Science.gov

Sample records for academic chemistry laboratories

  1. Students' perceptions of academic dishonesty in the chemistry classroom laboratory

    NASA Astrophysics Data System (ADS)

    del Carlo, Dawn I.; Bodner, George M.

    2004-01-01

    Although the literature on both academic dishonesty and scientific misconduct is extensive, research on academic dishonesty has focused on quizzes, exams, and papers, with the virtual exclusion of the classroom laboratory. This study examined the distinctions undergraduate chemistry majors made between academic dishonesty in the classroom laboratory and scientific misconduct in the research laboratory. Across the spectrum of undergraduate chemistry courses, from the introductory course for first-semester chemistry majors to the capstone course in instrumental analysis, we noted that students believe the classroom lab is fundamentally different from a research or industrial lab. This difference is so significant that it carries over into students' perceptions of dishonesty in these two environments.

  2. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to…

  3. An Investigation into the Relationship between Academic Risk Taking and Chemistry Laboratory Anxiety in Turkey

    ERIC Educational Resources Information Center

    Öner Sünkür, Meral

    2015-01-01

    This study evaluates the relationship between academic risk taking and chemistry laboratory anxiety using a relational scanning model. The research sample consisted of 127 undergraduate students (sophomores, juniors and seniors) in the Chemistry Teaching Department at Dicle University. This research was done in the spring semester of the 2012 to…

  4. Safety in Academic Chemistry Laboratories: Volume 2. Accident Prevention for Faculty and Administrators, 7th Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book contains volume 2 of 2 and describes safety guidelines for academic chemistry laboratories to prevent accidents for college and university students. Contents include: (1) "Organizing for Accident Prevention"; (2) "Personal Protective Equipment"; (3) "Labeling"; (4) "Material Safety Data Sheets (MSDSs)"; (5) "Preparing for Medical…

  5. Safety in Academic Chemistry Laboratories: Volume 1. Accident Prevention for College and University Students, 7th Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book contains volume 1 of 2 and describes safety guidelines for academic chemistry laboratories to prevent accidents for college and university students. Contents include: (1) "Your Responsibility for Accident Prevention"; (2) "Guide to Chemical Hazards"; (3) "Recommended Laboratory Techniques"; and (4) "Safety Equipment and Emergency…

  6. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  7. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  8. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  9. Water Chemistry Laboratory Manual.

    ERIC Educational Resources Information Center

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  10. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  11. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  12. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  13. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  14. Instrumental Analysis Chemistry Laboratory

    ERIC Educational Resources Information Center

    Munoz de la Pena, Arsenio; Gonzalez-Gomez, David; Munoz de la Pena, David; Gomez-Estern, Fabio; Sequedo, Manuel Sanchez

    2013-01-01

    designed for automating the collection and assessment of laboratory exercises is presented. This Web-based system has been extensively used in engineering courses such as control systems, mechanics, and computer programming. Goodle GMS allows the students to submit their results to a…

  15. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  18. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  19. Customized Laboratory Experience in Physical Chemistry

    ERIC Educational Resources Information Center

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  20. Undergraduate students' goals for chemistry laboratory coursework

    NASA Astrophysics Data System (ADS)

    DeKorver, Brittland K.

    Chemistry laboratory coursework has the potential to offer many benefits to students, yet few of these learning goals are realized in practice. Therefore, this study seeks to characterize undergraduate students' learning goals for their chemistry laboratory coursework. Data were collected by recording video of students completing laboratory experiments and conducting interviews with the students about their experiences that were analyzed utilizing the frameworks of Human Constructivism and Self-Regulated Learning. A cross-sectional sampling of students allowed comparisons to be made among students with varying levels of chemistry experience and interest in chemistry. The student goals identified by this study were compared to previously described laboratory learning goals of the faculty who instruct these courses in an effort to identify potential avenues to improve laboratory learning.

  1. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  2. Mercury Thermometer Replacements in Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Foster, Barbara L.

    2005-02-01

    Every undergraduate student in a chemistry laboratory must use a thermometer at some point during his or her chemistry laboratory experience. The mercury-in-glass thermometers that are typically used in chemistry laboratories are easily broken. The resulting spilled mercury can easily become trapped under the laboratory benches and in the flooring material in the laboratory, exposing students and laboratory personnel to hazardous levels of mercury. The resulting spill must be thoroughly cleaned and properly disposed by knowledgeable and experienced personnel. Mercury is a hazardous material that can cause burns to the skin, eyes, and respiratory tract. It is being investigated as a reproductive effector, a mutagen, and a tumorigen. Mercury vapors are odorless and colorless. Chronic exposure to mercury vapors can produce damage to the central nervous system. The C. Eugene Bennett Department of Chemistry at West Virginia University teaches approximately 2000 students per semester in its undergraduate laboratories. To eliminate the health and environmental hazards that are encountered when working with traditional mercury-in-glass thermometers, the department has tested and selected suitable substitutes for use in the general chemistry and the organic chemistry laboratories.

  3. An Environmentally Focused General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mihok, Morgan; Keiser, Joseph T.; Bortiatynski, Jacqueline M.; Mallouk, Thomas E.

    2006-01-01

    The environmentally focused general chemistry laboratory provides a format for teaching the concepts of the mainstream laboratory within an environmental context. The capstone integrated exercise emerged as the overwhelming favorite part of this laboratory and the experiment gave students an opportunity to do a self-directed project, using the…

  4. Learning in Chemistry with Virtual Laboratories.

    ERIC Educational Resources Information Center

    Martinez-Jimenez, P.; Pontes-Pedrajas, A.; Polo, J.; Climent-Bellido, M. S.

    2003-01-01

    Describes a project involving the development, application, and evaluation of a virtual chemistry laboratory (VCL) that involves basic step-by-step laboratory procedures and simulates real laboratory activities. Presents the program in terms of tutorial, VCL, and evaluation, and a section that allows instructors to create their own tests. (KHR)

  5. Environmental Chemistry in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  6. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  7. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... entrance are: (a) Chemistry (inorganic or general). 1 academic year including appropriate laboratory. (b) Organic chemistry. 1 academic year including laboratory. (c) Mathematics. 1 academic year. (d) Physics....

  8. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... entrance are: (a) Chemistry (inorganic or general). 1 academic year including appropriate laboratory. (b) Organic chemistry. 1 academic year including laboratory. (c) Mathematics. 1 academic year. (d) Physics....

  9. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... entrance are: (a) Chemistry (inorganic or general). 1 academic year including appropriate laboratory. (b) Organic chemistry. 1 academic year including laboratory. (c) Mathematics. 1 academic year. (d) Physics....

  10. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... entrance are: (a) Chemistry (inorganic or general). 1 academic year including appropriate laboratory. (b) Organic chemistry. 1 academic year including laboratory. (c) Mathematics. 1 academic year. (d) Physics....

  11. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... entrance are: (a) Chemistry (inorganic or general). 1 academic year including appropriate laboratory. (b) Organic chemistry. 1 academic year including laboratory. (c) Mathematics. 1 academic year. (d) Physics....

  12. The effect of high school chemistry instruction on students' academic self-concept

    NASA Astrophysics Data System (ADS)

    Morgan, Peter Wallace

    The purpose of this study was to investigate the effect of extended instruction in high school chemistry on the academic self-concept of students and determine what parts of the learning experience need to be addressed to make the interaction a more positive one. Fifty-seven students from three metropolitan public schools, who were enrolled in college preparatory chemistry classes, were asked to complete a written instrument, before and after extended chemistry instruction, that measures academic self-concept. Twenty-one of the students who took part in the written task volunteered to answer some in-depth interview questions concerning their academic self-concept and its relationship to chemistry instruction. Student responses, instrument scores, and student chemistry grades were analyzed for a variety of chemistry learning--academic self-concept connections and interactions. Results showed that there was a positive interaction for less than half of the students involved in the interview sessions. The results from the written instrument showed similar findings. Comparing chemistry grades and academic self-concept revealed an uncertain connection between the two, especially for students with strong academic self-concepts. Students felt that the laboratory experience was often disconnected from the remainder of chemistry instruction and recommended that the laboratory experience be integrated with classroom work. Students also expressed concerns regarding the volume of algorithmic mathematical calculations associated with college preparatory chemistry instruction. Results of this study suggest that secondary chemistry instruction must become more aware of the affective domain of learning and develop a mindful awareness of its connection to the cognitive domain if chemistry teaching and learning is going to better facilitate the intellectual growth of secondary students.

  13. Laboratory Planning for Chemistry and Chemical Engineering.

    ERIC Educational Resources Information Center

    Lewis, Harry F., Ed.

    This study is the result of a project of the Committee on Design, Construction and Equipment of Laboratories, Division of Chemistry and Chemical Technology, of the National Academy of Sciences. The problems and methods of planning, designing and constructing varying types of chemical laboratories for research and developmental buildings are…

  14. British School Chemistry Laboratories, 1830-1920.

    PubMed

    Brock, W H

    2017-04-05

    The essay examines the British secondary school as a chemical site in the nineteenth century up until the 1920s. It sketches how chemistry became part of the secondary school curriculum in the mid-nineteenth century, discusses how school laboratories were designed, and examines to what extent school laboratories provided opportunities for original research by schoolmasters.

