Science.gov

Sample records for ac53 thompsonpaak2006 thomson

  1. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    SciTech Connect

    Liu Chao; Li Zhaofei Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai Pang Yi

    2008-12-05

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc{sup ac53KO-PH-GFP}) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc{sup ac53KO-PH-GFP} could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production.

  2. Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor); Gatewood, John R. (Inventor)

    1988-01-01

    A bi-directional Joule Thomson refrigerator is described, which is of simple construction at the cold end of the refrigerator. Compressed gas flowing in either direction through the Joule Thomson expander valve and becoming liquid, is captured in a container in direct continuous contact with the heat load. The Joule Thomson valve is responsive to the temperature of the working fluid near the valve, to vary the flow resistance through the valve so as to maintain a generally constant flow mass between the time that the refrigerator is first turned on and the fluid is warm, and the time when the refrigerator is near its coldest temperature and the fluid is cold. The valve is operated by differences in thermal coefficients of expansion of materials to squeeze and release a small tube which acts as the expander valve.

  3. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  4. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration West, A Thomson Reuters Business, Thomson Reuters Legal Division... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, Albuquerque,...

  5. Thomson scattering from laser plasmas

    SciTech Connect

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  6. Nonlinear effects in Thomson backscattering

    NASA Astrophysics Data System (ADS)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  7. Rothmund-Thomson syndrome

    PubMed Central

    2010-01-01

    Rothmund-Thomson syndrome (RTS) is a genodermatosis presenting with a characteristic facial rash (poikiloderma) associated with short stature, sparse scalp hair, sparse or absent eyelashes and/or eyebrows, juvenile cataracts, skeletal abnormalities, radial ray defects, premature aging and a predisposition to cancer. The prevalence is unknown but around 300 cases have been reported in the literature so far. The diagnostic hallmark is facial erythema, which spreads to the extremities but spares the trunk, and which manifests itself within the first year and then develops into poikiloderma. Two clinical subforms of RTS have been defined: RTSI characterised by poikiloderma, ectodermal dysplasia and juvenile cataracts, and RTSII characterised by poikiloderma, congenital bone defects and an increased risk of osteosarcoma in childhood and skin cancer later in life. The skeletal abnormalities may be overt (frontal bossing, saddle nose and congenital radial ray defects), and/or subtle (visible only by radiographic analysis). Gastrointestinal, respiratory and haematological signs have been reported in a few patients. RTS is transmitted in an autosomal recessive manner and is genetically heterogeneous: RTSII is caused by homozygous or compound heterozygous mutations in the RECQL4 helicase gene (detected in 60-65% of RTS patients), whereas the aetiology in RTSI remains unknown. Diagnosis is based on clinical findings (primarily on the age of onset, spreading and appearance of the poikiloderma) and molecular analysis for RECQL4 mutations. Missense mutations are rare, while frameshift, nonsense mutations and splice-site mutations prevail. A fully informative test requires transcript analysis not to overlook intronic deletions causing missplicing. The diagnosis of RTS should be considered in all patients with osteosarcoma, particularly if associated with skin changes. The differential diagnosis should include other causes of childhood poikiloderma (including dyskeratosis

  8. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Employment and Training Administration West, A Thomson Reuters Business, Thomson Reuters Legal Division... Reuters Business, Thomson Reuters Legal Division, including On-Site Leased Workers from Adecco... applicable to workers and former workers of West, A Thomson Reuters Business, Thomson Reuters...

  9. Inverse Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Gershanov, V. Yu.; Garmashov, S. I.

    2015-01-01

    We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.

  10. Thomson scattering at general fusion

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Parfeniuk, D.

    2016-11-01

    This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 1020 m-3. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.

  11. Cascade Joule-Thomson refrigerators

    NASA Technical Reports Server (NTRS)

    Tward, E.; Steyert, W. A.

    1983-01-01

    The design criteria for cascade Joule-Thomson refrigerators for cooling in the temperature range from 300 K to 4.2 K were studied. The systems considered use three or four refrigeration stages with various working gases to achieve the low temperatures. Each stage results in cooling to a progressively lower temperature and provides cooling at intermediate temperatures to remove the substantial amount of parasitic heat load encountered in a typical dewar. With careful dewar design considerable cooling can be achieved with moderate gas flows. For many applications, e.g., in the cooling of sensitive sensors, the fact that the refrigerator contains no moving parts and may be remotely located from the gas source is of considerable advantage. A small compressor suitable for providing the gas flows required was constructed.

  12. Calibrations of the LHD Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yamada, I.; Funaba, H.; Yasuhara, R.; Hayashi, H.; Kenmochi, N.; Minami, T.; Yoshikawa, M.; Ohta, K.; Lee, J. H.; Lee, S. H.

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  13. Joule-Thomson expander and heat exchanger

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The Joule-Thomson Expander and Heat Exchanger Program was initiated to develop an assembly (JTX) which consists of an inlet filter, counterflow heat exchanger, Joule-Thomson expansion device, and a low pressure jacket. The program objective was to develop a JTX which, when coupled to an open cycle supercritical helium refrigerating system (storage vessel), would supply superfluid helium (He II) at 2 K or less for cooling infrared detectors.

  14. Quantum theory of Thomson scattering

    NASA Astrophysics Data System (ADS)

    Crowley, B. J. B.; Gregori, G.

    2014-12-01

    The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].

  15. Thomson scattering on inhomogeneous targets.

    PubMed

    Thiele, R; Sperling, P; Chen, M; Bornath, Th; Fäustlin, R R; Fortmann, C; Glenzer, S H; Kraeft, W-D; Pukhov, A; Toleikis, S; Tschentscher, Th; Redmer, R

    2010-11-01

    The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources.

  16. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  17. EDITORIAL: J J Thomson's Electron

    NASA Astrophysics Data System (ADS)

    Adams, Steve

    1997-07-01

    Westminster School, London, UK A few weeks ago David Thomson, J J Thomson's grandson, presented a Friday evening discourse at the Royal Institution. In it he traced the development of JJT's life from his early studies at Owen's College in Manchester, on to Trinity College Cambridge, his work under Rayleigh at the Cavendish, and his succession as Professor of Experimental Physics in 1884 (a post he passed on to Rutherford in 1919). These were years of heroic discoveries that shaped 20th century physics. Looking around the lecture theatre at all the bow-ties and dinner jackets, it must have been rather similar on 30 April 1897 when JJT delivered his famous discourse on 'Cathode Rays' in which he cautiously but confidently announced that his own results together with those of other experimenters (Lenard in particular):

    `....seem to favour the hypothesis that the carriers of the charges are smaller than the atoms of hydrogen.'
    In this issue articles by Leif Gerward and Christopher Cousins, and by Isobel Falconer explore the historical and philosophical context of that discovery. The sound-bites to history in many A-level courses have JJT as both the hero who single-handedly discovered the electron and the rather naive Victorian scientist who thought the atom was a plum pudding. It is valuable to see how Thomson's work pulled the threads of many experiments together and to realize that he may have been first to the post because of a difference in the philosophical approach to cathode rays in Britain compared to Europe. Experimental data must always be interpreted, and divergent philosophies can lead to quite different conclusions. The electron was, of course, the first subatomic particle to be identified. Christine Sutton's article looks at how 20th century discoveries reveal Nature's mysterious habit of repeating successful patterns---electrons for example have very close relations, the muon and the tau---but why? Perhaps the answer will come

  18. Theory of Thomson scattering in inhomogeneous media

    PubMed Central

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-01-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems. PMID:27068215

  19. Theory of Thomson scattering in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-04-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  20. Alpha particle collective Thomson scattering in TFTR

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  1. 76 FR 45879 - West, a Thomson Reuters Business, Thomson Reuters Legal, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Employment and Training Administration West, a Thomson Reuters Business, Thomson Reuters Legal, Including On... June 21, 2010, applicable to workers of West, A Thomson Reuters Legal, including on-site leased workers... occurred involving a teleworker (Robert Louie) located in Albuquerque, New Mexico who reported to...

  2. The AC Repulsion Demonstration of Elihu Thomson.

    ERIC Educational Resources Information Center

    Quinton, Arthur R.

    1979-01-01

    Traces the early history of an experiment, the launching of a copper or aluminum ring above the pole of an alternating current magnet at switch-on, that was conducted by Elihu Thomson in the last century and presents a simple qualitative explanation of the effect involved. (GA)

  3. Quantum model of the Thomson helium atom

    NASA Astrophysics Data System (ADS)

    Kazaryan, E. M.; Shakhnazaryan, V. A.; Sarkisyan, H. A.; Gusev, A. A.

    2014-03-01

    A quantum model of the Thomson helium atom is considered within the framework of stationary perturbation theory. It is shown that from a formal point of view this problem is similar to that of two-electron states in a parabolic quantum dot. The ground state energy of the quantum Thomson helium atom is estimated on the basis of Heisenberg's uncertainty principle. The ground state energies obtained in the first order of perturbation theory and qualitative estimate provide, respectively, upper and lower estimates of eigenvalues derived by numerically solving the problem for a quantum model. The conditions under which the Kohn theorem holds in this system, when the values of resonance absorption frequencies are independent of the Coulomb interaction between electrons, are discussed.

  4. The SPARC_LAB Thomson source

    NASA Astrophysics Data System (ADS)

    Vaccarezza, C.; Alesini, D.; Anania, M. P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.; Gallo, A.; Galletti, M.; Gambaccini, M.; Giribono, A.; Golosio, B.; Li, W.; Mostacci, A.; Oliva, P.; Palmer, D.; Petrillo, V.; Petrarca, M.; Pioli, S.; Piersanti, L.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Serafini, L.; Suliman, G.; Villa, F.

    2016-09-01

    The SPARC_LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs-10 ps range, this provides an X-ray energy tunability in the range of 20-500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  5. Joule-Thomson Expander Without Check Valves

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Gatewood, J. R.

    1989-01-01

    Cooling effected by bidirectional, reciprocating flow of gas. Type of Joule-Thomson (J-T) expander for cryogenic cooling requires no check valves to prevent reverse flow of coolant. More reliable than conventional J-T expander, containing network of check valves, each potential source of failure. Gas flows alternately from left to right and right to left. Heat load cooled by evaporation of liquid from left or right compartment, whichever at lower pressure.

  6. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  7. J. J. Thomson goes to America.

    PubMed

    Downard, Kevin M

    2009-11-01

    Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.

  8. Joule-Thomson Cooler Produces Nearly Constant Temperature

    NASA Technical Reports Server (NTRS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-01-01

    Improved Joule-Thomson cooler maintains nearly constant temperature. Absolute-pressure relief valve helps stabilize temperature of cold head despite variations in atmospheric pressure. Feedback-controlled electrical heater provides additional stabilization. Demand-flow Joule-Thomson valve requires less nitrogen than fixed-orifice Joule-Thomson valve providing same amount of cooling. Provides stable low temperatures required for operation of such devices as tunable diode lasers in laboratory and balloon-borne instruments detecting contaminants in atmosphere.

  9. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Employment and Training Administration Thomson Reuters, Finance Operations & Technology Division, Including... Worker Adjustment Assistance on August 2, 2012, applicable to workers of Thomson Reuters, Finance... that workers of Thomson Reuters, Finance Operations & Technology Division, including on-site...

  10. 78 FR 50322 - Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Thomson, AK. New Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach... Airstrip Airport, Point Thomson, AK, to accommodate aircraft using new RNAV (GPS) standard...

  11. Scaling Thomson scattering to big machines

    NASA Astrophysics Data System (ADS)

    Bílková, P.; Walsh, M.; Böhm, P.; Bassan, M.; Aftanas, M.; Pánek, R.

    2016-03-01

    Thomson scattering is a widely used diagnostic tool for local measurement of both electron temperature and electron density. It is used for both low and high temperature plasmas and it is a key diagnostic on all fusion devices. The extremely low cross-section of the reaction increases the complexity of the design. Since the early days of fusion, when a simple single point measurement was used, the design moved to a multi-point system with a large number of spatial points, LIDAR system or high repetition Thomson scattering diagnostic which are used nowadays. The initial low electron temperature approximation has been replaced by the full relativistic approach necessary for large devices as well as for ITER with expected higher plasma temperature. Along the way, the different development needs and the issues that exist need to be addressed to ensure that the technique is developed sufficiently to handle challenges of the bigger devices of the future as well as current developments needed for ITER. For large devices, the achievement of the necessary temperature range represents an important task. Both high and low temperatures can be measured, however, a large dynamic range makes the design difficult as size of detector and dynamic range are linked together. Therefore, the requirements of the new devices are extending the boundaries of these parameters. Namely, ITER presents challenges as access is also difficult but big efforts have been made to cope with this. This contribution contains a broad review of Thomson scattering diagnostics used in current devices together with comments on recent progress and speculation regarding future developments needed for future large scale devices.

  12. John Thomson: Photojournalist in Asia, 1862-1872.

    ERIC Educational Resources Information Center

    Parker, Elliott S.

    John Thomson was a nineteenth-century British photojournalist who used the wet-plate process to illustrate his explorations of eastern and Southeast Asia. His travels from 1862 to 1872 took him to the following places, among others: Ceylon, Cambodia, Singapore, Thailand, Saigon, Siam, mainland China, and Taiwan. Thomson chose to use the wet-plate…

  13. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  14. Basics of Joule-Thomson Liquefaction and JT Cooling

    NASA Astrophysics Data System (ADS)

    de Waele, A. T. A. M.

    2017-01-01

    This paper describes the basic operation of Joule-Thomson liquefiers and Joule-Thomson coolers. The discussion is based on the first law of thermodynamics mainly using hT-diagrams. It is limited to single-component fluids. A nitrogen liquefier and a helium cooler are discussed as important examples.

  15. Basics of Joule-Thomson Liquefaction and JT Cooling

    NASA Astrophysics Data System (ADS)

    de Waele, A. T. A. M.

    2017-03-01

    This paper describes the basic operation of Joule-Thomson liquefiers and Joule-Thomson coolers. The discussion is based on the first law of thermodynamics mainly using hT-diagrams. It is limited to single-component fluids. A nitrogen liquefier and a helium cooler are discussed as important examples.

  16. Thomson's Theorem of Electrostatics: Its Applications and Mathematical Verification

    ERIC Educational Resources Information Center

    Bakhoum, Ezzat G.

    2008-01-01

    A 100 years-old formula that was given by J. J. Thomson recently found numerous applications in computational electrostatics and electromagnetics. Thomson himself never gave a proof for the formula; but a proof based on Differential Geometry was suggested by Jackson and later published by Pappas. Unfortunately, Differential Geometry, being a…

  17. MFTF Thomson scattering: a system study

    SciTech Connect

    Frank, A.M.

    1980-09-11

    This report documents the design effort for a Thomson scattering diagnostic system for MFTF. The principal problem is obtaining enough photons, in the presence of a poorly known background, to make satisfactory measurements. No currently available laser will yield enough photons to do this. Design concepts for imaging and detection are discussed. The ability of components to survive in the high-radiation environment of MFTF is identified as an important problem. The transition to MFTF-B makes many of the problems identified here more serious.

  18. Spring-Loaded Joule-Thomson Valve

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M. J.

    1986-01-01

    Improved design reduces clogging and maintains constant pressure drop as flow rate varies. Spring-Loaded Joule-Thomson Valve pressure drop regulated by spring pushing stainless-steel ball against soft brass seat. Pressure drop remains nearly constant, regardless of helium flow rate and of any gas contaminants frozen on valve seat. Because springloaded J-T valve maintains constant pressure drop, upstream roomtemperature throttle valve adjusts flow rate precisely for any given upstream pressure. In addition, new valve relatively invulnerable to frozen gas contaminants, which clog fixed-orifice J-T valves.

  19. New digital circuits at Thomson semiconductor in France

    NASA Astrophysics Data System (ADS)

    Dellamussia, J. P.

    1985-11-01

    DCS, Thomson Semiconductors' Semi-Standard Circuits Department, has just announced a CMOS gate array with up to 4,200 gates, standard cells, and a unique 900-component, 3 GHz linear gate array. All of Thomson's gate arrays are supported by Daisy, Valid and Mentor workstations. These are the first fruits of a reorganization begun several months ago to distance the department from the actual design and manufacture of integrated circuits, making it more of an archestrator among customers, workstation manufacturers, independent designers and the various Thomson Semiconductors division. Thomson Semiconductors' silicon sales based on DCS contracts totaled 25,000,000 Frances in 1984. This figure should be double in 1985. Thomson Semiconductors plans to offer 120 new integrated circuits this year, twice the number available in 1984. At the same time, the Munich design center and the American subsidiary, VSI, should open new markets in 1985, bringing exports to an estimated 30 percent of sales.

  20. Design of practical alignment device in KSTAR Thomson diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Yamada, I.

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  1. Bose-Einstein condensates of bosonic Thomson atoms

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias; Blümel, Reinhold

    1999-10-01

    A system of charged particles in a harmonic trap is a realization of Thomson's raisin cake model. Therefore, we call it a Thomson atom. Bosonic, fermionic and mixed Thomson atoms exist. In this paper we focus on bosonic Thomson atoms in isotropic traps. Approximating the exact ground state by a condensate we investigate ground-state properties at temperature T = 0 using the Hartree-Fock theory for bosons. In order to assess the quality of our mean-field approach we compare the Hartree-Fock results for bosonic Thomson helium with an exact diagonalization. In contrast to the weakly interacting Bose gas (alkali vapours) mean-field calculations are reliable in the limit of large particle density. The Wigner regime (low particle density) is discussed.

  2. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  3. Multicomponent gas sorption Joule-Thomson refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)

    1991-01-01

    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.

  4. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    SciTech Connect

    Tojo, H. Yatsuka, E.; Hatae, T.; Itami, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  5. Thomson Scattering Results from General Fusion's SPECTOR

    NASA Astrophysics Data System (ADS)

    Young, William

    2016-10-01

    General Fusion has been characterizing and optimizing a new spherical tokamak based device, SPECTOR, which has demonstrated electron temperatures as high as 350 eV. This new device is intended for testing of spherically symmetric compression. Thomson scattering diagnostic is installed on an uncompressed, but heavily diagnosed version of the device, as the compression method precludes some diagnostics. Temperature and density measurements are made at four spatial positions with upcoming plans to expand to six spatial positions. The diagnostic uses a 532 nm Nd:YAG laser and an imaging spectrometer with photomultiplier tube based detector. Other planned upgrades include camera and fiber based alignment monitoring, and multi-pass configuration reusing the laser pulse to increase the scattered light signal.

  6. Double pulse Thomson scattering system at RTP

    SciTech Connect

    Beurskens, M.N.; Barth, C.J.; Chu, C.C.; Donne, A.J.; Herranz, J.A.; Lopes Cardozo, N.J.; van der Meiden, H.J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10{endash}800 {mu}s, max. 2{times}12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator for spectral analysis. The spectrally resolved light is recorded by two ICCD detectors. Simulations show that the system sensitivity will be such that electron temperatures in the range of 100 eV{endash}7 keV can be determined with an accuracy as good as 2{percent}{endash}3{percent} for electron densities of 10{sup 20} m{sup {minus}3}, with a spatial resolution down to 2.6 mm. With this diagnostic the dynamics of small scale structures in the electron temperature profile will be studied. {copyright} {ital 1997 American Institute of Physics.}

  7. Thomson Scattering at FLASH - Status Report

    SciTech Connect

    Toleikis, S; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Faustlin, R; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Holl, A; Irsig, R; Laarmann, T; Lee, H J; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2007-11-28

    The basic idea is to implement Thomson scattering with free electron laser (FEL) radiation at near-solid density plasmas as a diagnostic method which allows the determination of plasma temperatures and densities in the warm dense matter (WDM) regime (free electron density of n{sub e} = 10{sup 21}-10{sup 26} cm{sup -3} with temperatures of several eV). The WDM regime [1] at near-solid density (n{sub e} = 10{sup 21}-10{sup 22} cm{sup -3}) is of special interest because, it is where the transition from an ideal plasma to a degenerate, strongly coupled plasma occurs. A systematic understanding of this largely unknown WDM domain is crucial for the modeling and understanding of contemporary plasma experiments, like laser shock-wave or Z-pinch experiments as well as for inertial confinement fusion (ICF) experiments as the plasma evolution follows its path through this domain.

  8. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  9. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  10. Thomson Scattering on NSTX-U

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Diallo, Ahmed

    2016-10-01

    The MPTS Thomson scattering diagnostic has been supporting NSTX-U since its start of operation in August 2015. At the time of this writing more than 1000 plasmas have been documented. While most MPTS elements from ``NSTX'' were reutilized, significant changes were necessitated: The laser-beam path was re-aimed in order to accommodate for the larger center-stack diameter of NSTX-U. The presence of a new neutral beam box required the introduction of mirror optics in order to dump the laser beams away from the measurement region. The FY2016 run marks the start of operation of a previously installed upgrade to 42 channels. Details of the new MPTS configuration will be given and experimental results will be presented. Future plans will also be discussed. This work was funded by DOE contract DE-AC02-09CH11466.

  11. On the integral Joule-Thomson effect

    NASA Astrophysics Data System (ADS)

    Maytal, B.-Z.; Shavit, A.

    In this paper, the integral inversion curve concept is developed, involving the locus of all points with a vanishing integral Joule-Thomson (J-T) effect ΔTh and isothermal enthalpy change. The structure of the ΔhT surface over the plane of ( pr,T r) is explored. The maximum isothermal J-T effect ΔhT is related to the normal boiling temperature of the gas. The correlation of the integral effect based on real gas data with a low acentric factor is compared with Van der Waals' equation of state closed form predictions. The maximum integral isenthalpic J-T effect ΔTh which does not undergo a phase change during the expansion, is studied via Van der Waals' equation of state.

  12. Dense Matter Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  13. Dual color x-rays from Thomson or Compton sources

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  14. Dual color x rays from Thomson or Compton sources

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  15. Thomson scattering on ELMO Bumpy Torus

    SciTech Connect

    Cobble, J.A.

    1985-04-01

    Below 10/sup 12/ cm/sup -3/ density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10/sup 11/ cm/sup -3/. Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10/sup 12/ cm/sup -3/ and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations.

  16. Fuzzy logic program at SGS-Thomson

    NASA Astrophysics Data System (ADS)

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido

    1993-12-01

    From its conception by Professor Lotfi A. Zadeh in the early '60s, Fuzzy Logic has slowly won acceptance, first in the academic world, then in industry. Its success is mainly due to the different perspective with which problems are tackled. Thanks to Fuzzy Logic we have moved from a numerical/analytical description to a quantitative/qualitative one. It is important to stress that this different perspective not only allows us to solve analysis/control problems at lower costs but can also allow otherwise insoluble problems to be solved at acceptable costs. Of course, it must be stressed that Fuzzy Systems cannot match the computational precision of traditional techniques but seek, instead, to find acceptable solutions in shorter times. Recognizing the enormous importance of fuzzy logic in the markets of the future, SGS-THOMSON intends to produce devices belonging to a new class of machines: Fuzzy Computational Machines. For this purpose a major research project has been established considering the architectural aspects and system implications of fuzzy logic, the development of dedicated VLSI components and supporting software.

  17. Improved thermoelectric cooling based on the Thomson effect

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey; Toberer, Eric S.; Khanna, Raghav; Seifert, Wolfgang

    2012-07-01

    Traditional thermoelectric Peltier coolers exhibit a cooling limit which is primarily determined by the figure of merit, zT. Rather than a fundamental thermodynamic limit, this bound can be traced to the difficulty of maintaining thermoelectric compatibility. Self-compatibility locally maximizes the cooler's coefficient of performance for a given zT and can be achieved by adjusting the relative ratio of the thermoelectric transport properties that make up zT. In this study, we investigate the theoretical performance of thermoelectric coolers that maintain self-compatibility across the device. We find that such a device behaves very differently from a Peltier cooler, and we term self-compatible coolers “Thomson coolers” when the Fourier heat divergence is dominated by the Thomson, as opposed to the Joule, term. A Thomson cooler requires an exponentially rising Seebeck coefficient with increasing temperature, while traditional Peltier coolers, such as those used commercially, have comparatively minimal change in Seebeck coefficient with temperature. When reasonable material property bounds are placed on the thermoelectric leg, the Thomson cooler is predicted to achieve approximately twice the maximum temperature drop of a traditional Peltier cooler with equivalent figure of merit (zT). We anticipate that the development of Thomson coolers will ultimately lead to solid-state cooling to cryogenic temperatures.

  18. Studying Filamentary Currents with Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.; Kubala, S. Z.

    2016-10-01

    The MST reversed-field pinch plasma generates bursts of toroidally localized magnetic activity associated with m = 0 modes resonant at the reversal surface near the plasma edge. Previously, using data from an array of edge magnetic probes, these bursts were connected to poloidal current filaments. Now the MST Thomson scattering diagnostic is being used to measure the net drift in the electron distribution due to these currents. An additional long-wavelength spectral bin has been added to several Thomson scattering polychromators, in addition to 5-7 pre-existing short wavelength spectral bins, to improve discrimination between shifted vs. broadened spectra. The bursts are examined in plasma conditions that display spontaneous periods of low tearing-mode activity, with higher confinement and higher temperatures that improve Thomson scattering measurement performance. This work is supported by the U.S. Department of Energy and the National Science Foundation.

  19. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  20. Observation of relativistic effects in collective Thomson scattering

    SciTech Connect

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L; Tynan, G R; Froula, D H

    2009-10-08

    We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.

  1. From a land of saints and scholars? Reflections on William Thomson's religious background

    NASA Astrophysics Data System (ADS)

    McCartney, Mark

    2009-04-01

    After indicating the range of biographical studies of William Thomson since his death in 1907, the roots of Thomson's religious views are traced back to those of his father, James Thomson, and following the work of David B Wilson, to those of his teachers at the University of Glasgow in the 1830s.

  2. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  3. Dust in FTU with the Thomson Scattering diagnostic

    SciTech Connect

    Giovannozzi, E.; Castaldo, C.; Apruzzese, G.; Maddaluno, G.; Rydzy, A.; Ratynskaia, S.

    2008-09-07

    The Thomson scattering diagnostic has been used to measure the dust present in plasma discharges on FTU tokamak after disruption. The vaporization of the dust particles due to the high power of the laser used by the Thomson scattering diagnostic imply that only a rough estimate of the particle size could be derived from the elastic scattering of the laser light. A simple model for dust particle evaporation has been used to infer the size of the dust particle from the scattered light data.

  4. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  5. Thomson scattering in a magnetic field. II - Arbitrary field orientation

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.

  6. Communication: Ab initio Joule-Thomson inversion data for argon

    NASA Astrophysics Data System (ADS)

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-01

    The Joule-Thomson coefficient μH(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  7. Progress of development of Thomson scattering diagnostic system on COMPASS.

    PubMed

    Bilkova, P; Melich, R; Aftanas, M; Böhm, P; Sestak, D; Jares, D; Weinzettl, V; Stöckel, J; Hron, M; Panek, R; Scannell, R; Walsh, M J

    2010-10-01

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  8. Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Yoshikawa, M.; Yasuhara, R.; Chikatsu, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakasima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Minami, T.

    2016-11-01

    We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.

  9. Cathode Ray Research Leading to J.J. Thomson's Discovery

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph

    1997-04-01

    This paper reviews the research on the properties and nature of cathode rays that led to the discovery of the electron by J. J. Thomson in the years 1897 - 1899. During the period from about 1870 to 1897 important research on cathode rays was carried out by William Crookes and Arthur Schuster in England, by Eugen Goldstein, Heinrich Hertz, Philipp Lenard, Emil Wiechert and Walter Kaufman in Germany, and by Jean Perrin in France. This research was always tedious and often inexact because fast vacuum pumps and convenient vacuum gauges did not yet exist. Still a few of these earlier researchers narrowly missed beating J. J. Thomson to the discover of the electron.

  10. Improved thermoelectric cooling based on the Thomson effect

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey; Khanna, Raghav; Toberer, Eric S.; Heinz, Nicholas A.; Seifert, Wolfgang

    2016-05-01

    Traditional thermoelectric cooling relies on the Peltier effect which produces a temperature drop limited by the figure of merit, zT. This cooling limit is not required from classical thermodynamics but can be traced to problems of thermoelectric compatibility. Alternatively, if a thermoelectric cooler can be designed to achieve full thermoelectric compatibility, lower temperature can be achieved even if the zT is low. In such a device the Thomson effect plays an important role. We present the theoretical concept of a "Thomson cooler," for cryogenic cooling which is designed to maintain thermoelectric compatibility and we derive the requirements for the Seebeck coefficient.

  11. Program For Joule-Thomson Analysis Of Mixed Cryogens

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Lund, Alan

    1994-01-01

    JTMIX computer program predicts ideal and realistic properties of mixed gases at temperatures between 65 and 80 K. Performs Joule-Thomson analysis of any gaseous mixture of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with DDMIX computer program of National Institute of Standards and Technology (NIST), JTMIX accurately predicts order-of-magnitude increases in Joule-Thomson cooling capacities occuring when various hydrocarbons added to nitrogen. Also predicts boiling temperature of nitrogen depressed from normal value to as low as 60 K upon addition of neon. Written in Turbo C.

  12. Communication: Ab initio Joule-Thomson inversion data for argon.

    PubMed

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-21

    The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  13. The Thomson deflectometer: A novel use of the Thomson spectrometer as a transient field and plasma diagnostic

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Nickles, P. V.; Sokollik, T.; Risse, E.; Kalashnikov, M.; Sandner, W.; Priebe, G.

    2008-03-15

    Laser accelerated proton beams have been used for field characterization in expanding plasmas. The Thomson parabola spectrometer, as a charged particles analyzer, also allows precise measurement of the charged particles' trajectories. The proton's deflections by fast changing plasma fields can be measured with the new design of the Thomson parabola spectrometer and, therefore, it can be applied for proton deflectometry. It is shown that from resulting spectrograms the plasma field dynamics can be reconstructed with high temporal resolution. In a proof-of-principle experiment, a weakly relativistic plasma expansion is studied as an example.

  14. Joule-Thomson coefficient of ideal anyons within fractional exclusion statistics

    SciTech Connect

    Qin Fang; Chen Jisheng

    2011-02-15

    The analytical expressions of the Joule-Thomson coefficient for homogeneous and harmonically trapped three-dimensional ideal anyons which obey Haldane fractional exclusion statistics are derived. For an ideal Fermi gas, the Joule-Thomson coefficient is negative, which means that there is no maximum Joule-Thomson inversion temperature. With careful study, it is found that there exists a Joule-Thomson inversion temperature in the fractional exclusion statistics model. Furthermore, the relations between the Joule-Thomson inversion temperature and the statistical parameter g are investigated.

  15. Joule-Thomson coefficient of ideal anyons within fractional exclusion statistics.

    PubMed

    Qin, Fang; Chen, Ji-sheng

    2011-02-01

    The analytical expressions of the Joule-Thomson coefficient for homogeneous and harmonically trapped three-dimensional ideal anyons which obey Haldane fractional exclusion statistics are derived. For an ideal Fermi gas, the Joule-Thomson coefficient is negative, which means that there is no maximum Joule-Thomson inversion temperature. With careful study, it is found that there exists a Joule-Thomson inversion temperature in the fractional exclusion statistics model. Furthermore, the relations between the Joule-Thomson inversion temperature and the statistical parameter g are investigated.

  16. The similarity law for the Joule-Thomson inversion line.

    PubMed

    Apfelbaum, E M; Vorob'ev, V S

    2014-10-23

    We show that the expression for the Joule-Thomson inversion temperature following from the van der Waals equation and recorded in a form reduced to the Boyle values has a universal character and can be applied to many real substances and model systems.

  17. Mixed-Gas Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Proposed mixed-gas sorption Joule-Thomson refrigerator provides cooling down to temperature of 70 K. Includes only one stage and no mechanical compressor. Simpler, operates without vibrating, and consumes less power in producing same amount of cooling. Same sorption principle of operation applicable in compressor that chemisorbs oxygen or hydrogen from mixture with helium, neon, and/or other nonreactive gases.

  18. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    NASA Astrophysics Data System (ADS)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  19. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  20. Cryogenic characterization of low-cost Joule-Thomson coolers

    NASA Astrophysics Data System (ADS)

    Guichard, Jerome; Cottereau, Alain; Chazot, Dominique

    2000-12-01

    This paper highlights two main achievements which were performed by AIR LIQUIDE during the last decade in the field of low cost Joule-Thomson coolers. On one hand, in order to comply with new geometrical requirements, AIR LIQUIDE is able to propose a flat cooler. This compact geometry is enabled by a new, cheap, type of heat exchanger. It offers a better resistance to external vibrations. On the other hand AIR LIQUIDE has developed, in the frame of a commercial program, a complete cryogenic cooling system, composed of a dual flow Joule-Thomson cooler, a pressurized gas capacity equipped with a manifold block and a pyrotechnic actuator, and the requested pipes and connectors. The dual flow is enabled by flexion of a washer made of shape memory alloy.

  1. Thomson Reuters to release Book Citation Index later this year

    NASA Astrophysics Data System (ADS)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  2. Comparative Exergetic Analysis of Joule-Thomson Liquefiers

    NASA Astrophysics Data System (ADS)

    Chorowski, Maciej

    2004-06-01

    The Joule-Thomson microliquefiers are very reliable and noiseless cryocoolers, specially well fitted for cryostating small electronic devices, IR detectors or cryosurgical probes. Their essential drawback is low thermodynamic efficiency imposing high supply gas pressure, usually above 10 MPa. An exergetic analysis of the microliquefier has been performed and exergy-loss sources identified. Some of the losses can be avoided if a pure gas is replaced with a proper gas mixture and in result the supply gas pressure can be lowered significantly. The efficiencies and working parameters of Joule-Thomson microliquefier fed with pure N2 and the mixtures N2 - CH4 and N2 - R13 have been estimated and measured. The mixture properties have been calculated using the Peng-Robinson equation of state. The possibility to use a liquid-solid phase transition in a cooling-power "on-off" control loop has been observed.

  3. Sub-Picosecond, High Flux, Thomson X-Ray Sources

    SciTech Connect

    James Boyce; David Douglas; Hiroyuki Toyokawa; Winthrop J. Brown; Fred Hartemann

    2003-05-12

    With the advent of high average power FELs, the idea of using such a device to produce x-rays via the Thomson scattering process is appealing, if sufficient flux and/or brightness can be generated. Such x-rays are produced simultaneously with FEL light, offering unprecedented opportunities for pump-probe studies. We discuss non-invasive modifications to the Jefferson Lab's FEL that would meet the criteria of high flux, sub-picosecond, x-ray source. One allows proof-of-principle experiments, is relatively inexpensive, but is not conducive as a ''User-facility.'' Another is a User facility configuration but requires FEL facility modifications. For all sources, we present Thomson scattering flux calculations and potential applications.

