximation, which provides all features' agreements between the theoretical and the experimental results.

  16. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  17. Heteronuclear correlation spectroscopy in rotating solids

    NASA Astrophysics Data System (ADS)

    Caravatti, P.; Braunschweiler, L.; Ernst, R. R.

    1983-09-01

    Coherence transfer by an isotropic mixing process is used for two-dimensional heteronuclear shift correlation in magic-angle-spinning solid-state spectroscopy. Selective coherence transfer is combined with efficient homonuclear and heteronuclear dipolar decoupling to obtain well-resolved shift correlation spectra.

  18. Physics of ultracold Fermi gases revealed by spectroscopies

    NASA Astrophysics Data System (ADS)

    Törmä, Päivi

    2016-04-01

    This article provides a brief review of how various spectroscopies have been used to investitage many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is considered. The theoretical basis of these spectroscopies, namely linear response theory in the many-body quantum physics context is briefly presented. Experiments related to the BCS-BEC crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour and measuring the contact are discussed. Remaining open problems and goals in the field are sketched from the perspective how spectroscopies could contribute.

  19. Applications of Spectroscopy to Studying Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Simpson, W. R.; Apodaca, R.; Carlson, D. A.

    2007-12-01

    Spectroscopic techniques are finding increased applications in studies of atmospheric chemistry because of inherent advantages in the techniques and technological improvements in optical and computer components. There are many advantages of using spectroscopy for study of chemistry. Spectroscopy is absolutely calibrated and thus requires only validation, reducing the need for consumable standards and reducing size and weight. Generally, spectroscopic instruments can be built from inexpensive solid-state components with few or no moving parts, improving long-term reliability. Huge advances in optoelectronic components, such as availability of diode lasers, cheap imaging detectors, light emitting diodes, have widened the breadth of applications and reduced costs. In this presentation, we discuss two recent applications of atmospheric spectroscopy that exploit these advantages. In the first application, our group has used off-axis Cavity Ring-Down Spectroscopy (oaCRDS) to make a small and inexpensive detector for nitrate radicals (NO3) and dinitrogen pentoxide (N2O5), which are atmospherically important nitrogen oxides the dominate reactivity during nighttime. This instrument fits in a small waterproof case that is (98cm x 40cm x 15cm), weighs less than 25kg, and uses an inexpensive diode laser. The instrument was recently incompared to a number of other techniques for measuring these gases and showed excellent performance. In a second application, we have used multiple-axis Differential Optical Absorption Spectroscopy (MAXDOAS) to measure halogen oxides and other UV-absorbing gases at remote locations. This instrument will be a part of an autonomous chemical-measuring buoy that will be deployed on the Arctic Ice. The instrument will make measurements and telemeter the data back via an iridium satellite modem. Our MAXDOAS instrument is very small, inexpensive, and uses only 2 watts of power, allowing long life when operating on batteries. Many features were built into

  20. Studies of atmospheric molecules by multiphoton spectroscopy

    SciTech Connect

    Johnson, P.M.

    1991-10-01

    Carbon dioxide presents a great challenge to spectroscopy because of its propensity toward dissociation in all of its excited states. Multiphoton ionization spectroscopy is usually not applicable to the study of dissociating molecules because the dissociation competes effectively with ionization, resulting in no signal. We reasoned, however, that with high enough laser fluence, ionization could compete with dissociation in the longer lived states, exposing them for study from the continuous spectral background resulting from rapidly dissociating states. We describe the various spectroscopic and photophysical effects found through the multiphoton ionization and multiphoton photoelectron spectra. A recently developed variant of threshold ionization spectroscopy, usually called ZEKE, has shown a great deal of usefulness in providing the same information as traditional photoelectron spectroscopy but with higher resolution and much better signal-to-noise when using standard laboratory lasers. Threshold ionization techniques locate the states of an ion by scanning a light source across the ionization continuum of a neutral and somehow detecting when electrons are produced with no kinetic energy. We chose to develop our capabilities in threshold ionization spectroscopy using aromatic molecules because of their importance and because their electronic structure allows a pump-probe type of excitation scheme which avoids the use of vacuum ultraviolet laser beams. Among aromatics, the azines are noted for their small S{sub 1}-T{sub 1} energy gap which give them unique and interesting photophysical properties. We have continued our work on the multiphoton spectrum of metastable nitrogen produced by an electric discharge in supersonic beam. We have been able to assign more of the lines and simulated their rotational structure but many peaks remain unassigned.

  1. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  2. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  3. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  4. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  5. In-flight decay spectroscopy of exotic light nuclei

    SciTech Connect

    Charity, R. J.

    2012-11-20

    In-flight-decay spectroscopy is discussed, including its advantages and disadvantages. In particular the use of in-flight-decay spectroscopy for the study of two-proton decay along isobaric multiplets in highlighted.

  6. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  7. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  8. Broadband Phase Spectroscopy over Turbulent Air Paths.

    PubMed

    Giorgetta, Fabrizio R; Rieker, Gregory B; Baumann, Esther; Swann, William C; Sinclair, Laura C; Kofler, Jon; Coddington, Ian; Newbury, Nathan R

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70,000 comb teeth spanning 233  cm(-1) across hundreds of near-infrared rovibrational resonances of CO(2), CH(4), and H(2)O with submilliradian uncertainty, corresponding to a 10(-13) refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO(2). While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  9. Atomic Spectroscopy for Soft-X Lasers

    NASA Astrophysics Data System (ADS)

    Pedrotti, Kenneth Donald

    The realization of lasers in the extreme ultraviolet (XUV) is hampered by a lack of knowledge concerning the location and properties of useful atomic levels. This dissertation presents the results of experimental investigations of core-excited levels in alkali-metal atoms and alkaline -earth ions. A novel hollow-cathode discharge device has been developed for production of excited atoms of interest for laser construction. This device has been used to find new levels in Na I and Mg II using emission spectroscopy. A novel high-resolution laser technique called extinction spectroscopy has been demonstrated in Li by the measurement of the lifetime of an autoionizing level. A tunable coherent radiation source at 110 nm was also developed and used to make high-resolution absorption measurements on Cs transitions considered for use in the creation of a VUV Laser.

  10. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  11. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  12. Spectroscopy of plutonium-organic complexes

    SciTech Connect

    Richmann, M.K.; Reed, D.T.

    1995-12-31

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10{sup {minus}3}--10{sup {minus}7} M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes.

  13. Pulsed dielectric spectroscopy of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Böhmer, R.; Schiener, B.; Hemberger, J.; Chamberlin, R. V.

    1995-03-01

    Pulsed dielectric spectroscopy is introduced as a technique for selectively emphasizing specific components of the non-exponential dielectric response of matter. Samples studied include supercooled liquid propanol, propylene carbonate, and poly(lauryl-methacrylate). It is shown that particular sequences of pulses can be used to emphasize the fast response regime, to produce a cross-over or memory effect, or to eliminate the response of selected components. Furthermore, for materials characterized by broad distributions of relaxation times, the technique facilitates the investigation of a relatively narrow band from that distribution. It is also shown that the time domain spectroscopy can be combined with conventional frequency domain techniques to provide the characterization of dielectric response over an extraordinarily broad spectral range.

  14. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  15. Near-infrared spectroscopy for plaque characterization.

    PubMed

    Waxman, Sergio

    2008-12-01

    A near-infrared (NIR) spectroscopy catheter-based system has been developed for intracoronary detection of lipid-rich plaques, capable of scanning an artery through blood and during cardiac motion. The lipid-rich plaque chemometric algorithm was validated in an ex vivo study using coronary artery specimens from autopsy hearts. A parallel clinical study was performed to demonstrate safety of the system in patients and the similarity of spectra acquired in vivo to data from the ex vivo study. Proof of spectral similarity between data obtained in patients and data from autopsy specimens is required to demonstrate the applicability of the algorithm to patients, in whom tissue for analysis is not available. A preliminary analysis in an unblinded cohort of patients from the clinical study reported promising results. The final results of the clinical study will be submitted for publication. The potential clinical value of this NIR spectroscopy device is discussed.

  16. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  17. Application of visible spectroscopy in waste sorting

    NASA Astrophysics Data System (ADS)

    Spiga, Philippe; Bourely, Antoine

    2011-10-01

    Today, waste recycling, (bottles, papers...), is a mechanical operation: the waste are crushed, fused and agglomerated in order to obtain new manufactured products (e.g. new bottles, clothes ...). The plastics recycling is the main application in the color sorting process. The colorless plastics recovered are more valuable than the colored plastics. Other emergent applications are in the paper sorting, where the main goal is to sort dyed paper from white papers. Up to now, Pellenc Selective Technologies has manufactured color sorting machines based on RGB cameras. Three dimensions (red, green and blue) are no longer sufficient to detect low quantities of dye in the considered waste. In order to increase the efficiency of the color detection, a new sorting machine, based on visible spectroscopy, has been developed. This paper presents the principles of the two approaches and their difference in terms of sorting performance, making visible spectroscopy a clear winner.