  15. Safety Concepts for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Chlad, Frank L.; Hardy, James K.

    1983-01-01

    Safety procedures used by Department of Chemistry at the University of Akron are discussed. These include policy that no chemicals are stored in the teaching laboratories. Instead, dispensing stockrooms are used to service the laboratories. Other aspects discussed include ventilation procedures and development of microprocessor use in stockrooms.…

  16. Programmable Calculators: Uses in Freshman Chemistry Laboratories

    ERIC Educational Resources Information Center

    And Others; Clark, G. J.

    1975-01-01

    Suggests two uses for the programmable calculator in the freshman chemistry laboratory: as a means of determining whether or not a student's raw data from a laboratory experiment fall within acceptable tolerance limits; and as a means of checking the reliability of unknowns and grading on quantitative experiments. (MLH)

  17. School Chemistry Laboratory Safety Guide

    ERIC Educational Resources Information Center

    Brundage, Patricia; Palassis, John

    2006-01-01

    The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material…

  18. A Unified Introductory Chemistry Laboratory

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1971-01-01

    Laboratory procedures are explained for taking benzoic acid and using it or one of its derivatives throughout an introductory lab course. Synthesis, purification, weight determination, identification of an acid, equilibrium constant, salt preparation, salt analysis, and salt solubility measurements are involved in the semester's experience. (DS)

  19. Academic excellence workshops in chemistry and physics

    NASA Astrophysics Data System (ADS)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  20. Mercury Thermometer Replacements in Chemistry Laboratories

    ERIC Educational Resources Information Center

    Foster, Barbara L.

    2005-01-01

    The consequences of broken mercury-in-glass thermometers in academic laboratories results in various health and environmental hazards, which needs to be replaced, by long-stem digital thermometers and non-mercury glass thermometers. The factors that should be considered during the mercury replacement process are types of applications in the…

  1. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  2. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  3. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  4. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  5. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    NASA Astrophysics Data System (ADS)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  6. Presidential Green Chemistry Challenge: 2009 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2009 award winner, Professor Krzysztof Matyjaszewski, developed Atom Transfer Radical Polymerization to make polymers with copper catalysts and environmentally friendly reducing agents.

  7. Titan: a laboratory for prebiological organic chemistry.

    PubMed

    Sagan, C; Thompson, W R; Khare, B N

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  8. Titan: a laboratory for prebiological organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  9. Understanding Academic Performance in Organic Chemistry

    ERIC Educational Resources Information Center

    Szu, Evan; Nandagopal, Kiruthiga; Shavelson, Richard J.; Lopez, Enrique J.; Penn, John H.; Scharberg, Maureen; Hill, Geannine W.

    2011-01-01

    Successful completion of organic chemistry is a prerequisite for many graduate and professional programs in science, technology, engineering, and mathematics, yet the failure rate for this sequence of courses is notoriously high. To date, few studies have examined why some students succeed while others have difficulty in organic chemistry. This…

  10. Conceptual change in an organic chemistry laboratory: A comparison of computer simulations and traditional laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gaddis, Barbara A.

    2001-12-01

    This quasi-experimental research study examined the effect of computer simulations and hands-on laboratory experiments in enhancing conceptual understanding and alleviating misconceptions of organic chemistry reaction mechanisms. Subjects were sixty-nine sophomore-level organic chemistry students enrolled in four laboratory sections. Laboratory sections were stratified across instructor and randomly assigned to serve as a control or treatment laboratory. Students in the control group performed all hands-on experiments. Students in the treatment group performed hands-on experiments for the first and last part of the semester but performed computer simulations for a five-week period in the middle of the semester. Prior to treatment, groups were equivalent with respect to academic orientation, motivation, formal reasoning ability, and spatial visualization ability. Fifteen common misconceptions held by beginning organic chemistry students were identified from the Covalent Bonding and Structures Test. At the end of the semester, thirteen of these misconceptions persisted. Molecular geometry was the only category of misconceptions that significantly improved as a result of computer simulations, F(1,58) = 6.309, p = .015. No significant differential change was observed in misconceptions about bond polarity, molecular polarity, intermolecular forces, lattice structures, or the octet rule. Computer simulations were found to result in significantly greater conceptual understanding of organic chemistry reactions on two of the experiments, Stereochemistry, F(1,55) = 6.174, p = .016, and Nucleophilic Substitution, F(1,57) = 6.093, p = .017. The other three experiments, Infrared Spectroscopy, Elimination, and Oxymercuration, did not show a significant differential effect between types of laboratory experiences. No significant differences were observed on long-term retention of concepts. Overall conclusions from the study are that neither computer simulations nor hands

  11. Presidential Green Chemistry Challenge: 2002 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2002 award winner, Professor Eric J. Beckman, developed fluorine-free detergents that help supercritical carbon dioxide (CO2) dissolve many chemicals, so it can be a solvent for industrial processes.

  12. Presidential Green Chemistry Challenge: 2013 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2013 award winner, Prof Richard P. Wool of the University of Delaware, created high-performance materials using vegetable oils, feathers, and flax. Can be used as adhesives, composites, foams, and circuit boards.

  13. Presidential Green Chemistry Challenge: 2001 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2001 award winner, Professor Chao-Jun Li, uses metal catalysts in water to carry out chemical reactions that used to need both an oxygen-free atmosphere and hazardous organic solvents.

  14. Presidential Green Chemistry Challenge: 2003 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2003 award winner, Professor Richard A. Gross, developed a transesterification to make polyol-containing polyesters using lipase, replacing heavy metal catalysts and hazardous solvents.

  15. Presidential Green Chemistry Challenge: 2008 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2008 award winners, Professors Robert E. Maleczka, Jr. and Milton R. Smith, III, developed halogen-free, catalytic C-H activation/borylation to make aryl and heteroaryl boronic esters.

  16. Presidential Green Chemistry Challenge: 2004 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2004 award winners, Professors Charles A. Eckert and Charles L. Liotta, use supercritical CO2 as a solvent to combine reactions and separations, improve efficiency, and reduce waste.

  17. Presidential Green Chemistry Challenge: 2000 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2000 award winner, Professor Chi-Huey Wong, developed reactions with enzymes and safer solvents that can replace traditional reactions done with toxic metals and hazardous solvents.

  18. Presidential Green Chemistry Challenge: 1996 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1996 award winner, Professor Mark Holtzapple, developed methods to convert waste biomass (e.g., sewage sludge, agricultural wastes), into animal feed, industrial chemicals, or fuels.

  19. Presidential Green Chemistry Challenge: 1999 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1999 award winner, Professor Terry Collins, developed a series of TAML oxidant activators that work with hydrogen peroxide to replace chlorine bleaches for paper making and laundry.

  20. Presidential Green Chemistry Challenge: 2005 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, Professor Robin D. Rogers, used ionic liquids to dissolve and process cellulose from wood, cloth, or paper to make new biorenewable or biocompatible materials.

  1. Presidential Green Chemistry Challenge: 2016 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2016 award winner, Professor Chirik, discovered a class of catalysts used to produce silicones for consumer goods without using hard-to-mine platinum (less mining, reduces costs, greenhouse gas emissions, and waste).

  2. Presidential Green Chemistry Challenge: 2007 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2007 award winner, Professor Michael J. Krische, developed selective C-C bond-forming hydrogenation without organometallic reagents, eliminating hazardous reagents and hazardous waste.

  3. Presidential Green Chemistry Challenge: 2011 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2011 award winner, Professor Bruce H. Lipshutz, designed a novel, second-generation surfactant called TPGS-750-M. It is a designer surfactant composed of safe, inexpensive ingredients.

  4. Presidential Green Chemistry Challenge: 2006 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2006 award winner, Professor Galen J. Suppes, developed a process to convert waste glycerin from biodiesel production into propylene glycol to replace ethylene glycol in antifreeze.

  5. Presidential Green Chemistry Challenge: 1997 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1997 award winner, Professor Joseph M. DeSimone, developed surfactants that allow carbon dioxide to be a solvent for chemical manufacturing, replacing hazardous chemical solvents.

  6. The medical laboratory scientist in the clinical chemistry service laboratory.

    PubMed

    Georges, R J

    1983-02-26

    The recent opening of an official register for medical laboratory scientists in South Africa has prompted an examination of the professional role, training and qualification of one particular group of scientists, namely clinical chemists working in hospital pathology departments. Lack of recognition of the potential contribution of these non-medical graduates towards improved health care, together with the lack of facilities for their professional advancement, has hitherto inhibited the growth and development of clinical chemistry in this country. An urgent need is the local establishment of a specialist postgraduate qualification open to the non-medical clinical chemist.

  7. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Laboratory Teaching: Implication on Students' Achievement in Chemistry in Secondary Schools in Ebonyi State of Nigeria

    ERIC Educational Resources Information Center

    Akani, Omiko

    2015-01-01

    This study aimed at investigation of the roles of the laboratory in students' academic achievement in chemistry in secondary schools in Ebonyi State of Nigeria. Four research questions and two hypotheses guided the study. A sample of 240 students selected through simple random sampling technique from ten secondary schools in the 3 Education Zones…

  9. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    ERIC Educational Resources Information Center

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  10. Effect of a Virtual Chemistry Laboratory on Students' Achievement

    ERIC Educational Resources Information Center

    Tatli, Zeynep; Ayas, Alipasa

    2013-01-01

    It is well known that laboratory applications are of significant importance in chemistry education. However, laboratory applications have generally been neglected in recent educational environments for a variety of reasons. In order to address this gap, this study examined the effect of a virtual chemistry laboratory (VCL) on student achievement…

  11. A Timesharing Computer Program for a General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cutler, Gary L.; Drum, Donald A.