  4. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  5. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  6. Meson production based on the Thomson energy correlation

    SciTech Connect

    Aspden, H.

    1986-07-01

    Attention is drawn to a remarkable energy correlation which uniquely determines the rest-mass energies of all the intermediate particles in the electron-proton energy spectrum. The correlation formula uses a classical expression formulated by J. J. Thomson, which represents the charge of a particle as confined within a sphere of radius 2e/sup 2//3mc/sup 2/.

  7. Advances in the FTU collective Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.; Grosso, G.; Lubiako, L.; Alessi, E.; Castaldo, C.; Centioli, C.; De Angeli, M.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Lontano, M.; Magagnino, S.; Mellera, V.; Minelli, D.; Moro, A.; Muraro, A.; Nardone, A.; Orsitto, F.; Simonetto, A.; Tartari, U.

    2016-11-01

    The new collective Thomson scattering diagnostic installed on the Frascati Tokamak Upgrade device started its first operations in 2014. The ongoing experiments investigate the presence of signals synchronous with rotating tearing mode islands, possibly due to parametric decay processes, and phenomena affecting electron cyclotron beam absorption or scattering measurements. The radiometric system, diagnostic layout, and data acquisition system were improved accordingly. The present status and near-term developments of the diagnostic are presented.

  8. The Joule-Thomson effect in confined fluids

    NASA Astrophysics Data System (ADS)

    Schoen, Martin

    1999-08-01

    The Joule-Thomson effect is discussed for a fluid composed of spherically symmetric Lennard-Jones(12,6) molecules (of “diameter” σ) confined between two planar, rigid, structureless solid substrates separated by sz=10 and 20 σ. The effect of “strong” and “weak” of the substrate is studied by employing fluid-substrate potentials with and without attractive interactions, respectively. The focal point of this study is the confinement-induced depression of the inversion temperature Tinv with respect to the bulk value. It is defined such that during a Joule-Thomson expansion the temperature of a (confined or bulk) gas remains constant. In the limit of vanishing gas density, Tinv is computed from the second virial coefficient defined through a density expansion of the transverse stress T∥ in the gas. For higher densities Tinv is computed from the (transverse) expansion coefficient α∥ which is accessible through density and enthalpy fluctuations in mixed stress-strain ensemble Monte Carlo simulations. Results of these simulations are analyzed in terms of a mean-field theory which provides a qualitatively correct description of the Joule-Thomson effect in confined fluids. The smaller sz the more depressed (with respect to the bulk) is Tinv. The density dependence of Tinv is different for “strong” and “weak” substrates. Without attractive fluid-fluid interactions Tinv does not exist and the confined gas is always heated during a Joule-Thomson expansion. In this case α∥ is independent of the substrate material.

  9. Joule—Thomson effect in liquid He II

    NASA Astrophysics Data System (ADS)

    Huang, B. J.

    It has been shown in the present study that the Joule—Thomson coefficients of liquid He II are extraordinarily high for temperatures far below the lambda point as compared with ordinary real gases or liquids. Its effect on the throttling process of He II was shown to be quite significant and should be taken into account when dealing with transport processes of He II.

  10. Design and development of the large helical device TV Thomson scattering

    SciTech Connect

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-10-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data.

  11. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  12. A polarization-based Thomson scattering technique for burning plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.; Mirnov, V. V.; Den Hartog, D. J.

    2014-02-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the spectrum. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the degree of polarization (P) of the scattered light; for fully polarized incident laser light, the scattered light becomes partially polarized. The resulting reduction of polarization is temperature dependent and has been proposed by other authors as a potential alternative to the traditional spectral decomposition technique. Following the previously developed Stokes vector approach, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states, scattering angles, and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures relevant to burning plasmas. We discuss the feasibility of a polarization based Thomson scattering diagnostic for ITER-like plasmas with both linearly and circularly polarized light and compare to the traditional technique.

  13. Thomson scattering from a three-component plasma

    NASA Astrophysics Data System (ADS)

    Johnson, W. R.; Nilsen, J.

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013), 10.1063/1.4807032].

  14. Upgraded divertor Thomson scattering system on DIII-D

    NASA Astrophysics Data System (ADS)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  15. Innovation as a social process: Elihu Thomson and the rise of General Electric, 1870-1900

    SciTech Connect

    Carlson, W.B.

    1992-01-01

    This book traces the development of the General Electric Corporation by following the career of inventor Elihu Thomson, who along with Thomas Edison and George Westinghouse, achieved recoginition for the rapid emergence of electric light and power in America. The author explores Thomson's development as an inventor and scientist. He goes on to examine how Thomson applied his innovation and scientific skills in the marketplace, tracks the development of the Thomson-Houston Company and subsequent merger with Edison into General Electric. Book review.

  16. The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1977-01-01

    Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)

  17. Laser beam combiner for Thomson scattering core LIDAR.

    PubMed

    Balboa, I; Huang, B; Naylor, G; Walsh, M; Sirinelli, A; Parsons, P; Fessey, J; Townsend, M; Beurskens, M; Conway, N; Flanagan, J; Kempenaars, M; Kirk, A

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  18. Thomson scattering in magnetic fields. [of white dwarf stars

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  19. Imaging Near-Earth Electron Densities Using Thomson Scattering

    DTIC Science & Technology

    2009-01-15

    the solar corona . The technique used is “white light” imaging of the visible portion of the solar radiative flux as it undergoes Thomson scattering...toward the ecliptic pole. We also examined the output from the Koutchmy-Lamy model of the solar F- corona (Koutchmy and Lamy 1985), which is another...designation of the zodiacal light used in solar physics. Figure 9 shows the bright- ness of the F- corona as a function of radial distance from the Sun in

  20. Miniature Joule - Thomson liquefier with sintered heat exchanger

    NASA Astrophysics Data System (ADS)

    Eugeniusz, Bodio; Maciej, Chorowski; Marta, Wilczek; Arkadiusz, Bozek

    Conventional Joule-Thomson refrigerators are made with finned, capillary tubing for the heat exchanger and a throttling valve for reducing the pressure [1]. A new kind of recuperative miniature heat-exchanger can be developed if a powder metallurgy technology is used. A high pressure capillary tube is sintered with metal powder. The grains of metal should be ball shaped or similar. In result of sintering process a good thermal contact between an outside tube surface and powder grains is achieved. The heat exchange surface is well developed and a porous sinter acts as a low pressure gas canal.

  1. Stability of charge inversion, Thomson problem, and application to electrophoresis

    NASA Astrophysics Data System (ADS)

    Patra, Michael; Patriarca, Marco; Karttunen, Mikko

    2003-03-01

    We analyze charge inversion in colloidal systems at zero temperature using stability concepts, and connect this to the classical Thomson problem of arranging electrons on sphere. We show that for a finite microion charge, the globally stable, lowest-energy state of the complex formed by the colloid and the oppositely charged microions is always overcharged. This effect disappears in the continuous limit. Additionally, a layer of at least twice as many microions as required for charge neutrality is always locally stable. In an applied external electric field the stability of the microion cloud is reduced. Finally, this approach is applied to a system of two colloids at low but finite temperature.

  2. Upgraded multipulse laser and multipoint Thomson scattering diagnostics on EAST.

    PubMed

    Zang, Qing; Zhao, Junyu; Yang, Li; Hu, Qingsheng; Xi, Xiaoqi; Dai, Xingxing; Yang, Jianhua; Han, Xiaofeng; Li, Mengting; Hsieh, C L

    2011-06-01

    Recently a new Thomson scattering diagnostic system was upgraded in EAST tokamak experiment using a multipulse Nd:YAG (neodymium-yttrium aluminium garnet) laser and a multipoint observation volumes. This diagnostic uses a new optical laser alignment technique that was made to determine accurately the laser position, and a new lens collection system that enables the measurement of wider plasma's object. A composite control system made we can get the results in several seconds. Furthermore, a new data processing method was adopted for much exact results.

  3. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome

    PubMed Central

    Beckmann, Nicholas

    2015-01-01

    Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case. PMID:26617641

  4. Material Assessment for ITER's Collective Thomson Scattering first mirror

    SciTech Connect

    Santos, R.; Policarpo, H.; Goncalves, B.; Varela, P.; Nonboel, E.; Klinkby, E.; Lauritzen, B.; Romanets, Y.; Luis, R.; Vaz, P.

    2015-07-01

    The International Thermonuclear Energy Reactor (ITER) Collective Thomson Scattering (CTS) system is a diagnostic instrument that measures plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasi-optical mirrors that are used to produce astigmatic beam patterns, which have impact on the strength and spatial resolution of the diagnostic signal. The mirrors are exposed to neutron radiation, which may alter the quality of the signal received. In this work, three different materials (molybdenum (Mo), stainless steel 316 (SS-316) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to access which of the material studied are best suited for this mirror, considering different neutron radiation loads simulated scenarios defined by ITER, based on the resultant stresses and temperature distributions. For it, the neutron irradiation, and subsequent heat-load on the mirrors are simulated using the Monte Carlo N-Particle (MCNP) code. Based on the MCNP heat-load results, transient thermal-structural Finite Element Analysis (FEA) of the mirror over a 400 s discharge, with and without cooling on the rear side, are conducted using in commercial FEA software ANSYS. Results show that of the tested materials Mo and W are the most suitable material for this application. Even though, this study does not yet consider the variation of the material properties with temperature, it presents a quick initial satisfactory assessment that may be considered in subsequent and more complex analysis. (authors)

  5. Laser Thomson scattering in a pulsed atmospheric arc discharge

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  6. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  7. HT-7 Multipoint Nd Laser Thomson Scattering Apparatus

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; Zhao, Jun-yu; Li, Ya-dong; Xie, Ai-gen; Fang, Zhi-sheng; V, Sannikov; A, Gorshkov

    2001-04-01

    A compact, low cost, multipoint Thomson scattering diagnostic system for HT-7 superconducting tokamak has been in operation since 1999. Its capability of measuring electron temperatures is in the range of 200 eV to 2 keV at a density of a few times 1012 cm-3, with a spatial resolution of 2.4 cm for 5 spatial points and a temporal resolution of 1 ms similar 1 s for 8 time points. The main components of the diagnostic system include a 20-25 J Nd:glass laser with 35 ns pulse width (8 pulses per burst), a KDP frequency-doubling unit, spherical mirrors of multipass input optical system, a wide-angle collection objective, a bandpass glass filter for reducing the stray light to zero, a f/2.5 polychromator, a fiberglass collimator, a photomultiplier's box with electronic preamplifier, high gain and high signal/noise ratio, CAMAC data acquisition and so on. The multipass optical system has been successful at increasing the quantity of scattered photons by passing the probing laser beam 10 times through the plasma under investigation. The HT-7 Thomson scattering diagnostic has provided successfully the information on two-dimensional electron temperature in the plasma of HT-7 tokamak with LHCD and IBW.

  8. Design of and data reduction from compact Thomson parabola spectrometers

    SciTech Connect

    Morrison, J. T.; Willis, C.; Freeman, R. R.; Van Woerkom, L.

    2011-03-15

    Thomson parabola spectrometers are used to characterize MeV ion beams produced in high intensity laser interactions. These spectrometers disperse multiple ion species according to their charge to mass ratio through the use of parallel electric and magnetic fields. Analytical solutions for ion deflection in electric and magnetic fields have been used to extract ion spectra with the assumption that fringing effects are negligible. Experimental space restrictions and dynamic range requirements necessitate designs that stress the analytical assumptions. Depending on design parameters, the error in the analytical assumption can be comparable to the energy resolution. Estimates are provided to approximate the error on the total ion deflection. A method for modeling ion trajectories including fringing effects is presented using software freely available or in common use. The magnetostatic fields are modeled in 3D, including material properties of nearby magnetic materials using RADIA. Electrostatic fields are modeled in 2D for a spectrometer implementing angled plates using the partial differential equation toolbox in MATLAB. Using these models to calculate the ion trajectory allows for analysis of a Thomson parabola spectrometer with an arbitrary field configuration.

  9. Thomson Scattering Measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, C. J.; Morgan, K. D.; Jarboe, T. R.

    2015-11-01

    A multi-point Thomson Scattering diagnostic has been implemented on HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) to measure electron temperature. The HIT-SI3 experiment is a modification of the original HIT-SI apparatus that uses three injectors instead of two. This modification alters the configuration of magnetic fields and thus the plasma behavior in the device. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and plasma performance in the spheromak. The Thomson Scattering system includes a 20 J (1 GW pulse) Ruby laser that provides the incident beam, and collection optics that are installed such that measurements can be taken at four spatial locations in HIT-SI3 plasmas. For each measurement point, a 3-channel polychromator is used to detect the relative level of scattering. These measurements allow for the presence of temperature gradients in the spheromak to be investigated. Preliminary HIT-SI3 temperature data are presented and can be compared to predictions from computational models. Work supported by the D.O.E.

  10. Imaging Thomson scattering measurements of radiatively heated Xe

    SciTech Connect

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  11. Events Leading to J. J. Thomson's Electron in 1897

    NASA Astrophysics Data System (ADS)

    Dahl, Per F.

    1997-03-01

    The electron had its genesis in the glow discharge studies of the German school of Julius Plucker and company, who viewed their Kathodenstrahlen as a form of aetheral wave propagation. Next on the scene came the Victorian amateur scientists, personified by the incomparable William Crookes, who interpreted the rays in terms of material particulate behavior. Back on the Continent, meanwhile, there was Heinrich Hertz and his disciple Philipp Lenard--the latter with his metallic ``window'' and all it stood for. In England, an experimental rivalry ensued between J. J. Thomson and Arthur Schuster, who nearly beat ``J.J.'' to his corpuscle in 1890, while in Paris, about then, Jean Perrin's cathode ray studies were provoked by the lingering anti-atomic stance of his academic countrymen. The chronicle culminated in the charge-to-mass experiments of 1896-97, in which Emil Wiechert and Walter Kaufmann narrowly missed the electron in favor of Thomson and his classic e/m determinations.

  12. Cytogenetic analysis in Rothmund-Thomson syndrome with osteosarcoma

    SciTech Connect

    Amar, M.; Sutphen, R.; Kousseff, B.G.

    1994-09-01

    Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive condition of poikiloderma, erythema, depigmentation, hyperpigmentation, musculoskeletal abnormalities and abnormalities of hair, teeth and nails. Osteogenic sacoma has been reported in 8 patients. Abnormal chromosome studies have been reported in only two patients. Chromosome analysis of tumor or bone marrow has not been reported. We performed cytogenetic studies on a patient with Rothmund-Thomson syndrome and osteogenic sarcoma. Analysis of peripheral lymphocytes revealed 46, XX karyotype by GTW banding. Both spontaneous and chemically-induced chromosome breakage (0.35 and 0.8 breaks/cell) were increased but not significantly different from the age-matched control levels (0.05 and 0.25 breaks/cell). Analysis of mitogen-stimulated bone marrow by Giemsa banding showed slightly increased aneuploidy (20% of cells with random loss of 1 to 5 chromosomes each) and non-specific chromatid despiralization. All 34 cells analyzed from the tumor had normal diploid karyotype, 46.XX. Five of 40 cells derived from skin of the amputated right leg were hyperdiploid with karyotype 47, XX, +7. Skin from the right forearm showed normal karyotype, 46,XX. These results suggest that RTS is associated with chromosomal rearrangement causing acquired somatic mosaicism, including trisomy 7 anomalies. These abnormalities may aid in the diagnosis of RTS and provide clues to the location of the causative gene(s).

  13. Thomson scattering on non-equilibrium low density plasmas: principles, practice and challenges

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Nijdam, Sander

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters influencing the detection limit of Thomson scattering are reviewed. Laser stray light and plasma emission are two limiting factors, but Raman scattering from molecules inside the plasma will further decrease it. In the case of non-thermal plasmas at high pressure, Thomson scattering is the only technique which allows us to obtain the electron density without any prior knowledge of the plasma properties. Moreover, very high 3D spatial and temporal resolutions can easily be achieved. However, special care still needs to be taken to verify that Thomson scattering is non intrusive. The mechanisms that will lead to possible measurement errors are discussed. The wavelength-resolved scattering signal also allows us to get direct information about the electron energy distribution function in the case of incoherent light scattering. Finally, we discuss some recent applications of Thomson scattering on atmospheric pressure plasma jets, but also in the field of electron collision kinetics. Thomson scattering can be applied on atomic but also molecular plasmas. In the latter case, one needs to take into account the possible contribution of rotational Raman scattering.

  14. Joule-Thomson Cooling Due to CO2 Injection into Natural GasReservoirs

    SciTech Connect

    Oldenburg, Curtis M.

    2006-04-21

    Depleted natural gas reservoirs are a promising target for Carbon Sequestration with Enhanced Gas Recovery (CSEGR). The focus of this study is on evaluating the importance of Joule-Thomson cooling during CO2 injection into depleted natural gas reservoirs. Joule-Thomson cooling is the adiabatic cooling that accompanies the expansion of a real gas. If Joule-Thomson cooling were extreme, injectivity and formation permeability could be altered by the freezing of residual water,formation of hydrates, and fracturing due to thermal stresses. The TOUGH2/EOS7C module for CO2-CH4-H2O mixtures is used as the simulation analysis tool. For verification of EOS7C, the classic Joule-Thomson expansion experiment is modeled for pure CO2 resulting in Joule-Thomson coefficients in agreement with standard references to within 5-7 percent. For demonstration purposes, CO2 injection at constant pressure and with a large pressure drop ({approx}50 bars) is presented in order to show that cooling by more than 20 C can occur by this effect. Two more-realistic constant-rate injection cases show that for typical systems in the Sacramento Valley, California, the Joule-Thomson cooling effect is minimal. This simulation study shows that for constant-rate injections into high-permeability reservoirs, the Joule-Thomson cooling effect is not expected to create significant problems for CSEGR.

  15. Multipoint Thomson scattering diagnostic for the ETE tokamak

    NASA Astrophysics Data System (ADS)

    Berni, L. A.; Alonso, M. P.; Oliveira, R. M.

    2004-10-01

    To measure the electron temperature and plasma density profiles on the Experimento Tokamak Esférico tokamak a multiplexed Thomson scattering diagnostic was implemented. The diagnostic is based on a 10 J ruby laser and a single five spectral channel filter polychromator. A collection lens with f/6.3 relay the scattered light from 23 spatial points to optical fibers. The fibers have a monotonous increasing length and are inserted into the polychromator. Between the collection lens and each fiber optic we have a microlens to match the numerical aperture and to enlarge the plasma observation volume. This work describes the project, the simulations, and the preliminary results obtained with the first four optical fibers.

  16. Thomson scattering in a magnetic field. I - Field along z

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    The Monte Carlo method is used here to solve the radiative transfer equation for Thomson scattering in a constant magnetic field perpendicular to the atmosphere. Emergent radiation and polarization are presented for various atmospheric thicknesses. The circular polarization peaks at frequencies near the cyclotron, omega(c), and for propagation direction along the field. At low field strengths, the circular polarization is roughly proportional to omega(c)/omega; the linear polarization is proportional to the square of omega(c)/omega and the amount of circular polarization present at each scatter and is therefore much smaller than the circular polarization. The linear polarization is large for propagation direction perpendicular to the magnetic field and at frequencies near the cyclotron and in the strong-field limit. The position angle of the linear polarization undergoes a rotation of 90 deg at a value of omega(c)/omega near the square root of three.

  17. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    SciTech Connect

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.; Zubarev, P.V.; Kvashnin, A.N.; Puryga, E.A.; Ivanova, A.A.; Kotelnikov, A.I.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used to form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)

  18. Application of vanadium hydride compressors for Joule-Thomson cryocoolers

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Freeman, B. D.; Phillips, J. R.

    The Joule-Thomson expansion of hydrogen gas offers efficient and reliable cryocoolers to produce temperatures between 10 and 50 K. A critical component to the development of these devices is the metal hydride storage bed that provides a nonmechanical method to compress hydrogen gas via the reversible absorption by appropriate metals or alloys. A thermodynamic model has been used to calculate the impact of operational parameters such as input/output pressure ratios and bed temperature on energy balance and system efficiency. Detailed comparisons are reported for a compressor which utilizes vanadium metal as the sorbent for either hydrogen or deuterium where the unusually large isotope differences between the phase diagrams and thermal properties for VH(x) and VD(x) have been considered. The sensitivity of heat input requirements to the uncertainties in primary variables are described.

  19. Fluctuations and Gibbs-Thomson Law - the Simple Physics.

    SciTech Connect

    Chernov, A A; De Yoreo, J J; Rashkovich, L N

    2006-09-15

    Crystals of slightly soluble materials should be subject of relatively weak attachment/detachment fluctuations on their faces so that steps on that faces have low kink density. These steps are parallel to the most close packed lattice rows and form polygons on a crystal surface. The process responsible for implementation of the classical Gibbs-Thomson law (GTL) for the polygonal step (in two dimensions, 2D) is kink exchange between the step corners. For the 3D crystallites, this mechanism includes step exchange. If these mechanisms do not operate because of slow fluctuations the GTL is not applicable. Physics of these processes and conditions for the GTL applicability are discussed on a simple qualitative level.

  20. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  1. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  2. Design of Thomson scattering diagnostic system on J-TEXT.

    PubMed

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  3. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  4. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    SciTech Connect

    Ross, J. S. Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  5. Design of Thomson scattering diagnostic system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  6. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  7. Gibbs-Thomson effect in nanocrystalline Fe-Ge

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Bansal, C.; Chatterjee, Ashok

    2000-08-01

    We studied the phase transformation behavior of chemically disordered bcc (α) phase Fe1-xGex alloys near the Fe3Ge stoichiometry synthesized in the nanocrystalline state by mechanical alloying of the elemental constituents. The evolution of the equilibrium L12 ordered (ɛ') phase was seen to occur via a metastable DO3-ordered (α1) phase, but a significant α1-->ɛ' phase transformation took place only after the growth of the grains. This behavior is understood with the help of a capillary effect or the Gibbs-Thomson effect wherein the grain boundary energy of the nanosize grains raises the Gibbs free energy of the ɛ' phase relative to the α1 phase for small sizes and the ɛ' phase grows only after a certain grain size is reached.

  8. Joule-Thomson cryogenic cooler with extremely high thermal stability

    NASA Technical Reports Server (NTRS)

    Bard, Steven; Wu, J. J.; Trimble, Curt

    1991-01-01

    An 80-K Joule-Thomson (J-T) cooling system designed for the Probe Infrared Laser Spectrometer (PIRLS) proposed for the Huygens Titan Probe of the Cassini Saturn orbiter mission is presented. The cryogenic cooling requirements of the PIRLS instrument are listed, and the cooler system design including details of a J-T cryostat, cold head, and dewar design is described along with the results of a thermal modeling effort and lab cooler performance testing. It is shown that by using active feedback temperature control of the cold head in combination with the self-regulating action of the J-T cryostat, a temperature stability of less than 0.1 mK/min is achieved by the cooler weighting 1.8 kg.

  9. The Thomson scattering system at Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  10. Dense Plasma Characterization by X-Ray Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried H.

    2001-10-01

    Solid-density plasmas close to the Fermi degenerate state are a fundamental state of matter that occurs in high energy density laboratory experiments. It has been a long-standing goal to study the microscopic properties of these dense plasmas because conventional diagnostic techniques and standard plasma theory that treat the interactions between particles as a small correction are not applicable. We have recently succeeded measuring the temperature of this previously unexplored regime of matter with a proof-of-principal experiment at the Omega laser facility at LLE, U. Rochester. We used spectrally-resolved 4.5-keV x-ray scattering from a solid-density beryllium plasma. The source is provided by a highly ionized resonance K-line from a Ti plasma. The sample is heated volumetrically by x-rays from another set of mid-Z plasmas produced by 10^15Wcm-2 laser beams. X-ray Thomson scattering provides for the first time detailed information on electron densities, temperature, and velocity distributions. In our experiments, we observe the Compton-downshifted spectral line that is broadened by the thermal motion of the electrons in the plasma indicating Te ≈ TF = 14 eV. The full range of dense plasmas, from Fermi degenerate, to strongly coupled, to high temperature ideal gas plasmas will now be accessible. For example, as the temperature is increased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from a density-dependent parabolic Fermi distribution to the traditional Gaussian Boltzmann distribution. The technique has wide applications, ranging from studying the adiabat and compression of ICF fuels, to temperature measurements for radiatively heated foams. In addition, by accessing the collective scattering regime, basic dense plasma wave physics can be studied.

  11. Thomson Scientific's expanding Web of Knowledge: beyond citation databases and current awareness services.

    PubMed

    London, Sue; Brahmi, Frances A

    2005-01-01

    As end-user demand for easy access to electronic full text continues to climb, an increasing number of information providers are combining that access with their other products and services, making navigating their Web sites by librarians seeking information on a given product or service more daunting than ever. One such provider of a complex array of products and services is Thomson Scientific. This paper looks at some of the many products and tools available from two of Thomson Scientific's businesses, Thomson ISI and Thomson ResearchSoft. Among the items of most interest to health sciences and veterinary librarians and their users are the variety of databases available via the ISI Web of Knowledge platform and the information management products available from ResearchSoft.

  12. A Virial Treatment of the Joule and Joule-Thomson Coefficients.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.

    1981-01-01

    Provides background information designed to aid a physical chemistry student in using the virial equation of state in deriving expressions for other thermodynamic properties, such as writing the Joule and Joule-Thomson coefficients in terms of virial expansions. (CS)

  13. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  14. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    SciTech Connect

    Faussurier, Gérald Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  15. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-01-01

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  16. Theoretical calculation of Joule-Thomson coefficient by using third virial coefficient

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar Akber; Somuncu, Elif; Askerov, Iskender M.

    2017-02-01

    The Joule-Thomson coefficient has been theoretical investigated by using third virial coefficient. Established expressions enable us accurate and rapid calculations of Joule-Thomson coefficient. As seen from numerical results the analytical expressions for third virial coefficients are a very useful, giving a very fast method to calculate other thermodynamics properties of gasses. As an example, the calculation results have been successfully tested by using various literature data.

  17. Central Thomson Scattering Diagnostic for DIII--D

    NASA Astrophysics Data System (ADS)

    Bray, B.; Carlstrom, T. N.; Hsieh, C.; Marakiou, C. C.; Nilson, D.

    1998-11-01

    The Thomson diagnostic on DIII--D has eight YAG lasers operating at 20 Hz each and two vertical beam paths covering most of the plasma including the boundary and divertor regions. In certain instances such as high performance discharges with an internal transport barrier, the measurement can miss the plasma center by about 10--20 cm. In order to cover this central region of increasing importance, we plan to install a horizontal beam path with up to 3 lasers diverted from the existing system, a laser dump inside the machine vessel, and a maximum of 12 viewing channels. Most system hardware including lasers and polychromators will be made sharable so the spatial and temporal resolution can be arranged according to the requirements of a specific experiment. Upgrades are also planned for control and data analysis to replace older computer hardware and software. This new software will have more inspection functions to maintain the quality of the data and provide the flexibility that the plasma experiment requires. The plans for the expansion and progress will be presented.

  18. X-Ray Thomson Scattering Without the Chihara Decomposition

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  19. Characterization of a thermoelectric/Joule-Thomson hybrid microcooler

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2016-07-01

    Micromachined Joule-Thomson (JT) coolers are attractive for cooling small electronic devices. However, microcoolers operated with pure gases, such as nitrogen gas require high pressures of about 9 MPa to achieve reasonable cooling powers. Such high pressures severely add complexity to the development of compressors. To overcome this disadvantage, we combined a JT microcooler with a thermoelectric (TE) pre-cooler to deliver an equivalent cooling power with a lower pressure or, alternatively, a higher cooling power when operating with the same pressure. This hybrid microcooler was operated with nitrogen gas as the working fluid at a low pressure of 0.6 MPa. The cooling power of the microcooler at 101 K operating with a fixed high pressure of 8.8 MPa increased from 21 to 60 mW when the precooling temperature was reduced by the thermoelectric cooler from 295 to 250 K. These tests were simulated using a dynamic numerical model and the accuracy of the model was verified through the comparison between experimental and simulation results. Based on the model, we found the high pressure of the microcooler can be reduced from 8.8 to 5.5 MPa by lowering the precooling temperature from 295 to 250 K. Moreover, the effect of TE cooler position on the performance of the hybrid microcooler was evaluated through simulation analysis.

  20. Thomson scattering on high pressure Hg discharge lamps

    NASA Astrophysics Data System (ADS)

    Zhu, X.; de Vries, N.; Kieft, E. R.; van der Mullen, J. J. A. M.; Haverlag, M.

    2005-06-01

    Thomson scattering (TS) experiments have been performed on high-pressure Hg discharge lamps. These lamps were filled with different amounts of Hg (15, 30, 50 and 70 mg) and were operating at different powers (150, 200 and 240 W) with a square-wave ballast. As in the previous studies (Zhu X et al 2004 J. Phys. D: Appl. Phys. 37 736-43) a triple grating spectrograph was used to suppress the false stray light and Rayleigh scattered photons. This set-up had to be modified for this special application. The collective TS spectra have been fitted using both a calibration using Raman scattering and a form fitting procedure. It was found that the electron temperature fluctuates around a certain value that seems rather constant in the central region. The value of electron temperature (Te) varies between 5500 and 7600 K in the central region (r <= 0.3 R). The spatial-averaged Te value increases with the lamp power. The electron density was found to be of the order of 1021 m-3 which is high at the centre and decreases as r increases. The ne value also increases with the lamp power. Moreover the results of TS are compared with those from x-ray absorption measurement. The comparison shows that the plasmas in such lamps are not in local thermal equilibrium in the sense that T_e\

  1. Design of C-2W Thomson Scattering System

    NASA Astrophysics Data System (ADS)

    Zhai, Kan; Schindler, Tania; Zhang, Helen; Walters, Kurt; Thompson, Matthew; TAE Team

    2016-10-01

    A suite of multi-point Thomson scattering systems is now being designed and built in parallel with the construction of the C-2W FRC experimental device, which is expected to have a wide range of electron temperature Te and density ne from edge to center region at different operational phases. The suite consists of two sub-systems that measure Te and ne profiles at the C-2W central plane and at the jet region. A high-repetition rate Nd:YAG laser is planned for the central plane subsystem for time-resolved profile measurement at 1 kHz. The central plane and jet region subsystems have their own specially-designed collection optics that image 16 and 5 radial points along the laser-beam path onto corresponding surfaces of fiber bundles, which will then relay the collected laser light into dispersing polychromators. The polychromators are designed with five spectral channels with four channels optimized and dedicated to Te measurement and one channel dedicated to Rayleigh scattering calibration for ne measurement. Detail system design and layout of lasers, beam transportation and stray light control, collection optics and fiber optics, dispersion and detection system and its spectral calibration setup will be presented.

  2. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  3. Chevron beam dump for ITER edge Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  4. A Thomson scattering diagnostic on the Pegasus Toroidal experiment.

    PubMed

    Schlossberg, D J; Schoenbeck, N L; Dowd, A S; Fonck, R J; Moritz, J I; Thome, K E; Winz, G R

    2012-10-01

    By exploiting advances in high-energy pulsed lasers, volume phase holographic diffraction gratings, and image intensified CCD cameras, a new Thomson scattering system has been designed to operate from 532 - 592 nm on the Pegasus Toroidal Experiment. The system uses a frequency-doubled, Q-switched Nd:YAG laser operating with an energy of 2 J at 532 nm and a pulse duration of 7 ns FWHM. The beam path is < 7m, the beam diameter remains ≤ 3 mm throughout the plasma, and the beam dump and optical baffling is located in vacuum but can be removed for maintenance by closing a gate valve. A custom lens system collects scattered photons from 15 cm < R(maj) < 85 cm at ~F∕6 with 14 mm radial resolution. Initial measurements will be made at 12 spatial locations with 12 simultaneous background measurements at corresponding locations. The estimated signal at the machine-side collection optics is ~3.5 × 10(4) photons for plasma densities of 10(19) m(-3). Typical plasmas measured will range from densities of mid-10(18) to mid-10(19) m(-3) with electron temperatures from 10 to 1000 eV.

  5. Photon counting spectroscopy as done with a Thomson scattering diagnostic

    SciTech Connect

    Den Hartog, D.J.; Ruppert, D.E.

    1993-11-01

    The measurement and reduction of photon counting spectral data is demonstrated within the context of a Thomson scattering diagnostic. This diagnostic contains a microchannel plate (MCP) photomultiplier tube (PMT) as the photon sensing device. The MCP PMT is not an ideal photon sensor, the loss of photoelectrons at the MCP input and the broad charge pulse distribution at the output add to the uncertainty in recorded data. Computer simulations are used to demonstrate an approach to quantification of this added uncertainty and to develop an understanding of its source; the methodology may be applicable to the development of an understanding of photon detectors other than an MCP PMT. Emphasis is placed on the Poisson statistical character of the data, because the assumption that a Gaussian probability distribution is a reasonable statistical description of photon counting data is often questionable. When the count rate is low, the product the possible number of photon counts and the probability of measurement of a single photon is usually not sufficiently large to justify Gaussian statistics. Rather, because probabilities of measurement are so low, the Poisson probability distribution best quantifies the inherent statistical fluctuations in such counting measurements. The method of maximum likelihood is applied to derive the Poisson statistics equivalent of {sub X}{sup 2}. A Poisson statistics based data fitting code is implemented using the Newton-Raphson method of multi-dimensional root finding; we also demonstrate an algorithm to estimate the uncertainties in derived quantities.

  6. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  7. High-resolution Thomson parabola for ion analysis

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Flippo, K. A.; Offermann, D. T.; Lopez, F. E.; Oertel, J. A.; Mastrosimone, D.; Letzring, S. A.; Sinenian, N.

    2011-11-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed, constructed, and used at the OMEGA-EP facility. Laser-accelerated multi-MeV ions from hemispherical C targets are transmitted through a W pinhole into a multi-kG magnetic field and subsequently through a parallel electric field of up to 25 kV/cm. The ion drift region has a user-selected length of 10, 50, or 80 cm. With the highest fields, 400-MeV C6+ and C5+ may be resolved. TPIE is ten-inch manipulator (TIM)-mounted at OMEGA-EP and can be used opposite either of the EP ps beams. The instrument runs on pressure-interlocked 15-Vdc power available in EP TIM carts. Flux control derives from the insertion depth into the target chamber and the user-selected pinhole dimensions. The detector consists of CR39 backed by an image plate. A fully relativistic simulation code for calculating ion trajectories was employed for design optimization. Excellent agreement of code predictions with the actual ion positions on the detectors is observed. Through pit counting of carbon-ion tracks in CR39, it is shown that conversion efficiency of laser light to energetic carbon ions exceeds ˜5% for these targets.