  18. Multidimensional Electronic Spectroscopy of Photochemical Reactions.

    PubMed

    Nuernberger, Patrick; Ruetzel, Stefan; Brixner, Tobias

    2015-09-21

    Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated. PMID:26382095

  19. Vibrational Spectroscopy on Trapped Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Brown, Kenneth R.

    2014-06-01

    We perform vibrational spectroscopy on the V0←10 overtone of a trapped and sympathetically cooled CaH+ molecular ion using a resonance enhanced two photon dissociation scheme. Our experiments are motivated by theoretical work that proposes comparing the vibrational overtones of CaH^+ with electronic transitions in atoms to detect possible time variation of in the mass ratio of the proton to electron. Due to the nonexistence of experimental data of the transition, we start the search with a broadband femtosecond Ti:Saph laser guided by theoretical calculations. Once the vibrational transition has been identified, we will move to CW lasers to perform rotationally resolved spectroscopy. M. Kajita and Y. Moriwaki, J. Phys. B. At. Mol. Opt.Phys., 42,154022(2009) Private communication

  20. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  1. Electron spectroscopy of the diamond surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.

  2. Airborne chemistry coupled to Raman spectroscopy.

    PubMed

    Santesson, Sabina; Johansson, Jonas; Taylor, Lynne S; Levander, Ia; Fox, Shannon; Sepaniak, Michael; Nilsson, Staffan

    2003-05-01

    In this paper, the use of airborne chemistry (acoustically levitated drops) in combination with Raman spectroscopy is explored. We report herein the first Raman studies of crystallization processes in levitated drops and the first demonstration of surface-enhanced Raman scattering (SERS) detection in this medium. Crystallization studies on the model compounds benzamide and indomethacin resulted in the formation of two crystal modifications for each compound, suggesting that this methodology may be useful for investigation of polymorphs. SERS detection resulted in a signal enhancement of 27 000 for benzoic acid and 11 000 for rhodamine 6-G. The preliminary results presented here clearly indicate that several important applications of the combination between Raman spectroscopy and acoustic drop levitation can be expected in the future. PMID:12720359

  3. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  4. Infrared microcalorimetric spectroscopy using quantum cascade lasers

    SciTech Connect

    Morales Rodriguez, Marissa E; Senesac, Larry R; Rajic, Slobodan; Lavrik, Nickolay V; Smith, Barton; Datskos, Panos G

    2013-01-01

    We have investigated an infrared (IR) microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of uncooled thermal micromechanical detectors. IR microcalorimetric spectroscopy requires no chemical specific coatings and the chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of RDX and a monolayer of 2-mercaptoethanol, over the wavelength region from 6 to 10 m. We found that in this wavelength region both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  5. Fluorescence spectroscopy applied to orange trees

    NASA Astrophysics Data System (ADS)

    Marcassa, L. G.; Gasparoto, M. C. G.; Belasque, J., Jr.; Lins, E. C.; Dias Nunes, F.; Bagnato, V. S.

    2006-05-01

    In this work, we have applied laser-induced fluorescence spectroscopy to investigate biological processes in orange trees (Citrus aurantium L.). We have chosen to investigate water stress and Citrus Canker, which is a disease caused by the Xanthomonas axonopodis pv. citri bacteria. The fluorescence spectroscopy was investigated by using as an excitation source a 442-nm 15-mW HeCd gas multimode discharge laser and a 532-nm 10-mW Nd3+:YAG laser. The stress manifestation was detected by the variation of fluorescence ratios of the leaves at different wavelengths. The fluorescence ratios present a significant variation, showing the possibility to observe water stress by fluorescence spectrum. The Citrus Canker’s contaminated leaves were discriminated from the healthy leaves using a more complex analysis of the fluorescence spectra. However, we were unable to discriminate it from another disease, and new fluorescence experiments are planned for the future.

  6. [Infrared spectroscopy based on quantum cascade lasers].

    PubMed

    Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing

    2013-04-01

    Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.

  7. Raman spectroscopy in pharmaceutical product design.

    PubMed

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-07-15

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.

  8. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  9. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect

    Fegan, Stuart

    2014-12-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  10. Infrared microcalorimetric spectroscopy using quantum cascade lasers.

    PubMed

    Morales-Rodríguez, M E; Senesac, L R; Rajic, S; Lavrik, N V; Smith, D B; Datskos, P G

    2013-02-15

    We have investigated an IR microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules adsorbed on the surface of uncooled thermal micromechanical detectors. Although we use a chemical layer to absorb target molecules, IR microcalorimetric spectroscopy requires no chemical specific coatings. The chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of 1,3,5-Trinitroperhydro-1,3,5-triazine and a monolayer of 2-Sulfanylethan-1-ol (2-mercaptoethanol) over the wavelength region from 6 to 10 μm. We found that both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  11. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals. PMID:20419294

  12. Disease recognition by infrared and Raman spectroscopy.

    PubMed

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis.

  13. Trace Explosive Detection using Photothermal Deflection Spectroscopy

    SciTech Connect

    Krause, Adam R; Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George; Finot, Eric

    2008-01-01

    Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT).

  14. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  15. Monitoring of phenol photodegradation by ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Roig, B.; Gonzalez, C.; Thomas, O.

    2003-01-01

    Advanced oxidation processes (AOPs) have been developed as an emerging technology for hazardous organic treatment in industrial wastewater. In this paper, the contribution of ultraviolet (UV) spectroscopy to follow phenol photodegradation was studied in a laboratory photochemical reactor equipped with a low pressure mercury lamp. It has been observed that a multicomponent approach is efficient for the evolution estimation of the initial product or intermediate compounds formed during the photodegradation.

  16. Bevalac studies of magnet Cerenkov spectroscopy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The attempt was made to identify the various contributions to the velocity resolution of Cerenkov detectors such as might be used in Astromag, to measure the magnitude of these contributions and assess their effect on the mass resolution of an isotope spectrometer for Astromag, and to perform Bevalac tests of magnet/Cerenkov spectroscopy. A first version of a new 5 in. photomultiplier tube was also tested that is designed for use in large magnetic fields.

  17. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  18. Field emission spectroscopy of SiC

    NASA Astrophysics Data System (ADS)

    Nikiforov, K. A.; Trofimov, V. V.; Egorov, N. V.

    2016-08-01

    Experimental set up for the natural experiment and measurement model are presented to obtain the feld emission energy distribution spectrum out of silicon carbide in case of the macro-sample having a macroscopic shape of a tip. The prototype of feld emission 6H - SiC monolithic cathode is proposed for spectroscopy measurements, and characterised by current-voltage dependence at macroscale interelectrode distance.

  19. Standoff spectroscopy using a conditioned target

    DOEpatents

    Van Neste, Charles W.; Morales-Rodriguez, Marissa E.; Senesac, Lawrence R.; Thundat, Thomas G.

    2011-12-20

    A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.

  20. Method and apparatus for time dispersive spectroscopy

    DOEpatents

    Tarver, III, Edward E.; Siems, William F.

    2003-06-17

    Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

  1. Submillimeter wave spectroscopy of biological macromolecules

    NASA Astrophysics Data System (ADS)

    Globus, Tatiana

    2005-03-01

    The recently emergence of submillimeter-wave or terahertz (THz) spectroscopy of biological molecules has demonstrated the capability to detect low-frequency internal molecular vibrations involving the weakest hydrogen bonds of the DNA base pairs and/or non-bonded interactions. These multiple bonds, although having only ˜ 5% of the strength of covalent bonds, stabilize the structure of bio-polymers, by holding the two strands of the DNA double helix together, or polypeptides together in different secondary structure conformations. There will be a review of THz-frequency transmission (absorption) results for biological materials obtained from Fourier Transform Infrared (FTIR) spectroscopy during the last few years^1,2. Multiple resonances, due to low frequency vibrational modes within biological macromolecules, have been unambiguously demonstrated in qualitative agreement with theoretical prediction, thereby confirming the fundamental physical nature of observed resonance features. The discovery of resonance character of interaction between THz radiation and biological materials opens many possible applications for THz spectroscopy technique in biological sensing and biomedicine using multiple resonances as distinctive spectral fingerprints. However, many issues still require investigation. Kinetics of interactions with radiation at THz has not been studied and vibrational lifetimes have not been measured directly as a function of frequency. The strength of resonant modes of bio-molecules in aqueous environment and strong dependence of spectra on molecular orientation need explanation. Vibrational modes have not been assigned to specific motions within molecules. THz spectroscopy of bio-polymers makes it only in first steps. 1. T. Globus, D. Woolard, M. Bykhovskaia, B. Gelmont, L. Werbos, A. Samuels. International Journal of High Speed Electronics and Systems (IJHSES), 13, No. 4, 903-936 (2003). 2. T. Globus, T. Khromova, D. Woolard and B. Gelmont. Proceedings of

  2. FEU-140 photomultipliers in pulsed plasma spectroscopy

    SciTech Connect

    Arteev, M.S.; Sulakshin, S.S.