    1975-01-01

    Describes an experiment in which general and physical chemistry students can determine the heat of vaporization of a volatile substance from experimental laboratory data using timesharing techniques. (MLH)

  12. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  13. 46 CFR 188.10-11 - Chemistry laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  14. 46 CFR 188.10-11 - Chemistry laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  15. 46 CFR 188.10-11 - Chemistry laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  16. 46 CFR 188.10-11 - Chemistry laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  17. 46 CFR 188.10-11 - Chemistry laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  18. Safety in the Chemical Laboratory: Fire Safety and Fire Control in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Wilbraham, A. C.

    1979-01-01

    Discusses fire safety and fire control in the chemistry laboratory. The combustion process, extinguishing equipment, extinguisher maintenance and location, and fire safety and practices are included. (HM)

  19. The Role of the Laboratory in Chemistry Instruction

    ERIC Educational Resources Information Center

    Elliott, M. J.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    In an attempt to establish the role of the laboratory in chemistry instruction, an historical perspective is developed, in the hope of extracting the consensus of commentators on the subject concerning the important features of the laboratory experience. We present arguments to support the idea that laboratory instruction involves student…

  20. Medical Laboratory Technician (Chemistry and Urinalysis). (AFSC 92470).

    ERIC Educational Resources Information Center

    Thompson, Joselyn H.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for medical laboratory technicians. Covered in the individual volumes are medical laboratory administration and clinical chemistry (career opportunities, general laboratory safety and materials, general medical laboratory…

  1. Putting the Laboratory at the Center of Teaching Chemistry

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2011-01-01

    This article describes an effective approach to teaching chemistry by bringing the laboratory to the center of teaching, to bring the excitement of discovery to the learning process. The lectures and laboratories are closely integrated to provide a holistic learning experience. The laboratories progress from verification to open-inquiry and…

  2. Mother Earth Chemistry: A Laboratory Course for Nonmajors

    NASA Astrophysics Data System (ADS)

    Roberts, J. L.; Selco, J. I.; Wacks, D. B.

    1996-08-01

    Mother Earth Chemistry is a laboratory-based course designed to introduce nonscience majors to chemistry using familiar products such as beer, soap, yogurt, and cheese as well as products made from soybeans, including soymilk, tofu, and tempeh. Students make the products and learn some of the chemistry and biochemistry involved in their home manufacture as well as the rudiments of chemical analysis, stoichiometry, and the scientific method.

  3. The Chemistry of Perfume: A Laboratory Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Logan, Jennifer L.; Rumbaugh, Craig E.

    2012-01-01

    "The Chemistry of Perfume" is a lab-only course for nonscience majors. Students learn fundamental concepts of chemistry through the context of fragrance, a pervasive aspect of daily life. The course consists of laboratories pertaining to five units: introduction, extraction, synthesis, characterization, and application. The introduction unit…

  4. Teaching and Learning Distillation in Chemistry Laboratory Courses.

    ERIC Educational Resources Information Center

    van Keulen, Hanno; And Others

    Distillation in the chemistry laboratory is an essential part of a practicing chemists' and a chemistry educators' work. Nevertheless, regardless of the degree of importance in each of the aforementioned professions, few educational studies on teaching and learning distillation exist. In an effort to rectify this oversight, the Department of…

  5. Teaching and Learning Distillation in Chemistry Laboratory Courses.

    ERIC Educational Resources Information Center

    Keulen, Hanno van; And Others

    1995-01-01

    Investigated the problems chemistry majors have with learning distillation concepts in traditional chemistry laboratory courses. Reports that students take the generalized concepts at face value, construct decontextualized concepts for distillation, and cannot interpret their observations or make reasoned decisions based on the theoretical…

  6. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  7. Room 113, chemistry laboratory with benches perpendicular to the long ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 113, chemistry laboratory with benches perpendicular to the long axis of the room. A view to the southwest. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  8. 19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE GENERAL CHEMISTRY LABORATORY IN BUILDING 881. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  9. 4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING SOUTHEAST AT SOUTH AND WEST SIDES OF BUILDING. ORIGINALLY USED AS A STOREHOUSE. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  10. 5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING NO. 404, THERMO CHEMISTRY LABORATORY, LOOKING NORTHWEST AT SOUTH SIDE OF BUILDING. BUILDING NO. 403 IN BACKGROUND RIGHT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  11. Just Add Water and Stir. Graduate Chemistry Laboratory, Stony Brook

    ERIC Educational Resources Information Center

    Yee, Roger

    1974-01-01

    Using traditional building materials and a fast-track recipe, the architects, acting as construction manager, completed the Graduate Chemistry Laboratory at Stony Brook, New York, two full years ahead of schedule. (Author/MF)

  12. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  13. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  14. A refuge for inorganic chemistry: Bunsen's Heidelberg laboratory.

    PubMed

    Nawa, Christine

    2014-05-01

    Immediately after its opening in 1855, Bunsen's Heidelberg laboratory became iconic as the most modern and best equipped laboratory in Europe. Although comparatively modest in size, the laboratory's progressive equipment made it a role model for new construction projects in Germany and beyond. In retrospect, it represents an intermediate stage of development between early teaching facilities, such as Liebig's laboratory in Giessen, and the new 'chemistry palaces' that came into existence with Wöhler's Göttingen laboratory of 1860. As a 'transition laboratory,' Bunsen's Heidelberg edifice is of particular historical interest. This paper explores the allocation of spaces to specific procedures and audiences within the laboratory, and the hierarchies and professional rites of passage embedded within it. On this basis, it argues that the laboratory in Heidelberg was tailored to Bunsen's needs in inorganic and physical chemistry and never aimed at a broad-scale representation of chemistry as a whole. On the contrary, it is an example of early specialisation within a chemical laboratory preceding the process of differentiation into chemical sub-disciplines. Finally, it is shown that the relatively small size of this laboratory, and the fact that after ca. 1860 no significant changes were made within the building, are inseparably connected to Bunsen's views on chemistry teaching.

  15. Incorporating Guided-Inquiry Learning into the Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Gaddis, Barbara A.; Schoffstall, Allen M.

    2007-05-01

    Informed science educators who are responsible for undergraduate laboratory programs strive to improve the effectiveness of learning in the laboratory. Guided-inquiry learning in the laboratory is one reasonable alternative (among others described here) to the verification approach to learning. Guided-inquiry learning offers students the opportunity to learn for themselves in a controlled laboratory environment where the instructor can handle the outcome and help guide students who are experiencing difficulty. Guided-inquiry experiments in organic chemistry have merit because they may help to improve understanding while increasing student interest. This paper presents the advantages and disadvantages of guided-inquiry experiments in organic chemistry. Several different types of guided-inquiry experiments in organic chemistry are summarized, together with the rationale for converting verification laboratory procedures to guided-inquiry experiments. Examples are given for enhancing guided-inquiry experiments to make the outcomes less predictable.

  16. Pollution Prevention Guideline for Academic Laboratories.

    ERIC Educational Resources Information Center

    Li, Edwin; Barnett, Stanley M.; Ray, Barbara

    2003-01-01

    Explains how to manage waste after a classroom laboratory experiment which generally has the potential to generate large amounts of waste. Focuses on pollution prevention and the selection processes to eliminate or minimize waste. (YDS)

  17. Analytical Chemistry Laboratory progress report for FY 1989

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  18. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  19. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  20. Chemistry and Biology Laboratories. Design--Construction--Equipment.

    ERIC Educational Resources Information Center

    Schramm, Werner

    Guidelines for planning, building, and equipping the biological and chemical laboratory are revealed, along with construction methods for the modernization or building of new academic or industrial type laboratories. Building equipment, services, utilities, and materials data are given with rules concerning the dimensions and services of…

  1. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  2. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  3. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  4. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  5. A Multi-Media Approach to Chemistry Laboratory Instruction.

    ERIC Educational Resources Information Center

    McAda, Harleen Workman

    This project consisted of the design, trial use, and evaluation of instructional procedures designed to reduce the amount of routine information given directly to the students by the instructor in chemistry laboratory courses for college freshmen. Printed materials gave the student a decision-making role in planning his laboratory work. Tape-slide…

  6. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  7. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  8. A Laboratory Course in Technological Chemistry.

    ERIC Educational Resources Information Center

    Wiseman, P.