  8. Progress of microwave collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.

    2015-12-01

    Microwave collective Thomson scattering (CTS) by using a 77 GHz gyrotron is routinely working in LHD and the improvements of the system is now underway. The targets of this diagnostic are measurements of energetic fast ion distribution and ion ratio. In the present system, 800kW 77 GHz gyrotron is injected horizontally and scattered radiation is received changing scattering angle. The system works with existence of electron cyclotron resonance layer. Thus, most of the power is absorbed at the layer like beam damping and stray radiation dramatically decreases. Gyrotron is modulated at 40 Hz, then, background ECE, which is signal in gyrotron off phase, is subtracted from scattered signal in gyrotron on phase. The perturbation of electron temperature due to the gyrotron injection is almost negligible. Temporal evolution of CTS spectrum is obtained by 32ch filter bank receiver through discharge and fine spectrum is obtained by 10 GHz sampling fast digitizer for 80 ms. Change of the width and asymmetry of CTS spectrum is observed after turning off of tangentially injected neutral beam (NB). This is qualitatively consistent with reduction of fast ion density. Preliminary data of ion ratio between hydrogen and helium are also obtained.

  9. Nonlinear Thomson scattering of an ultrashort laser pulse

    SciTech Connect

    Golovinski, P. A. Mikhin, E. A.

    2011-10-15

    The nonlinear scattering of an ultrashort laser pulse by free electrons is considered. The pulse is described in the 'Mexican hat' wavelet basis. The equation of motion for a charged particle in the field of a plane electromagnetic wave has an exact solution allowing, together with the instant spectrum approximation, the calculation of the intensity of nonlinear Thomson scattering for a high-intensity laser pulse. The spectral distribution of scattered radiation for the entire pulse duration is found by integrating with respect to time. The maximum of the emission spectrum of a free electron calculated in 10{sup 19}-10{sup 21} W/cm{sup 2} fields lies in the UV spectral region between 3 and 12 eV. A part of the continuous spectrum achieves high photon energies. One percent of the scattered energy for the field intensity 10{sup 20} W/cm{sup 2} is concentrated in the range h{omega} > 2.7 Multiplication-Sign 10{sup 2} eV, for a field intensity of 10{sup 21} W/cm{sup 2} in the range h{Omega} > 7.9 Multiplication-Sign 10{sup 2} eV, and for an intensity of 10{sup 22} W/cm{sup 2} in the range h{Omega} > 2.45 Multiplication-Sign 10{sup 5} eV. These results allow us to estimate nonlinear scattering as a source of hard X-rays.

  10. Joule-Thomson microcooling developments at University of Twente

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.; Lerou, P. P. P. M.; Tirolien, T.

    2017-02-01

    The development of Joule-Thomson microcoolers has been an on-going and successful research project at the University of Twente for many years. The aim of the research is to develop small and fully integrated cryogenic cooling systems for cooling small electronic devices such as pre-amplifiers and infrared sensors, in order to improve their performance. In the foregoing years, we have successfully developed single-stage microcoolers (typically cooling to 100 K) and two-stage microcoolers (typically 30 K) using standard micromachining technologies. In the present paper, we emphatically discuss recent developments in the Twente microcooling project among which microcoolers with a double expansion of the high pressure flow (reducing the 100 K to 83 K operating temperature), microcoolers operating with hydrocarbon gas mixtures, and microcoolers with an ejector, the three new developments aiming at lower cold end temperatures, lower operating pressure ratios and/or higher efficiency. Besides, utilization of microcoolers for cooling electronics and clogging phenomenon in microcoolers will also be introduced.

  11. High resolution Thomson scattering for Joint European Torus (JET)

    SciTech Connect

    Pasqualotto, R.; Nielsen, P.; Gowers, C.; Beurskens, M.; Kempenaars, M.; Carlstrom, T.; Johnson, D.

    2004-10-01

    A Thomson scattering system is being developed for Joint European Torus with 15 mm spatial resolution and a foreseen accuracy for temperature better than 15% at a density of 10{sup 19} m{sup -3}. This resolution is required at the internal transport barrier and edge pedestal and it can not be fully achieved with the present light detection and ranging systems. The laser for this system is Nd:YAG, 5 Joule, 20 Hz. Scattering volumes from R=2.9 m to R=3.9 m are imaged onto 1 mm diameter fibers, with F/25 collection aperture. Two fibers are used per scattering volume. Using optical delay lines, three scattering volumes are combined in each of the 21 filter polychromators. The signals are recorded with transient digitizers, which allow the combined time delayed signals to be resolved. Knowledge of the time delay between signals allows the use of correlation techniques in determining signal levels. The ac output of the amplifier is used, which tolerates a higher level of background signal without affecting dynamic range. The noise resulting from plasma light is determined directly.

  12. Analysis of two-stage Joule-Thomson expansion

    NASA Astrophysics Data System (ADS)

    Narasaki, Katsuhiro

    2016-03-01

    To cool far infrared detectors for infrared observation or superconductor-insulator-superconductor (SIS) mixers for atmospheric observation, 1 K-class and 4 K-class coolers have been developed. These coolers consist of a two-stage Stirling cooler for pre-cooling and a Joule-Thomson (JT) cooler with a single JT valve. This paper presents descriptions of theoretical analyses based on enthalpy balance to elucidate the benefits of a two-stage JT valve type compared with those of a single JT valve type in a JT cooler. First, relational expressions for heat balance analysis of enthalpy for single-stage JT expansion are introduced. Then similar relational expressions for two-stage JT expansion are introduced under some assumptions. Results of heat balance analyses using several parameters demonstrated that, using two-stage JT expansion, the cooling capacity for a 1 K-class cooler is improved by 100%; that of a 4 K-class cooler is improved by about 30%.

  13. Thomson Scattering on exploding wires at 800 kA

    NASA Astrophysics Data System (ADS)

    Greenly, John; Seyler, Charles; Banasek, Jacob; Potter, William

    2016-10-01

    Laser Thomson scattering measurements have been carried out on a single 0.25 mm diameter Al wire load driven with an 800 kA, 100 ns risetime pulse on the COBRA pulsed power facility. The 527 nm, 10 J, 5 ns laser is brought to a line focus on a chord across the unstable, roughly cylindrical plasma column of the wire, which reaches 8mm outer diameter at 100 ns. The laser path is either on axis or 2mm or 4mm off axis. Scattered signals are collected on a fiber array yielding data across the laser path through the plasma. The scattered light is easily visible over the wire plasma self-emission. The scattered spectra have highly complex structures comprised of as many as four distinct spectral peaks spread over 1 nm in wavelength, both red-and blue-shifted. On axis, the laser does not reach the far side of the plasma, being totally absorbed and/or refracted out of its path. 2 mm off-axis the beam is severely refracted, probably from near the critical surface in the plasma, appearing in images taken with cameras 45 degrees off its entering path. The scattering should be in the collective regime, and analysis is underway to extract information on flow velocities and temperatures within the volume, of 0.5mm radius, imaged by each fiber. Work supported by US DOE NNSA Grant DE-NA0001855.

  14. Electron beam final focus system for Thomson scattering at ELBE

    NASA Astrophysics Data System (ADS)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  15. Relativistic nonlinear Thomson scattering as attosecond x-ray source.

    PubMed

    Lee, K; Cha, Y H; Shin, M S; Kim, B H; Kim, D

    2003-02-01

    Relativistic, nonlinear Thomson scattering by an electron of an intense laser field has been investigated by computer simulation. Under a laser field with a pulse duration of 20-fs full width at half maximum and an intensity of 10(20) W/cm(2), the motion of an electron is highly relativistic and generates an ultrashort radiation of 2 as with photon energies from 100 to 600 eV. An interesting modulated structure of the spectrum is observed and analyzed. A radiation produced by the zigzag motion of an electron under a linearly polarized laser has better characteristics than by a helical motion under a circularly polarized laser pulse in terms of an angular divergence and an energy spectrum. The effect of ion field in a plasma was also investigated, which shows that for a laser intensity of 10(20) W/cm(2), the ion field due to an ion density of up to 7 x 10(18) cm(-3) can be ignored during the laser pulse.

  16. Implementation of a Thomson Scattering Diagnostic on Pegasus

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Moritz, J. I.; Schoenbeck, N. L.; Winz, G. R.

    2011-10-01

    The multipoint Thomson scattering system on PEGASUS will diagnose point-source helicity-driven plasmas, including dominant particle transport mechanisms and sources of helicity dissipation. Helicity-driven plasmas are estimated to have áTe ñ ~ 50 eV for stochastic field line confinement and ~200 eV for standard Ohmic closed flux surface confinement. To accurately characterize these regimes, a novel system is being designed, installed, and calibrated. A Nd:YAG laser is frequency doubled to provide a 9 ns, 2 J pulse radially across the plasma. Remote alignment of steering mirrors can be performed between shots along the 6 m length of the external laser beam-line. The 532 nm laser beam is focused to a <= 3 mm diameter beam within the plasma. Plasma background measurements are made simultaneously with data collection. A custom optical system collects signal from >70% of the plasma cross-section with 1.4 cm radial resolution. Optical fibers relay light to a high-efficiency volume phase holographic grating spectrometer coupled to a high quantum efficiency image intensified CCD camera, gated at >= 2 ns. Signal levels for plasmas with ne >1018 m-3 and 10 eV

  17. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2013-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Apparent Inverse Gibbs-Thomson Effect in Dealloyed Nanoporous Nanoparticles

    NASA Astrophysics Data System (ADS)

    McCue, I.; Snyder, J.; Li, X.; Chen, Q.; Sieradzki, K.; Erlebacher, J.

    2012-06-01

    The Gibbs-Thomson effect (the reduction of local chemical potential due to nanoscale curvature) predicts that nanoparticles of radius r dissolve at lower electrochemical potentials than bulk materials, decreasing as 1/r. However, we show here that if the particle is an alloy—susceptible to selective dissolution (dealloying) and nanoporosity evolution—then complete selective electrochemical dissolution and porosity evolution require a higher electrochemical potential than the comparable bulk planar material, increasing empirically as 1/r. This is a kinetic effect, which we demonstrate via kinetic Monte Carlo simulation. Our model shows that in the initial stages of dissolution, the less noble particle component is easily stripped from the nanoparticle surface, but owing to an increased mobility of the more noble atoms, the surface of the particle quickly passivates. At a fixed electrochemical potential, porosity and complete dealloying can only evolve if fluctuations in the surface passivation layer are sufficiently long-lived to allow dissolution from percolating networks of the less-noble component that penetrate through the bulk of the particle.

  19. Apparent inverse Gibbs-Thomson effect in dealloyed nanoporous nanoparticles.

    PubMed

    McCue, I; Snyder, J; Li, X; Chen, Q; Sieradzki, K; Erlebacher, J

    2012-06-01

    The Gibbs-Thomson effect (the reduction of local chemical potential due to nanoscale curvature) predicts that nanoparticles of radius r dissolve at lower electrochemical potentials than bulk materials, decreasing as 1/r. However, we show here that if the particle is an alloy--susceptible to selective dissolution (dealloying) and nanoporosity evolution--then complete selective electrochemical dissolution and porosity evolution require a higher electrochemical potential than the comparable bulk planar material, increasing empirically as 1/r. This is a kinetic effect, which we demonstrate via kinetic Monte Carlo simulation. Our model shows that in the initial stages of dissolution, the less noble particle component is easily stripped from the nanoparticle surface, but owing to an increased mobility of the more noble atoms, the surface of the particle quickly passivates. At a fixed electrochemical potential, porosity and complete dealloying can only evolve if fluctuations in the surface passivation layer are sufficiently long-lived to allow dissolution from percolating networks of the less-noble component that penetrate through the bulk of the particle.

  20. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  1. Design of multipulse Thomson scattering diagnostic for SST-1 tokamak.

    PubMed

    Kumar, Ajai; Chavda, Chhaya; Saxena, Y C; Singh, Ranjeet; Thakar, Aruna; Thomas, Jinto; Patel, Kiran; Pandya, Kaushal; Bedakihale, Vijay

    2007-04-01

    A multipulse Nd:YAG (Yttrium aluminum garnet) Thomson scattering (TS) system is designed and developed for measuring electron temperature (T(e)) and density (n(e)) profiles of SST-1 tokamak. The system operates at vertical, divertor, and horizontal (midplane) regions of plasma and measures the electron temperature of 20 eV to 1.5 keV and density of 10(18)-10(19) m(-3). Six Nd:YAG lasers synchronized with external control is used to get three different temporal resolutions (30 Hz, 180 Hz, and 1 kHz). The entire system is laboratory tested for the stability of alignment and performance over a distance of 30 m. Different imaging lens assemblies are designed to image the scattered photons from each of the scattering region to an array of optical fibers. A low cost and compact five-channel interference filter polychromator is designed, fabricated, and tested for its image quality and the filter transmission characteristics. Detection system with an avalanche photodiode and required signal conditioning electronics is developed for detecting the scattered photons. A data acquisition and control module operating on PXI bus is developed for the real time data acquisition and system control. A detailed description of design and testing of TS subsystems is presented in this article.

  2. Radial resolution enhancement of the NSTX Thomson scattering diagnostica)

    NASA Astrophysics Data System (ADS)

    LeBlanc, B. P.; Diallo, A.; Labik, G.; Stevens, D. R.

    2012-10-01

    Current magnetic confinement plasma physics research has increased the demand for radial resolution in profile diagnostics, in particular in the edge and pedestal regions. On NSTX, an upgrade of the existing multi-point Thomson scattering diagnostic has been implemented in order to respond to the research program needs. Twelve new radial channels have been added bringing the total number of positions to 42. Four previously un-instrumented fiber bundles were put in service. Eight existing "active" fiber bundles were divided in two sub-bundles each in order to increase spatial resolution. Twelve radial channels now cover the pedestal region with a resolution near one centimeter. Fifteen radial channels cover the core and internal transport barrier regions. Two additional channels were added, one near the inner edge and one in the outer scrape-off layer. The intersection of the focused viewing optics field of view with a finite-width laser beam results in major-radius cross talk between adjacent fiber sub-bundles. A discussion and calculation of the cross talk will be presented.

  3. A new lease of life for Thomson's bonds model of intelligence.

    PubMed

    Bartholomew, David J; Deary, Ian J; Lawn, Martin

    2009-07-01

    Modern factor analysis is the outgrowth of Spearman's original "2-factor" model of intelligence, according to which a mental test score is regarded as the sum of a general factor and a specific factor. As early as 1914, Godfrey Thomson realized that the data did not require this interpretation and he demonstrated this by proposing what became known as his "bonds" model of intelligence. Van der Maas et al. (2006) have recently drawn attention to what they perceive as difficulties with both models and have proposed a 3rd model. Neither alternative requires the general factor that was at the core of Spearman's idea. Although Thomson's model has been largely forgotten, the authors show that it merits further consideration because it can compete, statistically and biologically, on equal terms with Spearman's model. In particular, they show that it is impossible to distinguish statistically between the 2 models. There are also lessons to be learnt from the way in which Thomson arrived at his model and from the subsequent debate between Spearman and Thomson. The extent to which the recent proposal by van der Maas et al. may offer any advantage over Spearman's and Thomson's models is unclear and requires further investigation.

  4. Effects of environmental temperature on performance of the Joule-Thomson refrigerator

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; Kim, Hyobong; Park, Seong-Je

    2012-06-01

    Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, probes of cryosurgery, thermal cameras, missile homing head and guidance system, due to their special features of simple configuration, compact structure and rapid cool-down characteristics. Typical performance factors of the Joule-Thomson refrigerator are cool-down time, temperature of the cold end, running time and gas consumption. Those depend on operating conditions such as the pressure of the gas, thermal environment and etc.. In this study, experimental study of a miniature Joule- Thomson refrigerator with the gas pressure up to 12 MPa were performed to investigate the effects of the thermal environment (-40 ~ 50 °C). In experiments, to obtain the information of cool-down time, gas consumption and etc., the temperature of the cold end, mass flow rate and pressure of the argon gas are simultaneously measured. The Joule-Thomson refrigerator in cold thermal environment has rapid cool-down characteristics and small gas consumption. In the cold environmental condition, the Joule-Thomson refrigerator has high mass flow rate during cool-down process and in steady state.

  5. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  6. Construction of Joule Thomson inversion curves for mixtures using equation of state

    NASA Astrophysics Data System (ADS)

    Patankar, A. S.; Atrey, M. D.

    2017-02-01

    The Joule-Thomson effect is at the heart of Joule-Thomson cryocoolers and gas liquefaction cycles. The effective harnessing of this phenomenon necessitates the knowledge of Joule-Thomson coefficient and the inversion curve. When the working fluid is a mixture, (in mix refrigerant Joule-Thomson cryocooler, MRJT) the phase diagrams, equations of state and inversion curves of multi-component systems become important. The lowest temperature attainable by such a cryocooler depends on the inversion characteristics of the mixture used. In this work the construction of differential Joule-Thomson inversion curves of mixtures using Redlich-Kwong, Soave-Redlich-Kwong and Peng-Robinson equations of state is investigated assuming single phase. It is demonstrated that inversion curves constructed for pure fluids can be improved by choosing an appropriate value of acentric factor. Inversion curves are used to predict maximum inversion temperatures of multicomponent systems. An application where this information is critical is a two-stage J-T cryocooler using a mixture as the working fluid, especially for the second stage. The pre-cooling temperature that the first stage is required to generate depends on the maximum inversion temperature of the second stage working fluid.

  7. Statistical thermodynamics of aerosols and the gas-solid Joule-Thomson effect

    NASA Astrophysics Data System (ADS)

    Pierotti, Robert A.; Rybolt, Thomas R.

    1984-04-01

    Due to the adsorption of a gas by a solid, it is expected that an aerosol created by dispersing a fine powder in a gas would have unique thermodynamic properties not found in pure or mixed gases. The virial equation of state associated with an aerosol dusty gas is obtained from statistical thermodynamic considerations. In the theoretical model presented here, the aerosol is considered to be a two component fluid made up of solid particles and gas molecules. The aerosol virial equation of state is used to derive an expression for the Joule-Thomson effect associated with a gas-solid dispersion. The magnitude of the gas-solid Joule-Thomson effect is expressed in terms of gas and gas-solid virial coefficients. Previous adsorption data for an argon-porous carbon system is used to obtain gas-solid virial coefficients and to predict the magnitude of the gas-solid Joule-Thomson effect. A significant enhancement of the Joule-Thomson effect is predicted for gas-solid systems which display a strong interaction. For example, at a temperature of 300 K an argon-Saran 746 porous carbon aerosol system at a concentration of (0.4 g of powder/l of gas) is predicted to have a gas-solid Joule-Thomson coefficient of 3.6 K/atm which is ten times greater than the effect for pure argon.

  8. Godfrey Thomson and the Rise of University Pedagogical Study: A Recorded Lecture Delivered at the University of Edinburgh in November 1950 by Godfrey H. Thomson--A Transcript with Commentary

    ERIC Educational Resources Information Center

    Lawn, Martin; Deary, Ian J.; Brett, Caroline; Bartholomew, David J.

    2009-01-01

    Professor Sir Godfrey Thomson is one of the key foundational actors in the history of the educational sciences in the UK. At a time when educational studies and the study of educational psychology were very closely linked, in the decades of the mid-twentieth century, Thomson was a crucial figure in education research. He is known for his work on…

  9. Clogging of Joule-Thomson Devices in Liquid Hydrogen Handling

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Lekki, John D.

    2009-01-01

    Experiments conducted at the NASA Glenn Research Center indicate that Joule-Thomson devices become clogged when transferring liquid hydrogen (LH2), operating at a temperature range from 20.5 to 24.4 K. Blockage does not exist under all test conditions but is found to be sensitive to the inlet temperature of the LH2. At a subcooled inlet temperature of 20.5 K blockage consistently appears but is dissipated when the fluid temperature is raised above 24.5 K. Clogging steadily reduced flow rate through the orifices, eventually resulting in complete blockage. This tendency poses a threat to spacecraft cryogenic propulsion systems that would utilize passive thermal control systems. We propose that this clogging is due to trace amounts of neon in the regular LH2 supply. Neon freezes at 24.5 K at one atmosphere pressure. It is postulated that between 20.5 and 24.5 K, neon remains in a meta-stable, supercooled liquid state. When impacting the face of an orifice, liquid neon droplets solidify and accumulate, blocking flow over time. The purpose of this test program was to definitively quantify the phenomena experimentally by obtaining direct visual evidence of orifice clogging by accretion from neon contaminates in the LH2 flow stream, utilizing state of the art imaging technology. Tests were conducted with LH2 flowing in the temperature range of 20.5 to 24.4 K. Additional imaging was also done at LH2 temperatures with no flow to verify clear view through the orifice.

  10. Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    SciTech Connect

    Strozzi, D J; Williams, E A; Langdon, A B; Bers, A

    2006-09-01

    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.

  11. High sensitivity imaging Thomson scattering for low temperature plasma

    SciTech Connect

    Meiden, H. J. van der; Al, R. S.; Barth, C. J.; Donne, A. J. H.; Goedheer, W. J.; Groot, B. de; Koppers, W. R.; Pol, M. J. van de; Prins, P. R.; Shumack, A. E.; Smeets, P. H. M.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rooij, G. J. van; Engeln, R.; Kleyn, A. W.; Lopes Cardozo, N. J.; Schram, D. C.

    2008-01-15

    A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a ''Generation III'' image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n{sub e}) and 6% in the electron temperature (T{sub e}) at n{sub e}=4x10{sup 19} m{sup -3}. This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9x10{sup 17} m{sup -3} in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n{sub e} and T{sub e} measurement is 7x10{sup 20}/n{sub e} J, which means that single shot measurements are possible for n{sub e}>2x10{sup 21} m{sup -3}.

  12. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to < 3 mm throughout the collection region. Inter-shot beam alignment is adjustable with less than a 0.01 mm spatial resolution in the collection region. A custom lens system collects scattered photons at radii 15 cm to 85 cm from the machine's center, at ~ F/6 with 14 mm radial resolution. The initial configuration provides scattering measurements at 12 spatial locations and 12 simultaneous background measurements at adjacent locations. If plasma background subtraction proves to be insignificant, these background channels will be used as viewing channels. Each spectrometer supports 8 spatial channels and can provide 8 or more spectral bins each. The spectrometers use high-efficiency VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  13. Relativistic Electron Beams, Forward Thomson Scattering, and ``Raman'' Scattering

    NASA Astrophysics Data System (ADS)

    Simon, A.

    1999-11-01

    Experiments at LLE (see abstract by D. Hicks at this meeting) show that surprisingly high potentials (+0.5 to 2.0 MV) develop in plasmas irradiated by high-energy lasers. The highly conducting plasma will be a near equipotential and should attract return-current electrons in a radial beam-like distribution, especially in the outer low-density regions. This will initiate the BOT instability, creating large plasma waves with phase velocities close to c. Coherent Thomson scattering of the interaction beam from these waves must occur primarily in the forward direction. This will appear to be ``backward SRS'' upon reflection from a critical surface. We will show that the resulting spectrum is fairly broad and at short wavelengths. Collisional absorption of the scattered EM wave limits the reflectivity to low values (depending on the density scale length). Thus, a distinct difference exists between the spectrum for thick targets (nc surface present) and thin targets (gasbags, etc., from which primarily a narrow absolute-SRS backward emission occurs, at the peak density). The thick-target, reflected-wave angular distribution will be concentrated in the backward direction. The corresponding plasma-wave k-vector will be a fraction of k_0. The variation of the spectrum with potential and angle will be discussed. Comparison will be made with recent results at LLE and LLNL. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, UR, and NYSERDA.

  14. 76 FR 70979 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed Point Thomson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... infrastructure and produce liquid hydrocarbon resources near Point Thomson, Alaska. The proposed project includes... application on November 1, 2011. The Applicant's purpose is to produce liquid hydrocarbons and delineate and evaluate hydrocarbon resources in the Point Thomson area. Two natural gas production wells have...

  15. An Account of ... William Cullen: John Thomson and the Making of a Medical Biography.

    PubMed

    Shuttleton, David E

    2014-01-01

    John Thomson's An Account of the Life, Lectures and Writings of William Cullen (1832; 1859) remains a primary source for the career of the most influential academic physician in eighteenth-century Scotland and is also a significant work of medical history. But this multi-authored text, begun around 1810 by the academic surgeon, John Thomson, but only completed in 1859 by Dr David Craigie, has its own complex history. This chapter addresses what this history can reveal about the development of medical biography as a literary genre. It argues that the Account is a hybrid work shaped by a complex array of practical, domestic, intellectual, and professional pressures, as Thomson, in seeking to bolster his own career, was caught between the demands of Cullen's children for a traditional "Life" and his own more theoretical and socio-cultural interests.

  16. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    SciTech Connect

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data.

  17. Effects of turbulence on the Thomson scattering process in turbulent plasmas by the scattering of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jung, Young-Dae

    2013-05-01

    The effects of turbulence on the Thomson scattering process are investigated in turbulent plasmas. The Thomson scattering cross section in turbulent plasmas is obtained by the fluctuation-dissipation theorem and plasma dielectric function as a function of the diffusion coefficient, wave number, and Debye length. It is demonstrated that the turbulence effect suppresses the Thomson scattering cross section. It is also shown that the turbulence effect on the Thomson scattering process decreases with increasing thermal energy. The dependence of the wave number on the total Thomson scattering cross section including the turbulent structure factor is also discussed. This paper is dedicated to the late Prof. P. K. Shukla in memory of exciting and stimulating collaborations on effective interaction potentials in various astrophysical and laboratory plasmas.

  18. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD

    SciTech Connect

    Yasuhara, R. Sakamoto, R.; Yamada, I.; Motojima, G.; Hayashi, H.

    2014-11-15

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

  19. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE PAGES

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; ...

    2016-08-12

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  20. Control and automation of the Pegasus multi-point Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-11-01

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (˜1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  1. Control and automation of the Pegasus multi-point Thomson scattering system.

    PubMed

    Bodner, G M; Bongard, M W; Fonck, R J; Reusch, J A; Rodriguez Sanchez, C; Schlossberg, D J

    2016-11-01

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  2. 75 FR 49528 - Thomson Reuters Legal, Legal Editorial Operations Cleveland Office Including Workers Whose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Including Workers Whose Unemployment Insurance (UI) Wages Are Paid Through West Services, Inc. and West... FR 39047). The notice was amended on July 27, 2010 to include workers whose unemployment insurance... unemployment insurance (UI) tax account under the name West Publishing Corporation, a Thomson Reuters...

  3. A New Lease of Life for Thomson's Bonds Model of Intelligence

    ERIC Educational Resources Information Center

    Bartholomew, David J.; Deary, Ian J.; Lawn, Martin

    2009-01-01

    Modern factor analysis is the outgrowth of Spearman's original "2-factor" model of intelligence, according to which a mental test score is regarded as the sum of a general factor and a specific factor. As early as 1914, Godfrey Thomson realized that the data did not require this interpretation and he demonstrated this by proposing what became…

  4. Public Data Set: Control and Automation of the Pegasus Multi-point Thomson Scattering System

    SciTech Connect

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; Reusch, Joshua A.; Rodriguez Sanchez, Cuauhtemoc; Schlossberg, David J.

    2016-08-12

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in G.M. Bodner et al., 'Control and Automation of the Pegasus Multi-point Thomson Scattering System,' Rev. Sci. Instrum. 87, 11E523 (2016).

  5. Reply to "Comment on `Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping'"

    NASA Astrophysics Data System (ADS)

    Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-09-01

    We reply to Terzic and Krafft's forgoing Comment [Phys. Rev. Accel. Beams, Comment on "Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping" 19 (2016)]. We disagree with the conclusion of the Comment regarding the novelty of solutions and the citations presented in our paper.

  6. Improvement in data processing of Thomson scattering diagnostic on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Wang, Y. Q.; Feng, Z.; Huang, Y.

    2015-12-01

    There are two types of digitizers to acquire the values of Thomson scattering signals in HL-2A tokamak. One is charge-sensitive analogue-to-digital converters (Q-ADCs) which simply integrates the signal over a gate interval, and the other is transient recorders with 12 bits resolution and 1 GHz sampling rate at each channel. Because the Thomson scattering diagnostic is prone to electrical noisy environment, in which Q-switched Nd:YAG lasers and polychromators are located closely to the HL-2A device, the high speed transient digitizers are found helpful to reduce noise overlapped in Thomson scattering signals. After triggered by the front of TTL pulse generated by laser light, data acquisition is fulfilled from -250 ns to 250 ns, so that the temporal evolution of Thomson scattering signals is obtained. A Gaussian function is utilized to fit the pulse shape of the digitized scattering signal by nonlinear least square methods. By pulse fitting and data processing, the influence of background perturbations is substantially reduced.

  7. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ross, J. S.; Datte, P.; Divol, L.; Galbraith, J.; Froula, D. H.; Glenzer, S. H.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D. S.; Moody, J. D.; Swadling, G.; Weaver, J.

    2016-11-01

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ˜5 × 1020 cm-3 while a 3ω probe will be used for plasma densities of ˜1 × 1019 cm-3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  8. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    SciTech Connect

    Xie, M.

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  9. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    SciTech Connect

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  10. 78 FR 30797 - Proposed Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... submitted in triplicate ] to the Docket Management System (see ADDRESSES section for address and phone... incorporated by reference in 14 CFR part 71.1. The Class E Airspace designation listed in this document will be... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Point Thomson,...

  11. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.

    PubMed

    Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H

    2015-03-01

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  12. Joseph John Thomson's models of matter and radiation in the early 1890s.

    PubMed

    Bordoni, Stefano

    In the late nineteenth century, Joseph John Thomson moved away from Maxwell's specific theoretical models of matter and energy, even though he continued to rely on the general framework of Maxwell's electromagnetic theory. In his 1893 book, he accomplished the conceptual drift towards a discrete model for matter, electricity, and fields. In Thomson's model, energy was linked to tubes of force, in particular to the aether contained in them and surrounding them: the energy was the kinetic energy of aether, of both a rotational and translational kind. Starting from Maxwell's electromagnetic fields, namely stresses propagating through a continuous solid medium, Thomson arrived at a representation of fields as a sea of discrete units carrying energy and momentum. He tried to transform Maxwell's theory into a unified picture in which atomic models of matter stood beside atomic models of fields. In 1904 his interpretation of X-rays was based on the integration between two complementary features of electromagnetic radiation, the continuity and the discreteness, and on some kind of fibrous aether. In recent secondary literature, the problematic conceptual link between J. J. Thomson's theory and contemporary theories on electromagnetic radiation has been underestimated. On the contrary, in the first half of the twentieth century, some physicists inquired into that link, and a widespread debate emerged, misunderstandings included.

  13. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Nielsen, S. K.; Michelsen, P. K.; Hansen, S. K.; Korsholm, S. B.; Leipold, F.; Rasmussen, J.; Salewski, M.; Schubert, M.; Stejner, M.; Stober, J.; Wagner, D.; The ASDEX Upgrade Team

    2017-02-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respect to ion measurements are demonstrated. Examples include measurements of the ion temperature, energetic ion distribution function, and the ion composition.

  14. Joule-Thomson expansion of the charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Ökcü, Özgür; Aydıner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T- P plane and determine the cooling-heating regions.

  15. First results from the Thomson scattering diagnostic on Proto-MPEX

    SciTech Connect

    Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.

  16. The Case of Perrin and Thomson: An Example of the Use of a Mini-Corpus

    ERIC Educational Resources Information Center

    Banks, David

    2005-01-01

    Although recent trends have been towards large corpora, there is a valid place for the study of small corpora. This article is an example of one such study using a corpus of late 19th century texts, consisting of 1783 words in French by Perrin, and 2824 words in English by Thomson. Perrin uses more first person pronouns in a wider range of…

  17. A closed cycle cascade Joule Thomson refrigerator for cooling Josephson junction magnetometers

    NASA Technical Reports Server (NTRS)

    Tward, E.; Sarwinski, R.

    1985-01-01

    A closed cycle cascade Joule Thomson refrigerator designed to cool Josephson Junction magnetometers to liquid helium temperature is being developed. The refrigerator incorporates 4 stages of cooling using the working fluids CF4 and He. The high pressure gases are provided by a small compressor designed for this purpose. The upper stages have been operated and performance will be described.

  18. Transfer of gaseous oxygen from high-pressure containers and the Joule-Thomson inversion

    NASA Technical Reports Server (NTRS)

    Schumann, E. R.

    1974-01-01

    From the experiments performed in study, it was determined that oxygen transferred at ambient temperature and pressures up to 10,000 psig consistently dropped in temperature. All results therefore indicate that gaseous oxygen transferred at ambient temperature does not exhibit Joule-Thomson inversion below 10,000 psig.

  19. Early tectonic evolution of the Thomson Orogen in Queensland inferred from constrained magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Spampinato, Giovanni P. T.; Betts, Peter G.; Ailleres, Laurent; Armit, Robin J.

    2015-05-01

    The crustal architecture as well as the kinematic evolution of the Thomson Orogen in Queensland is poorly resolved because the region is concealed under thick Phanerozoic sedimentary basins and the basement geology is known from limited drill holes. Combined potential field and seismic interpretation indicates that the Thomson Orogen is characterized by prominent regional NE- and NW-trending structural grain defined by long wavelength and low amplitude geophysical anomalies. The 'smooth' magnetic signature is interpreted to reflect deeply buried source bodies in the mid- to lower crust. Short wavelength positive magnetic features that correlate with negative gravity anomalies are interpreted to represent shallower granitic intrusions. They appear to be focused along major fault zones that might have controlled the locus for magmatism. The eastern Thomson Orogen is characterized by a prominent NE structural grain and orthogonal faults and fold interference patterns resulting in a series of troughs and highs. The western Thomson Orogen consists of a series of NW-trending structures interpreted to reflect reverse faults. Sedimentation and basin development are interpreted to have initiated in the Neoproterozoic to Early Cambrian during E-W- to ENE-WSW extension, possibly related to the Rodinia break-up. This extensional event was followed by Late Cambrian shortening recorded in the Maneroo Platform and the Diamantina River Domain which possibly correlates with the Delamerian Orogeny. Renewed deposition and volcanism occurred during the Ordovician and may have continued until Late Silurian, resulting in thinned Proterozoic basement crust and extensive basin systems that formed in a distal continental back-arc environment. Our interpretation places the Thomson Orogen to the west of the Neoproterozoic passive margin preserved in the Anakie Inlier. The region is likely to represent the internal extensional architecture during the Rodinia break-up that has been

  20. Performance analysis of small capacity liquid nitrogen generator based on Joule-Thomson refrigerator coupled with air separation membrane

    NASA Astrophysics Data System (ADS)

    Piotrowska-Hajnus, Agnieszka; Chorowski, Maciej

    2012-06-01

    Joule - Thomson small capacity refrigerators supplied with gas mixture are studied theoretically and experimentally for a variety of applications. They can be especially promising when coupled with membrane air separators. We present liquid nitrogen generation system based on Joule - Thomson cooler joined with air separation membrane. Hollow fiber membrane is used for nitrogen separation from compressed and purified atmospheric air. Joule-Thomson refrigerator operates with a dedicated nitrogen - hydrocarbons mixture and provides a cooling power used for the separated nitrogen liquefaction. Special attention has been paid to a heat exchanger coupling the Joule- Thomson refrigerator with the membrane air separator. This paper describes the system design, the procedure of its working parameters optimization and tests results.