    1987-12-01

    Special fast photomultipliers are usually employed in photoelectric spectroscopy of nonstationary plasmas. Measurements have been made on the pulse characteristics and spectral sensitivity for the FEU-140 photomultiplier, which enables one to record a light flux of about 10/sup -10/ W as pulses of duration down to 10 nsec in the range 200-650 nm with a fairly wide linearity range (10/sup -10/-10/sup -18/ W).

  3. Meson and baryon spectroscopy on the lattice

    SciTech Connect

    David Richards

    2010-12-01

    Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  4. Elemental abundance determinations for meteors by spectroscopy.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Relative elemental abundance determinations for meteors by spectroscopy are discussed. Relative abundances of spectroscopically accessible elements of four major shower meteors and one sporadic meteor are presented. A sporadic meteor with dominant sodium radiation and an iron-deficient sporadic meteor are analyzed. Empirical and theoretical tests for self-absorption in optical meteor plasmas have been conducted. Both ionization and incomplete dissociation are found to severely deplete certain neutral atoms from meteor plasmas.

  5. Decay spectroscopy of exotic nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Watanabe, H.

    2016-09-01

    Neutron-rich nuclei around the doubly magic nucleus 132Sn and the double midshell nucleus 170Dy have been investigated by means of decay spectroscopy techniques with the EURICA setup at the RIBF facility at RIKEN. The nuclei of interest were produced by in-flight fission of a high-intensity 238U beam at 345 MeV/u. In this contribution, some selected topics are reported.

  6. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  7. Acoustic resonance spectroscopy in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Lyon, M.J.; Stanbro, W.D.; Mullen, M.F.; Sinha, D.N.

    1993-08-01

    Objects resonate at specific frequencies when mechanically excited. The specific resonance frequencies are a function of shape, size, material of construction, and contents of the object. This paper discusses the use of acoustic resonance spectroscopy (ARS) to monitor containers and detect tampering. Evaluation of this technique is based on simulated storage simulations. Although these simulations show promise for this application of ARS, final evaluation will require actual field testing.

  8. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  9. Laser Spectroscopy for Atmospheric and Environmental Sensing

    PubMed Central

    Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon

    2009-01-01

    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184

  10. Frequency shifts in gravitational resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; Protasov, K. V.; Rebreyend, D.; Kupriyanova, E. A.; Voronin, A. Yu.

    2015-02-01

    Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts—which we call the Stern-Gerlach shift, interference shift, and spectator-state shift—appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  11. Photoacoustic spectroscopy of β-hematin

    NASA Astrophysics Data System (ADS)

    Samson, Edward B.; Goldschmidt, Benjamin S.; Whiteside, Paul J. D.; Sudduth, Amanda S. M.; Custer, John R.; Beerntsen, Brenda; Viator, John A.

    2012-06-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1-1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV-vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV-vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm-1. Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV-vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests that

  12. Hypernuclear Spectroscopy at JLab Hall C

    SciTech Connect

    Hashimoto, Osamu; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T; Hiyama, E; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C; Simicevic, Neven; Wells, Stephen; Samantha, Chhanda; Hu, Bitao; Shen, Ji; Wang, W; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y; Zhou, Jian; Zhou, S; Jiang, Yi; Lu, H; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S; Achenbach, Carsten; Pochodzalla, J

    2010-03-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the “Tilt method” was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH2 and H2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  13. Triggered infrared spectroscopy for investigating metalloprotein chemistry.

    PubMed

    Vincent, Kylie A

    2010-08-13

    Recent developments in infrared (IR) spectroscopic time resolution, sensitivity and sample manipulation make this technique a powerful addition to the suite of complementary approaches for the study of time-resolved chemistry at metal centres within proteins. Application of IR spectroscopy to proteins has often targeted the amide bands as probes for gross structural change. This article focuses on the possibilities arising from recent IR technical developments for studies that monitor localized vibrational oscillators in proteins--native or exogenous ligands such as NO, CO, SCN(-) or CN(-), or genetically or chemically introduced probes with IR-active vibrations. These report on the electronic and coordination state of metals, the kinetics, intermediates and reaction pathways of ligand release, hydrogen-bonding interactions between the protein and IR probe, and the electrostatic character of sites in a protein. Metalloprotein reactions can be triggered by light/dark transitions, an electrochemical step, a change in solute composition or equilibration with a new gas atmosphere, and spectra can be obtained over a range of time domains as far as the sub-picosecond level. We can expect to see IR spectroscopy exploited, alongside other spectroscopies, and crystallography, to elucidate reactions of a wide range of metalloprotein chemistry with relevance to cell metabolism, health and energy catalysis.

  14. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  15. Threshold photodetachment spectroscopy of negative ions

    SciTech Connect

    Kitsopoulos, T.N.

    1991-12-01

    This thesis is concerned with the development and application of high resolution threshold photodetachment spectroscopy of negative ions. Chapter I deals with the principles of our photodetachment technique, and in chapter II a detailed description of the apparatus is presented. The threshold photodetachment spectra of I{sup {minus}}, and SH{sup {minus}}, presented in the last sections of chapter II, indicated that a resolution of 3 cm{sup {minus}1} can be achieved using our technique. In chapter III the threshold photodetachment spectroscopy study of the transition state region of I + HI and I + Di reactions is discussed. Our technique probes the transition state region directly, and the results of our study are the first unambiguous observations of reactive resonances in a chemical reaction. Chapters IV, V and VI are concerned with the spectroscopy of small silicon and carbon clusters. From our spectra we were able to assign electronic state energies and vibrational frequencies for the low lying electronics states of Si{sub n} (n=2,3,4), C{sub 5} and their corresponding anions.

  16. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  17. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  18. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches. PMID:27096701

  19. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  20. Dynamic derivative UV spectroscopy for combustion monitoring

    NASA Astrophysics Data System (ADS)

    Sassenscheid, Karsten; Klocke, Ulrich; Marb, C.; Riedel, H.; Schmidtke, Gerhard; Tacke, Maurus

    1999-01-01

    Derivative UV-absorption spectroscopy is a powerful spectroscopic technique for multicomponent gas analysis, particularly in combustion and process controlling applications. It offers enhanced selectivity and sensitivity compared to conventional techniques. We here report on a test of a special system with optical derivative generation in a waste incineration plant. Gas analysis is performed by transmission spectroscopy. A deuterium lamp is used as UV- source. Spectroscopic filtering is provided by a special grating monochromator. The grating is mounted on a galvanometer scanner, thus allowing a computer controlled wavelength scan and modulation. Signal analysis is performed with lock-in amplifier. The is from of detection for derivative spectra with a movable optical component is the origin of the term DYnamic Derivative Spectroscopy (DDS). The performance of this spectroscopic technique was demonstrated in a measurement campaign at a municipal solid waste incineration plant. The sensitivity for relevant gases is blow ppm level with an optical cell length of 10cm. The basics of the DDS and its performance will be explained, and data on NO, SO2 and NO2 will be reported.

  1. Raman spectroscopy in head and neck cancer

    PubMed Central

    2010-01-01

    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target. PMID:20923567

  2. Raman spectroscopy of diamond and doped diamond.

    PubMed

    Prawer, Steven; Nemanich, Robert J

    2004-11-15

    The optimization of diamond films as valuable engineering materials for a wide variety of applications has required the development of robust methods for their characterization. Of the many methods used, Raman microscopy is perhaps the most valuable because it provides readily distinguishable signatures of each of the different forms of carbon (e.g. diamond, graphite, buckyballs). In addition it is non-destructive, requires little or no specimen preparation, is performed in air and can produce spatially resolved maps of the different forms of carbon within a specimen. This article begins by reviewing the strengths (and some of the pitfalls) of the Raman technique for the analysis of diamond and diamond films and surveys some of the latest developments (for example, surface-enhanced Raman and ultraviolet Raman spectroscopy) which hold the promise of providing a more profound understanding of the outstanding properties of these materials. The remainder of the article is devoted to the uses of Raman spectroscopy in diamond science and technology. Topics covered include using Raman spectroscopy to assess stress, crystalline perfection, phase purity, crystallite size, point defects and doping in diamond and diamond films.

  3. NATO Advanced Study Institute on Spectroscopy

    NASA Technical Reports Server (NTRS)

    DiBartolo, Baldassare; Barnes, James (Technical Monitor)

    2001-01-01

    This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.

  4. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  5. Ultrasensitive laser spectroscopy for breath analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikołajczyk, J.; Nowakowski, M.

    2012-03-01

    At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases' biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.

  6. Research on time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Deng, Yuqiang; Sun, Qing; Liu, Feng; Wang, Changlei; Xing, Qirong

    2010-10-01

    We have built a set of terahertz time-domain spectroscopy system using electro-optic crystals. Conventional terahertz time-domain spectroscopy based on Fourier-transform for spectra analysis, which mixes the frequency components of the entire temporal terahertz waveform in one frequency domain; therefore, it yields different terahertz spectra from a same terahertz pulse with different scanning lengths. We introduce a new technique for the joint time-frequency analysis of terahertz time-domain spectroscopy based on wavelet-transform technique. With this technique, the frequency components in different time locations are clearly exhibited on a two-dimensional plane; therefore, the noise in the pulse tail cannot affect the frequency in the main pulse. This technique clearly separates the frequency of terahertz from that of its echo in the time domain; therefore, the interference spectrum occur in Fourier-transform is naturally removed. By varying the shape of analysis wavelet, high time resolution and high frequency resolution are easily obtained. The absorption coefficients of envelope, plastic, foam and cotton have been measured with the wavelet technique.