    1986-01-01

    Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…

  9. Establishing an academic laboratory: mentoring as a business model

    PubMed Central

    Greco, Valentina

    2014-01-01

    It is a tremendous honor for my group and me to receive the recognition of the 2014 Women in Cell Biology Junior Award. I would like to take the opportunity of this essay to describe my scientific journey, discuss my philosophy about running a group, and propose what I think is a generalizable model to efficiently establish an academic laboratory. This essay is about my view on the critical components that go into establishing a highly functional academic laboratory during the current tough, competitive times. PMID:25360043

  10. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  11. Reflections on "YouTestTube.com": An Online Video-Sharing Platform to Engage Students with Chemistry Laboratory Classes

    ERIC Educational Resources Information Center

    McClean, Stephen; McCartan, Kenneth G.; Meskin, Sheryl; Gorges, Beronia; Hagan, W. Paul

    2016-01-01

    This paper describes the construction and development of YouTestTube.com, a YouTube clone website to facilitate video-sharing, social networking, and reflections of chemistry laboratory classes for year one students within the School of Biomedical Sciences at Ulster University. The practice was first introduced in the 2008/09 academic year and has…

  12. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  13. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  14. Laboratory studies of stratospheric aerosol chemistry

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  15. Applied Biology and Chemistry. Course Materials: Chemistry 111, 112, 113, 114. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for four courses in Applied Biology/Chemistry in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity…

  16. Safety in the Chemical Laboratory. Chemical Laboratory Safety: The Academic Anomaly.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1990-01-01

    Discussed are accidents that occur in the laboratories of highly trained chemists. Four examples are provided to illustrate potential hazards that are often overlooked in chemistry laboratories, molten inorganic salt baths, the reaction of acetone and hydrogen peroxide, halogenated acetylene compounds, and the reaction of hydrogen peroxide and…

  17. Analytical chemistry laboratory. Progress report for FY 1997

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Chemistry: An Industry-Based Laboratory Manual (by John Kenkel)

    NASA Astrophysics Data System (ADS)

    Ballard, Sue K.

    2001-02-01

    Despite this concern, I find this to be an excellent lab manual for training potential chemistry-based laboratory technicians. It is apparent that a lot of thought, effort, and expertise went into producing a lab manual that students and teachers alike can appreciate. Buy it! You'll like it!

  19. Collaboration and Peer Tutoring in Chemistry Laboratory Education

    ERIC Educational Resources Information Center

    Ding, Ning; Harskamp, Egbert G.

    2011-01-01

    The aim of this study is to examine the effectiveness of collaborative learning with hints and peer tutoring with hints, and individual learning with hints in chemistry laboratory education in a secondary school. A total of 96 eleventh graders participated in this study. The study has a randomized pre-test and post-test design with a delayed…

  20. Mother Earth Chemistry: A Laboratory Course for Nonmajors.

    ERIC Educational Resources Information Center

    Roberts, J. L.; And Others

    1996-01-01

    Describes a laboratory course that introduces students to chemistry using examples commonly encountered in the supermarket and on the dinner table. Acquaints students with simple chemical tasks that can be practiced at home, including the making of wine, ale, soap, cheese, and yogurt, and introduces them to the small-scale production of…

  1. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  2. Chemistry on Camera: Integrating Technology into the Science Laboratory.

    ERIC Educational Resources Information Center

    Hargis, Jace; Stehr, Jim

    2001-01-01

    Describes a relevant, innovative laboratory exercise that promotes the construction of ideas that can be used to further science processing. Integrates technology in the form of digital photography, a portable computer, and a projection device. This activity fits well in a high school chemistry class. (SAH)

  3. 18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED GENERAL ANALYTICAL AND STANDARDS CALIBRATION, AS WELL AS DEVELOPMENT OPERATIONS INCLUDING WASTE TECHNOLOGY DEVELOPMENT AND DEVELOPMENT AND TESTING OF MECHANICAL SYSTEMS FOR WEAPONS SYSTEMS. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  4. Implementing the Science Writing Heuristic in the Chemistry Laboratory

    ERIC Educational Resources Information Center

    Burke, K. A.; Greenbowe, Thomas J.; Hand, Brian M.

    2006-01-01

    The Science Writing Heuristic (SWH) is an instructional technique that combines inquiry, collaborative learning, and writing to change the nature of the chemistry laboratory for students and instructors. The SWH provides a format for students to guide their discussions, their thinking, and writing about how science activities relate to their own…

  5. Idealization in Chemistry: Pure Substance and Laboratory Product

    ERIC Educational Resources Information Center

    Fernández-González, Manuel

    2013-01-01

    This article analyzes the concept of idealization in chemistry and the role played by pure substance and laboratory product. This topic has evident repercussions in the educational contexts that are applied to the science classroom, which are highlighted throughout the text. A common structure for knowledge construction is proposed for both…

  6. An Integrated Biology-Chemistry Freshman Laboratory Project in Biotechnology.

    ERIC Educational Resources Information Center

    Schendel, Marilyn Shimizu

    1999-01-01

    Describes a freshman biology laboratory project that uses the polymerase chain reaction to introduce students to the interrelationship between biology and chemistry. Students must develop their own experimental protocol, perform calculations introduced in freshman classes, and evaluate group dynamics. (Author/WRM)

  7. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  8. Directed Discovery, Form of Presentation, and Laboratory Schedule for Nonscience Students in the Freshman Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Hittle, David Russell

    Evaluated was achievement by college freshman students in a chemistry laboratory course. Twenty-eight sections, a total of 292 students, were grouped into six sections with written direction in a structured laboratory experiment schedule, six sections with verbal direction in a structured schedule, and sixteen sections with an unstructured…

  9. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    SciTech Connect

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  10. The Essential Role for Laboratory Studies in Atmospheric Chemistry.

    PubMed

    Burkholder, James B; Abbatt, Jonathan P D; Barnes, Ian; Roberts, James M; Melamed, Megan L; Ammann, Markus; Bertram, Allan K; Cappa, Christopher D; Carlton, Annmarie G; Carpenter, Lucy J; Crowley, John N; Dubowski, Yael; George, Christian; Heard, Dwayne E; Herrmann, Hartmut; Keutsch, Frank N; Kroll, Jesse H; McNeill, V Faye; Ng, Nga Lee; Nizkorodov, Sergey A; Orlando, John J; Percival, Carl J; Picquet-Varrault, Bénédicte; Rudich, Yinon; Seakins, Paul W; Surratt, Jason D; Tanimoto, Hiroshi; Thornton, Joel A; Tong, Zhu; Tyndall, Geoffrey S; Wahner, Andreas; Weschler, Charles J; Wilson, Kevin R; Ziemann, Paul J

    2017-03-07

    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.

  11. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  12. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  13. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  14. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  15. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    ERIC Educational Resources Information Center

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  16. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    PubMed Central

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical progression of research-inspired laboratory modules serves to “tour” the macroscopic characteristics of the fruit and the submicroscopic properties of its constituent cuticular biopolymers by atomic force microscopy (AFM), UV–visible, and nuclear magnetic resonance (NMR) methods at increasingly detailed molecular levels. The modular curriculum can be tailored for specialty undergraduate courses or summer high school workshops. By applying analytical tools to investigate biopolymers, making connections between molecular and microscale structure, and linking both structural regimes to the functional properties of natural polymers, groundwork is established for further student investigations at the interface of chemistry with biology or chemical engineering. PMID:23526490

  17. Touring the Tomato: A Suite of Chemistry Laboratory Experiments.

    PubMed

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E

    2013-03-12

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical progression of research-inspired laboratory modules serves to "tour" the macroscopic characteristics of the fruit and the submicroscopic properties of its constituent cuticular biopolymers by atomic force microscopy (AFM), UV-visible, and nuclear magnetic resonance (NMR) methods at increasingly detailed molecular levels. The modular curriculum can be tailored for specialty undergraduate courses or summer high school workshops. By applying analytical tools to investigate biopolymers, making connections between molecular and microscale structure, and linking both structural regimes to the functional properties of natural polymers, groundwork is established for further student investigations at the interface of chemistry with biology or chemical engineering.

  18. Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    de Mattos, Marcio C. S.; Nicodem, David E.

    2002-01-01

    The extraction of trimyristin from nutmeg, its purification, and its conversion to a soap (sodium myristate) are described. Concepts such as the isolation of a natural product, recrystallization, identification of a solid, solubility, acidity and basicity, and organic reaction can be presented to students using integrated experiments in an introductory experimental chemistry laboratory. These experiments can easily be done in three class periods of four hours.

    See Letter re: this article.

  19. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked...

  20. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked...

  1. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked...

  2. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked...

  3. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in the chemistry laboratory which have been removed from the approved shipping container need not be marked...

  4. Ordinary Level as Results Predictors of Students' Academic Performance in Chemistry in Nigerian Universities

    ERIC Educational Resources Information Center

    Kolawole, E. B.; Oginni, O. I.; Fayomi, E. O.

    2011-01-01

    This paper examined ordinary level result as predictors of students' academic performance in chemistry in South-west Nigeria universities. It also examined the relationship between the academic performance of students in each level of the university examinations and their corresponding secondary school certificates examination. The sample of the…

  5. An Ordinary Level as Predictors of Students' Academic Performance in Chemistry in Nigerian Universities

    ERIC Educational Resources Information Center

    Kolawole, E. B.; Oginni, O. I.; Fayomi, E. O.