  1. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  2. A high-power spatial filter for Thomson scattering stray light reduction.

    PubMed

    Levesque, J P; Litzner, K D; Mauel, M E; Maurer, D A; Navratil, G A; Pedersen, T S

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  3. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  4. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    NASA Astrophysics Data System (ADS)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  5. Micro-scale heat-exchangers for Joule-Thomson cooling.

    SciTech Connect

    Gross, Andrew John

    2014-01-01

    This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX as part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.

  6. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ(2) method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ(2) method. The best results were obtained for 10(3) training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ(2) method and performs the calculation twenty times faster.

  7. Improving measurement accuracy by optimum data acquisition for Nd:YAG Thomson scattering system.

    PubMed

    Minami, T; Itoh, Y; Yamada, I; Yasuhara, R; Funaba, H; Nakanishi, H; Hatae, T

    2014-11-01

    A new high speed Nd:YAG Thomson scattering AD Convertor (HYADC) that can directly convert the detected scattered light signal into a digital signal is under development. The HYADC is expected to improve a signal to noise ratio of the Nd:YAG Thomson scattering measurement. The data storage of the HYADC which is required for the direct conversion of whole plasma discharge is drastically reduced by a ring buffer memory and a stop trigger system. Data transfer of the HYADC is performed by the SiTCP. The HYADC is easily expandable to a multi-channel system by the distributed data processing, and is very compact and easy to implement as a built-in system of the polychromators.

  8. Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source

    SciTech Connect

    Gibson, D J; Anderson, S G; Betts, S M; Hartemann, F V; Jovanovic, I; McNabb, D P; Messerly, M J; Pruet, J A; Shverdin, M Y; Siders, C W; Tremaine, A M; Barty, C J

    2007-06-07

    Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray and {gamma}-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the ''Thomson-Radiated Extreme X-Ray'' (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge, and laser energy. These parameters were chosen based on extensive modeling using PARMELA and in-house, well-benchmarked scattering simulation codes.

  9. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    NASA Astrophysics Data System (ADS)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  10. Joule-Thomson inversion curves and related coefficients for several simple fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Peller, I. C.; Baron, A. K.

    1972-01-01

    The equations of state (PVT relations) for methane, oxygen, argon, carbon dioxide, carbon monoxide, neon, hydrogen, and helium were used to establish Joule-Thomson inversion curves for each fluid. The principle of corresponding states was applied to the inversion curves, and a generalized inversion curve for fluids with small acentric factors was developed. The quantum fluids (neon, hydrogen, and helium) were excluded from the generalization, but available data for the fluids xenon and krypton were included. The critical isenthalpic Joule-Thomson coefficient mu sub c was determined; and a simplified approximation mu sub c approximates T sub c divided by 6P sub c was found adequate, where T sub c and P sub c are the temperature and pressure at the thermodynamic critical point. The maximum inversion temperatures were obtained from the second virial coefficient (maximum (B/T)).

  11. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  12. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    SciTech Connect

    McLean, A. G. Soukhanovskii, V. A.; Allen, S. L.; Carlstrom, T. N.; LeBlanc, B. P.; Ono, M.; Stratton, B. C.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  13. Toward the Landau-Lifshitz version of the Thomson electrostatics theorem

    NASA Astrophysics Data System (ADS)

    Grinfeld, Michael; Grinfeld, Pavel

    In the classical textbook (Landau and Lifshitz, 1963), Landau and Lifshtz suggested their version of the famous Thomson variational principle (a.k.a Thomson theorem.) So far, their version has not gained the interest it deserves, either among physicists or among applied mathematicians. Partially, the lack of interest can be explained because of the quality of the suggested proof of the principle. It is considerably lower than the standards accepted in classical electrostatics and mathematical physics. Even more importantly, Landau and Lifshitz did not demostrate the minimum property of the electrostatic energy at equilibrium. In this note, we, first, modify and specify the Landau-Lifshitz formulation of the principle presenting it as the isoperimetric variational problem. Then, for this isoperimetric problem we calculate the first and second variations, and we prove that the first variation vanishes, whereas the second variation appears to be positive.

  14. Kinetic Transition Networks for the Thomson Problem and Smale's Seventh Problem

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Chen, Jianxu; Chen, Danny Z.; Kusumaatmaja, Halim; Wales, David J.

    2016-07-01

    The Thomson problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology. Here, we show that the energy landscape of the Thomson problem for N particles with N =132 , 135, 138, 141, 144, 147, and 150 is single funneled, characteristic of a structure-seeking organization where the global minimum is easily accessible. Algorithmically, constructing starting points close to the global minimum of such a potential with spherical constraints is one of Smale's 18 unsolved problems in mathematics for the 21st century because it is important in the solution of univariate and bivariate random polynomial equations. By analyzing the kinetic transition networks, we show that a randomly chosen minimum is, in fact, always "close" to the global minimum in terms of the number of transition states that separate them, a characteristic of small world networks.

  15. Narrowband Emission in Compton/Thomson Sources Operating in the High-Field Regime

    SciTech Connect

    Terzic, Balsa; Deitrick, Kirsten E.; Hofler, Alicia S.; Kraff, Geoffrey A.

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the upshifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications, and reduces the spectral brilliance. In this paper we show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Further, we suggest a practical realization of this compensation idea in terms of a chirped-beam driven FEL oscillator configuration, and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions.

  16. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  17. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  18. Narrowband Emission in Compton/Thomson Sources Operating in the High-Field Regime

    DOE PAGES

    Terzic, Balsa; Deitrick, Kirsten E.; Hofler, Alicia S.; ...

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the upshifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications, and reduces the spectral brilliance. In this paper we show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Further, we suggest a practical realizationmore » of this compensation idea in terms of a chirped-beam driven FEL oscillator configuration, and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions.« less

  19. Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes

    NASA Astrophysics Data System (ADS)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2017-04-01

    The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.

  20. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Lee, J. H.; Yamada, I.; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ2 method. The best results were obtained for 103 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ2 method and performs the calculation twenty times faster.

  1. Modular Python-based Code for Thomson Scattering System on NSTX-U

    NASA Astrophysics Data System (ADS)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  2. Observation of the second harmonic in Thomson scattering from relativistic electrons.

    PubMed

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V; Pogorelsky, Igor V; Siddons, David P; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-10

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and gamma-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  3. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  4. Quantum Joule-Thomson effect in a saturated homogeneous Bose gas.

    PubMed

    Schmidutz, Tobias F; Gotlibovych, Igor; Gaunt, Alexander L; Smith, Robert P; Navon, Nir; Hadzibabic, Zoran

    2014-01-31

    We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>10(9)  K/bar, about 10 orders of magnitude larger than observed in classical gases.

  5. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V.; Pogorelsky, Igor V.; Siddons, David P.; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-01

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and γ-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  6. Observations of stimulated Raman scattering using simultaneous Thomson scattering, fast electron spectroscopy, and infrared diagnostics

    SciTech Connect

    McIntosh, G.; Meyer, J.; Yazhou, Z.

    1986-10-01

    Stimulated Raman scattering (SRS) in a CO/sub 2/ laser(lambda/sub 0/ -- 10.6 ..mu..m) produced plasma has been studied experimentally. The enhanced electron plasma wave (epw) fluctuations observed with ruby laser Thomson scattering have been compared with the scattered infrared (IR) spectra and the high-energy (near 100 keV) electrons. No scattered IR light in the range 1.5lambda/sub 0/ Thomson scattered wave vector spectra.

  7. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  8. Quantum Joule-Thomson Effect in a Saturated Homogeneous Bose Gas

    NASA Astrophysics Data System (ADS)

    Schmidutz, Tobias F.; Gotlibovych, Igor; Gaunt, Alexander L.; Smith, Robert P.; Navon, Nir; Hadzibabic, Zoran

    2014-01-01

    We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>109 K /bar, about 10 orders of magnitude larger than observed in classical gases.

  9. Design of a submillimeter laser Thomson scattering system for measurement of ion temperature in SUMMA

    NASA Technical Reports Server (NTRS)

    Praddaude, H. C.; Woskoboinikow, P.

    1978-01-01

    A thorough discussion of submillimeter laser Thomson scattering for the measurement of ion temperature in plasmas is presented. This technique is very promising and work is being actively pursued on the high power lasers and receivers necessary for its implementation. In this report we perform an overall system analysis of the Thomson scattering technique aimed to: (1) identify problem areas; (2) establish specifications for the main components of the apparatus; (3) study signal processing alternatives and identify the optimum signal handling procedure. Because of its importance for the successful implementation of this technique, we also review the work presently being carried out on the optically pumped submillimeter CH3F and D2O lasers.

  10. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  11. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  12. A New Version of an Old Demonstration Experiment Using the Elihu Thomson Jumping Ring Apparatus

    NASA Astrophysics Data System (ADS)

    Foster, Theodore; Cary, Arthur; Mottmann, John; van Wyngaarden, Willem

    2016-11-01

    The goal of this paper is to make more widely known an eye-catching demonstration experiment in which a hanging conducting can is made to spin when placed near the iron core of an Elihu Thomson "jumping ring" apparatus. An explanation is given based on Faraday's law of induced voltages and the magnetic forces due to the core's fields interacting with the induced currents.

  13. Influence of the Thomson effect on the pulse heating of high-current electrical contacts

    NASA Astrophysics Data System (ADS)

    Merkushev, A. G.; Pavleino, M. A.; Pavleino, O. M.; Pavlov, V. A.

    2014-09-01

    Pulse heating of high-current contacts is notable for the presence of considerable temperature gradients in the contact area, which cause the Thomson effect—the appearance of thermoelectric currents. The amount of this effect against conventional Joule heat release is quantitatively estimated. Pulse heating of electrical contacts is numerically simulated with the use of the Comsol program package. It is demonstrated that thermoelectric currents make a negligible contribution to heating in the case of copper contacts.

  14. Development of an Internet-Enabled Tool for NSTX-U Thomson Diagnostic Data

    NASA Astrophysics Data System (ADS)

    Wallace, William; Diallo, Ahmed

    2016-10-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas.[1] OMFIT, from the General Atomics Fusion Theory Team, is a rich data workflow package used on DIII-D, NSTX-U, and other experiments to rapidly investigate and draw conclusions from collated data sets and simulations. OMFIT can also be used as a data access source into other toolkits and fusion analysis software. This project, written in Python and taking advantage of late-generation Internet software technologies, uses OMFIT to rapidly find and visualize Thomson diagnostic plasma characteristics enabling scientists to gain a quick understanding of shot behavior and timeframes.

  15. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)a)

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Brower, D. L.; Hartog, D. J. Den; Ding, W. X.; Duff, J.; Parke, E.

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec2 model may be insufficient; we present a more precise model with τ2-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  16. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  17. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A. R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Variola, A.

    2015-11-01

    A systematic study of the polarization of x-gamma rays produced in Thomson and Compton scattering is presented, in both classical and quantum schemes. Numerical results and analytical considerations let us to establish the polarization level as a function of acceptance, bandwidth and energy. Few sources have been considered: the SPARC_LAB Thomson device, as an example of a x-ray Thomson source, ELI-NP, operating in the gamma range. Then, the typical parameters of a beam produced by a plasma accelerator has been analyzed. In the first case, with bandwidths up to 10%, a contained reduction (<10 % ) in the average polarization occurs. In the last case, for the nominal ELI-NP relative bandwidth of 5 ×1 0-3 , the polarization is always close to 1. For applications requiring larger bandwidth, however, a degradation of the polarization up to 30% must be taken into account. In addition, an all optical gamma source based on a plasma accelerated electron beam cannot guarantee narrow bandwidth and high polarization operational conditions required in nuclear photonics experiments.

  18. Bayesian modelling of JET high resolution Thomson scattering system using the Minerva framework

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, Jakob; Bozhenkov, Sergey; Flanagan, Joanne; Kempenaars, Mark; Ghim, Young-Chul; JET Contributors Collaboration

    2016-10-01

    A Bayesian model for JET high resolution Thomson scattering (HRTS) system has been developed to infer electron temperature and density profiles. The model has been implemented in the Minerva framework. The HRTS system detects Thomson scattered photons from the injected 20 ns long laser pulse penetrating along the midplane of the JET at 63 spatial points on the low field side (R = 2.9 3.9 m) with 1 1.6 cm spatial resolution and 20 Hz repetition rate. The Selden-Matoba Thomson scattering model infers scattered and stray light intensities as well as associated uncertainties taking into account of photon statistics and electrical fluctuations. The Markov Chain Monte Carlo (MCMC) method explores the posterior distribution of the electron temperature and density profiles which explain both HRTS and the interferometry data simultaneously within their uncertainties. The electron temperature and density profiles are modelled via Gaussian processes mapped onto normalised flux coordinates. The electron density profiles are automatically calibrated through the inclusion of interferometers in the model.

  19. Design of an Optical Thomson Scattering diagnostic at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Galbraith, Justin; Datte, Phil; Ross, Steven; Swadling, George; Manuel, Stacie; Molander, Bill; Hatch, Ben; Manha, Dan; Vitalich, Mike; Petre, Brad

    2016-09-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Inertial Confinement Fusion program based on laser-target interactions. The Optical Thomson Scattering (OTS) diagnostic has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. A deep-UV probe beam is needed to overcome the large background of self-Thomson scattering produced by the 351nm (3ω) NIF drive beams. A two-phase approach to OTS on NIF will mitigate the risk presented by background levels. In Phase I, the diagnostic will assess background levels around a potential deep-UV probe wavelength considered for 5ω Thomson scattering measurements to be conducted in Phase II. The Phase I design of the diagnostic includes an unobscured collection telescope, dual crossed Czerny-Turner spectrometers, and the shared use of one streak camera located inside of an airbox. The Phase II design will include a 5ω probe laser. We will describe the engineering design and concept of operations of the Phase I NIF OTS diagnostic, with a focus on optomechanical disciplines.

  20. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  1. Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat

    NASA Astrophysics Data System (ADS)

    Kim, Hee Seok; Liu, Weishu; Ren, Zhifeng

    2015-09-01

    The maximum conversion efficiency of a thermoelectric module composed of p- and n-type materials has been widely calculated using a constant property model since the 1950s, but this conventional model is only valid in limited conditions and no Thomson heat is accounted for. Since Thomson heat causes the efficiency under- or over-rated depending on the temperature dependence of Seebeck coefficient, it cannot be ignored especially in large temperature difference between the hot and cold sides. In addition, incorrect Joule heat is taken into consideration for heat flux evaluation of a thermoelectric module at thermal boundaries due to the assumption of constant properties in the conventional model. For this reason, more practical predictions for efficiency and output power and its corresponding optimum conditions of p- and n-type materials need to be revisited. In this study, generic formulae are derived based on a cumulative temperature dependence model including Thomson effect. The formulae reliably predict the maximum efficiency and output power of a thermoelectric module at a large temperature.

  2. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  3. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    SciTech Connect

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  4. Ultraviolet Thomson Scattering from Two-Plasmon-Decay Electron Plasma Waves Driven by Multiple Laser Beams

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Henchen, R. J.; Hu, S. X.; Katz, J.; Michel, D. T.; Myatt, J. F.; Wen, H.; Froula, D. H.

    2014-10-01

    Thomson scattering is used to probe electron plasma waves (EPW's) driven by the common-wave two-plasmon-decay (TPD) instability near the quarter-critical density. Between two and five laser beams (λ3 ω = 351 nm) illuminated planar CH targets with 300- μm-diam (FWHM) laser spots with overlapped intensities ~1015 W/cm2. A 263-nm Thomson-scattering beam was used to probe densities ranging from 0.2 to 0.25 nc while k matching the TPD common wave. The Thomson-scattering spectra show two spectral peaks consistent with scattering from forward-scattered TPD common-wave EPW's and Langmuir decay of backscattered TPD waves. Broad TPD driven spectral features were observed in an alternate scattering configuration probing EPW k vectors that do not lie along a TPD maximum-growth hyperbola, consistent with TPD k-space saturation. Experimental results are compared to ZAK3D simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Hampson’s type cryocoolers with distributed Joule-Thomson effect for mixed refrigerants closed cycle

    NASA Astrophysics Data System (ADS)

    Maytal, Ben-Zion

    2014-05-01

    Most previous studies on Joule-Thomson cryocoolers of mixed refrigerants in a closed cycle focus on the Linde kind recuperator. The present study focuses on four constructions of Hampson’s kind miniature Joule-Thomson cryocoolers based on finned capillary tubes. The frictional pressure drop along the tubes plays the role of distributed Joule-Thomson expansion so that an additional orifice or any throttle at the cold end is eliminated. The high pressure tube is a throttle and a channel of recuperation at the same time. These coolers are tested within two closed cycle systems of different compressors and different compositions of mixed coolants. All tests were driven by the same level of discharge pressure (2.9 MPa) while the associated suction pressures and the associated reached temperatures are dependent on each particular cryocooler and on the closed cycle system. The mixture of higher specific cooling capacity cannot reach temperatures below 80 K when driven by the smaller compressor. The other mixture of lower specific cooling capacity driven by the larger compressor reaches lower temperatures. The examined parameters are the cooldown period and the reachable temperatures by each cryocooler.

  6. Laser Thomson scattering measurements of electron temperature and density in a hall-effect plasma

    NASA Astrophysics Data System (ADS)

    Washeleski, Robert L.

    Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method

  7. The influence of Thomson effect in the performance optimization of a two stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Kaushik, S. C.; Manikandan, S.

    2015-12-01

    The exoreversible and irreversible thermodynamic models of a two stage thermoelectric cooler (TTEC) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction effects have been investigated using exergy analysis. New expressions for the interstage temperature, optimum current for the maximum cooling power, energy and exergy efficiency conditions, energy efficiency and exergy efficiency of a TTEC are derived as well. The number of thermocouples in the first and second stages of a TTEC for the maximum cooling power, energy and exergy efficiency conditions are optimized. The results show that the exergy efficiency is lower than the energy efficiency e.g., in an irreversible TTEC with total 30 thermocouples, heat sink temperature (TH) of 300 K and heat source temperature (TC) of 280 K, the obtained maximum cooling power, maximum energy and exergy efficiency are 20.37 W, 0.7147 and 5.10% respectively. It has been found that the Thomson effect increases the cooling power and energy efficiency of the TTEC system e.g., in the exoreversible TTEC the cooling power and energy efficiency increased from 14.87 W to 16.36 W and from 0.4079 to 0.4998 respectively for ΔTC of 40 K when Thomson effect is considered. It has also been found that the heat transfer area at the hot side of an irreversible TTEC should be higher than the cold side for maximum performance operation. This study will help in the designing of the actual multistage thermoelectric cooling systems.

  8. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators

    SciTech Connect

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-03-01

    The possibility of producing femtosecond x-rays through Thomson scattering high power laser beams off laser wakefield generated relativistic electron beams is discussed. The electron beams are produced with either a self-modulated laser wakefield accelerator (SM-LWFA) or through a standard laser wakefield accelerator (LWFA) with optical injection. For a SM-LWFA (LWFA) produced electron beam, a broad (narrow) energy distribution is assumed, resulting in X-ray spectra that are broadband (monochromatic). Designs are presented for 3-100 fs x-ray pulses and the expected flux and brightness of these sources are compared.

  9. Possible Global Minimum Lattice Configurations for Thomson's Problem of Charges on a Sphere

    NASA Astrophysics Data System (ADS)

    Altschuler, Eric Lewin; Williams, Timothy J.; Ratner, Edward R.; Tipton, Robert; Stong, Richard; Dowla, Farid; Wooten, Frederick

    1997-04-01

    What configuration of N point charges on a conducting sphere minimizes the Coulombic energy? J. J. Thomson posed this question in 1904. For N<=112, numerical methods have found apparent global minimum-energy configurations; but the number of local minima appears to grow exponentially with N, making many such methods impractical. Here we describe a topological/numerical procedure that we believe gives the global energy minimum lattice configuration for N of the form N = 10\\(m2+n2+mn\\)+2 ( m, n positive integers). For those N with more than one lattice, we give a rule to choose the minimum one.

  10. Two new species of the genus Platambus Thomson, 1859 from China (Coleoptera: Dytiscidae, Agabinae).

    PubMed

    Hendrich, Lars; Przewoźny, Marek

    2015-04-15

    One new species of the genus Platambus Thomson, 1859 from Ganzi Tibetan Autonomous Prefecture, Sichuan Province (P. brancuccii sp. n.) and one from Chengdu, Sichuan Province (P. korgei sp. n.) are described. They belong to the Platambus semenowi-group sensu Nilsson (2000). Important species characters (median lobes and colour patterns) of the two new species are figured, and notes on their distribution are given. Altogether seven species of the semenowi-group are now known from higher mountain regions in Central Asia, northern India, Nepal, Bhutan, Pakistan and China. Six of them are illustrated with habitus photos and a modified key to all species of the semenowi-group is presented.

  11. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  12. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  13. Development of Thomson scattering system on Shenguang-III prototype laser facility.

    PubMed

    Gong, Tao; Li, Zhichao; Jiang, Xiaohua; Ding, Yongkun; Yang, Dong; Wang, Zhebin; Wang, Fang; Li, Ping; Hu, Guangyue; Zhao, Bin; Liu, Shenye; Jiang, Shaoen; Zheng, Jian

    2015-02-01

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10(21) cm(-3)) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  14. Thomson Reuters innovation award research brief: the use of patent analytics in measuring innovation in India.

    PubMed

    Stembridge, Bob

    2009-09-01

    There are six different factors that can be used to assess the inventiveness of an organization and to determine how efficiently they apply invention resources to innovate effectively. This research briefing describes the techniques used to measure certain aspects of patenting activity by Small and Medium-sized Enterprises (SMEs) headquartered in India. The techniques are used to identify the most innovative SMEs in India in order to determine the winners of the Innovation Award 2009 from Thomson Reuters, awarded at InfoVision 2009 in Bangalore.

  15. Generalized Thomson problem in arbitrary dimensions and non-euclidean geometries

    NASA Astrophysics Data System (ADS)

    Batle, J.; Bagdasaryan, Armen; Abdel-Aty, M.; Abdalla, S.

    2016-06-01

    Systems of identical particles with equal charge are studied under a special type of confinement. These classical particles are free to move inside some convex region S and on the boundary of it Ω (the S d - 1 -sphere, in our case). We shall show how particles arrange themselves under the sole action of the Coulomb repulsion in many dimensions in the usual Euclidean space, therefore generalizing the so called Thomson problem to many dimensions. Also, we explore how the problem varies when non-Euclidean geometries are considered. We shall see that optimal configurations in all cases possess a high degree of symmetry, regardless of the concomitant dimension or geometry.

  16. Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2013-07-01

    Micromachined Joule-Thomson coolers can be used for cooling small electronic devices. However, a critical issue for long-term operation of these microcoolers is the clogging caused by the deposition of water that is present as impurity in the working fluid. We present a model that describes the deposition process considering diffusion and kinetics of water molecules. In addition, the deposition and sublimation process was imaged, and the experimental observation fits well to the modeling predictions. By changing the temperature profile along the microcooler, the operating time of the microcooler under test at 105 K extends from 11 to 52 h.

  17. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung

    2013-09-01

    We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.

  18. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    SciTech Connect

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  19. Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas

    SciTech Connect

    Morita, T.; Kuramitsu, Y.; Moritaka, T.; Sakawa, Y.; Takabe, H.; Tomita, K.; Nakayama, K.; Inoue, K.; Uchino, K.; Ide, T.; Tsubouchi, K.; Nishio, K.; Ide, H.; Kuwada, M.

    2013-09-15

    We report the first direct measurement of temporally and spatially resolved plasma temperatures at a shock as well as its spatial structure and propagation in laser-produced counter-streaming plasmas. Two shocks are formed in counter-streaming collisionless plasmas early in time, and they propagate opposite directions. This indicates the existence of counter-streaming collisionless flows to keep exciting the shocks, even though the collisional effects increase later in time. The shock images are observed with optical diagnostics, and the upstream and downstream plasma parameters of one of the shocks are measured using Thomson scattering technique.

  20. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Sos, M.; Urban, J.; Hron, M.; Panek, R.

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  1. Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering

    NASA Astrophysics Data System (ADS)

    Belostotskiy, Sergey G.; Khandelwal, Rahul; Wang, Qiang; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2008-06-01

    Laser Thomson scattering in a novel, backscattered configuration was employed to measure the electron temperature (Te) and electron density (ne) in argon dc microdischarges, with an interelectrode gap of 600μm. Measurements were performed at the center of the gap that corresponds to the positive column. For 50mA microdischarge current and over the pressure range of 300-700Torr, the plasma parameters were found to be Te=0.9±0.3eV and ne=(6±3)×1013cm-3, in reasonable agreement with the predictions of a mathematical model.

  2. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    SciTech Connect

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  3. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  4. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak.

    PubMed

    Stefanikova, E; Peterka, M; Bohm, P; Bilkova, P; Aftanas, M; Sos, M; Urban, J; Hron, M; Panek, R

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  5. Edge Thomson scattering diagnostic on COMPASS tokamak: installation, calibration, operation, improvements.

    PubMed

    Bohm, P; Aftanas, M; Bilkova, P; Stefanikova, E; Mikulin, O; Melich, R; Janky, F; Havlicek, J; Sestak, D; Weinzettl, V; Stockel, J; Hron, M; Panek, R; Scannell, R; Frassinetti, L; Fassina, A; Naylor, G; Walsh, M J

    2014-11-01

    The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

  6. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak.

    PubMed

    Han, Xiaofeng; Shao, Chunqiang; Xi, Xiaoqi; Zhao, Junyu; Qing, Zang; Yang, Jianhua; Dai, Xingxing; Kado, Shinichiro

    2013-05-01

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences). After about one month trial running on the superconducting HT-7 (Hefei Tokamak-7) tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1 × 10(19) m(-3). Finally, the data processing method and experimental results are presented.

  7. Acta Dermatovenerologica Alpina, Pannonica et Adriatica accepted for coverage in Thomson Reuters' Emerging Sources Citation Index (ESCI).

    PubMed

    Poljak, Mario; Miljković, Jovan; Triglav, Tina

    2016-09-01

    Acta Dermatovenerologica Alpina, Pannonica et Adriatica (Acta Dermatovenerol APA) is the leading journal in dermatology and sexually transmitted infections in the region. Several important steps were taken during the last 25 years to improve the journal's quality, global visibility, and international impact. After a 1-year trial period, Thomson Reuters recently informed the editorial office that they had accepted Acta Dermatovenerol APA for coverage in Thomson Reuters' new index in the Web of Science Core Collection called the Emerging Sources Citation Index (ESCI). The coverage of Acta Dermatovenerol APA begins with the journal content published online in 2016; that is, from volume 25 onwards.

  8. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; Zhang, Jie

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  9. Numerical analysis of the Gibbs-Thomson effect on trench-filling epitaxial growth of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kazuhiro; Ji, Shiyang; Kosugi, Ryoji; Kojima, Kazutoshi; Yonezawa, Yoshiyuki; Okumura, Hajime

    2016-03-01

    A steady-state two-dimensional diffusion equation was numerically analyzed to examine the rate of homoepitaxial growth on a trenched 4H-SiC substrate. The radii of curvature at the top and bottom of the trenches were used to take the Gibbs-Thomson effect into account in the analysis based on the conventional boundary-layer model. When the trench pitch was less than or equal to 6.0 µm, the measured dependence of the growth rate on the trench pitch was found to be explained by the Gibbs-Thomson effect on the vapor-phase diffusion of growing species.

  10. Electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Ohta, K.; Wang, X.; Morishita, M.; Chikatsu, M.; Shima, Y.; Kohagura, J.; Yasuhara, R.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Kawataha, K.; Minami, T.

    2015-08-01

    A multi-pass (MP) Thomson scattering (TS) system modeled on the GAMMA 10/PDX TS system was constructed for enhancing the Thomson scattered signals. The MPTS system has a polarization-based configuration with an image relaying system. The former MPTS system in GAMMA 10/PDX can measure only four passing signals. We changed the larger aperture polarization control device for improving the MP laser confinement and obtaining the over four passing MPTS signals. The integrated MPTS signals increased about 1.2 times larger than that in the former system.

  11. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  12. High-Repetition-Rate Laser for Thomson Scattering on the MST Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Young, William C.; Morton, L. A.; Parke, E.; den Hartog, D. J.; MST Team

    2013-10-01

    The MST Thomson scattering diagnostic has operated with a new, high-repetition-rate laser system, demonstrating 2 J pulses at repetition rates up to 50 kHz. The pulse repetition rate can maintain 2 J pulses for bursts of 5 kHz (sustained for 5 ms), to 50 kHz (for 10 bursts of 240 μs each). The 1064 nm laser currently employs a q-switched, diode pumped Nd:YVO4 master oscillator, four Nd:YAG amplifier stages, and a Nd:glass amplifier. The future implementation of the full laser as designed, including a second Nd:glass amplifier, is expected to produce bursts of 2 J pulses at a repetition rate of at least 250 kHz. The new laser integrates with the same collection optics and detectors as used by the present MST Thomson scattering system: 21 spatial points across the MST minor radius with sensitivity over a 10 eV-5 keV range. Initial results will be presented from application of this diagnostic to parametric scans of MST plasmas, evolution of energy confinement during spontaneous enhanced confinement periods, and non-Maxwellian electron distributions. Work Supported by the U. S. Department of Energy and National Science Foundation.

  13. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    SciTech Connect

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H. G.

    2005-09-26

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics.

  14. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Z-pinch Plasma Temperature and Implosion Velocity from Laboratory Plasma Jets using Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Kusse, Bruce; Hammer, David

    2016-10-01

    We discuss the use of collective Thomson scattering to determine the implosion velocity and other properties of laboratory plasma jets. The plasma jet is created using a 1 MA pulsed power machine with a 15 μm Al radial foil load. The Thomson scattering laser has a maximum energy of 10 J at 526.5 nm with a pulse duration of 3 ns. Using a time gated ICCD camera and spectrometer system we are able to record the scattered spectrum from 9 or 18 regions along the laser path with sub-mm spatial resolution. Collecting scattered radiation from the same area at two different angles simultaneously enables determination of both the radial and azimuthal velocities. The scattered spectrum for non-magnetized jets indicates a radial implosion velocity of 27 km/s into the jets. A determination of ion and electron temperatures from the scattered spectrum is in progress. Comparing results using a laser energy of 10 J and 1 J shows noticeable effects on plasma jet properties when using 10 J. Therefore the lower laser energy must be used to determine the plasma properties. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  16. Prospects for measuring shifted- and non-Maxwellian electron distributions with Thomson scattering on MST

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; den Hartog, D. J.; Dubois, A. M.; Morton, L. A.; Young, W. C.

    2016-10-01

    Recent measurements using a high-time-resolution soft x-ray spectrometer on MST suggest that a non-Maxwellian, energetic electron tail is generated during magnetic reconnection events. This has motivated the addition to the Thomson scattering (TS) diagnostic of the capability to measure shifted- and non-Maxwellian distribution functions. To that end, an 1140 nm centerline filter with 80 nm bandwidth has been installed in nine of 21 polychromators. This filter supplements a filter set that covers from approximately 715 nm to 1065 nm, used to measure Thomson scattered light from the 1064 nm YAG laser line. Simulations being performed will assess whether the TS diagnostic with the upgraded filter set will be capable of detecting a small population (around 5% of the electron density) of energetic electrons, and whether an eight-channel polychromator, which has increased resolution but also is inherently more noisy, provides a better fit than a six-channel polychromator. This work is supported by the U.S. DOE and NSF.

  17. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    SciTech Connect

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L.; Dayeh, Shadi A.; Wu, Tom

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

  18. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    DOE PAGES

    Shen, Youde; Chen, Renjie; Yu, Xuechao; ...

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less

  19. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    DOE PAGES

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm–3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less

  20. First results from the Thomson scattering diagnostic on proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Meitner, S.; Rapp, J.; Ray, H.; Shaw, G.

    2016-11-01

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating Te ˜ 2 eV and ne ˜ 1 × 1019 m-3. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  1. X-ray Thomson scattering measurement of temperature in warm dense carbon

    NASA Astrophysics Data System (ADS)

    Falk, K.; Fryer, C. L.; Gamboa, E. J.; Greeff, C. W.; Johns, H. M.; Schmidt, D. W.; Šmíd, M.; Benage, J. F.; Montgomery, D. S.

    2017-01-01

    A novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1-100 eV) is a challenging yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20-30 eV.

  2. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    NASA Astrophysics Data System (ADS)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  3. Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering

    SciTech Connect

    Beausang, K. V.; Prunty, S. L.; Scannell, R.; Beurskens, M. N.; Walsh, M. J.; Collaboration: JET EFDA Contributors

    2011-03-15

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6-7 keV, where in some cases the ECE electron temperature measurements can be 15%-20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  4. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

  5. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    SciTech Connect

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; Pak, A.; Ma, T.; Doppner, T.; Fortmann, C.; Divol, L.; Landen, O. L.; Vorberger, J.; Chapman, D. A.; Gericke, D. O.; Falcone, R. W.

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ρ > 6 g cm–3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

  6. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    SciTech Connect

    Fletcher, L. B.; Kritcher, A.; Pak, A.; Ma, T.; Döppner, T.; Divol, L.; Landen, O. L.; Glenzer, S. H.; Fortmann, C.; Vorberger, J.; Gericke, D. O.; Chapman, D. A.; Falcone, R. W.

    2013-05-15

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ρ > 6 g cm{sup −3}. In addition, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

  7. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    PubMed

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  8. McDuffie County Schools in Thomson Ga. Awarded $85,000 in EPA Rebates to Fund Cleaner School Buses

    EPA Pesticide Factsheets

    ATLANTA --- The U.S. Environmental Protection Agency (EPA) announced today that McDuffie County Schools in Thomson Ga. i s one of 85 school bus fleets in 35 states to receive rebates through EPA's Diesel Emissions Reduction Act (DERA) funding.