  7. Planar Tunneling Spectroscopy of Graphene Nanodevices

    NASA Astrophysics Data System (ADS)

    Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.

  8. Inelastic electron tunneling spectroscopy for topological insulators.

    PubMed

    She, Jian-Huang; Fransson, Jonas; Bishop, A R; Balatsky, Alexander V

    2013-01-11

    Inelastic electron tunneling spectroscopy is a powerful spectroscopy that allows one to investigate the nature of local excitations and energy transfer in the system of interest. We study inelastic electron tunneling spectroscopy for topological insulators and investigate the role of inelastic scattering on the Dirac node states on the surface of topological insulators. Local inelastic scattering is shown to significantly modify the Dirac node spectrum. In the weak coupling limit, peaks and steps are induced in second derivative d2I/dV2. In the strong coupling limit, the local negative-U centers are formed at impurity sites, and the Dirac cone structure is fully destroyed locally. At intermediate coupling, resonance peaks emerge. We map out the evolution of the resonance peaks from weak to strong coupling, which interpolate nicely between the two limits. There is a sudden qualitative change of behavior at intermediate coupling, indicating the possible existence of a local quantum phase transition. We also find that, even for a simple local phonon mode, the inherent coupling of spin and orbital degrees in topological insulators leads to the spin-polarized texture in inelastic Friedel oscillations induced by the local mode.

  9. Biosensing with T-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Fischer, Bernd M.; Helm, Hanspeter; Abbott, Derek

    2007-07-01

    In the recent years, it has been shown that terahertz (or T-ray) spectroscopy is a versatile tool for biosensing and safety applications. This is due to the fact that the THz-spectra of many biomolecules show very characteristic, distinct spectroscopic features. Furthermore, most non-metallic packaging materials are nearly transparent in this frequency range (0.1 - 6 THz, 3 cm -1 - 200 cm -1), so that it is possible to non-invasively identify even sealed substances like pharmaceuticals, illicit drugs or explosives by their spectroscopic signatures. This opens a significant potential for a wide range of applications from quality control of pharmaceutical substances via safety applications through to biomedical applications. The individual spectroscopic features below approximately 5 THz that spurred the increased world wide interest in T-ray spectroscopy are mainly due to intermolecular rather than intramolecular vibrations in the polycrystalline samples. The spectra of more complex biomolecules, like proteins and nucleotides, typically show less or even no sharp features, due to the lack of long- range intermolecular order. Furthermore, due to the typically significantly smaller sample amount, the signal to noise ratio is strongly increased. Water shows a strong absorption in this frequency range, which all together makes real biomedical applications of T-ray spectroscopy rather difficult. Yet, by combining a careful sample preparation, novel experimental techniques and an advanced signal processing of the experimental data we can still clearly distinguish between even complex biomolecules and therefore demonstrate the potential the technique holds for biomedical applications.

  10. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  11. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  12. Spectroscopy techniques for human disease diagnosis

    NASA Astrophysics Data System (ADS)

    Navas-Moreno, Maria

    2011-12-01

    Modern medicine would benefit from the pursuit of new, more specific and easier to implement diagnosis tools. In recent years, Raman scattering, surface-enhanced Raman scattering and fluorescence spectroscopy have proven to be successful diagnostic techniques for a wide range of diseases including atherosclerosis, kidney stones, bone diseases, diabetes, and a wide collection of neoplasms. Optical spectroscopy has several advantages over more traditional diagnostic methods (i.e., histopathology, quantitative PCR, etc.) such as faster data analysis, nonspecific sample preparation, nonspecific labels/reagents/antibodies usage requirements, and immediate on-site implementation. In the present work, label-free in vitro fluorescence and surface enhanced Raman scattering (SERS) spectroscopy have been used to differentiate between blood cells of patients affected with myeloproliferative neoplasms (MPN) and those of healthy subjects. The SERS technique has also been applied to hemoglobin variants as well as to serum obtained from patients affected with chronic heart failure who positively or negatively responded to the seasonal influenza vaccine. We found that spectral ratios of the background fluorescence intensity that accompanies the SERS spectra of granulocytes serve as excellent markers for the presence of MPNs. In addition, we also found expression dysregulation of two hypoxia induced factor regulated genes, which correlates with our results obtained by SERS spectroscopy assay in MPN patients and supports the presence of the Warburg effect in MPNs. We hypothesize that SERS measures metabolic change in granulocytes through two possible mechanisms: (i) Changes in dielectric properties of the environment surrounding the silver-cell interface; and (ii) changes in flavin adenine dinucleotide concentrations, which in turn changes the relative contribution of the autofluorescence to the emission spectrum. These hypotheses are supported by SERS measurement of 2-deoxy

  13. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  14. Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Tanimura, Y.

    1998-03-01

    After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See

  15. Indirect Terahertz Spectroscopy of Molecular Ions Using Highly Accurate and Precise Mid-Ir Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mills, Andrew A.; Ford, Kyle B.; Kreckel, Holger; Perera, Manori; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    With the advent of Herschel and SOFIA, laboratory methods capable of providing molecular rest frequencies in the terahertz and sub-millimeter regime are increasingly important. As of yet, it has been difficult to perform spectroscopy in this wavelength region due to the limited availability of radiation sources, optics, and detectors. Our goal is to provide accurate THz rest frequencies for molecular ions by combining previously recorded microwave transitions with combination differences obtained from high precision mid-IR spectroscopy. We are constructing a Sensitive Resolved Ion Beam Spectroscopy setup which will harness the benefits of kinematic compression in a molecular ion beam to enable very high resolution spectroscopy. This ion beam is interrogated by continuous-wave cavity ringdown spectroscopy using a home-made widely tunable difference frequency laser that utilizes two near-IR lasers and a periodically-poled lithium niobate crystal. Here, we report our efforts to optimize our ion beam spectrometer and to perform high-precision and high-accuracy frequency measurements using an optical frequency comb. footnote

  16. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    SciTech Connect

    Godfrey, S.

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  17. Scanning tunnelling spectroscopy and Raman spectroscopy of monolayer silicene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Díaz Álvarez, A.; Zhu, T.; Nys, J. P.; Berthe, M.; Empis, M.; Schreiber, J.; Grandidier, B.; Xu, T.

    2016-11-01

    Low temperature scanning tunnelling spectroscopy and Raman spectroscopy were used to study the electronic and vibrational properties of silicene formed on the Ag(111) surface for coverage up to one monolayer in the temperature range 230-250 °C. The tunnelling spectra reveal the strong contribution of silver states in the measured density of states around the Fermi level. The Raman spectra are found to evolve as a function of the submonolayer coverages, giving rise at one monolayer coverage to peaks that are characteristic of chemical bonds with distorted sp3 hybrid orbitals. Such properties account for the electronic transparency of the silicene/Ag(111) interface.

  18. High overtone spectroscopy of polyatomic molecules

    SciTech Connect

    Wong, J.S.

    1981-12-01

    Overtone spectra of the C-H stretching vibrations were observed using laser photoacoustic spectroscopy in the visible and Fourier transform infrared spectroscopy in the near-infrared. The microcomputer-controlled, laser photoacoustic spectrometer is described in detail. The fifth overtone spectra of gaseous alkanes and alkenes were analyzed using the local mode model, and resolvable peaks were seen for each inequivalent C-H bond. Correlations of overtone transition energies with C-H bond lengths and isolated fundamental frequencies were found. The integrated cross sections per C-H oscillator varied by a factor of two about the average value of (1.08+-0.28) x 10/sup -23/ cm/sup 2/ cm/sup -1/. Local mode spectra of cycloalkanes and cycloalkenes were observed using both gas phase high overtone and isotopically isolated fundamental spectroscopy. The shapes of the bands reflect the changes in the C-H bonds during conformational motion. Absorptions by axial and equatorial type C-H bonds were resolved in cyclobutane, cyclopentane, cyclopentene and cyclohexane and the isotopically isolated fundamentals were close to the frequencies extrapolated from the overtones except for liquid cyclohexane. The equatorial bands are consistently more intense than the axial ones. Spectra of chloroform, fluoroform, dichlorofluoromethane and chlorodifluoromethane are observed from the fundamentals through the fifth overtone of the C-H stretching vibrations. Fermi resonant combination bands with one less C-H stretching quantum plus two quanta of the C-H bending vibrations, along with the C-H stretching overtones, dominate the spectra. The intensities of these combination bands increase with the level of vibrational excitation, indicating strong, intramolecular mode coupling.