    2011-01-01

    This paper examined an ordinary level as predictors of students' academic performance in chemistry in South-west Nigeria universities. It also revealed the relationship between the academic performance of students in each level of the university examinations and their corresponding secondary school certificates examination. The sample of the study…

  6. Presidential Green Chemistry Challenge: 1998 Academic Award (Trost)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1998 award winner Professor Barry M. Trost, developed the concept of atom economy: chemical reactions that do not waste atoms. This is a fundamental cornerstone of green chemistry.

  7. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  8. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    ERIC Educational Resources Information Center

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  9. Laboratory Exercises to Teach Clinically Relevant Chemistry of Antibiotics

    PubMed Central

    Chelette, Candace T.

    2014-01-01

    Objectives. To design, implement, and evaluate student performance on clinically relevant chemical and spectral laboratory exercises on antibiotics. Design. In the first of 2 exercises, second-year pharmacy students enrolled in an integrated laboratory sequence course studied the aqueous stability of ß-lactam antibiotics using a spectral visual approach. In a second exercise, students studied the tendency of tetracycline, rifamycins, and fluoroquinolones to form insoluble chelate complexes (turbidity) with polyvalent metals. Assessment. On a survey to assess achievement of class learning objectives, students agreed the laboratory activities helped them better retain important information concerning antibiotic stability and interactions. A significant improvement was observed in performance on examination questions related to the laboratory topics for 2012 and 2013 students compared to 2011 students who did not complete the laboratory. A 1-year follow-up examination question administered in a separate course showed >75% of the students were able to identify rifamycins-food interactions compared with <25% of students who had not completed the laboratory exercises. Conclusion. The use of spectral visual approaches allowed students to investigate antibiotic stability and interactions, thus reinforcing the clinical relevance of medicinal chemistry. Students’ performance on questions at the 1-year follow-up suggested increased retention of the concepts learned as a result of completing the exercises. PMID:24672070

  10. Analytical Chemistry Laboratory progress report for FY 1984

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  11. A General Chemistry Laboratory Theme: Spectroscopic Analysis of Aspirin

    NASA Astrophysics Data System (ADS)

    Byrd, Houston; O'Donnell, Stephen E.

    2003-02-01

    In this paper, we describe the introduction of spectroscopy into the general chemistry laboratory using a series of experiments based on a common substance, aspirin. In the first lab the students synthesize and recrystallize aspirin and take melting points of their product, an aspirin standard, and salicylic acid. The students perform the remaining experiments on a rotating basis where the following four labs run simultaneously: structural characterization of the synthesized aspirin by IR and NMR; analysis of synthesized aspirin and commercial products by UV vis spectroscopy; analysis of synthesized aspirin and commercial products by HPLC; and analysis of calcium in commercial buffered aspirin tablets by AAS. In each of the analysis experiments, students collect, graph, and analyze their data using a spreadsheet. We have found that this series of labs has been very beneficial to our students. From the course evaluations, students indicate that they are beginning to understand how chemistry is applied outside of the classroom.

  12. Clinical chemistry and laboratory medicine in Croatia: regulation of the profession.

    PubMed

    Simundic, Ana-Maria; Topic, Elizabeta; Cvoriscec, Dubravka; Cepelak, Ivana

    2011-01-01

    Heterogeneity exists across Europe in the definition of the profession of clinical chemistry and laboratory medicine and also in academic background of specialists in this discipline. This article provides an overview of the standards of education and training of laboratory professionals and quality regulations in Croatia. Clinical chemistry in Croatia is almost exclusively practiced by medical biochemists. Although term Medical biochemist often relates to medical doctors in other European countries, in Croatia medical biochemists are not medical doctors, but university degree professionals who are qualified scientifically. Practicing the medical biochemistry is regulated by The Health Care Law, The Law of the Medical Biochemistry Profession and The Law of the State and Private Health Insurance. According to the law, only medical biochemists are entitled to run and work in the medical biochemistry laboratory. University degree is earned after the 5 years of the studies. Register for medical biochemists is kept by the Croatian Chamber of Medical Biochemists. Licensing is mandatory, valid for 6 years and regulated by the government (Law on the Health Care, 1993). Vocational training for medical biochemists lasts 44 months and is regulated by the national regulatory document issued by the Ministry of Health. Accreditation is not mandatory and is provided by an independent, non-commercial national accreditation body. The profession has interdisciplinary character and a level of required competence and skills comparable to other European countries.

  13. Using Technology to Enhance the Effectiveness of General Chemistry Laboratory Courses

    ERIC Educational Resources Information Center

    Carvalho-Knighton, Kathleen M.; Keen-Rocha, Linda

    2007-01-01

    The effectiveness of two different laboratory techniques is compared to teach students majoring in science in a general chemistry laboratory. The results demonstrated that student laboratory activities with computer-interface systems could improve student understanding.

  14. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  15. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    ERIC Educational Resources Information Center

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  16. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  17. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  18. Formative evaluation of traditional instruction and cooperative inquiry projects in undergraduate chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Panichas, Michael A.

    Reform agendas for practice in undergraduate chemistry are moving curriculum beyond traditional behaviorist teaching strategies to include constructivist approaches, for extending student learning beyond simple mastery of chemistry content (Bunce & Robinson, 1997; Lagowski, 1998; Herron & Nurrenburn, 1999). Yet implementing new strategies requires assessment of their benefit to learning. This study was undertaken to provide a formal and formative evaluation of the curricula in General and Organic chemistry laboratory courses, which are structured with both Traditional expository lab exercises, and a cooperative inquiry exercise called the Open Ended Project. Using a mixed-methodological case study framework, the primary goal of the research was to determine how the inclusion of these teaching strategies impacts student learning in the areas of Academic Achievement and Affective Learning from the perspective of the students enrolled in these lab classes. The findings suggest that the current curriculum structure of including both Traditional Instruction and the Open Ended Project does address students' Academic Achievement and Affective Learning. However, students perceived that these curriculum components each contributed differently to their learning. For Academic Achievement, Traditional Experiments and the Project had a positive impact on students' operational skills, such as how to use and choose lab techniques for performing or designing experiments, as well as their conceptual learning, such as understanding concepts, and relating those concepts during data analysis. Yet for Affective Learning, such as students' sense of confidence, accomplishment, and engagement, the Project, which has a cooperative learning element, had a positive impact on student learning, while Traditional Experiments, which do not have a cooperative learning element, had a moderate negative impact. The findings point to Cooperative Learning as the key element, which makes the positive

  19. DNA banking and DNA databanking by academic and commercial laboratories

    SciTech Connect

    McEwen, J.E. |; Reilly, P.R.

    1994-09-01

    The advent of DNA-based testing is giving rise to DNA banking (the long-term storage of cells, transformed cell lines, or extracted DNA for subsequent retrieval and analysis) and DNA data banking (the indefinite storage of information derived from DNA analysis). Large scale acquisition and storage of DNA and DNA data has important implications for the privacy rights of individuals. A survey of 148 academically based and commercial DNA diagnostic laboratories was conducted to determine: (1) the extent of their DNA banking activities; (2) their policies and experiences regarding access to DNA samples and data; (3) the quality assurance measures they employ; and (4) whether they have written policies and/or depositor`s agreements addressing specific issues. These issues include: (1) who may have access to DNA samples and data; (2) whether scientists may have access to anonymous samples or data for research use; (3) whether they have plans to contact depositors or retest samples if improved tests for a disorder become available; (4) disposition of samples at the end of the contract period if the laboratory ceases operations, if storage fees are unpaid, or after a death or divorce; (5) the consequence of unauthorized release, loss, or accidental destruction of samples; and (6) whether depositors may share in profits from the commercialization of tests or treatments developed in part from studies of stored DNA. The results suggest that many laboratories are banking DNA, that many have already amassed a large number of samples, and that a significant number plan to further develop DNA banking as a laboratory service over the next two years. Few laboratories have developed written policies governing DNA banking, and fewer still have drafted documents that define the rights and obligations of the parties. There may be a need for increased regulation of DNA banking and DNA data banking and for better defined policies with respect to protecting individual privacy.

  20. Personal epistemological growth in a college chemistry laboratory environment

    NASA Astrophysics Data System (ADS)

    Keen-Rocha, Linda S.

    The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post-laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p ≤ .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p ≤ .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is

  1. Feasibility of Developing Academic Laboratories Using a Low-Cost Robot

    DTIC Science & Technology

    2009-09-01

    DEVELOPING ACADEMIC LABORATORIES USING A LOW-COST ROBOT by Antonio Valle September 2009 Thesis Advisor: Xiaoping Yun Second Reader...TITLE AND SUBTITLE Feasibility of Developing Academic Laboratories using a Low-cost Robot 6. AUTHOR(S) Antonio Valle 5. FUNDING NUMBERS 7...investigate the feasibility of developing new academic laboratories for an introductory robotics course at the Naval Postgraduate School (NPS) using

  2. Drugs in the Chemistry Laboratory: The Conversion of Acetaminophen into Phenacetin.

    ERIC Educational Resources Information Center

    Volker, Eugene J.; And Others

    1979-01-01

    Describes an experiment in which acetaminophen is converted into phenacetin, that has been used at Shepherd College in an introductory chemistry course for nurses and in the organic chemistry laboratory. (BT)

  3. Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.