  9. Geologic Model for Oil and Gas Assessment of the Kemik-Thomson Play, Central North Slope, Alaska

    USGS Publications Warehouse

    Schenk, Christopher J.; Houseknecht, David W.

    2008-01-01

    A geologic model was developed to assess undiscovered oil and gas resources in the Kemik-Thomson Play of the Central North Slope, Alaska. In this model, regional erosion during the Early Cretaceous produced an incised valley system on the flanks and crest of the Mikkelsen High and formed the Lower Cretaceous unconformity. Locally derived, coarse-grained siliciclastic and carbonate detritus from eroded Franklinian-age basement rocks, Carboniferous Kekiktuk Conglomerate (of the Endicott Group), Lisburne Group, and Permian-Triassic Sadlerochit Group may have accumulated in the incised valleys during lowstand and transgression, forming potential reservoirs in the Lower Cretaceous Kemik Sandstone and Thomson sandstone (informal term). Continued transgression resulted in the deposition of the mudstones of the over-lying Cretaceous pebble shale unit and Hue Shale, which form top seals to the potential reservoirs. Petroleum from thermally mature facies of the Triassic Shublik Formation, Jurassic Kingak Shale, Hue Shale (and pebble shale unit), and the Cretaceous-Tertiary Canning Formation might have charged Thomson and Kemik sandstone reservoirs in this play during the Tertiary. The success of this play depends largely upon the presence of reservoir-quality units in the Kemik Sandstone and Thomson sandstone.

  10. Public Data Set: A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment

    SciTech Connect

    Schlossberg, David J.; Bodner, Grant M.; Reusch, Joshua A.; Bongard, Michael W.; Fonck, Raymond J.; Rodriguez Sanchez, Cuauhtemoc

    2016-09-16

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et. al., 'A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment,' Rev. Sci. Instrum. 87, 11E403 (2016).

  11. 77 FR 44221 - Notice of Availability of the Final Environmental Impact Statement for the Proposed Point Thomson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... November 1, 2011. The Applicant's project purpose is to initiate commercial liquid hydrocarbon production (natural gas condensate) and delineate and evaluate hydrocarbon resources in the Point Thomson area. Two... mile long gravel airstrip; 3 hydrocarbon production and/or processing gravel pads; several miles of...

  12. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter

    NASA Astrophysics Data System (ADS)

    Johnson, W. R.; Nilsen, J.

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  13. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    SciTech Connect

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  14. Thomson scattering measurement of a collimated plasma jet generated by a high-power laser system

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Sakawa, Y.; Morita, T.; Yamaura, Y.; Kuramitsu, Y.; Moritaka, T.; Sano, T.; Shimoda, R.; Tomita, K.; Uchino, K.; Matsukiyo, S.; Mizuta, A.; Ohnishi, N.; Crowston, R.; Woolsey, N.; Doyle, H.; Gregori, G.; Koenig, M.; Michaut, C.; Pelka, A.; Yuan, D.; Li, Y.; Zhang, K.; Zhong, J.; Wang, F.; Takabe, H.

    2016-03-01

    One of the important and interesting problems in astrophysics and plasma physics is collimation of plasma jets. The collimation mechanism, which causes a plasma flow to propagate a long distance, has not been understood in detail. We have been investigating a model experiment to simulate astrophysical plasma jets with an external magnetic field [Nishio et al., EPJ. Web of Conferences 59, 15005 (2013)]. The experiment was performed by using Gekko XII HIPER laser system at Institute of Laser Engineering, Osaka University. We shot CH plane targets (3 mm × 3 mm × 10 μm) and observed rear-side plasma flows. A collimated plasma flow or plasma jet was generated by separating focal spots of laser beams. In this report, we measured plasma jet structure without an external magnetic field with shadowgraphy, and simultaneously measured the local parameters of the plasma jet, i.e., electron density, electron and ion temperatures, charge state, and drift velocity, with collective Thomson scattering.

  15. Pulse-burst laser systems for fast Thomson scattering (invited)a)

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Ambuel, J. R.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Holly, D. J.; Parke, E.; Reusch, J. A.; Robl, P. E.; Stephens, H. D.; Yang, Y. M.

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  16. Experimental Demonstration of Incoherent and Coherent Relativistic Thomson Scattering in Plasmas

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald; Chen, Szu-Yuan; Maksimchuk, Anatoly

    2000-04-01

    Short-wavelength ultrashort-duration laser-produced light sources enable a marriage between observations on the ultra-fast with those on the ultra-small scales, giving scientists novel and exciting research capabilities. We discuss recent experimental results on relativistic Thomson scattering from free electrons in plasmas, which may lead to such a source. In this case, electrons radiate harmonics due to their highly nonlinear relativistic motion in the focus of an intense laser field (10^18 W/cm^2 for 1-μm light). Results on both incoherent and phase-matched harmonic generation by this novel mechanism are described. In the latter case, we report the observation of a five-degree cone of third-harmonic emission in the forward direction.

  17. Initial results of the high resolution edge Thomson scattering upgrade at DIII-Da)

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Bray, B. D.; Deterly, T. M.; Liu, C.; Watkins, M.; Groebner, R. J.; Leonard, A. W.; Osborne, T. H.; Snyder, P. B.; Boivin, R. L.; Tynan, G. R.

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ˜3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  18. Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4.

    PubMed

    Xu, Xiaohua; Liu, Yilun

    2009-03-04

    Human RECQ helicases have been linked to distinct clinical diseases with increased cancer rates and premature ageing. All RECQ proteins, except RECQ4, have been shown to be functional helicases. Mutations in RECQ4 lead to Rothmund-Thomson syndrome (RTS), and mouse models reveal that the conserved helicase motifs are required for avoidance of RTS. Furthermore, the amino (N) terminus of RECQ4 shares homology with yeast DNA replication initiation factor, Sld2, and is vital for embryonic development. Here, in contrast to previous reports, we show that RECQ4 exhibits DNA helicase activity. Importantly, two distinct regions of the protein, the conserved helicase motifs and the Sld2-like N-terminal domain, each independently promote ATP-dependent DNA unwinding. Taken together, our data provide the first biochemical clues underlying the molecular function of RECQ4 in DNA replication and genome maintenance.

  19. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2009-05-07

    Spectrally resolved Thomson scattering using ultra-fast K-{alpha} x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10{sup 23}cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  20. Note: Multi-pass Thomson scattering measurement on the TST-2 spherical tokamak

    SciTech Connect

    Togashi, H. Ejiri, A.; Hiratsuka, J.; Nakamura, K.; Takase, Y.; Yamaguchi, T.; Furui, H.; Imamura, K.; Inada, T.; Kakuda, H.; Nakanishi, A.; Oosako, T.; Shinya, T.; Sonehara, M.; Tsuda, S.; Tsujii, N.; Wakatsuki, T.; Hasegawa, M.; Nagashima, Y.; Narihara, K.; and others

    2014-05-15

    In multi-pass Thomson scattering (TS) scheme, a laser pulse makes multiple round trips through the plasma, and the effective laser energy is enhanced, and we can increase the signal-to-noise ratio as a result. We have developed a coaxial optical cavity in which a laser pulse is confined, and we performed TS measurements using the coaxial cavity in tokamak plasmas for the first time. In the optical cavity, the laser energy attenuation was approximately 30% in each round trip, and we achieved a photon number gain of about 3 compared with that obtained in the first round trip. In addition, the temperature measurement accuracy was improved by accumulating the first three round trip waveforms.

  1. Subnanosecond Thomson scattering on a vacuum arc discharge in tin vapor.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Banine, V

    2005-08-01

    In a previous series of Thomson scattering (TS) experiments on an extreme ultraviolet producing vacuum arc discharge in tin vapor, background radiation emitted by the plasma was found to make measurements impossible for all parts of the discharge except the prepinch phase. To reduce the level of recorded background radiation, we have built a setup for time and space resolved subnanosecond TS. Results obtained with this new setup are presented for experiments on previously inaccessible parts of the discharge--the ignition phase, pinch phase, and decay phase. For the first two, measurements have been performed at different heights in the plasma. Electron densities for the pinch phase have been derived. For the decay phase, the electron densities confirm previous Stark broadening data. From the overall results, a more complete picture of the plasma evolution can be formed.

  2. Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

    SciTech Connect

    Alvarez-Estrada, R. F.; Pastor, I.; Guasp, J.; Castejon, F.

    2012-06-15

    The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.

  3. Development of Thomson scattering system on Shenguang-III prototype laser facility

    SciTech Connect

    Gong, Tao; Li, Zhichao; Jiang, Xiaohua; Ding, Yongkun Yang, Dong; Wang, Zhebin; Wang, Fang; Li, Ping; Liu, Shenye; Jiang, Shaoen; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  4. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    SciTech Connect

    Stejner, M. Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M.; Moseev, D.; Schubert, M.; Stober, J.; Wagner, D. H.

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  5. Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Freeman, B. D.; Phillips, J. R.

    The Joule-Thomson expansion of hydrogen gas offers the potential for efficient and reliable cryocoolers to produce temperatures between 10 and 50 K. A critical component of the development of these devices is the metal-hydride storage bed that provides a nonmechanical method to compress the hydrogen gas via the reversible absorption by the appropriate metals or alloys. The influences of the thermophysical properties of these metal hydrides as well as compressor design constraints on the performance potentials of hydrogen sorption refrigerators are examined. A thermodynamics model is used to calculate the impact of operational parameters such as input/output pressure ratios and bed temperature on system efficiency. Detailed comparisons are reported for a compressor which utilizes vanadium metal as the sorbent for either hydrogen or deuterium where the unusually large isotope differences between VH(x) and VD(x) are considered.

  6. Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    NASA Astrophysics Data System (ADS)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2014-11-01

    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20 /Cu / Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs in the voltage-current relationships, dominated by nonlinear contributions of the temperature-dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher-order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating starts to dominate over Peltier heating. Our results signify the importance of local equilibrium (linearity) for the validity of this phenomenological reciprocity relation.

  7. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurementsa)

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Meo, F.; Korsholm, S. B.; Bindslev, H.; Furtula, V.; Kantor, M.; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.

    2012-10-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic on TEXTOR without a source of probing radiation in discharges with sawtooth oscillations, an elevation angle misalignment of 0.9° was found with an accuracy of 0.25°.

  8. Electron Beam Production and Characterization for the PLEIADES Thomson X-ray Source

    SciTech Connect

    Brown, W J; Hartemann, F V; Tremaine, A M; Springer, P T; Le Sage, G P; Barty, C P J; Rosenzweig, J B; Crane, J K; Cross, R R; Fittinghoff, D B; Gibson, D J; Slaughter, D R; Anderson, S

    2002-10-14

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 {pi}mm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 10{sup 20} photons/s/mm{sup 2}/mrad{sup 2}/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed.

  9. Narrow bandwidth Thomson photon source development using Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Geddes, C. G. R.; van Tilborg, J.; Tsai, H.-E.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Rykovanov, S. G.; Grote, D. P.; Friedman, A.; Leemans, W. P.

    2016-10-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs). An independent scattering laser with controlled pulse shaping in frequency and amplitude can be used together with laser guiding to realize high photon yield and narrow bandwidth. Simulations are presented on production of controllable narrow bandwidth sources using the beam and plasma capabilities of LPAs. Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV Thomson sources. Design of experiments and laser capabilities to combine these elements will be presented, towards a compact photon source system. A dedicated facility under construction will be described. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  10. Modified Thomson spectrometer design for high energy, multi-species ion sources.

    PubMed

    Gwynne, D; Kar, S; Doria, D; Ahmed, H; Cerchez, M; Fernandez, J; Gray, R J; Green, J S; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Ruiz, J A; Schiavi, A; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2014-03-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

  11. Thomson Scattering and Spectroscopy Diagnostics for Low Frequency Turbulence Produced in Dual-wire Implosions

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Hamilton, Andy; Main, Daniel; Zechar, Nate; Sotnikov, Vladimir

    2015-11-01

    Low frequency plasma turbulence can be driven by the presence of inhomogeneity in density, temperature, magnetic field, or by velocity shear. Low Frequency instabilities can play an important role in many different types of processes, such as magnetic reconnection, plasma structuring in the ionosphere's F-layer, structuring of laser-produced plasmas in external magnetic field, and anomalous diffusion processes in theta-pinch and Z-pinch plasmas. We plan to carry out experiments at the Air Force Research Laboratory using a pulsed power generator to study two-wire implosions and the generation of the Lower-Hybrid Drift Instability in the vicinity of the reconnection region. In this work, we develop the Thomson scattering and visible spectroscopy diagnostics that will be ultimately used to characterize the plasma in these types of experiments. Work was performed under the auspices of the Air Force Research Laboratory by Riverside Research, under contract BAA-RQKS-2014-0009.

  12. Sub-MeV tunably polarized X-ray production with laser Thomson backscattering

    SciTech Connect

    Kawase, K.; Kando, M.; Hayakawa, T.; Daito, I.; Kondo, S.; Homma, T.; Kameshima, T.; Kotaki, H.; Chen, L.-M.; Fukuda, Y.; Faenov, A.; Shizuma, T.; Fujiwara, M.; Bulanov, S. V.; Kimura, T.; Tajima, T.

    2008-05-15

    Reported in this article is the generation of unique polarized x-rays in the sub-MeV region by means of the Thomson backscattering of the Nd:YAG laser photon with a wavelength of 1064 nm on the 150 MeV electron from the microtron accelerator. The maximum energy of the x-ray photons is estimated to be about 400 keV. The total energy of the backscattered x-ray pulse is measured with an imaging plate and a LYSO scintillator. The angular divergence of the x-rays is also measured by using the imaging plate. We confirm that the x-ray beam is polarized according to the laser polarization direction with the Compton scattering method. In addition, we demonstrate the imaging of the object shielded by lead with the generated x-rays.

  13. Conceptual design of the collection optics for the edge Thomson scattering system in ITER

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Kusama, Y.; Suitoh, S.; Aida, Y.

    2010-10-15

    Neutron and gamma-ray irradiation complicates the design of the edge Thomson scattering (TS) system in ITER. The TS light is relayed through the relaying optics with labyrinth and fiber coupling optics. Electron density of 2x10{sup 19} m{sup -3} is sufficient to measure T{sub e} and n{sub e} within a 10% and 5% margin of error, respectively, with a spatial resolution of 5 mm. This system can cover from 0.85 to 1 of the normalized minor radius. The time resolution is 10 ms, which is determined by the repetition rate of the laser device. A super-Gaussian is the ideal laser profile for the laser injection optics to avoid a breakdown of the filling gas used in density calibration through Raman scattering.

  14. Conceptual design of the collection optics for the edge Thomson scattering system in ITERa)

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Aida, Y.; Kusama, Y.

    2010-10-01

    Neutron and gamma-ray irradiation complicates the design of the edge Thomson scattering (TS) system in ITER. The TS light is relayed through the relaying optics with labyrinth and fiber coupling optics. Electron density of 2×1019 m-3 is sufficient to measure Te and ne within a 10% and 5% margin of error, respectively, with a spatial resolution of 5 mm. This system can cover from 0.85 to 1 of the normalized minor radius. The time resolution is 10 ms, which is determined by the repetition rate of the laser device. A super-Gaussian is the ideal laser profile for the laser injection optics to avoid a breakdown of the filling gas used in density calibration through Raman scattering.

  15. Development of a single-shot-imaging thin film for an online Thomson parabola spectrometer

    SciTech Connect

    Sakaki, H.; Fukuda, Y.; Nishiuchi, M.; Hori, T.; Yogo, A.; Jinno, S.; Kanasaki, M.; Niita, K.

    2013-01-15

    A single-shot-imaging thin scintillator film was developed for an online Thomson parabola (TP) spectrometer and the first analysis of laser accelerated ions, using the online TP spectrometer, was demonstrated at the JAEA-Kansai Advanced Relativistic Engineering Laser System (J-KAREN). An energy spectrum of {approx}4.0 MeV protons is obtained using only this imaging film without the need of a microchannel plate that is typically utilized in online ion analyses. A general-purpose Monte Carlo particle and heavy ion-transport code system, which consists of various quantum dynamics models, was used for the prediction of the luminescent properties of the scintillator. The simulation can reasonably predict not only the ion trajectories detected by the spectrometer, but also luminescence properties.

  16. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  17. Modified Thomson spectrometer design for high energy, multi-species ion sources

    SciTech Connect

    Gwynne, D.; Kar, S. Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-03-15

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

  18. Peltier's and Thomson's coefficients of thermoelectric phenomena in the observable formulation.

    PubMed

    Garrido, Javier

    2009-04-15

    Four transport coefficients characterize the thermoelectric properties of materials. Three of them are widely measured and studied. But the number of references on the Peltier coefficient are very limited. This unequal result is a consequence of the Onsager reciprocal relation (ORR). A review on the preciseness and accuracy of Peltier coefficient measurements has been developed in this paper. Thus we can appreciate a low level in the experimental confirmation for the ORR. In order to describe the thermoelectric processes in an advantageous way, the observable formulation has been used. This is characterized by the electric potential measured at the probe terminals and for the heat flux which the conductor laterally dissipates. The energy balance provides the basic relationships among the observables and the Peltier and Thomson coefficients. A new way for measuring the Peltier coefficient has been suggested.

  19. Investigation of X-Ray Thomson Scattering Using A Statistical Approach

    NASA Astrophysics Data System (ADS)

    Johnson, Laura

    2014-10-01

    We present a statistical method of computing x-ray Thomson scattering signals. This model uses average atom wave functions for both bound and continuum electrons, which are computed in a spherically symmetric, self-consistent potential. The wave functions are used to obtain electron distributions for a statistical approach to computing the scattering signals. We compare the differences between using distorted-wave continuum electrons and free-wave electrons in both the statistical approach and the impulse approximation. The results are compared to various experiments including experimental data taken at Cornell's Laboratory of Plasma Studies. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  20. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    NASA Astrophysics Data System (ADS)

    Luo, W.; Zhuo, H. B.; Ma, Y. Y.; Song, Y. M.; Zhu, Z. C.; Yu, T. P.; Yu, M. Y.

    2013-10-01

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 106 photons/s in the form of ˜160 as pulses in the range of 3-300 keV are predicted, with a peak brightness of ≥5 × 1020 photons/(s mm2 mrad2 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed "attosecond physics."

  1. Gibbs-Thomson condition for the rapidly moving interface in a binary system

    NASA Astrophysics Data System (ADS)

    Salhoumi, A.; Galenko, P. K.

    2016-04-01

    Using a phase-field model for fast phase transformations we derive an interface condition for the rapidly moving solid-liquid interface. The model is described by equations for the hyperbolic transport and fast interface dynamics, which are reduced to a sole equation of the phase field with the driving force given by deviations of temperature and concentration from their equilibrium values within the diffuse interface. It is shown that the obtained interface condition presents the acceleration- and velocity-dependent Gibbs-Thomson interfacial condition. This condition is identical to the advanced Born-Infeld equation for the hyperbolic motion by mean curvature with the driving force. As a limiting case, the interface condition presents "velocity-driving force" relationships found earlier as traveling wave solutions for slow and fast phase field profiles. Predictions of the analytical solutions are qualitatively compared with literature data of atomistic simulations on crystal growth kinetics.

  2. Use of fast scopes to enable Thomson scattering measurement in presence of fluctuating plasma light.

    SciTech Connect

    McLean, H; Moller, J; Hill, D

    2004-04-19

    The addition of inexpensive high-speed oscilloscopes has enabled higher Te Thomson scattering measurements on the SSPX spheromak. Along with signal correlation techniques, the scopes allow new analyses based on the shape of the scattered laser pulse to discriminate against fluctuating background plasma light that often make gated-integrator measurements unreliable. A 1.4 J Nd:YAG laser at 1064 nm is the scattering source. Spatial locations are coupled by viewing optics and fibers to 4-wavelength-channel filter polychrometers. Ratios between the channels determine Te while summations of the channels determine density. Typically, the channel that provides scattered signal at higher Te is contaminated by fluctuating background light. Individual channels are correlated with either a modeled representation of the laser pulse or a noise-free stray light signal to extract channel amplitudes.

  3. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Jenei, A.; Döppner, T.; Falcone, R. W.; Kraus, D.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.

    2016-11-01

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  4. Data-driven sensitivity inference for Thomson scattering electron density measurement systems

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  5. Temporal Evolution of Self-Modulated Laser Wakefields Measured by Coherent Thomson Scattering

    SciTech Connect

    Ting, A.; Krushelnick, K.; Moore, C.I.; Burris, H.R.; Esarey, E.; Krall, J.; Sprangle, P. |

    1996-12-01

    Coherent Thomson scattering of a picosecond probe laser was used to measure the time evolution of plasma wakefields produced by a high intensity laser pulse (7{times}10{sup 18} W/cm{sup 2}) in an underdense plasma ({ital n}{sub {ital e}}{approx_equal}10{sup 19} cm{sup {minus}3}) in the self-modulated laser wakefield accelerator configuration. Large amplitude plasma wakefields which lasted less than 5ps were observed to decay into ion acoustic waves. The time scales associated with these measurements were consistent with the effects of the modulational instability and the enhancement of scattered signal from plasma channel formation. {copyright} {ital 1996 The American Physical Society.}

  6. The development of the refractive state in the newborn Thomson gazelle.

    PubMed

    Ofri, R; Millodot, S; Tadmor, Y; Matalon, E; Kass, P H; Horowitz, I H; Millodot, M

    2004-10-01

    Changes in refractive error during the first 3 months of life were studied retinoscopically in six Thomson gazelles ( Gazella thomsoni). Animals were hand-raised to allow repeat testing over time without chemical restraint. Refraction results were correlated with ultrasound measurements of intraocular dimensions, and with values in adult gazelles. Gazelles are born hyperopic with a mean refractive error of 3.44+/-0.31 D. By day 50, the animals are virtually emmetropic (0.13+/-0.21 D) and remain so in adulthood (0.03+/-0.09 D). The refractive error is highly correlated with the axial length ( r(2)=0.96) and with the vitreous chamber depth ( r(2)=0.83), but not with anterior chamber depth. Significant with-the-rule astigmatism was recorded ( P<0.001).

  7. Narrow bandwidth Thomson photon source and diagnostic development using laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Tsai, Hai-En; van Tilborg, Jeroen; Benedetti, Carlo; Esarey, Eric; Friedman, Alex; Grote, David; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Steinke, Sven; Swanson, Kelly; Toth, Csaba; Vay, Jean-Luc; Vetter, Kai; Zhang, Yigong; Leemans, Wim

    2017-03-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs), and these sources at the same time provide precision diagnostics of beam evolution to support LPA development. We review design of experiments and laser capabilities to realize a photon source, integrating LPA acceleration for compactness, control of scattering to increase photon flux, and electron deceleration to mitigate beam dump size. These experiments are developing a compact photon source system with the potential to enable new monoenergetic photon applications currently restricted by source size, including nuclear nonproliferation. Diagnostic use of the energy-angle spectra of Thomson scattered photons is presented to support development of LPAs to meet the needs of advanced high yield/low-energy-spread photon sources and future high energy physics colliders.

  8. Design of a valved moving magnet type linear compressor for a Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Wang, W. W.; Wang, L. Y.; Gan, Z. H.

    2014-01-01

    For temperatures around 4-6 K, Joule-Thomson (J-T) cryocoolers can achieve a higher efficiency than Stirling or pulse tube cryocoolers thus have been widely used in space. It is crucial for a J-T compressor to obtain a relatively high pressure ratio. With this concept, a valved moving magnet type linear compressor has been designed. This paper describes the design method and component structure of the linear compressor in detail. The electromagnetic force of linear motor, stiffness and stress distribution of flexure springs were calculated based on finite element method (FEM). System resonance was specially considered to achieve a high efficiency, and system vibration and heat dissipation problems were discussed. The design goal of the linear compressor is to achieve an efficiency of 80% and a lifetime longer than 5 years.

  9. Stabilization of needle-crystals by the Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Pillet, C.-A.

    1991-09-01

    We develop a scheme based on pseudo-differential operators to analyze the propagation of excitations in inhomogeneous extended systems. This method is used in a very specific situation, however we think that it has some generality and should apply to various other problems of current interest. We study the well known two-dimensional symmetric model of solidification introduced by Langer and Turski. Assuming the existence of Ivantsov-like steady-state solutions, we calculate their excitation spectrum. We show that there are no unstable propagating modes if the Gibbs-Thomson effect is taken into account. This proves that the growth of needle-crystals is stable with respect to side-branching.

  10. The Gibbs Thomson effect in magnetron-sputtered austenitic stainless steel films

    NASA Astrophysics Data System (ADS)

    Cusenza, S.; Borchers, C.; Carpene, E.; Schaaf, P.

    2007-03-01

    Magnetron sputtering of austenitic stainless steel AISI 316, which has a face-centred cubic structure (γ), leads to films exhibiting a body-centred cubic (α) structure or a mixture of α- and γ-phases. The microstructure of the deposited films was studied by Mössbauer spectroscopy, x-ray diffraction and transmission electron microscopy. With increasing deposition temperature a phase transformation from α- to γ-phase was observed in these films. Instantaneous recording of the electromotive force shows that nickel content and deposition temperature are crucial factors for phase stability and phase formation. In room temperature deposited stainless steel films, the phase transformation after vacuum annealing can be described by the Johnson-Mehl-Avrami kinetic model. These phase transformations in stainless steel films during annealing can be explained with the Gibbs-Thomson effect, where the grain boundary energy raises the Gibbs free energy.

  11. Gifford-McMahon/Joule-Thomson Refrigerator Cools to 2.5 K

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Fernandez, Jose; Hanson, Theodore

    2005-01-01

    A compact refrigerator designed specifically for cooling a microwave maser low-noise amplifier is capable of removing heat at a continuous rate of 180 mW at a temperature of 2.5 K. This refrigerator is a combination of (1) a commercial Gifford-McMahon (GM) refrigerator nominally rated for cooling to 4 K and (2) a Joule-Thomson (J-T) circuit. The GM refrigerator pre-cools the J-T circuit, which provides the final stage of cooling. The refrigerator is compact and capable of operating in any orientation. Moreover, in comparison with a typical refrigerator heretofore used to cool a maser to 4.5 K, this refrigerator is simpler and can be built at less than half the cost.

  12. Laser system for high resolution Thomson scattering diagnostics on the COMPASS tokamak.

    PubMed

    Bohm, P; Sestak, D; Bilkova, P; Aftanas, M; Weinzettl, V; Hron, M; Panek, R; Baillon, L; Dunstan, M R; Naylor, G; Walsh, M J

    2010-10-01

    A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

  13. Peltier's and Thomson's coefficients of thermoelectric phenomena in the observable formulation

    NASA Astrophysics Data System (ADS)

    Garrido, Javier

    2009-04-01

    Four transport coefficients characterize the thermoelectric properties of materials. Three of them are widely measured and studied. But the number of references on the Peltier coefficient are very limited. This unequal result is a consequence of the Onsager reciprocal relation (ORR). A review on the preciseness and accuracy of Peltier coefficient measurements has been developed in this paper. Thus we can appreciate a low level in the experimental confirmation for the ORR. In order to describe the thermoelectric processes in an advantageous way, the observable formulation has been used. This is characterized by the electric potential measured at the probe terminals and for the heat flux which the conductor laterally dissipates. The energy balance provides the basic relationships among the observables and the Peltier and Thomson coefficients. A new way for measuring the Peltier coefficient has been suggested.

  14. Radial Electron Temperature and Density Measurements Using Thomson Scattering System in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Ohta, K.; Wang, X.; Chikatsu, M.; Kohagura, J.; Shima, Y.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Yasuhara, R.; Yamada, I.; Funaba, H.; Minami, T.

    2015-11-01

    A Thomson scattering (TS) system in GAMMA 10/PDX has been developed for the measurement of radial profiles of electron temperature and density in a single plasma and laser shot. The TS system has a large solid angle optical collection system and high-sensitivity signal detection system. The TS signals are obtained using four-channel high-speed digital oscilloscopes controlled by a Windows PC. We designed the acquisition program for six oscilloscopes to obtain 10-Hz TS signals in a single plasma shot, following which the time-dependent electron temperatures and densities can be determined. Moreover, in order to obtain larger TS signal intensity in the edge region, we added a second collection mirror. The radial electron temperatures and densities at six radial positions in GAMMA 10/PDX were successfully obtained.

  15. Joule-Thomson Inversion in Vapor-Liquid-Solid Solution Systems

    NASA Astrophysics Data System (ADS)

    Nichita, Dan Vladimir; Pauly, Jerome; Daridon, Jean-Luc

    2009-07-01

    Solid phase precipitation can greatly affect thermal effects in isenthalpic expansions; wax precipitation may occur in natural hydrocarbon systems in the range of operating conditions, the wax appearance temperature being significantly higher (as high as 350 K) for hyperbaric fluids. Recently, methods for calculating the Joule-Thomson inversion curve (JTIC) for two-phase mixtures, and for three-phase vapor-liquid-multisolid systems have been proposed. In this study, an approach for calculating the JTIC for the vapor-liquid-solid solution systems is presented. The JTIC is located by tracking extrema and angular points of enthalpy departure variations versus pressure at isothermal conditions. The proposed method is applied to several complex synthetic and naturally occurring hydrocarbon systems. The JTIC can exhibit several distinct branches (which may lie within two- or three-phase regions or follow phase boundaries), multiple inversion temperatures at fixed pressure, as well as multiple inversion pressures at given temperature.

  16. Collective Thomson scattering energetic particle diagnostic in high performance tokamaks. Final report

    SciTech Connect

    Cheung, P.Y.; Aamodt, R.E.; Russell, D.A.

    1997-07-08

    This report summarizes the work performed under DOE grant DE-FG03-95ER54334. Lodestar was an active participant in the low power Collective Thomson Scattering (CTS) diagnostic experiment at TFTR in collaboration with MIT. A simple and effective fitting technique was developed to extract key parameters from the scattered data. Utilizing this new technique, the concept of lower hybrid resonance scattering was adapted for a feasibility study of a low/medium power collective scattering diagnostic for ITER. The implementation and the testing of such a technique for actual parameter extraction using TFTR data, however, was severely limited due to experimental and instrumentation complications. Based on the studies the authors have performed up to date, it is believed that a combination of non-physics related effects such as multiple wall reflection of incident signal and spectral impurity problem o the gyrotron can account for the anomalous signal strength. A collaborative effort with GA was initiated and a feasibility study of developing and implementing a collective thomson scattering (CTS) diagnostic for the detection of energetic particles at DIII-D was completed. Specifically, the process of selecting an optimum receiver location for the diagnostic is discussed in detailed. Results presented here include detailed signal to noise calculations and ray-tracing studies. Critical physics issues and selection criteria are discussed and a procedure to detect anisotropic energetic ion temperatures is also outlined. Favorable results, obtained in the feasibility study, indicate that it should be possible to develop and implement a CTS diagnostic at DIII-D.

  17. Comparative Analysis of HaSNPV-AC53 and Derived Strains

    PubMed Central

    Noune, Christopher; Hauxwell, Caroline

    2016-01-01

    Complete genome sequences of two Australian isolates of H. armigera single nucleopolyhedrovirus (HaSNPV) and nine strains isolated by plaque selection in tissue culture identified multiple polymorphisms in tissue culture-derived strains compared to the consensus sequence of the parent isolate. Nine open reading frames (ORFs) in all tissue culture-derived strains contained changes in nucleotide sequences that resulted in changes in predicted amino acid sequence compared to the parent isolate. Of these, changes in predicted amino acid sequence of six ORFs were identical in all nine derived strains. Comparison of sequences and maximum likelihood estimation (MLE) of specific ORFs and whole genome sequences were used to compare the isolates and derived strains to published sequence data from other HaSNPV isolates. The Australian isolates and derived strains had greater sequence similarity to New World SNPV isolates from H. zea than to Old World isolates from H. armigera, but with characteristics associated with both. Three distinct geographic clusters within HaSNPV genome sequences were identified: Australia/Americas, Europe/Africa/India, and China. Comparison of sequences and fragmentation of ORFs suggest that geographic movement and passage in vitro result in distinct patterns of baculovirus strain selection and evolution. PMID:27809232

  18. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the Hα line profiles and Thomson scattering spectra

    NASA Astrophysics Data System (ADS)

    Cvejić, M.; DzierŻega, K.; Pieta, T.

    2015-07-01

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the Hα, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the Hα full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  19. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-11-01

    A novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fast shutter. This ˜103 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot Te(R) for ne > 5 × 1018 m-3.

  20. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited).

    PubMed

    Schlossberg, D J; Bodner, G M; Bongard, M W; Fonck, R J; Reusch, J A; Rodriguez Sanchez, C

    2016-11-01

    A novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fast shutter. This ∼10(3) reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot Te(R) for ne > 5 × 10(18) m(-3).

  1. Review of Canadian species of the genus Dinaraea Thomson, with descriptions of six new species (Coleoptera, Staphylinidae, Aleocharinae, Athetini)

    PubMed Central

    Klimaszewski, Jan; Webster, Reginald P.; Langor, David W.; Caroline Bourdon; Jacobs, Jenna

    2013-01-01

    Abstract Twelve species of the genus Dinaraea Thomson are recognized in the Nearctic region, ten of which occur in Canada, all east of the Rocky Mountains. Six species are herein described as new to science: Dinaraea bicornis Klimaszewski & Webster, sp. n.; Dinaraea curtipenis Klimaszewski & Webster, sp. n.; Dinaraea longipenis Klimaszewski & Webster, sp. n.; Dinaraea quadricornis Klimaszewski & Webster, sp. n.; Dinaraea worki Klimaszewski & Jacobs, sp. n.; and Dinaraea piceana Klimaszewski & Jacobs, sp. n. Four formerly described species are confirmed in Canada: Dinaraea angustula (Thomson), Dinaraea backusensis Klimaszewski & Brunke, Dinaraea borealis Lohse, and Dinaraea pacei Klimaszewki & Langor. The previously unknown male of Dinaraea borealis Lohse and female of Dinaraea backusensis are described. All species are illustrated with colour habitus images and black and white images of the median lobe of the aedeagus and spermatheca, and tergite VIII and sternite VIII of both sexes. New habitat and distribution data are presented and a key to all Nearctic species of the genus is provided. PMID:24167422

  2. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; McLean, A. G.; Carlstrom, T. N.; Hyatt, A. W.; Lohr, J.

    2016-11-01

    Thomson scattering produces ne profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation ne ∝ ITS, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the ne calibration is adjusted against an absolute ne from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson ne from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  3. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  4. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  5. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  6. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –103 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot Te(R) for ne > 5 × 1018 m–3.« less

  7. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    SciTech Connect

    Ross, James Steven

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  8. Thomson scattering measurements of heat flux from ion-acoustic waves in laser-produced aluminum plasmas.