  19. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  20. Ultrafast Nonlinear Spectroscopy of Red Fluorescent Proteins

    NASA Astrophysics Data System (ADS)

    Konold, Patrick Eugene

    Red-emitting homologues (RFPs) of the native Green Fluorescent Protein (GFP) with emission wavelengths beyond 650 nm are desirable probes for in vivo imaging experiments. They offer the potential for deeper tissue penetration and lower background scatter given a cleaner spectral window. However, bioimaging applications are hindered by poor photophysics ( e.g. low fluorescence quantum yield, high photobleaching), which limits experimental resolution and represents a significant obstacle towards utilization for low copy-number, long-duration imaging applications. In this thesis, a variety of femtosecond nonlinear electronic spectroscopies were employed jointly with site-directed mutagenesis to investigate the photophysical properties of RFPs. In one study, the molecular mechanism of red emission was pursued in two notable RFPs, mPlum and TagRFP675. Solvation dynamics observed with time-resolved transient grating spectroscopy were interpreted with the aid of molecular dynamics simulations to indicate that their red-emission is correlated with the ability of specific chromophore-sidechain hydrogen-bonding interactions to interconvert between direct and water-mediated states. In a second set of studies, two-dimensional double quantum coherence spectroscopy was used to probe the electronic transitions of mPlum. It was discovered that it displayed a response distinctly different from an organic dye in bulk solvent. Modeling indicate of these spectra indicate the spectral features may be attributed to the existence of multiple high-lying (n>1) excited states. The results provide new insight into the electronic structure of these widely used fluorescent probes.

  1. Multivariate optical computation for predictive spectroscopy.

    PubMed

    Nelson, M P; Aust, J F; Dobrowolski, J A; Verly, P G; Myrick, M L

    1998-01-01

    A novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated using a data set from earlier work. In our approach, a regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal that is directly proportional to the chemical/physical property for which the regression vector was designed. This simple optical computational method for predictive spectroscopy is evaluated in several ways, using the example data for numeric simulation. First, we evaluate the sensitivity of the method to various types of spectroscopic errors commonly encountered and find the method to have the same susceptibilities toward error as standard methods. Second, we use propagation of errors to determine the effects of detector noise on the predictive power of the method, finding the optical computation approach to have a large multiplex advantage over conventional methods. Third, we use two different design approaches to the construction of the paired filter set for the example measurement to evaluate manufacturability, finding that adequate methods exist to design appropriate optical devices. Fourth, we numerically simulate the predictive errors introduced by design errors in the paired filters, finding that predictive errors are not increased over conventional methods. Fifth, we consider how the performance of the method is affected by light intensities that are not linearly related to chemical composition (as in transmission spectroscopy) and find that the method is only marginally affected. In summary, we conclude that many types of predictive measurements based on use of regression (or other) vectors and linear mathematics can be performed more rapidly, more effectly, and at considerably lower cost by the proposed optical computation method than by traditional dispersive or interferometric

  2. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  3. Estimating radiological background using imaging spectroscopy

    SciTech Connect

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  4. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  5. Assessing PDT response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  6. Exploring active galaxies with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Turner, James E. H.; Miller, Bryan W.; Gerssen, Joris; Allington-Smith, Jeremy R.

    2004-11-01

    Integral Field Spectroscopy provides a powerful new tool for disentangling the complex structure of Active Galactic Nuclei& -- allowing 2D mapping of the distribution, kinematics and excitation of ionized gas and of stellar velocity profiles and populations. Such comprehensive datasets are likely to reveal important clues about the physics of the narrow line region, interactions with the host galaxy and central dynamical forces. Here we present observations of the central regions of NGC1068, obtained using the visible-wavelength GMOS-IFU at Gemini North and NGC4151, taken with a prototype near-infrared fibre IFU at the UK Infrared Telescope.

  7. Spectroscopy of Francium, recent developments at TRIUMF

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.; Frpnc Collaboration

    2014-05-01

    We present the current results of our program of precision spectroscopy on Francium using the recently commissioned Francium Trapping Facility at TRIUMF during two runs. The measurements include 7P1 / 2 state hyperfine splitting of isotopes 206 - 213 , 221Fr as well as isotope shift measurements on the 7S1 / 2 --> 7 P11 / 2 (D 1) transition. The statistical and systematic errors are small enough that measurements can provide information needed to understand future work on weak interaction physics using microwave and optical excitation of parity non conserving transitions. Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONACYT from Mexico.

  8. Analysis of lipsticks using Raman spectroscopy.

    PubMed

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation.

  9. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  10. Bragg spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  11. Extending applicability of terahertz spectroscopy for biosensing

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Ramakrishnan

    Terahertz (THz) vibrational resonance spectroscopy has recently emerged as a promising technique for fingerprinting biological molecules. Absorption spectra in this frequency range (0.1-10 THz) reflect molecular internal vibrations involving the weakest hydrogen bonds and/or non-bonded interactions, which are species specific. Of prime importance is improving detection sensitivity of molecules with low absorption characteristics in the THz gap. Also of importance is the characterization of biological molecules in the THz gap (10-25 cm-1) by physical parameters (refractive index and absorption coefficient) rather than sample dependent parameters (transmission, reflection) and extending spectroscopy to the low THz range where remote sensing is most viable. To address the sensitivity issue, it is shown that periodic arrays of rectangular slots with subwavelength width provide for local electromagnetic field enhancements due to edge effects in the low frequency range of interest, 10-25 cm-1 (300-750 GHz). Periodic structures of Au, doped Si and InSb were studied. InSb is confirmed to offer the highest results with the local power enhancements on the order of 1100 at frequency 14 cm -1. InSb and Si have large skin depths in the frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Au however has small skin depths at these frequencies compared to the thickness. Surface impedance boundary conditions were employed to model the Au structure, for which the Fourier expansion method was unsuitable owing to the huge magnitude of Au permittivity. The applications possibly include development of novel bio-sensors, with the strongly enhanced local electromagnetic fields leading to increased detection sensitivity, and monitoring biophysical processes such as DNA denaturation. Transmission and reflection data from parallel, independent experiments are utilized in the Interference

  12. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  13. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  14. Biomedical Applications of Terahertz Spectroscopy and Imaging.

    PubMed

    Yang, Xiang; Zhao, Xiang; Yang, Ke; Liu, Yueping; Liu, Yu; Fu, Weiling; Luo, Yang

    2016-10-01

    Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology.

  15. Testing fruit quality by photoacoustic spectroscopy assay

    NASA Astrophysics Data System (ADS)

    Popa, C.; Dumitras, D. C.; Patachia, M.; Banita, S.

    2014-10-01

    This study was conducted with the aim of testing the hypothesis that raspberry and strawberry fruits from nonorganic farming release more ethylene gas compounds compared to organic ones. At the same time, the experiments focused on evaluation of the potential and capabilities of the laser photoacoustic spectroscopy (LPAS) method in the assessment of fruit quality related to the effects of nitrogen. Ethylene gas can be harmful and carcinogenic, because it can accelerate the natural ripening process of physiologically mature fruits and makes the fruits more consistent in size. With the advantages of LPAS, we demonstrate that the concentration of ethylene from nonorganic raspberry and strawberry fruits is greater than from organic ones.

  16. Synchrotron-Radiation-Based Moessbauer Spectroscopy

    SciTech Connect

    Seto, Makoto; Masuda, Ryo; Mitsui, Takaya; Higashitaniguchi, Satoshi; Kitao, Shinji; Kobayashi, Yasuhiro; Inaba, Chika; Yoda, Yoshitaka

    2009-05-29

    We have developed a new method that yields Moessbauer absorption spectra using synchrotron radiation (SR); this method is applicable for almost all Moessbauer nuclides including those that cannot be measured by previous methods using radioisotope (RI) sources. The Moessbauer spectrum of the 68.752 keV excited state of {sup 73}Ge, which cannot be measured using a RI source, was measured using SR. Our results show that this method can be used to perform advanced Moessbauer spectroscopy measurements owing to the excellent features of SR.

  17. Fluctuation spectroscopy of granularity in superconducting structures.

    SciTech Connect

    Lerner, I. V.; Varlamov, A. A.; Vinokur, V. M.; Materials Science Division; Univ. of Birmingham; Viale del Politecnico

    2008-03-01

    We suggest to use 'fluctuation spectroscopy' as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism.

  18. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  19. Spectroscopy of a weakly isolated horizon

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Rui; Huang, Yong-Chang

    2016-06-01

    The spectroscopy of a weakly isolated horizon has been investigated. We obtain an equally spaced entropy spectrum with its quantum equal to the one given by Bekenstein (Phys Rev D 7:2333, 1973). We demonstrate that the quantization of entropy and area is a generic property of horizons which exists in a wide class of spacetimes admitting weakly isolated horizons. Our method based on the tunneling method also indicates that the entropy quantum of black hole horizons is closely related to Hawking temperature.

  20. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  1. Towards antihydrogen trapping and spectroscopy at ALPHA

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.

    2011-07-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  2. Analysis of lipsticks using Raman spectroscopy.