  4. Presidential Green Chemistry Challenge: 2012 Academic Award (Waymouth and Hedrick)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2012 award winners, Professor Robert M. Waymouth and Dr. James L. Hedrick, developed a broad class of highly active, environmentally benign, metal-free catalysts for synthesizing plastics.

  5. Presidential Green Chemistry Challenge: 2012 Academic Award (Coates)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2012 award winner, Professor Geoffrey W. Coates, developed a family of catalysts that use carbon dioxide and carbon monoxide to make make polymers including polycarbonates.

  6. Safety in the Chemical Laboratory: Experiments Integrating Evaluation of Chemical Hazards into the Chemistry Curriculum.

    ERIC Educational Resources Information Center

    Pierce, J. T.; And Others

    1984-01-01

    Proposes use of two experiments to sample and analyze contaminents in the laboratory. Experiments focus on estimating hydrogen sulfide levels in the general chemistry laboratory during qualitative analysis and determining the concentration of organic vapors associated with organic chemistry laboratories. (JN)

  7. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  8. Comparable Educational Benefits in Half the Time: An Alternating Organic Chemistry Laboratory Sequence Targeting Prehealth Students

    ERIC Educational Resources Information Center

    Young, Sherri C.; Colabroy, Keri L.; Baar, Marsha R.

    2016-01-01

    The laboratory is a mainstay in STEM education, promoting the development of critical thinking skills, dexterity, and scientific curiosity. The goals in the laboratory for nonchemistry, prehealth majors, though, could be distinguished from those for chemistry majors. In service courses such as organic chemistry, much laboratory time is often spent…

  9. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  10. Radiation chemistry in the Jovian stratosphere: laboratory simulations.

    PubMed

    McDonald, G D; Thompson, W R; Sagan, C

    1992-09-01

    Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.

  11. Collaboration and Peer Tutoring in Chemistry Laboratory Education

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Harskamp, Egbert G.

    2011-04-01

    The aim of this study is to examine the effectiveness of collaborative learning with hints and peer tutoring with hints, and individual learning with hints in chemistry laboratory education in a secondary school. A total of 96 eleventh graders participated in this study. The study has a randomized pre-test and post-test design with a delayed post-test. During the four-week intervention, students were required to carry out eight lab tasks in total. The students filled in a 17-item self-assessment of learning gain questionnaire on the last day. Analyses of students' learning achievements showed that students in both the collaborative learning and peer tutoring situations outperformed those learning individually with hints. The delayed post-test, which was administered three months later, revealed that students who had been in the peer tutoring situation outscored those in the collaborative learning situation. Student self-assessment questionnaires on learning gain provided further details in this regard.

  12. A New Approach to the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  13. [Tracking study to improve basic academic ability in chemistry for freshmen].

    PubMed

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2010-08-01

    The aims of this study were to assess the basic academic ability of freshmen with regard to chemistry and implement suitable educational guidance measures. At Tohoku Pharmaceutical University, basic academic ability examinations are conducted in chemistry for freshmen immediately after entrance into the college. From 2003 to 2009, the examination was conducted using the same questions, and the secular changes in the mean percentage of correct response were statistically analyzed. An experience survey was also conducted on 2007 and 2009 freshmen regarding chemical experiments at senior high school. Analysis of the basic academic ability examinations revealed a significant decrease in the mean percentage of correct responses after 2007. With regard to the answers for each question, there was a significant decrease in the percentage of correct answers for approximately 80% of questions. In particular, a marked decrease was observed for calculation questions involving percentages. A significant decrease was also observed in the number of students who had experiences with chemical experiments in high school. However, notable results have been achieved through the implementation of practice incorporating calculation problems in order to improve calculation ability. Learning of chemistry and a lack of experimental experience in high school may be contributory factors in the decrease in chemistry academic ability. In consideration of the professional ability demanded of pharmacists, the decrease in calculation ability should be regarded as a serious issue and suitable measures for improving calculation ability are urgently required.

  14. Beyond Academic Tracking: Using Cluster Analysis and Self-Organizing Maps to Investigate Secondary Students' Chemistry Self-Concept

    ERIC Educational Resources Information Center

    Nielsen, Sara E.; Yezierski, Ellen J.

    2016-01-01

    Academic tracking, placing students in different classes based on past performance, is a common feature of the American secondary school system. A longitudinal study of secondary students' chemistry self-concept scores was conducted, and one feature of the study was the presence of academic tracking. Though academic tracking is one way to group…

  15. Identifying and Dealing with Hazardous Materials and Procedures in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Katz, David A.

    1982-01-01

    A survey of freshman chemistry laboratory manuals identified 15 questionable laboratory procedures, including the use of potentially hazardous chemicals. Alternatives are suggested for each hazard discussed (such as using a substitute solvent for benzene). (SK)

  16. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  17. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  18. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  19. Reactivity of Household Oxygen Bleaches: A Stepwise Laboratory Exercise in High School Chemistry Course

    ERIC Educational Resources Information Center

    Nakano, Masayoshi; Ogasawara, Haruka; Wada, Takeshi; Koga, Nobuyoshi

    2016-01-01

    This paper reports on a learning program designed for high school chemistry classes that involves laboratory exercises using household oxygen bleaches. In this program, students are taught the chemistry of oxygen bleaches through a stepwise inquiry using laboratory exercises organized with different pedagogical intents. Through comparative…

  20. Upper-Level Undergraduate Chemistry Students' Goals for Their Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2016-01-01

    Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…

  1. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  2. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  3. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  4. Using Cluster Analysis to Characterize Meaningful Learning in a First-Year University Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in…

  5. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  6. First Year Chemistry Laboratory Courses for Distance Learners: Development and Transfer Credit Acceptance

    ERIC Educational Resources Information Center

    Brewer, Sharon E.; Cinel, Bruno; Harrison, Michelle; Mohr, Christina L.

    2013-01-01

    In delivering chemistry courses by distance, a key challenge is to offer the learner an authentic and meaningful laboratory experience that still provides the rigour required to continue on in science. To satisfy this need, two distance general chemistry laboratory courses appropriate for Bachelor of Science (B.Sc.) students, including chemistry…

  7. Video Episodes and Action Cameras in the Undergraduate Chemistry Laboratory: Eliciting Student Perceptions of Meaningful Learning

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2016-01-01

    A series of quantitative studies investigated undergraduate students' perceptions of their cognitive and affective learning in the undergraduate chemistry laboratory. To explore these quantitative findings, a qualitative research protocol was developed to characterize student learning in the undergraduate chemistry laboratory. Students (N = 13)…

  8. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  9. Understanding and Using the New Guided-Inquiry AP Chemistry Laboratory Manual

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2014-01-01

    To support teaching and learning in the advanced placement (AP) chemistry laboratory, the College Board published a laboratory manual, "AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices," in 2013 as part of the redesigned course. This article provides a discussion of the rationale for the existence of the manual as…

  10. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    PubMed

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  11. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental

  12. Assessing student perspectives of the laboratory, self-efficacy in chemistry, and attitudes towards science in an undergraduate first-semester general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Olave, Marcella

    Research is lacking in the general chemistry laboratory that explores the concerted affective predictor variables of student perspectives of the laboratory, self-efficacy in chemistry, and student attitudes towards science. There is little research on the assessment of variables in the affective domain to determine student experiences in the chemistry laboratory. Student experiences in this study were assessed by determining congruence between student perspectives of their actual and preferred general chemistry laboratory environment using the SLEI, and student attitudes towards careers as a scientist using the SAI II. Correlations between scales from the SLEI, SAI II along with the CCSS that measures self-efficacy in college chemistry were identified. A sample of eighty college students enrolled in a first-semester general chemistry laboratory responded to the SLEI, SAI II, and CCSS. A t test indicated there were no significant differences with student cohesiveness, integration, material environment, and rule clarity between the actual and preferred SLEI signifying congruence. There were significant differences between students actual and preferred perception of open-endedness (t = -3.59, df = 28, p = 0.00). Student attitudes towards careers as a scientist could not be determined using pretests and posttests of the SAI II due to a ceiling effect. There were positive significant correlations found between the scales of material environment, integration from the SLEI and the scale of student attitudes towards careers as a scientist using the SAI II. There were also positive significant correlations between self-efficacy for everyday applications, and self-efficacy for cognitive skills from the CCSS with the scale of student attitudes towards careers as a scientist. This study is of significance since it is the first study exploring congruence between the actual and preferred student perspectives of the laboratory using the SLEI in a first semester general chemistry

  13. Workshop on Excellence Empowered by a Diverse Academic Workforce: Achieving Racial & Ethnic Equity in Chemistry

    SciTech Connect

    Ali, Hassan B.