    PubMed

    Yu, Q Z; Zhang, J; Li, Y T; Lu, X; Hawreliak, J; Wark, J; Chambers, D M; Wang, Z B; Yu, C X; Jiang, X H; Li, W H; Liu, S Y; Zheng, Z J

    2005-04-01

    Thomson scattering (TS) measurements are performed at different locations in a laser-produced aluminum plasma. Variations of the separation, wavelength shift, and asymmetric distribution of the two ion-acoustic waves are investigated from their spectral-time-resolved TS images. Detailed information on the space-time evolution of the plasma parameters is obtained. Electron distribution and variation of the heat flux in the plasma are also obtained for a steep temperature gradient.

  9. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  10. Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Montgomery, D. S.; Bondarenko, A. S.; Morton, L. A.; Johnson, R. P.; Shimada, T.; Constantin, C. G.; Everson, E. T.; Letzring, S. A.; Gaillard, S. A.; Flippo, K. A.; Glenzer, S. H.; Niemann, C.

    2012-02-01

    We present electron temperature and density measurements from Thomson scattering on recent collisionless shock experiments on the Trident laser at Los Alamos National Laboratory. A graphite target placed inside a static magnetic field (lesssim1 kG) created by a 50 cm-diameter Helmholtz coil was ablated by a 1053 nm beam, which created a low-density, magnetized plasma. A separate 527 nm beam was used for Thomson scattering to characterize the plasma 3 cm radially from the target and 0.5-8.5 μs after ablation. The electron temperature was found to be relatively constant over 8 μs at 11-13 eV and, combined with Rayleigh scattering, the electron density was found to be 2 × 1014-4 × 1014 cm-3 over the same timescale. Several carbon emission lines were also observed in the Thomson spectrum and were utilized to independently measure the electron temperature and density and to characterize the plasma charge state.

  11. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    NASA Astrophysics Data System (ADS)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C.

    2016-11-01

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 1013 to 4 × 1014 cm-3. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  12. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    NASA Astrophysics Data System (ADS)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  13. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J.; Hartemann, Frederic V.; McNabb, Dennis P.; Pruet, Jason A.

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  14. The design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P. S.; Ross, J. S.; Froula, D. H.; Daub, K. D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G. F.; Weaver, J.

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  15. Synchronization of Thomson scattering measurements on MAST using an FPGA based ``Smart'' trigger unit

    NASA Astrophysics Data System (ADS)

    Naylor, G.

    2010-10-01

    The MAST Thomson scattering diagnostic has recently been upgraded to make electron density and temperature measurements at 130 points across the 1.5 m diameter of the plasma. The new system is able to take 240 measurements per second using eight Nd:YAG lasers, each running at 30 Hz. The exact firing time of these lasers is adjusted with 100 ns precision using a field programmable gate array based trigger unit. Trigger pulses are produced to fire the lamps of all lasers and the Q switches with the appropriate delay depending on the warm-up status. The lasers may be fired in rapid bursts so as to achieve a high temporal resolution over eight points separated down to the microsecond level. This trigger unit receives optical trigger events and signals from external sources, allowing the trigger sequences to be resynchronized to the start of the plasma pulse and further events during the shot such as the entry of a fuelling pellet or randomly occurring plasma events. This resynchronization of the laser firing sequence allows accurate and reproducible measurements of fast plasma phenomena.

  16. Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Harris, W. S.; Den Hartog, D. J.; Hurst, N. C.

    2010-10-01

    A pulse-burst laser has been installed for Thomson scattering measurements on the Madison Symmetric Torus reversed-field pinch. The laser design is a master-oscillator power-amplifier. The master oscillator is a commercial Nd:YVO4 laser (1064 nm) which is capable of Q-switching at frequencies between 5 and 250 kHz. Four Nd:YAG (yttrium aluminum garnet) amplifier stages are in place to amplify the Nd:YVO4 emission. Single pulses through the Nd:YAG amplifier stages gives energies up to 1.5 J and the gain for each stage has been measured. Repetitive pulsing at 10 kHz has also been performed for 2 ms bursts, giving average pulse energies of 0.53 J with ΔE /E of 4.6%, where ΔE is the standard deviation between pulses. The next step will be to add one of two Nd:glass (silicate) amplifier stages to produce final pulse energies of 1-2 J for bursts up to 250 kHz.

  17. Electron heating and confinemet measurements in EBT-S using Thomson scattering

    SciTech Connect

    Bighel, L.; Cobble, J.A.

    1980-09-01

    Thomson scattering of ruby laser light was used to measure electron temperatures and densities in the ELMO Bumpy Torus-Scale (EBT-S) at Oak Ridge National Laboratory. The measurements were made primarily during May 1980, although some were taken during January 1980. The scattering system, which was designed for very low electron density measurements, features a 14-J ruby laser, a high-throughput spectrometer, and 15% quantum efficiency photomultipliers. The measured electron densities lie in the range 5 X 10/sup 11/ cm/sup -3/ to 2.2 X 10/sup 12/ cm/sup -3/ with electron temperatures from 50 to 500 eV. The radial profiles of T/sub e/ and n/sub e/ are reasonably flat over an 8-cm region from the plasma center outward. The dependence of T/sub e/ and n/sub e/ on microwave power input and on background pressure is discussed. The electron data are used to derive approximate values of the energy confinement time.

  18. Health-hazard evaluation report HETA 90-223-2211, Thomson Consumer Electronics, Marion, Indiana

    SciTech Connect

    Lenhart, S.W.; Driscoll, R.

    1992-05-01

    In response to a request from the Corporate Medical Consultant to Thomson Consumer Electronics (SIC-3673), Marion, Indiana, a study was undertaken of an illness outbreak in workers at the facility. There were about 1900 workers at the facility, which produced television picture tubes. Production occurred over three shifts, 6 days a week. Charcoal tube sampling indicated the presence of acetone (67641) n-amyl-acetate (628637), n-butyl-acetate (123864), isoamyl-acetate (123922), toluene (108883), 1,1,1-trichloroethane (71556), and trichloroethylene (79016). No contaminants were detected in the bag samples of air collected from the in/house compressed air system. One or more symptoms were reported by 593 (82%) of the workers. Those most commonly reported included headache (68%), sore throat (53%), fatigue (51%), eye irritation (50%), itchy skin (47%), irritated nose (45%), dizziness (45%), unusual taste in mouth (45%), unusual smell (41%) and cough. The authors conclude that symptoms were consistent with stress related health complaints in occupational settings. Concentrations of chemicals measured in the facility would not be expected to produce the effects seen in the outbreak. The authors recommend that trichloroethylene degreasing units be replaced with equipment which uses a less toxic degreasing agent. The facility should hire a full time industrial hygienist.

  19. Polaritonic pulse and coherent X- and gamma rays from Compton (Thomson) backscattering

    SciTech Connect

    Apostol, M.; Ganciu, M.

    2011-01-01

    The formation of polariton wave-packets created by high-intensity laser beams focused in plasmas is analyzed, and the velocity, energy, size, structure, stability, and electron content of such polaritonic pulses are characterized. It is shown that polaritonic pulses may transport trapped electrons with appreciable energies, provided the medium behaves as a rarefied classical plasma. The relativistic electron energy is related to the polariton group velocity, which is close to the velocity of light in this case. The plasma pulse is polarized, and the electron number in the pulse is estimated as being proportional to the square root of the laser intensity and the 3/2-power of the pulse size. It is shown that Compton (Thomson) backscattering by such polaritonic pulses of electrons may produce coherent X- and gamma rays, as a consequence of the quasirigidity of the electrons inside the polaritonic pulses and their relatively large number. The classical results of the Compton scattering are re-examined in this context, the energy of the scattered photons and their cross-section are analyzed, especially for backscattering, the great enhancement of the scattered flux of X- or gamma rays due to the coherence effect is highlighted and numerical estimates are given for some typical situations.

  20. The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis

    PubMed Central

    Smeets, Monique F.; DeLuca, Elisabetta; Wall, Meaghan; Quach, Julie M.; Chalk, Alistair M.; Deans, Andrew J.; Heierhorst, Jörg; Purton, Louise E.; Izon, David J.; Walkley, Carl R.

    2014-01-01

    Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases. PMID:24960165

  1. Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice

    PubMed Central

    Lu, H; Fang, E F; Sykora, P; Kulikowicz, T; Zhang, Y; Becker, K G; Croteau, D L; Bohr, V A

    2014-01-01

    Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging-related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated β-galactosidase (SA-β-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-β-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients. PMID:24832598

  2. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    SciTech Connect

    Giudicotti, L.

    2014-11-15

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature T{sub e}, the electron density n{sub e} and the relative calibration coefficients of spectral channels sensitivity C{sub i} were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual‑angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.

  3. Outline of optical design and viewing geometry for divertor Thomson scattering on MAST upgrade

    NASA Astrophysics Data System (ADS)

    Hawke, J.; Scannell, R.; Harrison, J.; Huxford, R.; Bohm, P.

    2013-11-01

    The super-X divertor on MAST Upgrade will be diagnosed by a Thomson scattering diagnostic. A preliminary design of the collection optics and calculations of the diagnostic's performance are discussed in this paper. As part of the design the location and size of the collection cell were optimized to minimize vignetting, especially in the region of interest close to the divertor strike point. The design process was complicated by the limited access available in the closed divertor geometry. In the study of the diagnostic's performance, the radial resolution, projection of the laser image onto the fiber bundle, and impact of depth of field with a multiple laser system were investigated. In this design there is a trade-off between the resolution of the system and the lifetime of the beam dump. For this reason the beam has its focal point at the start of the viewing region and diverges in width to approximately five millimeters near the divertor tile. The effect of this large variation in beam width is examined primarily at the two extremes by means of ray trace modeling. This model takes an object with dimensions of the beam width imaged onto the fiber bundle to investigate the effect of misalignment for a narrow or broad laser image. In a similar manner ray tracing was performed to determine the effects of depth of field for four and two laser systems. As the electron density of the system may be low, performance analysis considers firing multiple lasers simultaneously to improve photon statistics.

  4. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  5. Microchannel heat exchanger for two-phase Mixed Refrigerant Joule Thomson process

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Jisung; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    Mixed Refrigerant Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. Printed Circuit Heat Exchanger (PCHE) is one of the promising cryogenic compact recuperators for MR-JT refrigerators due to its compactness, high NTU and robustness. However, PCHE composed with microchannel bundles can cause flow mal-distribution, and it can cause the degradation of thermal performance of the system. To mitigate the flow mal-distribution problem, the cross link (or intra-layer bypass) can be adapted to parallel microchannels. Two heat exchangers are fabricated in this study; one has straight channels, and the other one has intra-layer bypass structure between channels to enhance the flow distribution. The MR-JT refrigerators are operated with these two heat exchanger and the no-load temperatures are compared. The lower no load temperature achieved with the intra-layer bypass structured heat exchanger. The results indicate that the flow mal-distribution in the microchannel heat exchanger can be mitigated with intra-layer bypass structure, and relaxation of flow mal-distribution in the heat exchanger guarantee the MR-JT refrigerator's performance.

  6. Joule-Thomson cryocooler with neon and nitrogen mixture using commercial air-conditioning compressors

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Oh, Haejin; Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    A 2-stage mixed refrigerant (MR) Joule-Thomson (JT) cryocooler was designed for cooling high temperature superconducting cable below 70 K. The low temperature cycle was to operate with neon-nitrogen mixture, and the required compression ratio was approximately 24 when the suction pressure was 100 kPa. The high compression ratio of 24, the low pressure of 100 kPa at compressor suction, and the working fluid with high heat of compression were challenging issues to existing typical compression systems. We developed an innovative compression system with commercial oil-lubricated air-conditioning compressors. They were 2-stage rotary compressors originally designed for R410Aand connected in series. The compressors were modified to accommodate effective intercooling at every stage to alleviate compressor overheating problem. Additionally, fine-grade three-stage oil filters, an adsorber, and driers were installed at the discharge line to avoid a potential clogging problem from oil mist and moisture at low temperature sections. The present compression system was specifically demonstrated with a neon-nitrogen MR JT cryocooler. The operating pressure ratio was able to meet the designed specifications, and the recorded no-load mini mum temperature was 63.5 K . Commercial air-conditioning compressors were successfully applied to the high-c ompression ratio MR JT cryocooler with adequate modification using off-the-shelf components.

  7. Clogging of Joule-Thomson Devices in Liquid Hydrogen-Lunar Lander Descent Stage Operating Regime

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.

    2010-04-01

    Joule-Thomson (J-T) devices have been identified as critical components for future space exploration missions. The NASA Constellation Program lunar architecture considers LOX/LH2 propulsion for the lunar lander descent stage main engine an enabling technology, ensuring the cryogenic propellants are available at the correct conditions for engine operation. This cryogenic storage system may utilize a Thermodynamic Vent System (TVS) that includes J-T devices to maintain tank fluid pressure and temperature. Previous experimental investigations have indicated that J-T devices may become clogged when flowing LH2 while operating at a temperature range from 20.5 K to 24.4 K. It has been proposed that clogging is due to a trace amount of metastable, supercooled liquid neon in the regular LH2 supply. In time, flow blockage occurs from accretion of solid neon on the orifice. This clogging poses a realistic threat to spacecraft propulsion systems utilizing J-T devices in cryogenic pressure control systems. TVS failure due to J-T clogging would prevent removal of environmental heat from the propellant and potential loss of mission. This report describes J-T clogging tests performed with LH2. Tests were performed in the expected Lunar Lander operating regime, and several methods were evaluated to determine the optimum approach to mitigating the potential risk of J-T clogging.

  8. Development of a Multichannel Spectrometer for the Thomson Scattering Diagnostic on Pegasus

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2011-10-01

    To explore electron transport in helicity-driven discharges and investigate edge stability, a multi-point Thomson scattering diagnostic is being developed. Red-shifted scattered light from the Nd:YAG laser, 532-632 nm, is imaged using a custom lens coupled to fiber optic cables capable of imaging 1.4 cm along the length of the laser beam. Initially 1 spectrometer, containing up to 8 radial spatial points will be available for detection, with an upgrade to 3 spectrometers planned in the near future. New high efficiency volume phase holographic gratings, with > 75% transmission, allow for a simplified spectrometer design. This provides high optical throughput and readily couples to new high quantum efficiency (~45%) image intensified CCD cameras for multichannel design. These cameras can be gated to as low as 2 ns. The two gratings fabricated for this system (2971 lines/mm and 2072 lines/mm) cover the design temperature range of 10 eV to 1 keV. Completing the spectrometer are high quality lenses with focal lengths of 130 cm on the collimating lens and 85 cm on the exit lens. This design has a spectral range compatible with the blue shift from a conventional ruby laser and allows for a compact, simplified system. Work supported by US DOE Grant DE-FG02-96ER54375.

  9. Enhancement of the JET edge LIDAR Thomson scattering diagnostic with ultrafast detectors.

    PubMed

    Kempenaars, M; Flanagan, J C; Giudicotti, L; Walsh, M J; Beurskens, M; Balboa, I

    2008-10-01

    The edge light detection and ranging (LIDAR) Thomson scattering diagnostic at the Joint European Torus fusion experiment uses a 3 J ruby laser to measure the electron density and temperature profile at the plasma edge. The original system used a 1 GHz digitizer and detectors with response times of approximately 650 ps and effective quantum efficiencies <7%. This system has recently been enhanced with the installation of a new 8 GHz digitizer and four new ultrafast GaAsP microchannel plate photomultiplier tube detectors with response times of <300 ps and effective quantum efficiencies in the range of approximately 13%-20% (averaged over lambda=500-700 nm). This upgrade has enabled the spatial resolution to be reduced to approximately 6.3 cm along the laser line of sight for a laser pulse of 300 ps full width at half maximum, which is close to the requirements for the ITER core LIDAR. Performance analysis shows that the new system will have an effective spatial resolution of up to 1 cm in the magnetic midplane via magnetic flux surface mapping.

  10. Sensitivity of Micromachined Joule-Thomson Cooler to Clogging Due to Moisture

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    A major issue in long-term operation of micromachined Joule-Thomson coolers is the clogging of the microchannels and/or the restriction due to the deposition of water molecules present in the working fluid. In this study, we present the performance of a microcooler operated with nitrogen gas with different moisture levels. Relatively low-purity nitrogen gas (5.0) is supplied from a gas bottle and led through a filter to control the moisture level. The filter consists of a tube-in-tube counter flow heat exchanger (CFHX) and a heat exchanger that is stabilized at a certain temperature by using a Stirling cooler. The set-point temperature determines the moisture level at the exit of the heat exchanger. It is found that the moisture level has influence on the mass-flow rate during the cool down. Once the microcooler reaches the set cold-end temperature, the main deposition area shifts into the CFHX and the moisture level at the restriction is almost independent on the inlet moisture level of the microcooler. The moisture level at the restriction increases with the increasing cold-end temperature when the cold-end temperature is lower than the saturation temperature of the water in the nitrogen gas. Higher cold-end temperature results in higher clogging rate.

  11. Study of Fast, Near-Infrared Photodetectors for the ITER Core LIDAR Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.; Alfier, A.; Beurskens, M.; Kempenaars, M.; Walsh, M. J.

    2008-03-01

    A key component for the ITER core LIDAR Thomson Scattering (TS) diagnostic would be a detector with good sensitivity in the 850-1060 nm near infrared (NIR) spectral region. Covering this spectral region becomes necessary if a Nd:YAG laser system operating at λ = 1.06 μm is used as the laser source, which is a very attractive choice in terms of available energy, repetition rate, reliability and cost. In this paper we review the state of the art of two types of detectors available for the above spectral range: the transferred electron (TE) InGaAs/InP hybrid photodiode and the InxGa1-xAs microchannel plate (MCP) image intensifier and we describe the advancements necessary for a possible application in the ITER LIDAR TS. In addition we describe the preliminary characterization of new GaAsP fast MCP photomultipliers (PMTs) suitable for the detection of the visible part of the LIDAR TS spectrum in JET and ITER.

  12. A high resolution multiposition Thomson scattering system for the Rijnhuizen Tokamak Project

    SciTech Connect

    Barth, C.J.; Beurskens, M.N.; Chu, C.C.; Donne, A.J.; Lopes Cardozo, N.J.; Herranz, J.; v.d. Meiden, H.J.; Pijper, F.J.

    1997-09-01

    A high resolution multiposition Thomson scattering setup to measure the electron temperature (T{sub e}) and density (n{sub e}) of a hot plasma is described. The system is operational at the Rijnhuizen Tokamak Project. Light from a high power pulsed ruby laser is scattered by the free plasma electrons and relayed to a Littrow polychromator for spectral analysis. The spectrally and spatially resolved light is detected by a GaAsP photocathode. The two-dimensional image is intensified and recorded with a charge-coupled device camera. T{sub e} in the range of 50 eV{endash}6 keV can be measured at 115 spatial elements of 2.6 mm length along the laser beam. The observation error is {lt}6{percent} at n{sub e}=2{times}10{sup 19} m{sup {minus}3} and smaller for higher n{sub e}. The high resolution and accuracy enabled the observation of small scale structures in T{sub e} and n{sub e}. {copyright} {ital 1997 American Institute of Physics.}

  13. X-ray Thomson scattering as a temperature probe for gigabar shock experiments

    NASA Astrophysics Data System (ADS)

    Doeppner, T.; Kritcher, A.; Glenzer, S.; Chapman, D.; Falcone, R.; Neumayer, P.

    2013-06-01

    In X-ray Thomson scattering (XRTS), high-resolution spectrometry of probe x-rays scattered from matter gives an elastic (ionic) and an inelastic (electronic) feature, whose location, width, and amplitude can be analyzed for the temperature and density of the electrons. This diagnostic is complementary to traditional, mechanical EOS measurements which do not directly constrain temperature. XRTS has been demonstrated on planar dynamic-loading experiments at the Omega laser, and a spectrometer has been constructed for use at the National Ignition Facility (NIF). We plan to obtain XRTS measurements into the gigabar regime using hohlraum-driven converging shocks at NIF. In these experiments, the radial profile through the sample at any instant of time varies greatly, though the XRTS signal is dominated by the hottest region, which is at the shock front where simultaneous radiography obtains an equation of state measurement. However, the shock signal is potentially obscured by scattering from the preheat shield, comprising a higher-Z dopant than the sample. Thus we are developing an imaging spectrometer, which should enable a spatial unfold of XRTS spectrum, providing a more precise temperature measurement at the shock front and potentially in the converging flow behind the shock. U.S. DOE contract DE-AC52-07NA27344.

  14. The progress in development of edge tangential Thomson scattering system on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Huang, Y.; Wang, Y. Q.; Feng, Z.; Hou, Z. P.; Fu, B. Z.

    2016-11-01

    The edge tangential Thomson scattering system (ETTSS) was developed for the first time on a HL-2A tokamak. A Nd:YAG laser with a 1064 nm wavelength, 4 J energy, and 30 Hz repetition rate is employed on the ETTSS. The laser beam injects the plasma in the tangential direction on the mid-plane of the machine, and the angles between the laser injection direction and the scattered light collection direction are in the range from 157.5° to 162.8°. The scattered light collection optics with 0.21-0.47 magnification is utilized to collect the scattered light of measurement range from R = 1900 mm to 2100 mm (the normalized radius is from r/a = 0.625 to 1.125). Spatial resolution of the preliminary design could be up to Δr/a = 0.016. The measurement requirements could be achieved: 10 eV < Te < 1.5 keV, and 0.5 × 1019 m-3 < ne < 3 × 1019 m-3 with errors less than 15% and 10%, respectively.

  15. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  16. Thomson Scattering Measurements During Local Helicity Injection in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup technique currently being developed at the Pegasus Toroidal Experiment. In LHI, helicity is injected by compact, high-power current sources located in the plasma scrape off layer that drive bulk plasma current through magnetic reconnection. Investigations of the electron temperature and density evolution in LHI plasmas are being pursued using the multi-point Thomson scattering diagnostic on Pegasus. It has been expanded to provide a total of 24 spatial channels using a set of three high-throughput transmission gratings and intensified CCD cameras. Measurements have been made in two separate helicity injector configurations: a low-field-side (outboard midplane) configuration; and a high-field-side (lower divertor) configuration. Initial observations during injection showed 50

  17. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.; Fassina, A.

    2014-11-01

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature Te, the electron density ne and the relative calibration coefficients of spectral channels sensitivity Ci were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual-angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.

  18. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic.

    PubMed

    Den Hartog, D J; Jiang, N; Lempert, W R

    2008-10-01

    A "pulse-burst" laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO(4) laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T(e)) and electron density (n(e)) dynamics in a single MST shot, and with ensembling, will enable correlation of T(e) and n(e) fluctuations with other fluctuating quantities.

  19. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic

    SciTech Connect

    Den Hartog, D. J.; Jiang, N.; Lempert, W. R.

    2008-10-15

    A ''pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO{sub 4} laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T{sub e}) and electron density (n{sub e}) dynamics in a single MST shot, and with ensembling, will enable correlation of T{sub e} and n{sub e} fluctuations with other fluctuating quantities.

  20. Improvements, upgrades, and plans for Thomson scattering on DIII-D

    NASA Astrophysics Data System (ADS)

    Carlstrom, T. N.; Du, D.; Glass, F.; Liu, C.; Watkins, M.; McLean, A. G.

    2016-10-01

    The Thomson scattering diagnostic on DIII-D consists of 3 beam lines that probe vertically, horizontally, and in the divertor region of the tokamak, with 54 spatial locations, edge spatial resolution down to 5 mm, and 10 Nd:YAG lasers. In its 25-year history, the collection lens optics and interference filters degraded and have been replaced, restoring previous performance. In addition, improved calibrations and detector temperature control (+/- 0.1 C) have reduced systematic errors. Cross calibration with the CO2 interferometer and ECE cut-off have improved the density calibration. Improvements to the beam line and lasers have increased the laser energy delivered to the scattering volume in the plasma. Future plans include moving the divertor system to measure regions of high triangularity using in-vessel mirrors to redirect the laser beam; adding a wide angle lens to the horizontal system to view the entire plasma radius near the plasma mid plane; and reversing the direction of the laser beam on the horizontal system to reduce the scattering angle and compressing the spectrum in wavelength space so that higher central Te measurements (<5 KeV) can be made with improved accuracy. Work supported by the US DOE under DE-FC02-04ER54698 and by LLNL under DE-AC52-07NA27344.

  1. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  2. Status of the Thomson Scattering System Developed for Diagnostic Testing on the Helicon Plasma Experiment (HPX)*

    NASA Astrophysics Data System (ADS)

    Duke-Tinson, O.; James, R.; Nolan, S.; Page, E.; Paolino, R.; Romano, B.; Zuniga, J.; Schlank, C.; Lopez, M.; Karama, J.; Sherman, J.; Stutzman, B.

    2013-10-01

    HPX will utilize Electromagnetic Radiation Scattering to make internal plasma temperature and density point measurements. The United States Coast Guard Academy Plasma Laboratory's (CGAPL's) Thompson Scattering single spatial point system employs a 300 W CW YAG laser. We will use the internal temperature and density measurements in conjunction with the particle and spectral probes to track the plasmas transitions through the capacitive and inductive modes to ultimately reach the helicon mode. Once achieved, the system will be invaluable in making plasma quantitative temperature and density observations that will contribute to a comprehensive plasma profile. Most of the efforts thus far have been in the alignment and repair of the laser system. As this stage nears an end, efforts have begun to shift towards installing the aligned Thomson Scattering system (TS) into its permanent location, with mounted collection optics on HPX's top port. HPX will likely employ a polychrometer similar to the ones currently in use by HBTEP at Columbia University, for the spectral analysis of the scattered light. Data collected by the TS system will then be logged in real time by CGAPL's Data Acquisition (DAQ) system currently under construction. Further additions and progress of the TS alignment, installation, and calibration on HPX will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  3. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  4. Updates on the Optical Emission Spectroscopy and Thomson Scattering Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Duke-Tinson, Omar; Karama, Jackson; Azzari, Phillip; Royce, James; Page, Eric; Schlank, Carter; Sherman, Justin; Stutzman, Brooke; Zuniga, Jonathan

    2014-10-01

    HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) have set up spectral probes to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Raw data collected will be used to measure the plasma's relative density, temperature, structure, and behavior during experiments. Direct measurements of the plasma's properties can be determined through modeling and by comparison with the state transition tables, using Optical Emission Spectroscopy (OES). The spectral probes will take advantage of HPX's magnetic field structure to define and measure the plasma's radiation temp as a function of time and space. In addition, the Thomson Scattering (TS) device will measure internal temperature and density data as the HPX plasma transitions through capacitive and inductive modes while developing into helicon plasma. Currently CGAPL is focused on building its laser beam transport and scattered light collection optical systems. Recently, HPX has acquired an Andor ICCD spectrometer for the spectral analysis. Data collected by the TS system will be logged in real time by CGAPL's Data Acquisition (DAQ) system with LabView remote access. Further progress on HPX will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  5. The microsporidium Nosema disstriae (Thomson 1959): Fine structure and phylogenetic position within the N. bombycis clade.

    PubMed

    Kyei-Poku, George; Sokolova, Yuliya Y

    2017-02-01

    A microsporidium Nosema disstriae (Thomson) is a parasite of the forest tent caterpillar Malacasoma disstria (Lepidoptera: Lasiocampidae), a notable defoliator of deciduous trees in North America. The goal of this paper was to demonstrate the ultrastructure of N. disstriae and to determine the position of this microsporidium within the N. bombycis clade (NBC) using comparative morphology and multiple molecular phylogenetic markers: RPB1, LSU-, ITS- and SSU-rDNA. As a part of this goal, the revision of the described members of the NBC has been performed. The ultrastructure of proliferating stages and spores of N. disstriae were similar to previously described Nosema spp. parasitizing lepidopteran species. Meronts produced tubular-like structures on their surfaces and exhibited a tight association with host mitochondria. All stages were diplokaryotic and developed without interfacial envelopes. Disporoblastic sporogony produced typical Nosema-type spores with 9-12 polar filament coils. A vesicle with immature spores was once recognized on sections, concordant with the previous record of octosporous sporogony in the N. disstriae life cycle. Rarely, spores with thinner envelopes and large posterior vacuoles were seen in the midgut. Tracheae were most heavily infected. Midgut, surrounding muscles, haemocytes and fat body also contained microsporidia. SSUrRNA-inferred phylogenies were consistent with previously published articles and did not resolve the relation within the NBC clade. The RPB1-inferred trees and concatenated RPB1 and LSU-ITS-SSUrDNA-based trees demonstrated clustering of N. disstriae with N. antheraeae as early divergent species within the NBC.

  6. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  7. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  8. Demonstration of imaging X-ray Thomson scattering on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Belancourt, Patrick X.; Theobald, Wolfgang; Keiter, Paul A.; Collins, Tim J. B.; Bonino, Mark J.; Kozlowski, Pawel M.; Regan, Sean P.; Drake, R. Paul

    2016-11-01

    Foams are a common material for high-energy-density physics experiments because of low, tunable densities, and being machinable. Simulating these experiments can be difficult because the equation of state is largely unknown for shocked foams. The focus of this experiment was to develop an x-ray scattering platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in this experiment is resorcinol formaldehyde with an initial density of 0.34 g/cm3. One long-pulse (10 ns) beam drives a shock into the foam, while the remaining three UV beams with a 2 ns square pulse irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer, spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. Ray tracing analysis of the density profile gives a compression of 3 ± 1 with a shock speed of 39 ± 6 km/s. Analysis of the scattered x-ray spectra gives an upper bound temperature of 20 eV.

  9. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    SciTech Connect

    Yamamoto, N.; Tomita, K.; Sugita, K.; Kurita, T.; Nakashima, H.; Uchino, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe laser energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.

  10. Development of a Thomson scattering diagnostic for the Caltech jet-target experiment

    NASA Astrophysics Data System (ADS)

    Seo, Byong Hoon; Greig, Amelia; Bellan, Paul

    2016-10-01

    A Thomson scattering diagnostic is being developed for studying the Caltech jet-target impact experiment. This experiment has a high-speed MHD-driven jet impact a dense, high-mass target cloud. The compression of the jet upon impact simulates the compression of an imploding liner. A preliminary bench top system consisting of a low power laser, lenses, a beam rotator, a monochromator, and a PMT is being used for measuring the Rayleigh and eventually Raman scattering signals from atmospheric pressure N2 and O2. The laser is modulated at 500 Hz to 1 kHz and lock-in techniques are used to recover the low-amplitude signal. For the actual pulsed plasma experiment, the low-power laser will be replaced by a high power Nd:YAG laser. The detector will consist of a double monochromator consisting of two single monochromators separated by a mask in the focal plane to block Rayleigh scattered light; detection will be by an intensified, gated camera. The diagnostic will be used to study the compression and heating that occurs when the jet plasma collides with a dense, high mass target cloud. Supported by USDOE Grant DE-AR0000565.

  11. Prediction of final temperature following Joule-Thomson expansion of nitrogen gas

    NASA Astrophysics Data System (ADS)

    Chou, F.-C.; Wu, S.-M.; Pai, C.-F.

    This paper shows a theoretical prediction of the final temperature Ta which can be obtained using the Joule-Thomson (J-T) effect by expanding nitrogen gas across a throttling valve to 0.101 MPa. An iteration method using the J-T coefficient μ is first used to predict Ta. The Benedict-Webb-Rubin (BWR) and Redlich-Kwong (RK) equations are used to determine the specific volume and the derivatives of properties, respectively. Values of Ta can be well predicted by a five-step expansion simulation, except for cases where the isenthalpic lines to 0.101 M Pa cross a region around T = 120-160 K and P = 6.0 M Pa. In this region, calculated μ are lower than the experimental data. By equalizing the value of enthalpy after expansion to that before expansion and using the Peng-Robinson (PR) equation to calculate the departure function, the values of Ta can also be well predicted by the second method, except for Pb > 3.5 MPa in the cases where Tb = 170 and 150 K.

  12. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    PubMed

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10(20) electrons/cm(3) while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10(19) electrons/cm(3). We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  13. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2014-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.

    1993-12-31

    We have developed an uv collective Thomson scattering system for plasma produced by a short wavelength laser. The Ion Acoustic Decay Instabilities are studied in a large ({approximately}mm) scale, hot ({approximately}keV) plasma, which is relevant to a direct-driven laser fusion plasma. The IADI primary decay process is measured by the CTS. We used a random phase plate to minimize the non uniform irradiation of the interaction laser. Nevertheless, the threshold of the most unstable mode driven by the IADI is quite low. The measured threshold value agrees favorably with the theoretical value of the large scale plasma. We have also shown that the CTS from the IADI can be a good tool for measuring a local electron temperature. The measured results agree reasonably with the SAGE computer calculations. We used the real part of the wave (frequency) to estimate T{sub e}. The real part is, in general, reliable compared to the imaginary part such as the damping, and the growth rates. We have shown that the IADI can be easily excited in a large scale, hot plasma. The IADI has potentially important applications to direct drive laser fusion, and also critical surface diagnostic.

  15. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  16. Calibration of Thomson scattering systems using electron cyclotron emission cutoff data

    SciTech Connect

    Zhurovich, K.; Mossessian, D.A.; Hughes, J.W.; Hubbard, A.E.; Irby, J.H.; Marmar, E.S.

    2005-05-15

    An alternative method of absolute calibration of Thomson scattering (TS) systems is described. The method is based on the measurements of electron cyclotron emission (ECE) from the plasma. If the plasma density reaches some critical value the emission at some frequencies is cut off and an abrupt loss of signal is registered by the ECE diagnostic. These critical values are calculated from the frequencies of the ECE channels in which cutoffs are observed, using the dispersion relation for the wave propagation. The radial positions of the ECE channels are bound to the measured magnetic field in the tokamak and, therefore, are known. The derived critical density values at certain positions in plasma are used to calculate absolute calibration coefficients for the core TS system. For that data points from the TS diagnostic are interpolated in time and space to these critical density values. This calibration technique is implemented in situ on the Alcator C-Mod tokamak during plasma operation. We use a nine-channel ECE diagnostic to calibrate the eight-channel core TS system. The uncertainty of the TS density calibration is {<=}10%, which is less than that from the gas scattering calibrations. Good agreement exists between TS density profiles and measurements from the visible continuum diagnostic and interferometry. Given the wide availability of ECE diagnostics on most tokamaks and other fusion devices, this technique should be suitable on many other experiments.

  17. Idealized Closed Form Performance Modeling of a Closed Cycle Joule-Thomson Cryocooler

    NASA Astrophysics Data System (ADS)

    Maytal, B.-Z.