    PubMed

    Gardner, P; Bertino, M F; Weimer, R; Hazelrigg, E

    2013-10-10

    In this study, 80 lipsticks were obtained and evaluated using Raman spectroscopy at excitation wavelengths of 532 and 780 nm. Fluorescence severely limited analysis with the 532 nm line while the 780 nm line proved useful for all samples analyzed. It was possible to differentiate 95% of the lipsticks evaluated based on one or more Raman peaks. However, there were no peak trends observed that could be used to identify a manufacturer or categorize a sample. In situ analysis of lipstick smears was found to be possible even from several Raman active substrates, but was occasionally limited by background fluorescence and in extreme cases, photodegradation. PMID:24053867

  3. Moessbauer spectroscopy of the SNC meteorite Zagami

    NASA Technical Reports Server (NTRS)

    Agerkvist, D. P.; Vistisen, L.

    1993-01-01

    We have performed Mossbauer spectroscopy on two different pieces of the meteorite Zagami belonging to the group of SNC meteorites. In one of the samples we found a substantial amount of olivine inter grown with one kind of pyroxene, and also another kind of pyroxene very similar to the pyroxene in the other sample we examined. Both samples showed less than 1 percent of Fe(3+) in the silicate phase. The group of SNC meteorites called shergottites, to which Zagami belongs, are achondrites whose texture, mineralogy and composition resembles those of terrestrial diabases. The results from the investigation are presented.

  4. Optical Spectroscopy of Marine Bioadhesive Interfaces

    NASA Astrophysics Data System (ADS)

    Barlow, Daniel E.; Wahl, Kathryn J.

    2012-07-01

    Marine organisms have evolved extraordinarily effective adhesives that cure underwater and resist degradation. These underwater adhesives differ dramatically in structure and function and are composed of multiple proteins assembled into functional composites. The processes by which these bioadhesives cure—conformational changes, dehydration, polymerization, and cross-linking—are challenging to quantify because they occur not only underwater but also in a buried interface between the substrate and the organism. In this review, we highlight interfacial optical spectroscopy approaches that can reveal the biochemical processes and structure of marine bioadhesives, with particular emphasis on macrofoulers such as barnacles and mussels.

  5. Characterization of Thalidomide using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  6. B and D spectroscopy at LEP

    SciTech Connect

    Muheim, Franz

    1999-02-17

    Results from the four LEP experiments ALEPH, DELPHI, L3, and OPAL on the spectroscopy of B and charmed mesons are presented. The predictions of Heavy Quark Effective Theory (HQET) for the masses and the widths of excited L=1 B mesons are supported by a new measurement from L3. A few B{sub c}{sup +} candidate events have masses consistent with the recent CDF observation and the predictions. New results on D** production and B{yields}D**l{nu} are also presented. The evidence for a D*{sup '} meson reported recently by DELPHI is not supported by OPAL and CLEO.

  7. Advanced Flicker Spectroscopy of Fluid Membranes

    NASA Astrophysics Data System (ADS)

    Döbereiner, Hans-Günther; Gompper, Gerhard; Haluska, Christopher; Kroll, Daniel; Petrov, Peter; Riske, Karin

    2003-07-01

    The bending elasticity of a fluid membrane is characterized by its modulus and spontaneous curvature. We present a new method, advanced flicker spectroscopy of giant nonspherical vesicles, which makes it possible to simultaneously measure both parameters for the first time. Our analysis is based on the generation of a large set of reference data from Monte Carlo simulations of randomly triangulated surfaces. As an example of the potential of the procedure, we monitor thermal trajectories of vesicle shapes and discuss the elastic response of zwitterionic membranes to transmembrane pH gradients. Our technique makes it possible to easily characterize membrane curvature as a function of environmental conditions.

  8. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  9. Hypernuclear Decay Pion Spectroscopy at Mainz Microtron

    NASA Astrophysics Data System (ADS)

    Nagao, Sho; Achenbach, Patrick; Arai, Naoki; Ayerbe Gayoso, Carlos; Böhm, Ralph; Borodina, Olga; Bosnar, Damir; Bozkurt, Vakkas; Debenjak, Luka; Distler, Michael O.; Esser, Anselm; Friščič, Ivica; Fujii, Yuu; Gogami, Toshiyuki; Gómez Rodríguez, Mar; Hirose, Satoshi; Kanda, Hiroki; Kaneta, Masashi; Kim, Eunhee; Kusaka, Junichiro; Margaryan, Amur; Merkel, Harald; Müller, Ulrich; Nakamura, Satoshi N.; Pochodzalla, Josef; Rappold, Christophe; Reinhold, Joerg; Saito, Takehiko R.; Sanchez Lorente, Alicia; Sánchez Majos, Salvador; Sören Schlimme, Björn; Schoth, Matthias; Schulz, Florian; Sfienti, Concettina; Širca, Simon; Tang, Liguang; Thiel, Michaela; Tsukada, Kyo; Uchiyama, Daisuke

    Absolute binding energies of hypernuclei have been measured by emulsion technique in 1960 fs and 70 fs. There have been no methods measuring absolute binding energies with similar resolution in counter experiments. A hypernuclear decay pion spectroscopy is devised as a new method to deduce the absolute binding energy of light hypernuclei with higher precision (˜30 keV). Feasibility test experiments were performed in 2011 and 2012 using the high intensity electron beam of the Mainz Microtron C (MAMI-C). Using of a positron absorber in the second experiment, we successfully identified the hyperon production and subsequent pionic decay.

  10. Baryon spectroscopy results at the Tevatron

    SciTech Connect

    Van Kooten, R.; /Indiana U.

    2010-01-01

    The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state {Lambda}{sub b}, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and D0 Collaborations are presented.

  11. Remote sensing by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Mumma, M. J.

    1983-01-01

    The use of infrared heterodyne spectrocopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the Earth are given. A discussion of developments in infrared heterodyne technology is also presented.

  12. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  13. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2001-05-15

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  14. Analog detection for cavity lifetime spectroscopy

    DOEpatents

    Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.

    2003-01-01

    An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.

  15. Conditional ramsey spectroscopy with synchronized atoms.

    PubMed

    Xu, Minghui; Holland, M J

    2015-03-13

    We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have important consequences for atomic clocks and a wide range of precision metrology applications. PMID:25815931

  16. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  17. Spectroscopy of Moses Rock Kimberlite Diatreme

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Mustard, J. F.

    1985-01-01

    Three types of remote sensing data (Airborne Imaging Spectroscopy (AIS), NS001, Zeiss IR-photographs) were obtained for the Moses Rock kimberlite dike in southern Utah. The goal is to identify and characterize the mantle derived mafic component in such volcanic features. The Zeiss and NS001 images provide information on the regional setting and allow units of the dike to be distinguished from surrounding material. A potential unmapped satellite dike was identified. The AIS data provide characterizing information of the surface composition of the dike. Serpentized olivine-bearing soils are (tentatively) identified from the AIS spectra for a few areas within the dike.

  18. Tritiation methods and tritium NMR spectroscopy

    SciTech Connect

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

  19. Occlusal caries detection using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Bulou, A.

    2008-02-01

    The tooth enamel, because of its hydroxyapatite composition, must present a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry and will increase much more scattering of light. This will reduce the anisotropy of the Raman spectra. Because of the difference between high sensitivity to polarization of the 959 cm -1 Raman peak in sound enamel and low sensitivity in carried enamel, Raman polarized spectroscopy could be a useful method to early detect teeth caries.

  20. Low Temperature Trapping: from Reactions to Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schlemmer, S.; Asvany, O.; Brunken, S.

    2013-06-01

    The kinetics of ion - molecule reactions are investigated in higher-order multipole traps by observation of the temporal evolution of mass selected parent ions in the presence of a neutral reaction partner. Rate coeffients for fast reactions (proceeding at collision rate) and very slow reactions (taking millions of collisions) are determined over a wide range of temperatures. Endothermic or hindered reactions can be promoted by excitation of the ion via absorption of a photon. Scanning the photon energy while detecting the number of product ions establishes an action spectroscopy method which we developed over the last 10-15 years and termed LIR: laser or light induced reactions. The main advantages of LIR are mass selection of the parent ion and low temperature conditions in the trap. Long storage times in combination with a near unity detection efficiency make LIR one of the most sensitive spectroscopy methods. The status quo of LIR will be discussed on selected examples. Recent measurements are concerned with ro-vibrational spectra of CH_2D^+ and CH_5^+ at highest resolution using cw OPO radiation. In the particular case of CH_5^+, the lines in the mid IR have been measured at a nominal temperature of 10 K and a frequency comb has been used for absolute calibration. Line positions can be determined to an accuracy which shall enable us in the future to obtain rotational spectra in a THz-IR double resonance approach. We tested the feasibility of this two photon method recently on H_2D^+. S. Schlemmer, T. Kuhn, E. Lescop, and D. Gerlich, Laser excited N_2^+ in a 22-Pole Trap: Experimental Studies of Rotational Relaxation Processes, Int. J. Mass Spectrometry and Ion Processes, 185-187, 589-602, (1999), S.D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx and S. Schlemmer, Quantum-induced symmetry breaking explains infrared spectra of CH_5^+ isotopologues, Nature Chemistry, 2, 298-302 (2010) S. Gaertner, J. Krieg, A. Klemann, O. Asvany and S

  1. Vibrational spectroscopy of water at interfaces.

    PubMed

    Skinner, J L; Pieniazek, P A; Gruenbaum, S M

    2012-01-17

    Understanding liquid water's behavior at the molecular level is essential to progress in fields as disparate as biology and atmospheric sciences. Moreover, the properties of water in bulk and water at interfaces can be very different, making the study of the hydrogen-bonding networks therein very important. With recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, it is now possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider here three aqueous interfaces: the water liquid-vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface. In the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy (such as FTIR, pump-probe, two-dimensional IR, and the like) can be used to probe the interfacial water. In this Account, we discuss our attempts to model these three systems and interpret the existing experiments. For the water liquid-vapor interface, we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and canceling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H(2)O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red

  2. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  3. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  4. Detection of Endolithes Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, S.; Dutil, Y.; Joncas, G.