    2008-02-13

    The purpose of the Workshop 'Excellence Empowered by a Diverse Academic Workforce: Achieving Racial & Ethnic Equity in Chemistry' was to promote the development of a cadre of academic leaders who create, implement and promote programs and strategies for increasing the number of racial and ethnic minorities to equitable proportions on the faculties of departments throughout the academic chemistry community. An important objective of the workshop was to assist in creating an informed and committed community of chemistry leaders who will create, implement and promote programs and strategies to advance racial and ethnic equity in both the faculty and the student body with the goal of increasing the number of U.S. citizen underrepresented minorities (URM) participating in academic chemistry at all levels, with particular focus on the pipeline to chemistry faculty. This objective was met by (1) presentations of detailed data describing current levels of racial and ethnic minorities on the faculties of chemistry departments; (2) frank discussion of the obstacles to and benefits of racial/ethnic diversity in the chemistry professoriate; (3) summary of possible effective interventions and actions; and (4) promotion of the dissemination and adoption of initiatives designed to achieve racial/ethnic equity. Federal programs over the past thirty years have been instrumental in delivering to our universities URM students intending to major in the physical sciences such as chemistry. However, the near absence of URM faculty means that there is also an absence of URM as role models for aspiring students. For example, citing 2003 as a representative year, some statistics reveal the severity of the pipeline shrinkage for U. S. citizen URM starting from chemistry B.S. degrees awarded to the appointment to chemistry faculty. Compared to the URM population of approximately 30% for that year, 67% of the B.S. degrees in chemistry were awarded to white citizens and 17% were awarded to URM

  14. Pre-Service Chemistry Teachers' Competencies in the Laboratory: A Cross-Grade Study in Solution Preparation

    ERIC Educational Resources Information Center

    Karatas, F. O.

    2016-01-01

    One of the prerequisites for chemistry teacher candidates is to demonstrate certain laboratory skills. This article aims to determine and discuss the competencies of pre-service chemistry teachers in a chemistry laboratory context working with solution chemistry content. The participants in this study consisted of a group of pre-service chemistry…

  15. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  16. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  17. iPads in the Science Laboratory: Experience in Designing and Implementing a Paperless Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Hesser, Tiffany L.; Schwartz, Pauline M.

    2013-01-01

    In the fall of 2012, 20 General Chemistry Honors students at the University of New Haven were issued the new iPad 3 to incorporate these devices both in the classroom and the laboratory. This paper will focus on the integration of the iPad into the laboratory curriculum while creating a paperless experience, an environment where no paper would…

  18. 77 FR 36277 - Academic Development of a Training Program for Good Laboratory Practices in High Containment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... HUMAN SERVICES Food and Drug Administration Academic Development of a Training Program for Good Laboratory Practices in High Containment Environments (U24) AGENCY: Food and Drug Administration, HHS. ACTION... the support of a Funding Opportunity Announcement (FOA) entitled ``Academic Development of a...

  19. Workload, space, and personnel of clinical chemistry laboratories in teaching hospitals.

    PubMed

    Elin, R J; Robertson, E A; Sever, G

    1982-12-01

    The resources needed to operate a clinical chemistry laboratory are known only as rough approximations. In order to gather more information about these resources, a 13-page questionnaire was completed by 50 pathology departments of which 38 departments provided adequate information about their clinical chemistry section to permit adequate data analysis. This study provides the results for resource and workload factors, and significant regression analyses among these factors for the whole clinical chemistry section and the subsections of general chemistry, urinalysis, endocrinology, enzymology, lipid analysis, and toxicology. These data provide a basis for evaluating the current needs of clinical chemistry and for making projections for the future.

  20. Mathematics Laboratory Report: Activities during Academic Year, 1983-1984 [and] Plans for Academic Year, 1984-1985.

    ERIC Educational Resources Information Center

    Capps, Joan P.

    During the 1983-84 academic year, a mathematics laboratory was established at Somerset County College to provide tutorial and testing services for high-risk students. This report describes and evaluates the first-year activities of the lab and proposes plans for increasing and evaluating the services and use of the lab during 1984-85. First, the…

  1. Integrating Computational Chemistry into the Physical Chemistry Laboratory Curriculum: A Wet Lab/Dry Lab Approach

    ERIC Educational Resources Information Center

    Karpen, Mary E.; Henderleiter, Julie; Schaertel, Stephanie A.

    2004-01-01

    The usage of computational chemistry in a pedagogically effective manner in the undergraduate chemistry curriculum is described. The changes instituted for an effective course structure and the assessment of the course efficacy are discussed.

  2. Profile of laboratory instruction in secondary school level chemistry and indication for reform

    NASA Astrophysics Data System (ADS)

    Wang, Mei

    This study is a profile of the laboratory component of instruction in secondary school level chemistry. As one of several companion studies, the purpose of the study is to investigate present practices related to instruction as a means of producing reform that improve cognitive and non-cognitive learning outcomes. Five hundred-forty students, from 18 chemistry classes taught by 12 teachers in ten high schools were involved in this study. Three schools included public and private schools, urban school, suburban schools, and rural schools. Three levels or types of chemistry courses were offered in these schools: school regular chemistry for college bound students, Chemistry in the Community or "ChemCom" for non-college bound students, and a second year of chemistry or advanced placement chemistry. Laboratory sessions in each of these three levels of courses were observed, videotaped, and later analyzed using the Modified Revised Science Teachers Behaviors Inventory (MR-STBI). The 12 chemistry teachers, eight science supervisors, and selected students were interviewed to determine their professional backgrounds and other factors that might influence how they teach, how they think, and how they learn. The following conclusions developed from the research are: (1) The three levels of chemistry courses are offered across high schools of varying sizes and locations. (2) Teachers perceive that students come to chemistry classes poorly prepared to effectively carry out laboratory experiences and/or investigations. (3) While students indicated that they are able to effectively use math skills in analyzing the results of chemistry laboratory experiments, teachers, in general, are not satisfied with the level at which students are prepared to use these skills, or to use writing skills. (4) Students working in pairs, is the typical approach. Group cooperation is sometimes used in carrying out the laboratory component of chemistry instruction in the ChemCom and AP chemistry

  3. Online Grading of Calculations in General Chemistry Laboratory Write-Ups

    ERIC Educational Resources Information Center

    Silva, Alexsandra; Gonzales, Robert; Brennan, Daniel P.

    2010-01-01

    In the past, there were frequently complaints about the grading of laboratory reports in our laboratory chemistry courses. This article discussed the implementation of an online submission of laboratory acquired data using LON-CAPA (The Learning Online Network with Computer-Assisted Personalized Approach), which is an open source management and…

  4. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.

    2012-01-01

    Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…

  5. Laboratory Management, Academic Production, and the Building Blocks of Academic Capitalism

    ERIC Educational Resources Information Center

    Cantwell, Brendan

    2015-01-01

    Academic capitalism has been among the most influential lines of research into markets in higher education. This paper takes up the distinct but related topic of academic production. This study makes use of a theory of fields and the concept of strategic action fields Fligstein and McAdam ("Social Theory" 29:1-26, 2011; "A theory of…

  6. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  7. An Inquiry-Based Chemistry Laboratory Promoting Student Discovery of Gas Laws

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2007-01-01

    Gas laws are taught in most undergraduate general chemistry courses and even in some high school chemistry courses. This article describes the author's experience of using the laboratory to allow students to "discover" gas laws instead of the conventional approach of using the lecture to teach this concept. Students collected data using Vernier…

  8. Examining the Effects of Reflective Journals on Pre-Service Science Teachers' General Chemistry Laboratory Achievement

    ERIC Educational Resources Information Center

    Cengiz, Canan; Karatas, Faik Özgür

    2015-01-01

    The general chemistry laboratory is an appropriate place for learning chemistry well. It is also effective for stimulating higher-order thinking skills, including reflective thinking, a skill that is crucial for science teaching as well as learning. This study aims to examine the effects of feedback-supported reflective journal-keeping activities…

  9. Creating a Research-Rich Chemistry Curriculum with an Integrated, Upper-Level-Undergraduate Laboratory Program

    ERIC Educational Resources Information Center

    Gron, Liz U.; Hales, David A.; Teague, M. Warfield

    2007-01-01

    A new research-rich chemistry curriculum with an integrated, upper-level undergraduate laboratory program has recently been developed to impart better understanding to the students. The program is called Advanced techniques in Experimental Chemistry and helps prepare students for more real-world problems.

  10. An Asymptotic Approach to the Development of a Green Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Goodwin, Thomas E.

    2004-01-01

    Green chemistry is the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Some of the philosophical questions and practical decisions that have guided the greening of the organic chemistry laboratory at Hendrix College in…

  11. High School Chemistry Students' Scientific Epistemologies and Perceptions of the Nature of Laboratory Inquiry

    ERIC Educational Resources Information Center

    Vhurumuku, Elaosi

    2011-01-01

    This quantitative study investigated the relationship between Chemistry students' scientific epistemologies and their perceptions of the nature of laboratory inquiry. Seventy-two Advanced Level Chemistry students were surveyed. The students were sampled from twelve schools in three of Zimbabwe's nine administrative provinces. Students' scientific…

  12. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  13. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  14. Using the QCPE Holdings in Chemical Education: Molecular Models in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Lipkowitz, Kenny

    1984-01-01

    Discusses a successfully implemented laboratory experiment that compares the strengths and weaknesses of mechanical and computer models. The computer models used are available from the Quantum Chemistry Program Exchange (QCPE) at a modest price. (JN)

  15. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  16. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    ERIC Educational Resources Information Center

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  17. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  18. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  19. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  20. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  1. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-08-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the videos in five traditional laboratory experiments by integrating them with the standard pre-laboratory student preparation presentations and instructor demonstrations. We assessed the influence of the videos on student laboratory knowledge and performance, using sections of students who did not view the videos as the control. Our analysis of pre-quizzes revealed the control group had equivalent scores to the treatment group, while the post-quiz results show consistently greater learning gains for the treatment group. Additionally, the students who watched the videos as part of their pre-laboratory instruction completed their experiments in less time.