    2004-06-01

    The characteristic parameters of a closed cycle Joule-Thomson cryocooler would be: the charging pressure, discharge and suction volumes of the loop, volumetric displacement of the compressor and the extent of throttling restriction. A series of idealizing assumption are applied. The volumetric behavior of the coolant is assumed to obey the ideal gas equation. The recuperator and compressor's volumetric delivery are completely efficient. There are no pressure losses along the circulating path. On this basis is developed a closed form model of the system, interrelating the relevant parameters. Performance at steady state is expressed in terms of the circulating flow rate, discharge and suction pressures and cooling power. The model predicts the optimal size of equivalent orifice and the maximized cooling power. Also derived is the hydrodynamic time constant of building up the discharge pressure. This analysis is relevant for mixed coolants as well as for pure coolants closed cycles. The former typically employ lower pressure and therefore the idealized assumptions are even more applicable.

  18. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  19. Influence of Thomson effect on the resultant local Seebeck coefficient in thermoelectric composite materials

    NASA Astrophysics Data System (ADS)

    Yamashita, Osamu; Odahara, Hirotaka; Ochi, Takahiro; Satou, Kouji

    2009-01-01

    The resultant local Seebeck coefficient α R (= α S- α T) at the interface of a thermoelement has not yet been measured, although it is an important factor governing the thermoelectric efficiency, where α S is the local Seebeck coefficient and α T is the one caused by the Thomson effect. It is shown in this paper that α S, α T, and α R of the p- and n-type Cu/Bi Te/Cu composites are obtained analytically and experimentally on the assumption that the local temperature of the composite on which the temperature difference Δ T is imposed varies linearly with changes in position along the composite. They were indeed estimated as a function of position from the local experimental data of R,Δ I,Δ T, and V generated by applying an additional current of ± I to the composite, where R is the electrical resistance and Δ I is a current generated by the composite. As a result, it was found that the absolute values of α S at the hot interface of the p- and n-type composites are approximately 1.5 and 1.4 times higher than their lowest values in the middle region of the composite, respectively, while those of α T are less than 8% of α S all over the composite and are so small that the relation α R≈ α S can be held. We thus succeeded in measuring α R at the interfaces of the composite.

  20. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  1. Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier

    NASA Astrophysics Data System (ADS)

    Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Visco Jet Joule-Thomson Device Characterization Tests in Liquid Methane

    NASA Technical Reports Server (NTRS)

    Jurns, John M.

    2009-01-01

    Joule-Thomson (J-T) devices have been identified as critical components for Thermodynamic Vent Systems (TVS) planned for future space exploration missions. Lee Visco Jets (The Lee Company) (Ref. 4) are one type of J-T device that may be used for LCH4 propellant systems. Visco Jets have been previously tested and characterized in LN2 and LH2 (Refs. 6 and 7), but have not been characterized in LOX or LCH4. Previous Visco Jet tests with LH2 resulted in clogging of the Visco Jet orifice under certain conditions. It has been postulated that this clogging was due to the presence of neon impurities in the LH2 that solidified in the orifices. Visco Jets therefore require testing in LCH4 to verify that they will not clog under normal operating conditions. This report describes a series of tests that were performed at the NASA Glenn Research Center to determine if Visco Jets would clog under normal operating conditions with LCH4 propellant. Test results from this program indicate that no decrease in flow rate was observed for the Visco Jets tested, and that current equation used for predicting flow rate appears to under-predict actual flow at high Lohm ratings.

  3. Joule-Thomson valves for long term service in space cryocoolers

    NASA Technical Reports Server (NTRS)

    Lester, J. M.; Benedict, B.

    1985-01-01

    Joule-Thomson valves for small cryocoolers have throttling passages on the order of 0.1 millimeter in diameter. Consequently, they can become plugged easily and stop the operation of the cooler. Plugging can be caused by solid particles, liquids or gases. Plugging is usually caused by the freezing of contaminant gases from the process stream. In small open loop coolers and in closed loop coolers where periodic maintenance is allowed, the problem is overcome by using careful assembly techniques, pure process gases, warm filters and cold adsorbers. A more thorough approach is required for closed loop cryocoolers which must operate unattended for long periods. This paper presents the results of an effort to solve this problem. The causes of plugging are examined, and various ways to eliminate plugging are discussed. Finally, the development of a J-T defroster is explained. It is concluded that a combination of preventive measures and a defroster will reduce the chance of cooler failure by plugging to such a degree that J-T coolers can be used for long term space missions.

  4. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  5. A miniature Joule-Thomson cooler for optical detectors in space.

    PubMed

    Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M

    2012-04-01

    The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.

  6. Thomson Scattering from Electron Plasma Waves in a Raman Plasma Amplifier

    NASA Astrophysics Data System (ADS)

    Davies, A.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.; Silva, L. O.

    2015-11-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-seed pulse. Raman amplification has the potential to amplify intense pulses beyond the capabilities of current laser technology (~1022 W/cm2) because of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for efficient Raman amplification. With Thomson scattering it is possible to measure the spatial and temporal distribution of the EPW amplitude and experimentally determine the effect of the EPW profile on Raman scattering. Moving beyond the initial proof-of-principal experiments at the submillijoule level, to amplifying a 75-mJ, 100-fs seed with a 75-J pump has the potential to produce PW-scale laser pulses with Raman amplification. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. The progress in development of edge tangential Thomson scattering system on HL-2A tokamak.

    PubMed

    Liu, C H; Huang, Y; Wang, Y Q; Feng, Z; Hou, Z P; Fu, B Z

    2016-11-01

    The edge tangential Thomson scattering system (ETTSS) was developed for the first time on a HL-2A tokamak. A Nd:YAG laser with a 1064 nm wavelength, 4 J energy, and 30 Hz repetition rate is employed on the ETTSS. The laser beam injects the plasma in the tangential direction on the mid-plane of the machine, and the angles between the laser injection direction and the scattered light collection direction are in the range from 157.5° to 162.8°. The scattered light collection optics with 0.21-0.47 magnification is utilized to collect the scattered light of measurement range from R = 1900 mm to 2100 mm (the normalized radius is from r/a = 0.625 to 1.125). Spatial resolution of the preliminary design could be up to Δr/a = 0.016. The measurement requirements could be achieved: 10 eV < Te < 1.5 keV, and 0.5 × 10(19) m(-3) < ne < 3 × 10(19) m(-3) with errors less than 15% and 10%, respectively.

  8. A miniature Joule-Thomson cooler for optical detectors in space

    NASA Astrophysics Data System (ADS)

    Derking, J. H.; Holland, H. J.; Tirolien, T.; ter Brake, H. J. M.

    2012-04-01

    The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.

  9. A study of core Thomson scattering measurements in ITER using a multi-laser approach

    NASA Astrophysics Data System (ADS)

    Kurskiev, G. S.; Sdvizhenskii, P. A.; Bassan, M.; Andrew, P.; Bazhenov, A. N.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Kukushkin, A. B.; Kukushkin, A. S.; Mukhin, E. E.; Razdobarin, A. G.; Samsonov, D. S.; Semenov, V. V.; Tolstyakov, S. Yu.; Kajita, S.; Masyukevich, S. V.

    2015-05-01

    The electron component is the main channel for anomalous power loss and the main indicator of transient processes in the tokamak plasma. The electron temperature and density profiles mainly determine the operational mode of the machine. This imposes demanding requirements on the precision and on the spatial and temporal resolution of the Thomson scattering (TS) measurements. Measurements of such high electron temperature with good accuracy in a large fusion device such as ITER using TS encounter a number of physical problems. The 40 keV TS spectrum has a significant blue shift. Due to the transmission functions of the fibres and to their darkening that can occur under a strong neutron irradiation, the operational wavelength range is bounded on the blue side. For example, high temperature measurements become impossible with the 1064 nm probing wavelength since the TS signal within the boundaries of the operational window weakly depends on Te. The second problem is connected with the TS calibration. The TS system for a large fusion machine like ITER will have a set of optical components inaccessible for maintenance, and their spectral characteristics may change with time. Since the present concept of the TS system for ITER relies on the classical approach to measuring the shape of the scattered spectra using wide spectral channels, the diagnostic will be very sensitive to the changes in the optical transmission. The third complication is connected with the deviation of the electron velocity distribution function from a Maxwellian that can happen under a strong ECRH/ECCD, and it may additionally hamper the measurements. This paper analyses the advantages of a ‘multi-laser approach’ implementation for the current design of the core TS system. Such an approach assumes simultaneous plasma probing with different wavelengths that allows the measurement accuracy to be improved significantly and to perform the spectral calibration of the TS system. Comparative analysis

  10. Study of near scrape-off layer (SOL) temperature and density gradient lengths with Thomson scattering

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Wolfrum, E.; Eich, T.; Kurzan, B.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team

    2015-12-01

    Improvements to the Thomson scattering diagnostic have enabled the study of near scrape-off layer (SOL) decay lengths in the 2014 ASDEX Upgrade experimental campaign. A database of H-mode discharges has been studied using a two-line fit method for the core and log-linear fit for the near SOL region under both attached and detached divertor conditions. SOL electron temperature {{T}e} profiles have been found to have a radial exponential decay distribution which does not vary poloidally, consistent with the two-point model. In attached H-mode regimes, a log-linear regression shows that the SOL upstream dataset has the same main parametric dependencies as the scaling inferred from downstream Infrared camera measurements. A simple collisional relation from two-point model is found to best relate the upstream decay lengths and downstream divertor power widths. The SOL {{T}e} gradient length appears to be independent of {{T}e} pedestal parameters, but may correlate with the pedestal electron pressure parameters. Both the pedestal and SOL density and temperature scale lengths are linearly correlated with an almost constant gradient ratio, {ηe} . The smaller gradient ratio {ηe} and the fact that the Spitzer-Härm model is more valid, agrees with the studied plasma lying in the collisional regime. A transition to flat SOL ne profiles, previously reported for L-mode plasmas in many machines, has been observed in AUG detatched H-mode regimes. When the flattening of density profile happens in H-mode detached plasmas, the broadening of near SOL {{T}e} decay length {λ{{Te,u}}} also appears which may be good news for future machines.

  11. Installation of a Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Cianciosa, M. R.

    2015-11-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The initial system takes a single point measurement on the magnetic axis and will be used to assess options for an expansion to a multi-point system to enable better 3D equilibrium reconstructions using the V3FIT code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line is designed to propagate ~ 8 m to the mid-plane of the CTH device with the beam diameter < 3 mm inside the plasma volume. An Andor iStar DH740-18U-C3 image intensified CCD camera is used in conjunction with a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 532-580 nm. A single point system will initially measure plasmas with core electron temperatures of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  12. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects

    PubMed Central

    Ahmad, Waqas; Jantan, Ibrahim; Bukhari, Syed N. A.

    2016-01-01

    Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae), found in the rainforests or mixed deciduous forests in Asia and Africa, is used in traditional medicines to treat numerous health conditions. This review summarizes the up-to-date reports about the ethnobotany, phytochemistry, pharmacological activities, toxicology, and clinical trials of the plant. It also provides critical assessment about the present knowledge of the plant which could contribute toward improving its prospect as a source of lead molecules for drug discovery. The plant has been used traditionally in the treatment of jaundice, rheumatism, urinary disorders, fever, malaria, diabetes, internal inflammation, fracture, scabies, hypertension, reducing thirst, increasing appetite, cooling down the body temperature, and maintaining good health. Phytochemical analyses of T. crispa revealed the presence of alkaloids, flavonoids, and flavone glycosides, triterpenes, diterpenes and diterpene glycosides, cis clerodane-type furanoditerpenoids, lactones, sterols, lignans, and nucleosides. Studies showed that the crude extracts and isolated compounds of T. crispa possessed a broad range of pharmacological activities such as anti-inflammatory, antioxidant, immunomodulatory, cytotoxic, antimalarial, cardioprotective, and anti-diabetic activities. Most pharmacological studies were based on crude extracts of the plant and the bioactive compounds responsible for the bioactivities have not been well identified. Further investigations are required to transform the experience-based claims on the use of T. crispa in traditional medicine practices into evidence-based information. The plant extract used in pharmacological and biological studies should be qualitatively and quantitatively analyzed based on its biomarkers. There should be detail in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds and more elaborate toxicity study to ensure safety of the plant for human use. More

  14. Mixed-refrigerant Joule-Thomson (MR JT) mini-cryocoolers

    NASA Astrophysics Data System (ADS)

    Tzabar, Nir

    2014-01-01

    This paper presents the progress in our ongoing research on Mixed-Refrigerant (MR) Joule-Thomson (JT) cryocoolers. The research begun by exploring different MRs and testing various compressors: oil-lubricated and oil-free, reciprocating and linear, custom-made and commercial. Closed-cycle JT cryocoolers benefit from the fact that the compressor might be located far from the cold-end and thus there are no moving parts, no vibrations, and no heat emission near the cold-end. As a consequence, the compressor may be located where there are no severe size limitations, its heat can be conveniently removed, and it can be easily maintained. However, in some applications there is still a demand for a small compressor to drive a JT cryocooler although it is located far from the cooled device. Recently, we have developed a miniature oil-free compressor for MR JT cryocoolers that weighs about 700 g and its volume equals about 300 cc. The cryocooler operates with a MR that contains Ne, N2, and Hydrocarbons. This MR has been widely investigated with different compressors and varying operating conditions and proved to be stable. The current research investigates the performances of MR JT mini-cryocooler operating with the MR mentioned above, driven with our miniature compressor, and a cold-finger prototype. A Dewar with heat load of about 230 mW is cooled to about 80 K at ambient temperatures between 0°C and 40°C. The experimental results obtained are stable and demonstrate the ability to control the cooling temperature by changing the rotation speed of the compressor.

  15. Thermodynamic optimization of mixed refrigerant Joule- Thomson systems constrained by heat transfer considerations

    NASA Astrophysics Data System (ADS)

    Hinze, J. F.; Klein, S. A.; Nellis, G. F.

    2015-12-01

    Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR.

  16. Gibbs-Thomson Law for Singular Step Segments: Thermodynamics Versus Kinetics

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2003-01-01

    Classical Burton-Cabrera-Frank theory presumes that thermal fluctuations are so fast that at any time density of kinks on a step is comparable with the reciprocal intermolecular distance, so that the step rate is about isotropic within the crystal plane. Such azimuthal isotropy is, however, often not the case: Kink density may be much lower. In particular, it was recently found on the (010) face of orthorhombic lysozyme that interkink distance may exceed 500-600 intermolecular distances. Under such conditions, Gibbs-Thomson law (GTL) may not be applicable: On a straight step segment between two corners, communication between the comers occurs exclusively by kink exchange. Annihilation between kinks of opposite sign generated at the comers results in the grain in step energy entering GTL. If the step segment length l much greater than D/v, where D and v are the kink diffusivity and propagation rate, respectively, the opposite kinks have practically no chance to annihilate and GTL is not applicable. The opposite condition of the GTL applicability, l much less than D/v, is equivalent to the requirement that relative supersaturation Delta(sub mu)/kT much less than alpha/l, where alpha is molecular size. Thus, GTL may be applied to a segment of 10(exp 3)alpha approx. 3 x 10(exp -5)cm approx 0.3 micron only if supersaturation is less than 0.1%, while practically used driving forces for crystallization are much larger. Relationships alternative to the GTL for different, but low, kink density have been discussed. They confirm experimental evidences that the Burton-Cabrera-Frank theory of spiral growth is growth rates twice as low as compared to the observed figures. Also, application of GTL results in unrealistic step energy while suggested kinetic law give reasonable figures.

  17. The Joule-Thomson coefficient as a criterion for efficient operating conditions in supercritical fluid chromatography.

    PubMed

    Poe, Donald P; Helmueller, Shawn; Kobany, Stephanie; Feldhacker, Hannah; Kaczmarski, Krzysztof

    2017-01-27

    When an SFC column is operated in a traditional oven with forced air at low pressures near the critical temperature, severe efficiency losses can occur. The mobile phase cools as it expands along the column, forming axial and radial temperature gradients. In this study we present a simple model based on a virtual fluid to predict the conditions which lead to the onset of efficiency loss. The model shows that the Joule-Thomson coefficient is an important factor leading to efficiency loss in packed columns under forced air conditions. The model was tested experimentally for elution of n-alkylbenzenes on 250×4.6-mm ID columns packed with 5-μm Luna-C18 (fully porous) and Kinetex-C18 (superficially porous) particles at optimum flow rates in a forced air oven at 20-80°C and outlet pressures from 90 to 250bar, with CO2 mobile phase containing 5, 10 and 20% methanol (v/v). For simplicity, we used a formal J-T coefficient corresponding to the inlet temperature and the outlet pressure to characterize the chromatographic conditions. For 5% methanol, there was no significant loss of efficiency for elution of n-octadecylbenzene as long as the formal J-T coefficient was less than 0.11K/bar for Luna or 0.15K/bar for Kinetex, with minimum reduced plate heights equal to 1.82 and 1.55, respectively, at an average apparent retention factor of approximately 4.0 for both columns. The Kinetex column provided superior efficiency in general, and at 10-20bar lower outlet pressures relative to the Luna column due to the higher thermal conductivity of the packing. Results for 10 and 20% methanol showed similar trends but were less predictable.

  18. Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Niemann, C.

    2016-11-01

    We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

  19. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    SciTech Connect

    Yoshikawa, M. Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M.; Yasuhara, R.; Yamada, I.; Funaba, H.; Kawahata, K.; Minami, T.

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  20. An analytic formula for the relativistic incoherent Thomson backscattering spectrum for a drifting bi-Maxwellian plasma

    SciTech Connect

    Naito, O.

    2015-08-15

    An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, the diagnostics might be used to measure local electron current density in fusion plasmas.

  1. Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through Thomson Scattering

    SciTech Connect

    Brown, W J; Hartemann, F V

    2004-01-27

    The generation of high intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. Thomson backscattering of a high intensity laser pulse with a bright relativistic electron bunch is a promising method for producing such high brightness x-ray pulses in the 10-100 keV range within a compact facility. While a variety of methods for producing sub-picosecond x-ray bursts by Thomson scattering exist, including compression of the electron bunch to sub-picosecond bunch lengths and/or colliding a sub-picosecond laser pulse in a side-on geometry to minimize the interaction time, a promising alternative approach to achieving this goal while maintaining ultra-high brightness is the production of a time correlated (or chirped) x-ray pulse in conjunction with pulse slicing or compression. We present the results of a complete analysis of this process using a recently developed 3-D time and frequency-domain code for analyzing the spatial, temporal, and spectral properties an x-ray beam produced by relativistic Thomson scattering. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, laser focus, and the transverse and longitudinal phase space of the electron beam were examined. Simulations of chirped x-ray pulse production using both a chirped electron beam and a chirped laser pulse are presented. Required electron beam and laser parameters are summarized by investigating the effects of beam emittance, energy spread, and laser bandwidth on the scattered x-ray spectrum. It is shown that sufficient temporal correlation in the scattered x-ray spectrum

  2. Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering.

    PubMed

    Clérouin, Jean; Robert, Grégory; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2015-01-01

    A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

  3. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Chen, Jincan; Yan, Zijun; Wu, Liqing

    1996-06-01

    Considering a thermoelectric generator as a heat engine cycle, the general differential equations of the temperature field inside thermoelectric elements are established by means of nonequilibrium thermodynamics. These equations are used to study the influence of heat leak, Joule's heat, and Thomson heat on the performance of the thermoelectric generator. New expressions are derived for the power output and the efficiency of the thermoelectric generator. The maximum power output is calculated and the optimal matching condition of load is determined. The maximum efficiency is discussed by a representative numerical example. The aim of this research is to provide some novel conclusions and redress some errors existing in a related investigation.

  4. Analytical studies of Gibbs-Thomson effect on the diffusion controlled spherical phase growth in a subcooled medium

    NASA Astrophysics Data System (ADS)

    Wu, T.; Chen, Y.-Z.

    2003-09-01

    By using a small-time series expansion technique, the thermal effect of surface tension (Gibbs-Thomson effect) on the early-stage phase growth of a spherical nucleus immersed in an infinite subcooled liquid is studied in this paper. The result shows that surface tension greatly reduces the incipient growth rate of the solid nucleus. Critical value of surface tension is found beyond which the decreasing of the phase growth rate with time becomes non-monotonic. Analytical expression for the phase growth rate in terms of relevant physical parameters is also derived under the condition of small degree of undercooling.

  5. Self-assembly of condensates with advanced surface by means of the competing field selectivity and Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Perekrestov, Vyacheslav; Kosminska, Yuliya; Mokrenko, Alexander; Davydenko, Taras

    2014-04-01

    Copper and silicon layers were deposited using the accumulative plasma-condensate system. Their surface was found to possess the complex developed morphology using SEM technique. Competing processes of the field selectivity and Gibbs-Thomson effect are considered to describe the formation of the surface. The mathematical model is created on the basis of these effects which describes self-assembly of the surface at the form of adjoining elements of an elliptic section. The comparative analyses of theoretical and experimental results are given.

  6. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Yasuhara, R.; Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Kawahata, K.; Minami, T.

    2014-11-01

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  7. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    SciTech Connect

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; Reusch, Joshua A.; Rodriguez Sanchez, Cuauhtemoc

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fast shutter. This –103 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot Te(R) for ne > 5 × 1018 m–3.

  8. Transient development of SRS and SBS in ps-time scale by using sub-ps Thomson diagnostic

    NASA Astrophysics Data System (ADS)

    Rousseaux, C.; Casanova, M.; Gremillet, L.; Loiseau, P.; Rabec Le Gloahec, M.; Baton, S. D.; Amiranoff, F.; Audebert, P.; Popescu, H.; Adam, J. C.; Héron, A.; Hüller, S.; Mora, P.; Pesme, D.

    2006-06-01

    The control of parametric instabilities in large plasmas remains a challenge for the ICF program. Clearly, kinetic effects play an important role in the saturation mechanisms. Sub-picosecond Thomson analysis associated with short pulse interaction permits to explore these topics. A set of experiments have been performed in preformed, He plasmas using the 100-TW laser facility at LULI. The spectra of the electrostatic waves driven by stimulated Raman and Brillouin backscatterings generated in the 1.5 ps, ω laser interaction have been measured with 0.3 ps time-resolution by using a short Thomson probe. Additionally, space-resolved and k-resolved spectra have been obtained. The experiments show that the fastest instability -B-SRS- first develops in the rising part of the pump. The B-SBS-driven IAW grows more slowly. B-SRS then abruptly vanishes around the maximum of the pump, while the IAW can be detected tens of picoseconds after the pump, allowing direct measurement of the IAW damping. The EPW k-spectra show that the EPW dispersion relation significantly deviates from the standard one. They exhibit a k-feature which could be related to the presence of a hot electron population produced in the B-SRS saturation process.

  9. Minimizing the Gibbs-Thomson effect in the low-temperature plasma synthesis of thin Si nanowires

    NASA Astrophysics Data System (ADS)

    Mehdipour, H.; Ostrikov, K.; Rider, A. E.; Furman, S. A.

    2011-08-01

    An advanced combination of numerical models, including plasma sheath, ion- and radical-induced species creation and plasma heating effects on the surface and within a Au catalyst nanoparticle, is used to describe the catalyzed growth of Si nanowires in the sheath of a low-temperature and low-pressure plasma. These models have been used to explain the higher nanowire growth rates, low-energy barriers, much thinner Si nanowire nucleation and the less effective Gibbs-Thomson effect in reactive plasma processes, compared with those of neutral gas thermal processes. The effects of variation in the plasma sheath parameters and substrate potential on Si nanowire nucleation and growth have also been investigated. It is shown that increasing the plasma-related effects leads to decreases in the nucleation energy barrier and the critical nanoparticle radius, with the Gibbs-Thomson effect diminished, even at low temperatures. The results obtained are consistent with available experimental results and open a path toward the energy- and matter-efficient nucleation and growth of a broad range of one-dimensional quantum structures.

  10. Influence of the Joule-Thomson effect on the flow of a vapor through a micro-porous membrane

    NASA Astrophysics Data System (ADS)

    Loimer, Thomas

    2005-11-01

    The flow of a fluid near saturation through a micro-porous membrane is considered. Upstream of the membrane, the fluid is in a state of saturated vapor. Downstreams, there is unsaturated vapor which is, due to the Joule-Thomson effect, cooler than at the upstream side. The flow is described taking into account the Joule-Thomson effect and the wetting properties between the fluid and the membrane material, i.e., the capillary pressure across a curved meniscus and capillary condensation. Different types of flow occur, depending on the permeability of the membrane, on the wetting properties between the fluid and the membrane and on the pressure difference. The fluid condenses either fully or partially at the front surface of the membrane, or a liquid film forms in front of the membrane. Liquid or a two-phase mixture flows through a part or all of the membrane and evaporates either within the membrane or at the downstream front of the membrane, or the fluid evaporates at the upstream front of the membrane and vapor flows through the entire membrane. The different types of flow are discussed and the conditions under which they occur are presented.

  11. Minimizing the Gibbs-Thomson effect in the low-temperature plasma synthesis of thin Si nanowires.

    PubMed

    Mehdipour, H; Ostrikov, K; Rider, A E; Furman, S A

    2011-08-05

    An advanced combination of numerical models, including plasma sheath, ion- and radical-induced species creation and plasma heating effects on the surface and within a Au catalyst nanoparticle, is used to describe the catalyzed growth of Si nanowires in the sheath of a low-temperature and low-pressure plasma. These models have been used to explain the higher nanowire growth rates, low-energy barriers, much thinner Si nanowire nucleation and the less effective Gibbs-Thomson effect in reactive plasma processes, compared with those of neutral gas thermal processes. The effects of variation in the plasma sheath parameters and substrate potential on Si nanowire nucleation and growth have also been investigated. It is shown that increasing the plasma-related effects leads to decreases in the nucleation energy barrier and the critical nanoparticle radius, with the Gibbs-Thomson effect diminished, even at low temperatures. The results obtained are consistent with available experimental results and open a path toward the energy- and matter-efficient nucleation and growth of a broad range of one-dimensional quantum structures.

  12. Development of a Thomson scattering system and its use in a rotating magnetic field driven field-reversed configurations plasma

    NASA Astrophysics Data System (ADS)

    Lee, Kiyong

    The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.

  13. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  14. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    NASA Astrophysics Data System (ADS)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  15. "Intelligence and Civilisation": A Ludwig Mond Lecture Delivered at the University of Manchester on 23rd October 1936 by Godfrey H. Thomson. A Reprinting with Background and Commentary

    ERIC Educational Resources Information Center

    Deary, Ian J.; Lawn, Martin; Brett, Caroline E.; Bartholomew, David J.

    2009-01-01

    Here we reprint, and provide background and a commentary on, a recently-rediscovered lecture by Godfrey H. Thomson entitled, "Intelligence and civilisation." It was delivered at the University of Manchester, UK, on 23rd October, 1936, printed in 1937 in the short-lived "Journal of the University of Manchester" and as a pamphlet…

  16. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials.

    PubMed

    Kaptay, George

    2012-03-01

    The Kelvin equation, the Gibbs equation and the Gibbs-Thomson equation are compared. It is shown that the Kelvin equation (on equilibrium vapor pressure above nano-droplets) can be derived if the inner pressure due to the curvature (from the Laplace equation) is substituted incorrectly into the external pressure term of the Gibbs equation. Thus, the Kelvin equation is excluded in its present form. The Gibbs-Thomson equation (on so-called equilibrium melting point of a nano-crystal) is an analog of the Kelvin equation, and thus it is also excluded in its present form. The contradiction between the critical nucleus size (from the Gibbs equation) and the so-called equilibrium melting point of nano-crystals (from the Gibbs-Thomson equation) is explained. The contradiction is resolved if the Gibbs equation is applied to study both nucleation and equilibrium of nano-crystals. Thus, the difference in the behavior of nano-systems compared to macro-systems is due to their high specific surface area (Gibbs) and not to the high curvature of their interface (Kelvin). Modified versions of the Kelvin equation and the Gibbs-Thomson equation are derived from the Gibbs equation for phases with a general shape and for a spherical phase.

  17. The use of ultraviolet Thomson scattering as a versatile diagnostic for detailed measurements of a collisional laser produced plasma

    SciTech Connect

    Tracy, Mark David

    1993-01-08

    Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach nc/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 ≤ kiaλii ≤ ∞) and ZTe/Ti, where kia is the ion- acoustic wave number, λii is the ion-ion mean free path, Z is the ionization state of the plasma, and Te. Ti are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (kiaλei, kiaλee ≥ 1), and quasineutrality holds, (α ≥1), where α = 1/kλDE and λDe is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.

  18. Low-temperature thermochronology of the northern Thomson Orogen: Implications for exhumation of basement rocks in NE Australia

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; Stockli, Daniel; Purdy, David

    2016-01-01

    The Tasmanides of eastern Australia record much of the Phanerozoic tectonic development of the retreating Pacific-Australia plate boundary and are an oft-cited example of an orogen that has undergone "tectonic mode switching." To begin to constrain the timing of exhumation of basement rocks that are now exposed in portions of the NE Tasmanides, we measured apatite and zircon (U-Th)/He ages from the Thomson Orogen and overlying Paleozoic strata in the back-arc of the New England Orogen in NE Australia. Zircon (U-Th)/He ages from basement samples (including those recovered from boreholes at depths of up to 1.1 km) are characterized by large inter- and intra-sample variability and range from approximately 180 Ma (Early Jurassic) to 375 Ma (Late Devonian). (U-Th)/He zircon ages from several individual samples are negatively correlated with effective uranium (eU), a pattern that is also true of the dataset as a whole, suggesting that variations in U and Th zoning and radiation damage are partially responsible for the age variability. The oldest zircon (U-Th)/He cooling ages coincide with the formation of regionally extensive Late Devonian-early Carboniferous back-arc basins, suggesting that Late Devonian extension played a significant role in exhumation of parts of the northern Thomson Orogen. Apatite (U-Th)/He ages from a basement sample and a late Permian sandstone in the overlying Bowen Basin, which are also marked by intra-sample variability and age-eU correlations, span from the Early Cretaceous through Oligocene, in general agreement with previous apatite fission track data. In conjunction with observations of key geologic relationships and prior K-Ar and 40Ar/39Ar data, our results suggest four overall phases in the thermal history of the northern Thomson Orogen: (1) Cambrian-early Silurian metamorphism during the Delamerian and Benambran Orogenies; (2) protracted cooling during the Late Devonian through mid-Permian that likely resulted from extensional

  19. Simultaneous measurement of electron and heavy particle temperatures in He laser-induced plasma by Thomson and Rayleigh scattering

    SciTech Connect

    Dzierzega, K.; Mendys, A.; Zawadzki, W.; Pokrzywka, B.; Pellerin, S.

    2013-04-01

    Thomson and Rayleigh scattering methods were applied to quantify the electron and heavy particle temperatures, as well as electron number density, in a laser spark in helium at atmospheric pressure. Plasma was created using 4.5 ns, 25 mJ pulses from Nd:YAG laser at 532 nm. Measurements, performed for the time interval between 20 ns and 800 ns after breakdown, show electron density and temperature to decrease from 7.8 Multiplication-Sign 10{sup 23} m{sup -3} to 2.6 Multiplication-Sign 10{sup 22} m{sup -3} and from 95 900 K to 10 350 K, respectively. At the same time, the heavy particle temperature drops from only 47 000 K down to 4100 K which indicates a two temperature plasma out of local isothermal equilibrium.

  20. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    SciTech Connect

    Young, W. C. Den Hartog, D. J.

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  1. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  2. Citation analysis of publications of NASU mechanicians in the database of the Thomson Reuters Institute for Scientific Information

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Rushchitsky, J. J.

    2009-07-01

    The paper performs a citation analysis of publications of mechanicians of the National Academy of Sciences of Ukraine (NASU) based on information tools developed by the Thomson Reuters Institute for Scientific Information. Two groups of mechanicians are considered: representatives of the S. P. Timoshenko Institute of Mechanics of the NASU (NASU members, heads of departments) and members (academicians) of the NASU Division of Mechanics. Three elements of the Citation Report (Results Found, Citation Index (Sum of the Times Cited), h-index) are presented for each scientist. This paper may be considered as a follow-up on the papers [6-11] published by Prikladnaya Mekhanika ( International Applied Mechanics) in 2005-2009

  3. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    NASA Astrophysics Data System (ADS)

    Hack, Szabolcs; Varró, Sándor; Czirják, Attila

    2016-02-01

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron's relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  4. Feasibility of alpha particle measurement in a magnetically confined plasma by CO/sub 2/ laser Thomson scattering

    SciTech Connect

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO/sub 2/ laser beam from such a plasma, a resonance in the scattered power occurs near 90/sup 0/ with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs.

  5. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    SciTech Connect

    Prasad, R.; Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M.; Borghesi, M.; Ter-Avetisyan, S.; Nickles, P. V.

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  6. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Abicht, F.; Borghesi, M.; Braenzel, J.; Nickles, P. V.; Priebe, G.; Schnürer, M.; Ter-Avetisyan, S.

    2013-05-01

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  7. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  8. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Kraus, D.; Neumayer, P.; Bachmann, B.; Emig, J.; Falcone, R. W.; Fletcher, L. B.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Saunders, A. M.; Wood, R. D.

    2016-11-01

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  9. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    PubMed

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  10. Clinical findings, dental treatment, and improvement in quality of life for a child with Rothmund-Thomson syndrome

    PubMed Central

    De Oliveira, Katharina Morant Holanda; Silva, Raquel Assed Bezerra; Carvalho, Fabricio Kitazono; Silva, Lea Assed Bezerra; Nelson-Filho, Paulo; Queiroz, Alexandra Mussolino

    2016-01-01

    The purpose of this study was to report the clinical findings, dental treatment, and improvement in quality of life for a child with Rothmund-Thomson syndrome. The patient had alopecia, delayed speech, low weight and height, cholestasis, and iron deficiency anemia. Furthermore, there were carious lesions and darkened spots on all primary molars. Microdontia of a premolar was observed at the radiographic examination. The patient and family had no commitment to her oral health and dental treatment at first appointments. Oral hygiene instructions, composite restorations, endodontic treatments, teeth extractions, and stainless steel crown installations were performed. The patient was followed up for 7 years through the present due to other possible future clinical findings associated with the syndrome. An improvement in social aspects was observed after removal of toothache and improved esthetics. Such patients need continuous periodic services, which contributes to improving the quality of life in both buccal and general aspects. PMID:27307676

  11. Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Gokirmak, Ali; Silva, Helena

    2014-12-01

    We have observed how thermoelectric effects that result in asymmetric melting of silicon wires are suppressed for increasing electric current density (J). The experimental results are investigated using numerical modeling of the self-heating process, which elucidates the relative contributions of the asymmetric thermoelectric Thomson heat (˜J) and symmetric Joule heating (˜J2) that lead to symmetric heating for higher current levels. These results are applied in modeling of the self-heating process in phase-change memory devices. While, phase-change memory devices show a clearly preferred operation polarity due to thermoelectric effects, nearly symmetric operation can be achieved with higher amplitude and shorter current pulses, which can lead to design of improved polarity-invariant memory circuitry.