    2009-12-01

    On Earth, the Dry Valleys of Antarctica provide the closest martian-like environment for the study of extremophiles. Colonies of bacterias are protected from the freezing temperatures, the drought and UV light. They represent almost half of the biomass of those regions. Due to their resilience, endolithes are one possible model of martian biota. We propose to use infrared spectroscopy to remotely detect those colonies even if there is no obvious sign of their presence. This remote sensing approach reduces the risk of contamination or damage to the samples.

  5. Multichannel euv spectroscopy of high temperature plasmas

    SciTech Connect

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities.

  6. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis

    PubMed Central

    Sajja, Balasrinivasa R.; Wolinsky, Jerry S.

    2008-01-01

    Synopsis Proton magnetic resonance spectroscopy (1H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathological changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understanding its pathogenesis, evaluating the disease severity, establishing a prognosis, and objectively evaluating the efficacy of therapeutic interventions. PMID:19064199

  7. Infrared spectroscopy study of irradiated PVDF

    SciTech Connect

    Chappa, Veronica; Grosso, Mariela del; Garcia Bermudez, Gerardo; Behar, Moni

    2007-10-26

    The effects induced by 1 MeV/amu ion irradiations were compared to those induced by 4-12 MeV/amu irradiations. Structural analysis with infrared spectroscopy (FTIR) was carried out on PVDF irradiated using C and He beams with different fluences. From these spectra it was observed, as a function of fluence, an overall destruction of the polymer, amorphization of the crystalline regions and the creation of in-chain unsaturations. The track dimensions were determined using a previously developed Monte Carlo simulation code and these results were compared to a semiempirical model.

  8. Candida parapsilosis biofilm identification by Raman spectroscopy.

    PubMed

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-12-22

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.

  9. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    PubMed Central

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  10. Gamma-ray spectroscopy of hypernuclei

    SciTech Connect

    Chrien, R.E.

    1984-01-01

    The study of hypernuclei is a frontier area of nuclear physics. As more intense beams of strange mesons have become available, methods of in-beam spectroscopy have been applied to the study of hypernuclei. The feasibility of detecting hypernuclear electromagnetic radiation has been demonstrated at the Brookhaven Alternating Gradient Synchrotron. Studies have been made of the effective LAMBDA hyperon-nucleon interaction in p-shell hypernuclei. The first results are described and they place useful constraints on the effective interaction and the shell model description of hypernuclear states.

  11. Polarization spectroscopy in rubidium and cesium

    SciTech Connect

    Harris, M. L.; Adams, C. S.; Cornish, S. L.; McLeod, I. C.; Tarleton, E.; Hughes, I. G.

    2006-06-15

    We develop a theoretical treatment of polarization spectroscopy and use it to make predictions about the general form of polarization spectra in the alkali-metal atoms. Using our model, we generate theoretical spectra for the D2 transitions in {sup 87}Rb, {sup 85}Rb, and {sup 133}Cs. Experiments demonstrate that the model accurately reproduces spectra of transitions from the upper hyperfine level of the ground state only. Among these, the closed transition F{yields}F{sup '}=F+1 dominates, with a steep gradient through line center ideally suited for use as a reference in laser locking.

  12. Preface: Special Topic on Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul; Bakker, Huib J.

    2015-06-01

    Multidimensional signals are generated by subjecting molecules to sequences of short optical pulses and recording correlation plots related to the various controlled delay periods. These techniques which span all the way from the THz to the x-ray regimes provide qualitatively new structural and dynamical molecular information not available from conventional one-dimensional techniques. This issue surveys the recent experimental and theoretical progresses in this rapidly developing 20 year old field which illustrates the novel insights provided by multidimensional techniques into electronic and nuclear motions. It should serve as a valuable source for experts in the field and help introduce newcomers to this exciting and challenging branch of nonlinear spectroscopy.

  13. Preface: Special Topic on Multidimensional Spectroscopy

    SciTech Connect

    Mukamel, Shaul; Bakker, Huib J.

    2015-06-07

    Multidimensional signals are generated by subjecting molecules to sequences of short optical pulses and recording correlation plots related to the various controlled delay periods. These techniques which span all the way from the THz to the x-ray regimes provide qualitatively new structural and dynamical molecular information not available from conventional one-dimensional techniques. This issue surveys the recent experimental and theoretical progresses in this rapidly developing 20 year old field which illustrates the novel insights provided by multidimensional techniques into electronic and nuclear motions. It should serve as a valuable source for experts in the field and help introduce newcomers to this exciting and challenging branch of nonlinear spectroscopy.

  14. Spatially integrated spectroscopy of Galactic HII regions.

    NASA Astrophysics Data System (ADS)

    Robledo-Rella, V.

    2000-11-01

    We present optical-NIR spatially integrated spectroscopy of 7 Galactic HII regions: Carina, M8, M20, RCW6, RCW60, RCW107 and RCW110/111. The effect of the embedded ionizing stars' spectra on the nebular spectra is studied. The distribution of Balmer Equivalent Widths in the combined spectra (nebular plus stellar) is slightly stepper than in the pure nebular spectra. The comparison of this distribution in Extragalactic HII regions and HII/Starbust galaxies may yield a more accurate determination of the underlaying stellar absorption (or emission!) affecting the observed Balmer lines used to derive extinction and other physical parameters of the emitting regions and associated stellar clusters.

  15. High Resolution Spectroscopy with Submillimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Dave, Hemant

    2003-03-01

    In order to explain the characteristic features of planetary atmosphere, detection and precise measurements of environmentally important gases such as CO, CIO, No becomes necessary. Since most of the polyatomic molecules have (ro-vibrational) transitions in submillimeter region 100 μ-1000μ), probing in this wavelength region is vital. The specific rotational and vibrational states are the result of interactions between different atoms in the molecule. Since each molecule has a unique arrangement of atoms, it has an exclusive submillimeter signature. We are developing a portable heterodyne receiver system at Physical Research Laboratory, Ahmedabad to perform high-resolution spectroscopy in this wavelength region.

  16. Baryon Spectroscopy Results at the Tevatron

    SciTech Connect

    Van Kooten, R.

    2010-08-05

    The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.

  17. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.

    PubMed

    Tanimura, Yoshitaka; Ishizaki, Akihito

    2009-09-15

    Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a

  18. Recent Results of Solid-State Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jäger, Cornelia; Posch, Thomas; Mutschke, Harald; Zeidler, Simon; Tamanai, Akemi; de Vries, Bernard L.

    2011-12-01

    Solid state spectroscopy continues to be an important source of information on the mineralogical composition and physical properties of dust grains both in space and on planetary surfaces. With only a few exceptions, artificially produced or natural terrestrial analog materials, rather than `real' cosmic dust grains, are the subject of solid state astrophysics. The Jena laboratory has provided a large number of data sets characterizing the UV, optical and infrared properties of such cosmic dust analogs. The present paper highlights recent developments and results achieved in this context, focussing on `non-standard conditions' such as very low temperatures, very high temperatures and very long wavelengths.

  19. Preface: Special Topic on Multidimensional Spectroscopy.

    PubMed

    Mukamel, Shaul; Bakker, Huib J

    2015-06-01

    Multidimensional signals are generated by subjecting molecules to sequences of short optical pulses and recording correlation plots related to the various controlled delay periods. These techniques which span all the way from the THz to the x-ray regimes provide qualitatively new structural and dynamical molecular information not available from conventional one-dimensional techniques. This issue surveys the recent experimental and theoretical progresses in this rapidly developing 20 year old field which illustrates the novel insights provided by multidimensional techniques into electronic and nuclear motions. It should serve as a valuable source for experts in the field and help introduce newcomers to this exciting and challenging branch of nonlinear spectroscopy.

  20. Vibrational spectroscopy of N-phenylmaleimide.

    PubMed

    Parker, Stewart F

    2006-03-01

    A combination of infrared, Raman and inelastic neutron scattering (INS) spectroscopies with density functional theory (DFT) calculations is used to provide a complete assignment of the vibrational spectra of N-phenylmaleimide and N-(perdeuterophenyl)maleimide. DFT is shown to give very good results for the frequencies and atomic displacements in the modes. These are used to generate INS spectra which are excellent agreement with the observed. The calculated infrared and Raman spectra are much less reliable, although this may be more of a presentation problem than a real failing. PMID:16157505

  1. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  2. Electric Propulsion Induced Secondary Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  3. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  4. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  5. Bird sexing by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  6. Recent progress in photothermally-based spectroscopies

    SciTech Connect

    Amer, N.M.

    1981-09-01

    The major objective is to exploit novel optical heating schemes for the ultrasensitive (e.g., parts per trillion), unambiguous, and relatively simple characterization of effluents produced during energy production and utilization. The physcial principle underlying these detection schemes is that when a beam of electromagnetic radiation is absorbed by a given medium (gas, liquid, solid, or aerosol), heating will ensue. The heat is what we employ to measure very low optical absorption coefficients (approx. 10/sup -10/ cm/sup -1/). This is accomplished in one of three ways: (a) optical heating will cause a rise in pressure which can be detected with a suitable transducer, e.g., a microphone. This type of spectroscopy is known as photoacoustic; (b) optical heating causes a corresponding modulation of the index of refraction of the absorbing material which can be used to deflect a weak laser probe beam propogating through the material. The amplitude and phase of the deflection is quantitatively related to the absorption coefficient; or (c) in the case of solids, heating will cause deformation of the sample which can be detected, for example, interferometrically and related to the optical absorption coefficients. A brief summary of recent results in photothermal spectroscopies is given.

  7. Spectroscopy of Hyades L dwarf candidates★

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Boudreault, S.; Béjar, V. J. S.

    2014-12-01

    We present the results of photometric, astrometric, and spectroscopic follow-up of L dwarf candidates identified in the Hyades cluster by Hogan et al. We obtained low-resolution optical spectroscopy with the Optical System for Imaging and low-intermediate Resolution Integrated Spectroscopy spectrograph on the Gran Telescopio de Canarias for all 12 L dwarf candidates as well as new J-band imaging for a subsample of 8 to confirm their proper motion. We also present mid-infrared photometry from the Wide Field Infrared Survey Explorer for the Hyades L and T dwarf candidates and estimate their spectroscopic distances, effective temperatures, and masses. We confirm the cool nature of several L dwarf candidates and confirm astrometrically their membership, bridging the gap between the coolest M dwarfs and the two T dwarfs previously reported in the Hyades cluster. These members represent valuable spectral templates at an age of 625 Myr and slightly supersolar metallicity (Fe/H = +0.13). We update the Hyades mass function across the hydrogen-burning limit and in the substellar regime. We confirm a small number numbers of very low mass members below ˜0.1 M⊙ belonging to the Hyades cluster.

  8. Metal nanofilms studied with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fahsold, Gerhard; Priebe, Andreas; Pucci, Annemarie; Otto, Andreas

    2006-03-01

    Metal films with thickness in the nanometer range are optically transparent. In the IR range their transmittance may show both the Drude-type behaviour of coalesced islands and the tail of the plasmon absorption of single islands. Therefore, IR transmittance spectroscopy is a sensitive tool for in-situ studies of metal-film growth on insulating substrates and of the film conductivity. With IR transmittance spectroscopy the in-plane film conductivity and its correlation to the film-growth process can be determined without electrical contacts. Adsorbate induced changes can be observed well. Their analysis may give insight into the adsorbate-metal bonding. Depending on the film's roughness the IR lines of adsorbate-vibration modes may be strongly modified because of their interaction with electronic excitations of the film. The atomic roughness of cold-condensed metal films produces additional IR activity: strong IR activity of Raman lines of centrosymmetric adsorbate molecules is observed in those cases where the adsorbate has states close to the Fermi level.

  9. PAH Spectroscopy: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew

    2016-01-01

    Since their discovery in the 1970's, astronomers, astrophysicists and astrochemists have been intrigued by the nearly ubiquitous unidentified infrared emission (UIR) bands. In the 1980's, investigators determined the most probably source of these emissions was a family of molecules known as Polycyclic Aromatic Hydrocarbons or simply PAHs. In order to better understand these interstellar IR features and utilize them as chemical probes of the cosmos, laboratory spectroscopists have spent the last three decades investigating the spectroscopy of PAHs under astrophysically relevant conditions. This presentation will discuss the similarities and differences in the spectroscopic properties of PAHs as one goes from the Far to Mid to Near infrared wavelength regions and probe the changes observed in PAH spectra as they go from neutral to ionized molecules suspended in an inert gas matrix, to PAHs in a water ice matrix and as a thin film. In selected instances, the experimental results will be compared to theoretical values. The presentation will conclude with a discussion on the future directions of PAH spectroscopy.

  10. High-harmonic spectroscopy of molecular isomers

    SciTech Connect

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.; Spanner, M.; Patchkovskii, S.

    2011-11-15

    We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).

  11. Spectroscopy of Optical Excitations in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhong

    2006-03-01

    Understanding the optical spectra and electronic excited state dynamics of carbon naotubes is important both for fundamental research and a wide variety of potential applications. In this presentation, we will report the results of a systematic study on semiconducting single-walled carbon nanotubes (SWNTs) obtained by utilizing complementary femtosecond spectroscopic techniques, including fluorescence up-conversion, frequency-resolved transient absorption, and three-pulse photon echo peakshift (3PEPS) spectroscopy. Our efforts have focused on optically selective detection of the spectra and dynamics associated with structurally distinct semiconducting SWNT species. Using individual nanotube enriched micelle-dispersed SWNT preparations, in combination with resonant excitation and detection, has enabled us to independently access selected species, such as the (8,3), (6,5), (7,5), (11,0), (7,6) and (9,5) nanotubes. We will discuss the following topics: (1) the excitonic nature of the elementary excitation and its unambiguous identification from direct determination of the exciton binding energy for a selected semiconducting nanotube, the (8,3) tube; (2) the spectroscopic and dynamical signatures of exciton-exciton annihilation and its predominant role in governing ultrafast excited state relaxation; (3) the annihilation-concomitant exciton dissociation and the spectroscopic and dynamic features of the resulting electron-hole continuum; (4) timescales characterizing the ultrafast thermalization processes. In addition, we will demonstrate the power of 3PEPS spectroscopy to elucidate the spectral properties and dynamics of SWNTs. This work was supported by the NSF.

  12. Laser-Raman spectroscopy of living cells

    NASA Astrophysics Data System (ADS)

    Webb, Sydney J.

    1980-04-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1, has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1, from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced “collective” Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell “time clock” may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis.

  13. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  14. Theory of femtosecond stimulated Raman spectroscopy.

    PubMed

    Lee, Soo-Y; Zhang, Donghui; McCamant, David W; Kukura, Philipp; Mathies, Richard A

    2004-08-22

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth approximately 1-3 ps Raman pump pulse with a continuum approximately 30-50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  15. Raman spectroscopy for analysis of thorium compounds

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-01

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including e.g. ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  16. High Precision Rovibrational Spectroscopy of OH+

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.

    2016-02-01

    The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  17. Recent work of decay spectroscopy at RIBF

    NASA Astrophysics Data System (ADS)

    Söderström, Pär-Anders

    2014-09-01

    β- and isomer-decay spectroscopy are sensitive probes of nuclear structure, and are often the only techniques capable of providing data for exotic nuclei that are producted with very low rates. Decay properties of exotic nuclei are also essential to model astrophysical events responible for the evolution of the universe such as the rp- and r-process. The EURICA project (EUROBALL RIKEN Cluster Array) has been launched in 2012 with the goal of performing spectroscopy of very exotic nuclei. Since 2012, four experimental campaigns have been successfully completed using fragmentation of 124Xe beam and in-flight-fission of 238U beam, approaching for example the key nuclei 78Ni, 110Zr, 100Sn, 128Pd, and 138Sn. This contribution highlights the experiments performed, results obtained, and discusses the future perspective of the EURICA project. In collaboration with Shunji Nishimura, Hidetada Baba, RIKEN Nishina Center; Frank Browne, Brighton University; Pieter Doornenbal, RIKEN Nishina Center; Guillaume Gey, Universite Joseph Fourier Grenoble; Tadaaki Isobe and Giuseppe Lorusso, RIKEN Nishina Center; Daniel Lubos, Technische Universitat Munchen; Kevin Mochner, University of Cologne; Zena Patel and Simon Rice, University of Surrey; Hiroyoshi Sakurai, RIKEN Nishina Center; Laura Sinclair, University of York; Toshiyuki Sumikama, Tohoku University; Jan Taprogge, Universidad Autonoma de Madrid; Zsolt Vajta, MTA Atomki; Hiroshi Watanabe, Beihang University; Jin Wu, Peking University; and Zhengyu Xu, University of Tokyo.

  18. Comparative Very-High-Resolution VUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, B. R.; Gibson, S. T.; Baldwin, K. G. H.; Dooley, P. M.; Waring, K.

    Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann-Runge (SR) bands of O2, B3 Σ u- <- X3 Σ_g^- (v, 0) (1750-2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements ( 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.

  19. Infrared spectroscopy of mass-selected carbocations

    SciTech Connect

    Duncan, Michael A.

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  20. THz Spectroscopy and Spectroscopic Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular database maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.