  12. On the possible cycles via the unified perspective of cryocoolers. Part A: The Joule-Thomson cryocooler

    SciTech Connect

    Maytal, Ben-Zion; Pfotenhauer, John M.

    2014-01-29

    Joule-Thomson (JT) cryocoolers possess a self adjusting effect, which preserves the state of the returning stream from the evaporator as a saturated vapor. The heat load can be entirely absorbed at constant temperature by evaporation even for different sized heat exchangers. It is not possible for the steady state flow resulting from a gradual cool down to penetrate 'deeper' into the two-phase dome, and produce a two phase return flow even with a heat exchanger of unlimited size. Such behavior was implicitly taken for granted in the literature but never clearly stated nor questioned and therefore never systematically proven. The discussion provided below provides such a proof via the unified model of cryocoolers. This model portrays all cryocoolers as magnifiers of their respective elementary temperature reducing mechanism through the process of 'interchanging'.

  13. High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    A new, high-repetition-rate pulse-burst laser system for the MST Thomson scattering diagnostic has operated with 2 J pulses at repetition rates up to 75 kHz within a burst. The 1064 nm laser currently employs a q-switched, diode pumped Nd:YVO4 master oscillator, four Nd:YAG amplifier stages, and a Nd:glass amplifier, with plans for an additional Nd:glass amplifier. The laser can maintain 1.5-2 J pulses in two operating modes: either at a uniform repetition rate of 5-10 kHz (sustained for 5-8 ms), or reach rates of up to 75 kHz in pulse-burst operation (for 10 bursts of 15 pulses each), limited by flashlamp explosion energy and wall loading. The full system, including an additional Nd:glass amplifier, is designed to produce bursts of 2 J pulses at a repetition rate of at least 250 kHz. Custom programmable square-pulse power supplies drive the amplifier flashlamps, providing fine control of pulse timing, duration, and repetition, and allow for pulse-burst operation. The new laser system integrates with the same collection optics and detectors as used by the previous MST Thomson laser: 21 spatial points across the MST minor radius, filter polychromators with 6 to 8 channels (10 eV-5 keV range), avalanche photodiode detectors, and 1 GSample/s/channel digitization. Use of the previous pulse-burst laser continues concurrently with new laser development. Additional notes on optimization of flashlamp simmering will also be covered, showing that an increase in simmer currents can improve pulse-to-pulse energy consistency on both the new and older lasers.

  14. Modified Kelvin-Thomson equation considering ion-dipole interaction: Comparison with observed ion-clustering enthalpies and entropies

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2005-02-01

    The classical Kelvin-Thomson (CKT) equation does not consider the interaction of condensing molecules with the ions and hence is not able to treat polar and nonpolar molecules differently. The ion-clustering enthalpy and entropy changes predicted by CKT equation for small ions are known to be significantly less negative than those observed. In this paper, we derive a modified Kelvin-Thomson (MKT) equation, which considers the effect of dipole-ion interaction, by taking into account the kinetic energy change of condensing polar ligands as they approach the ions or the extra energy needed for dipole molecules to escape from the ion cluster. The clustering enthalpies and entropies for protonated clusters (H+Ln, with L =H2O, NH3, CH3OH, and C5H5N) are calculated based on MKT equation and compared with experimental data. Our calculations indicate that enthalpy values given by MKT equation are in very good agreement with experimental results for small ions (n ⩽5) of all four species investigated. MKT predictions appear to be consistent with observed enthalpies for CH3OH at n ⩾6 and for H2O at n =14-25, however, MKT equation cannot reproduce the observed discontinuous transition in enthalpy changes at n =6 for NH3 and at n =7-13 for H2O which is probably associated with the formation of inner shell. The stepwise entropy changes for small ions are 5-15cal mol-1K-1 more negative when the effect of dipole-ion interaction is considered, which suggests that the ordered structure of the cluster ions can somewhat be accounted for by the dipole-ion interaction term.

  15. Modified Kelvin-Thomson equation considering ion-dipole interaction: comparison with observed ion-clustering enthalpies and entropies.

    PubMed

    Yu, Fangqun

    2005-02-22

    The classical Kelvin-Thomson (CKT) equation does not consider the interaction of condensing molecules with the ions and hence is not able to treat polar and nonpolar molecules differently. The ion-clustering enthalpy and entropy changes predicted by CKT equation for small ions are known to be significantly less negative than those observed. In this paper, we derive a modified Kelvin-Thomson (MKT) equation, which considers the effect of dipole-ion interaction, by taking into account the kinetic energy change of condensing polar ligands as they approach the ions or the extra energy needed for dipole molecules to escape from the ion cluster. The clustering enthalpies and entropies for protonated clusters (H(+)L(n), with L=H(2)O, NH(3), CH(3)OH, and C(5)H(5)N) are calculated based on MKT equation and compared with experimental data. Our calculations indicate that enthalpy values given by MKT equation are in very good agreement with experimental results for small ions (n< or =5) of all four species investigated. MKT predictions appear to be consistent with observed enthalpies for CH(3)OH at n> or =6 and for H(2)O at n=14-25, however, MKT equation cannot reproduce the observed discontinuous transition in enthalpy changes at n=6 for NH(3) and at n=7-13 for H(2)O which is probably associated with the formation of inner shell. The stepwise entropy changes for small ions are 5-15 cal mol(-1) K(-1) more negative when the effect of dipole-ion interaction is considered, which suggests that the ordered structure of the cluster ions can somewhat be accounted for by the dipole-ion interaction term.

  16. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    SciTech Connect

    Cvejić, M. E-mail: krzysztof.dzierzega@uj.edu.pl; Dzierżęga, K. E-mail: krzysztof.dzierzega@uj.edu.pl; Pięta, T.

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  17. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W. l Drake, R.P.

    1991-12-31

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.

  18. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering

    SciTech Connect

    Mizuno, K.; DeGroot, J.S. ); Seka, W. . Lab. for Laser Energetics)l Drake, R.P. )

    1991-01-01

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.

  19. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    SciTech Connect

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive ability to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, Me

  20. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser produced plasma measured with imaging Thomson scattering

    SciTech Connect

    Froula, D H; Davis, P; Pollock, B B; Divol, L; Ross, J S; Edwards, J; Town, R; Price, D; Glenzer, S H; Offenberger, A A; Tynan, G R; James, A N

    2006-04-14

    We present a direct measurement of the quenching of nonlocal heat transport in a laser produced plasma by high external magnetic fields. Temporally resolved measurements of the electron temperature profile transverse to a high power laser beam were obtained using imaging Thomson scattering. The results are simulated with the 2D hydrodynamic code LASNEX with a recently included magnetic field model that self-consistently evolves the fields in the plasma.

  1. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  2. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    DOE PAGES

    Ao, T.; Harding, E. C.; Bailey, J. E.; ...

    2016-01-13

    Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature ofmore » 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less

  3. On the interpretation of current-voltage curves in ionization chambers using the exact solution of the Thomson problem

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.

    2015-09-01

    The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.

  4. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    SciTech Connect

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.

    2016-01-13

    Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.

  5. Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2016-09-01

    Laser wakefield acceleration of electrons in the blowout regime can be controlled by tailoring the laser pulse phase and the plasma target. The 100 nm-scale bandwidth and negative frequency chirp of the optical driver compensate for the nonlinear frequency red-shift imparted by wakefield excitation. This mitigates pulse self-steepening and suppresses continuous injection. The plasma channel suppresses diffraction of the pulse leading edge, further reducing self-steepening, making injection even quieter. Besides, the channel destabilizes the pulse tail confined within the accelerator cavity (the electron density "bubble"), causing oscillations in the bubble size. The resulting periodic injection generates background-free comb-like beams - sequences of synchronized, low phase-space volume bunches. Controlling the number of bunches, their energy, and energy spacing by varying the channel radius and the pulse length (as permitted by the large bandwidth) enables the design of a tunable, all-optical source of polychromatic, pulsed γ-rays using the mechanism of inverse Thomson scattering. Such source may radiate ~107 quasi-monochromatic 10 MeV-scale photons per shot into a microsteradian-scale observation angle. The photon energy is distributed among several distinct bands, each having sub-25% energy spread dictated by the mrad-scale divergence of electron beam.

  6. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Lehe, R.; Lifschitz, A. F.; Shadwick, B. A.

    2016-03-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ˜10-5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ˜107 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV.

  7. Ultrafast K-alpha Thomson scattering from shock compressed matter for use as a dense matter diagnostic

    NASA Astrophysics Data System (ADS)

    Kritcher, Andrea Lynn

    Material conditions in the high-energy-density-physics regime relevant for the study of planetary formation, the modeling of planetary composition, and for inertial confinement fusion experiments, such as on the future National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), can be produced and studied in the laboratory using high powered lasers that shock compress material to pressures greater than > 1 Mbar. Measurement of the compression and heating of shock-compressed dense matter at high pressures is fundamental in the study and understanding of the physical and chemical properties of these extreme states. Investigation of the behavior of the ionic and elecronic properties in this regime is important to determine the equation of state and thermodynamic properties of materials under extreme conditions, that are not currently well understood. In previous work, x-ray Thomson scattering has been employed to characterize dense matter conditions, ne > 3 x 10 21cm-3, that cannot be probed using the well established technique of optical Thomson scattering. These experiments employed x-ray probes with a temporal resolution of 100 ps. However, for the full characterization of strong shocks in dense matter, an x-ray source that provides picosecond temporal resolution, i.e. K-alpha x-rays, is desirable. Presented in this thesis, are the first spectrally and temporally resolved x ray Thomson scattering measurements using ultrafast (10 ps) Ti K-alpha x-rays. These measurements have provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models, mainly dependent on choice of Equation of State (EOS). Here, the temperature evolution of the target at various times during shock progression was characterized from the

  8. Investigation of neon-nitrogen mixed refrigerant Joule-Thomson cryocooler operating below 70 K with precooling at 100 K

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Oh, Haejin; Jeong, Sangkwon

    2014-05-01

    There has been two-stage mixed refrigerant (MR) Joule-Thomson (JT) refrigeration cycle suggested for cooling high temperature superconductor (HTS) electric power cable below 70 K. As the continuation effort of realizing the actual system, we fabricated and tested a small scale neon and nitrogen MR JT cryocooler to investigate the refrigeration characteristics and performance. The compression system of the refrigeration circuit was accomplished by modifying commercially available air-conditioning rotary compressors. Compressors stably operated at the maximum compression ratio of 31 when the suction pressure was 77 kPa. The achieved lowest temperature was 63.6 K when the heating load was 35.9 W. The measured Carnot efficiency of the present system was 6.5% which was lower than that of the designed goal of 17.4%. The low efficiency of compressor (34.5%), and the pressure drop at the compressor suction were the main reasons for this efficiency degradation. The feasibility and usefulness of neon and nitrogen MR JT refrigeration cycle was validated that the achieved minimum temperature was 63.6 K even though the pressure after the expansion was maintained by 130 kPa. The comparison between the measurement and calculation showed that each stream temperature of refrigeration cycle were predictable within 3% error by Peng-Robinson equation of state (EOS).

  9. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  10. First-principles calculations of dynamic transport properties for x-ray Thomson scattering experiments on warm dense aluminum

    NASA Astrophysics Data System (ADS)

    Witte, Bastian B. L.; Sperling, Philipp; Glenzer, Siegfried H.; Redmer, Ronald

    2016-10-01

    X-ray Thomson scattering (XRTS) is an effective tool to determine plasma parameters, e.g., temperature and density, in the warm dense (WD) matter regime. Furthermore, transport coefficients are relevant for modeling, e.g., fusion experiments or the magnetic field generation in planets. Recently, the electrical conductivity was extracted for the first time from XRTS experiments on aluminum, isochorically heated by the Linac Coherent Light Source (LCLS). The measured spectrally resolved scattering signal shows a strong dependence on the electron interactions, which have to be treated beyond perturbation theory. We present results for the dynamic transport properties in WD aluminum using density-functional-theory molecular dynamics (DFT-MD) simulations. The choice of the exchange-correlation (XC) functional, describing the interactions in the electronic subsystem, has significant impact on the ionization potential and the thermal and electrical conductivity. The calculation of the XRTS signal from the DFT-MD simulations shows very good agreement with the LCLS data if hybrid functionals are applied, i.e., XC functionals within the generalized gradient approximation are not suitable for the description of WD aluminum.

  11. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  12. High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuusuke; Saito, Teruo; Tatematsu, Yoshinori; Ikeuchi, Shinji; Manuilov, Vladimir N.; Kasa, Jun; Kotera, Masaki; Idehara, Toshitaka; Kubo, Shin; Shimozuma, Takashi; Tanaka, Kenji; Nishiura, Masaki

    2015-01-01

    A high-power pulse gyrotron was developed to generate a probe wave for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation with a narrow frequency bandwidth. A moderately over-moded cavity was investigated to ensure sufficient isolation of a desired mode from neighbouring modes, and to achieve high power output simultaneously. A cavity with the TE14,2 operation mode, a triode electron gun with an intense laminar electron beam, and an internal mode convertor were designed to construct a prototype tube. It was experimentally observed that oscillation of the TE14,2 mode was strong enough for mode competition, and provided high power with sufficient stability. The oscillation characteristics associated with the electron beam properties were compared with the numerical characteristics to find an optimum operating condition. As a result, single-mode operation with maximum output power of 246 kW was demonstrated at 294 GHz with 65 kV/14 A electron beam, yielding efficiency of ˜27%. The radiation pattern was confirmed to be highly Gaussian. The duration of the 130 kW pulse, which is presently limited by the power supply, was extended up to 30 µs. The experimental results validate our design concept and indicate the potential for realizing a gyrotron with higher power and longer pulse toward practical use in 300 GHz CTS diagnostics.

  13. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium

    NASA Astrophysics Data System (ADS)

    Harbour, L.; Dharma-wardana, M. W. C.; Klug, D. D.; Lewis, L. J.

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  14. GENERAL: Effect of Spatial Dimension and External Potential on Joule-Thomson Coefficients of Ideal Bose Gases

    NASA Astrophysics Data System (ADS)

    Yuan, Du-Qi; Wang, Can-Jun

    2010-04-01

    Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (JTC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s <= 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → TC (TC is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant Δ = [1 - ∏[ni = 1(kT/varpii)1/tiΓ(1/ti + 1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, varpii is the external field's energy), is obtained. The potential makes the JTC increase when Δ > 0, on the contrary, it makes the JTC decrease when Δ < 0. (iii) In the homogenous strong external potential, the JTC gets the maximum on the condition of kT/varpii < 1.

  15. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W. R.; Kim, H. S.; Park, M. K.; Lee, J. H.; Kim, K. H.

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  16. Experimental evaluation of an adaptive Joule-Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components.

    PubMed

    Zhu, Weibin; Park, Jong M; White, Michael J; Nellis, Gregory F; Gianchandani, Yogesh B

    2011-03-01

    This article reports the evaluation of a Joule-Thomson (JT) cooling system that combines two custom micromachined components-a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1 × 1 cm(2) and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1 × 1 × 1 cm(3). In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of -30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW.

  17. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR

    SciTech Connect

    Lee, W. R.; Park, M. K.; Lee, J. H.; Kim, H. S.; Kim, K. H.

    2012-09-15

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  18. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  19. Periodicity property of relativistic Thomson scattering with application to exact calculations of angular and spectral distributions of the scattered field

    SciTech Connect

    Popa, Alexandru

    2011-08-15

    We prove that the analytical expression of the intensity of the relativistic Thomson scattered field for a system composed of an electron interacting with a plane electromagnetic field can be written in the form of a composite periodic function of only one variable, that is, the phase of the incident field. This property is proved without using any approximation in the most general case in which the field is elliptically polarized, the initial phase of the incident field and the initial velocity of the electron are taken into consideration, and the direction in which the radiation is scattered is arbitrary. This property leads to an exact method for calculating the angular and spectral distributions of the scattered field, which reveals a series of physical details of these distributions, such as their dependence on the components of the initial electron velocity. Since the phase of the field is a relativistic invariant, it follows that the periodicity property is also valid when the analysis is made in the inertial system in which the initial velocity of the electron is zero in the case of interactions between very intense electromagnetic fields and relativistic electrons. Consequently, the calculation method can be used for the evaluation of properties of backscattered hard radiations generated by this type of interaction. The theoretical evaluations presented in this paper are in good agreement with the experimental data from literature.

  20. Post shot analysis of plasma conditions of Gold Spheres illuminated by the URLLE Omega laser, as measured via Thomson scattering

    NASA Astrophysics Data System (ADS)

    Rosen, M. D.; Ross, J. S.; Scott, H. A.; Landen, N.; Froula, D.; Dewald, E.; May, M.; Widmann, K.

    2013-10-01

    Recently there was a follow up to the 2006 campaign to illuminate 1 mm diameter gold spheres using the Omega laser at LLE. The 2013 campaign uses Thomson scattering to diagnose the plasma conditions as a function of time, at various radial positions in the coronal, laser heated, blow-off region. Laser irradiances were 1, 5, and 10 × 1014 W/sqcm, usually in a 1 ns pulse duration. Depleted uranium and Ag spheres were also tested. We compare the predictions of plasma conditions using various non-LTE computational models of atomic physics and electron transport (as implemented into the rad-hydro code Lasnex) to this data. The ``high flux model (HFM)'' (DCA atomic physics and non local transport) compares well for some of experiments, while an intermediate model that radiates a bit less total x-ray fluence than the HFM, does better on other experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Numerical simulation of tubes-in-tube heat exchanger in a mixed refrigerant Joule–Thomson cryocooler

    NASA Astrophysics Data System (ADS)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2017-02-01

    Mixed refrigerant Joule-Thomson (MRJT) cryocoolers can produce cryogenic temperatures with high efficiency and low operating pressures. As compared to the high system pressures of around 150–200 bar with nitrogen, the operational pressures with non-azeotropic mixtures (e.g., nitrogen-hydrocarbons) come down to 10–25 bar. With mixtures, the heat transfer in the recuperative heat exchanger takes place in the two-phase region. The simultaneous boiling and condensation of the cold and hot gas streams lead to higher heat transfer coefficients as compared to single phase heat exchange. The two-phase heat transfer in the recuperative heat exchanger drastically affects the performance of a MRJT cryocooler. In this work, a previously reported numerical model for a simple tube-in-tube heat exchanger is extended to a multi tubes-in-tube heat exchanger with a transient formulation. Additionally, the J-T expansion process is also considered to simulate the cooling process of the heat exchanger from ambient temperature conditions. A tubes-in-tube heat exchanger offers more heat transfer area per unit volume resulting in a compact design. Also, the division of flow in multiple tubes reduces the pressure drop in the heat exchanger. Simulations with different mixtures of nitrogen-hydrocarbons are carried out and the numerical results are compared with the experimental data.

  2. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.

    2016-03-01

    Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.

  3. Ultraviolet Thomson Scattering from Two-Plasmon-Decay Driven Electron Plasma Waves at Quarter-Critical Densities

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Michel, D. T.; Hu, S. X.; Myatt, J. F.; Henchen, R. J.; Katz, J.; Froula, D. H.

    2013-10-01

    Thomson scattering (TS) was used to probe electron plasma waves (EPW's) driven by the two-plasmon-decay (TPD) instability near quarter-critical density. TPD-driven EPW's were observed at densities consistent with the common-wave TPD model. Five laser beams (λ3ω = 351nm) produced 400- μm-diam (FWHM) laser spots with overlapped intensities up to 3 ×1014W/cm2 . A 263-nm TS beam was used to probe densities ranging from 0.18 to 0.26 nc, where nc is the critical density for 351-nm light. The experimental geometry was chosen to match the five-beam TPD common wave k vector. The TS spectrum shows a large amplitude, narrow (~1.6-nm FHWM) feature centered around 423.4 nm. This wavelength corresponds to scattering from EPW's with a normalized wave vector k / k3 ω = 1 . 3 , a density of ne/nc = 0.243, and a temperature of Te = 2 keV. This is consistent with the predicted values given by the dispersion relations and TPD maximum growth hyperbola. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Role of Nottingham and Thomson effects in heating of micro-protrusion in high-gradient accelerating structures

    NASA Astrophysics Data System (ADS)

    Keser, Aydin; Nusinovich, Gregory; Kashyn, Dmytro; Antonsen, Thomas

    2012-10-01

    It is widely accepted that one of the reasons for appearance of the RF breakdown which limits operation of high-gradient accelerating structures is the electron dark current [1]. This field emitted current, usually considered as a precursor of the breakdown, can be emitted from apexes of micro-protrusions on a structure surface. Therefore field and thermal processes in such protrusions deserve careful studies [2, 3]. The goal of our first study [3] was to analyze 2D process of RF field penetration inside protrusion of a metal with finite conductivity and to study corresponding Joule heating. In the current study, it is found that space charges can have a stabilizing effect on the electric field. We include a modification of the 1D model described in [4]. Moreover, we include into consideration, first, the Nottingham effect which may significantly change the protrusion heating. We also investigate the interplay between high temperature gradients and electric fields (Thomson heating).[4pt] [1] Wang and Loew, SLAC PUB 7684 October 1997.[0pt] [2] K.L. Jensen, Y.Y. Lau, D.W. Feldman, P.G. O'Shea, Phys. Rev. ST Accel. Beams 11, 081001(2008).[0pt] [3] Kashyn et al, AAC-2010.[0pt] [4] K.L. Jensen, J. LEbowitz, Y.Y. LAu, J. Luginsland, Journal of Applied Physics 111, 054917(2012).

  5. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    SciTech Connect

    Chapman, D. A.; Kraus, D.; Falcone, R. W.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T.; Gericke, D. O.; Glenzer, S. H.; Guymer, T. M.; Neumayer, P.; Redmer, R.; and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  6. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  7. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  8. Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Saiyed, Naseem H.; Nyland, Ted W.

    1990-01-01

    Liquid nitrogen mass flow rate, pressure drop, and temperature drop data were obtained for a series of multiple orifice Joule-Thomson devices, known as Visco Jets, over a wide range of flow resistance. The test rig used to acquire the data was designed to minimize heat transfer so that fluid expansion through the Visco Jets would be isenthalpic. The data include a range of fluid inlet pressures from 30 to 60 psia, fluid inlet temperatures from 118 to 164 R, outlet pressures from 2.8 to 55.8 psia, outlet temperatures from 117 to 162 R and flow rate from 0.04 to 4.0 lbm/hr of nitrogen. A flow rate equation supplied by the manufacturer was found to accurately predict single-phase (noncavitating) liquid nitrogen flow through the Visco Jets. For cavitating flow, the manufacturer's equation was found to be inaccurate. Greatly improved results were achieved with a modified version of the single-phase equation. The modification consists of a multiplication factor to the manufacturer's equation equal to one minus the downstream quality on an isenthalpic expansion of the fluid across the Visco Jet. For a range of flow resistances represented by Visco Jet Lohm ratings between 17,600 and 80,000, 100 percent of the single-phase data and 85 percent of the two-phase data fall within + or - 10 percent of predicted values.

  9. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    SciTech Connect

    Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  10. Development of a sorption-based Joule-Thomson cooler for the METIS instrument on E-ELT

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Vermeer, C. H.; Holland, H. J.; Benthem, B.; ter Brake, H. J. M.

    2015-12-01

    METIS, the Mid-infrared E-ELT Imager and Spectrograph, is one of the proposed instruments for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 m. Its detectors and optics require cryogenic cooling at four temperature levels, 8 K for the N-band detectors, 25 K for the N-band imager, 40 K for the L/M-band detectors and 70 K for the optics. To provide cooling below 70 K, a vibration-free cooling technology based on sorption coolers is developed at the University of Twente in collaboration with Airbus Defence and Space Netherlands B.V. (former Dutch Space B.V.). We propose a sorption-based cooler with three cascaded Joule-Thomson (JT) coolers of which the sorption compressors are all heat sunk at the 70 K platform. A helium-operated cooler is used to obtain the 8 K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40 K, 25 K and 15 K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40 K level is realized by a neon-based sorption cooler. To validate the designs, three demonstrators were built and tested: 1. Full-scale 8 K helium JT cold stage; 2. Scaled helium sorption compressor; 3. Scaled 40 K neon sorption JT cooler. In this paper, we present the design of these demos. We discuss the experiment results obtained so far, the lessons that were learned from these demos and the future development towards a real METIS cooler.

  11. Thomson scattering and collisional ionization in the X-ray grating spectra of the recurrent nova U Scorpii

    NASA Astrophysics Data System (ADS)

    Orio, M.; Behar, E.; Gallagher, J.; Bianchini, A.; Chiosi, E.; Luna, G. J. M.; Nelson, T.; Rauch, T.; Schaefer, B. E.; Tofflemire, B.

    2013-02-01

    We present a Chandra observation of the recurrent nova U Scorpii, done with the High Resolution camera-S (HRC-S) detector and the Low Energy Transmission Grating (LETG) on day 18 after the observed visual maximum of 2010, and compare it with XMM-Newton observations obtained on days 23 and 35 after maximum. The total absorbed flux was in the range 2.2-2.6 × 10-11 erg cm-2 s-1, corresponding to unabsorbed luminosity 7-8.5 × 1036 ×(d/12 kpc)2 for N(H) = 2-2.7 × 1021 cm-2. On day 18, 70 per cent of the soft X-tray flux was in a continuum typical of a very hot white dwarf (WD) atmosphere, which accounted for about 80 per cent of the flux on days 23 and 35. In addition, all spectra display very broad emission lines, due to higher ionization stages at later times. With Chandra we observed apparent P Cygni profiles. We find that these peculiar profiles are not due to blueshifted absorption and redshifted emission in photoionized ejecta, like the optical P Cyg of novae, but they are rather a superposition of WD atmospheric absorption features reflected by the already discovered Thomson scattering corona, and emission lines due to collisional ionization in condensations in the ejecta. On days 23 and 35, the absorption components were no longer measurable, having lost the initial large blueshift that displaced them from the core of the broad emission lines. We interpret this as an indication that mass-loss ceased between day 18 and day 23. On day 35, the emission line spectrum became very complex, with several different components. Model atmospheres indicate that the WD atmospheric temperature was about 730 000 K on day 18 and reached 900 000-1000 000 K on day 35. This peak temperature is consistent with a WD mass of at least 1.3 M⊙.

  12. On the stability of discrete tripole, quadrupole, Thomson' vortex triangle and square in a two-layer/homogeneous rotating fluid

    NASA Astrophysics Data System (ADS)

    Kurakin, Leonid G.; Ostrovskaya, Irina V.; Sokolovskiy, Mikhail A.

    2016-05-01

    A two-layer quasigeostrophic model is considered in the f-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity Γ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius R in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters ( R, Γ, α), where α is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group G is applied. The two definitions of stability used in the study are Routh stability and G-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the G-stability is the stability of a three-parameter invariant set O G , formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.

  13. Experimental study of a mixed refrigerant Joule-Thomson cryocooler using a commercial air-conditioning scroll compressor

    NASA Astrophysics Data System (ADS)

    Lee, Jisung; Lee, Kyungsoo; Jeong, Sangkwon

    2013-05-01

    Mixed refrigerant Joule-Thomson (MR J-T) cryocoolers have been used to create cryogenic temperatures and are simple, efficient, cheap, and durable. However, compressors for MR J-T cryocoolers still require optimization. As the MR J-T cryocooler uses a commercial scroll compressor developed for air-conditioning systems, compressor overheating due to the use of less optimized refrigerants may not be negligible, and could cause compressor malfunction due to burn-out of scroll tip seals. Therefore, in the present study, the authors propose procedures to optimize compressor operation to avoid the overheating issue when the MR J-T cryocooler is used with a commercial oil lubricated scroll compressor, and the present experimental results obtained for a MR J-T cryocooler. A single stage 1.49 kW (2 HP) scroll compressor designed for R22 utilizing a mixture of nitrogen and hydrocarbons was used in the present study. As was expected, compressor overheating and irreversible high temperatures at a compressor discharge port were found at the beginning of compressor operation, which is critical, and hence, the authors used a water injection cooling system for the compressor to alleviate temperature overshooting. In addition, a portion of refrigerant in the high-pressure stream was by-passed into the compressor suction port. This allowed an adequate compression ratio, prevented excessive temperature increases at the compressor discharge, and eventually enabled the MR J-T cryocooler to operate stably at 121 K. The study shows that commercial oil lubricated scroll compressors can be used for MR J-T cryocooling systems if care is exercised to avoid compressor overheating.

  14. Experimental evaluation of an adaptive Joule–Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components

    PubMed Central

    Zhu, Weibin; Park, Jong M.; White, Michael J.; Nellis, Gregory F.; Gianchandani, Yogesh B.

    2011-01-01

    This article reports the evaluation of a Joule–Thomson (JT) cooling system that combines two custom micromachined components—a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1×1 cm2 and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1×1×1 cm3. In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of −30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW. PMID:21552354

  15. Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation

    NASA Astrophysics Data System (ADS)

    McLean, James G.; Krishnamachari, B.; Peale, D. R.; Chason, E.; Sethna, James P.; Cooper, B. H.

    1997-01-01

    A theory based on the thermodynamic Gibbs-Thomson relation is presented that provides the framework for understanding the time evolution of isolated nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases correspond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of features. A third possible limiting case is noted for the special geometry of ``stacked'' islands. In these limiting cases, isolated features are predicted to decay in size with a power-law scaling in time: A~(t0-t)n, where A is the area of the feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The constant of proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A continuous-time Monte Carlo simulation is used to test the application of this theory to generic surfaces with atomic scale features. A method is described to obtain macroscopic kinetic parameters describing interfaces in such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation to determine the constants of the analytic theory. Agreement between the two is very good over a range of surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated that the simulation will be useful in modeling complex surface geometries often seen in experiments on physical surfaces, for which application of the analytic model is not straightforward.

  16. Coarsening kinetics, thermodynamic properties, and interfacial characteristics of δ' precipitates in Al-Li alloys taking into account the Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Tsao, C.-S.; Chen, C.-Y.; Huang, J.-Y.

    2004-11-01

    The structure factor model of small-angle x-ray scattering (SAXS) analysis is validated herein by transmission electron microscopy (TEM) result regarding the volume fraction and size of δ' precipitates. The kinetic behaviors of the number density and volume fraction of δ' precipitates in Al-Li alloys during the coarsening stage are quantitatively investigated by SAXS. The results indicate that the conventional kinetic law must be replaced by a more general equation that incorporates the Gibbs-Thomson effect and the time-dependence of the volume fraction during Ostwald ripening. This work also proposes new methods that combine the Gibbs-Thomson effect and the traditional SAXS equation to resolve more reliably and model independently the interfacial energy, the concentration of solute Li in the α matrix in equilibrium with δ' particles of a nanoscale radius Cαr , the equilibrium solubility of the α phase Ceα and the equilibrium concentration of δ' particles. The Gibbs-Thomson effect considers the effects of the interfacial energy and particle size on the equilibrium concentration. This effect quantitatively clarifies that the Cαr value is size-dependent and is related to the Ceα value and the interfacial energy. The traditional SAXS equation determines the Li concentrations in the δ' particles and the matrix from the measured scattering contrast. The traditionally determined solubility is in fact the Cαr value and is mistakenly regarded as the equilibrium concentration Ceα (corresponding to the radius is infinite). These results are compared to other results obtained by SAXS, TEM, and calculation. The time evolution of the transition interfacial layers between δ' particles and the matrix is extensively investigated using SAXS.

  17. Description of a new species of Aphanogmus Thomson (Hymenoptera, Ceraphronidae) that parasitizes acarivorous gall midges of Feltiella (Diptera, Cecidomyiidae) in Japan

    PubMed Central

    Matsuo, Kazunori; Ganaha-Kikumura, Tomoko; Ohno, Suguru; Yukawa, Junichi

    2016-01-01

    Abstract In 2008–2009, we reared small ceraphronids (about 0.5 mm in body length) from cocoons that had been made possibly by two acarivorous species, Feltiella acarisuga (Vallot) and Feltiella acarivora (Zehntner) (Diptera: Cecidomyiidae) in Okinawa, Japan. Detailed morphological observation revealed that the ceraphronid was a new species of Aphanogmus Thomson (Hymenoptera: Ceraphronidae). We describe it as Aphanogmus flavigastris Matsuo, sp. n. Identification of the Aphanogmus species is essential to evaluate its possibly negative effects on the predatory activity of Feltiella species that have been used as control agents against tetranychid mites. PMID:27408578

  18. A review of Canadian and Alaskan species of the genus Liogluta Thomson, and descriptions of three new species (Coleoptera, Staphylinidae, Aleocharinae)

    PubMed Central

    Klimaszewski, Jan; Webster, Reginald P.; Langor, David W.; Sikes, Derek; Bourdon, Caroline; Godin, Benoit; Ernst, Crystal

    2016-01-01

    Abstract Fourteen species of Liogluta Thomson are reported from Canada and Alaska. Three of these are described as new to science: Liogluta castoris Klimaszewski & Webster, sp. n.; Liogluta microgranulosa Klimaszewski & Webster, sp. n.; and Liogluta pseudocastoris Klimaszewski & Webster, sp. n. The previously unknown male of Liogluta gigantea Klimaszewski & Langor, Liogluta quadricollis (Casey), Liogluta wickhami (Casey), and female of Liogluta granulosa Lohse are described, and illustrated. Liogluta aloconotoides Lohse is synonymized with Liogluta terminalis (Casey). New provincial and state records are provided for six Liogluta species. A key to species, revised distribution with new provincial records, and new natural history data are provided. PMID:27110169

  19. The transformation of α-Fe into γ'-Fe4N in nanocrystalline Fe-N system: Influence of Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Moszyński, Dariusz; Moszyńska, Izabela; Arabczyk, Walerian

    2013-12-01

    A nanocrystalline iron sample of non-uniform grain size distribution was nitrided at 500 °C under gas atmosphere with gradually increased nitriding potential. Mixtures of α-Fe and γ'-Fe4N phases were observed at a broad range of the nitriding potential. Unexpectedly, the mean size of the product's crystallites at small conversion degrees was much higher than the one observed initially for the substrate and gradually decreased with the advancement of the reaction. The observed behavior was explained by the reaction mechanism regarding the influence of the Gibbs-Thomson effect.

  20. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.