  2. Contributions of Analytical Chemistry to the Clinical Laboratory.

    ERIC Educational Resources Information Center

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  3. Stereoisomerism in Coordination Chemistry: A Laboratory Experiment for Undergraduate Students.

    ERIC Educational Resources Information Center

    Gargallo, Maria Fe; And Others

    1988-01-01

    Describes an experimental procedure to acquaint inorganic chemistry students with stereochemical concepts using tris-(2,3-butanediamine)cobalt(III). Notes two isomeric forms exist and both form metal chelates. Separation is accomplished by chromatography and analysis is by NMR and infrared spectroscopy. Provides spectra of isomers. (MVL)

  4. Environmental Organotin Chemistry Today: Experiences in the Field and Laboratory.

    DTIC Science & Technology

    1980-10-01

    reactions summarized in Figure 2 represent true ionic processes. As such, these are subject to changes in ionic strength, a property of natural water...Aquatic organometals; aqueous reaction mechanisms; biomethylation; environmental measurements; gas chromatography; kinetic studies; liquid ...sought to elucidate th intermediate, often unexpected, chemistry of carbon bonded to other elements, but primarily from a non-biological view- point

  5. The Video Laboratory--A New Element in Teaching Chemistry.

    ERIC Educational Resources Information Center

    Smith, Stanley G.; Jones, Loretta L.

    1986-01-01

    Describes the rationale for using computer-assisted videodisc lessons to enhance introductory chemistry courses at University of Illinois, and presents sample lessons to illustrate what students see and do as they proceed through the lessons. Lesson construction and use are reviewed. (MBR)

  6. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    PubMed Central

    Amukele, Timothy K.; Sokoll, Lori J.; Pepper, Daniel; Howard, Dana P.; Street, Jeff

    2015-01-01

    Background Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Methods Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV’s and the CV’s of our flown versus terrestrial sample pairs however CV’s from the sample pairs tended to be slightly higher than analytic CV’s. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Conclusions Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes. PMID:26222261

  7. The letter, the dictionary and the laboratory: translating chemistry and mineralogy in eighteenth-century France.

    PubMed

    Bret, Patrice

    2016-04-01

    Eighteenth-century scientific translation was not just a linguistic or intellectual affair. It included numerous material aspects requiring a social organization to marshal the indispensable human and non-human actors. Paratexts and actors' correspondences provide a good observatory to get information about aspects such as shipments and routes, processes of translation and language acquisition (dictionaries, grammars and other helpful materials, such as translated works in both languages), texts acquisition and dissemination (including author's additions and corrections, oral presentations in academic meetings and announcements of forthcoming translations). The nature of scientific translation changed in France during the second half of the eighteenth century. Beside solitary translators, it also happened to become a collective enterprise, dedicated to providing abridgements (Collection académique, 1755-79) or enriching the learned journals with full translations of the most recent foreign texts (Guyton de Morveau's 'Bureau de traduction de Dijon', devoted to chemistry and mineralogy, 1781-90). That new trend clearly had a decisive influence on the nature of the scientific press itself. A way to set up science as a social activity in the provincial capital of Dijon, translation required a local and international network for acquiring the linguistic and scientific expertise, along with the original texts, as quickly as possible. Laboratory results and mineralogical observations were used to compare material facts (colour, odour, shape of crystals, etc.) with those described in the original text. By providing a double kind of validation - with both the experiments and the translations - the laboratory thus happened to play a major role in translation.

  8. Incorporating Chemical Information Instruction and Environmental Science into the First-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Landolt, R. G.

    2006-01-01

    The chemical information instruction and environmental science which is incorporated into a first-year organic chemistry laboratory is presented. The students are charged with devised search strategies, conducting online searches and limiting the project scope to ocean systems. The laboratory serves to provide for search strategy development…

  9. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  10. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  11. A Learning-Cycle-Based Organic Chemistry Laboratory Program for Students in Dietetics.

    ERIC Educational Resources Information Center

    Mueller, William J.

    1982-01-01

    The laboratory of an organic chemistry course for dietetics students is based on the learning cycle approach (exploration, invention-concept introduction, and concept application). The laboratory program is divided into four sections: lab techniques, compound types, reaction types, and reaction characteristics. (SK)

  12. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  13. Faculty Perspectives of Undergraduate Chemistry Laboratory: Goals and Obstacles to Success

    ERIC Educational Resources Information Center

    Bruck, Laura B.; Towns, Marcy; Bretz, Stacey Lowery

    2010-01-01

    Faculty perspectives of the undergraduate chemistry laboratory were the focus of a study to articulate the goals, strategies, and assessments used in undergraduate teaching laboratories. Data were collected via semistructured interviews with faculty (N = 22) from community colleges, liberal arts colleges, comprehensive universities, and research…

  14. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  15. Students' Cognitive Focus during a Chemistry Laboratory Exercise: Effects of a Computer-Simulated Prelab

    ERIC Educational Resources Information Center

    Winberg, T. Mikael; Berg, C. Anders R.

    2007-01-01

    To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…

  16. A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.

    2015-01-01

    A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…

  17. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    ERIC Educational Resources Information Center

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-01-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported…

  18. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  19. Safety in the Chemical Laboratory: Reduction of Experimental Scale in High School and College General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Bennett, Carole A.; And Others

    1989-01-01

    Notes the careful observation of chemical reactivity phenomena has been and should be an important part of the general chemistry laboratory curriculum. Stresses reduction of experimental scale will help to ensure, in times of rampant chemophobia, that it remains so. Provides several examples of the methodology. (MVL)

  20. Safety in the First-Year Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M.

    1988-01-01

    Discusses undetected hazards that may have potential for injuring staff and students. Cites examples of chemical hazards in the lab. Stresses the need for laboratory safety education. Gives examples of safety publications for secondary and college science laboratories. Comments on the changing nature of chemical safety standards. (CW)

  1. Creative Report Writing in Undergraduate Organic Chemistry Laboratory Inspires Nonmajors

    ERIC Educational Resources Information Center

    Henary, Maged; Owens, Eric A.; Tawney, Joseph G.

    2015-01-01

    Laboratory-based courses require students to compose reports based on the performed experiments to assess their overall understanding of the presented material; unfortunately, the sterile and formulated nature of the laboratory report disinterests most students. As a result, the outcome is a lower-quality product that does not reveal full…

  2. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    ERIC Educational Resources Information Center

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  3. An investigation of student understanding in the undergraduate organic chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Grutsch, John Leo, Jr.

    Laboratory activities in organic chemistry involve a mixture of sophisticated logic and empirical observation that requires the integration of mechanistic thought, laboratory technique, and problem-solving skills. In an effort to understand how students develop the thought processes and problem-solving skills necessary for laboratory work in organic chemistry, student understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory was investigated through the collection of responses to questions posed on pre-laboratory quizzes followed by in-depth interviews during which student volunteers discussed their responses along with their experiences in the laboratory. The conceptual change theory of learning which assumes new conceptions are understood, judged, acquired, or rejected in a conceptual context was used as a theoretical paradigm to examine students responses to questions posed on pre-laboratory quizzes and transcripts of the interviews with student volunteers. Students were found to not have developed a mechanistic understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory. However, students' prior exposure to and understanding of chemical concepts was found to simultaneously assist and hinder in their development of a partial mechanistic understanding of how a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), interact to provide a result of interest (yield

  4. Chemistry as the defining science: discipline and training in nineteenth-century chemical laboratories.

    PubMed

    Jackson, Catherine M

    2011-06-01

    The institutional revolution has become a major landmark of late-nineteenth century science, marking the rapid construction of large, institutional laboratories which transformed scientific training and practice. Although it has served historians of physics well, the institutional revolution has proved much more contentious in the case of chemistry. I use published sources, mainly written by chemists and largely focused on laboratories built in German-speaking lands between about 1865 and 1900, to show that chemical laboratory design was inextricably linked to productive practice, large-scale pedagogy and disciplinary management. I argue that effective management of the novel risks inherent in teaching and doing organic synthesis was significant in driving and shaping the construction of late-nineteenth century institutional chemical laboratories, and that these laboratories were essential to the disciplinary development of chemistry. Seen in this way, the laboratory necessarily becomes part of the material culture of late-nineteenth century chemistry, and I show how this view leads not only to a revision of what is usually known as the laboratory revolution in chemistry but also to a new interpretation of the institutional revolution in physics.

  5. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  6. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  7. Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education. Second Edition, 1957-1984.

    ERIC Educational Resources Information Center

    Allen, C. B.; And Others

    This document is the second edition of the Annotated List of Laboratory Experiments in Chemistry first published in 1980. All entries in the Journal of Chemical Education describing laboratory experiments in chemistry or laboratory descriptions suitable for student experiments or projects, for the years 1957-1984 inclusive, have been listed and…

  8. A Study to Maximize the Learning Experience in the Physical Chemistry Laboratory

    DTIC Science & Technology

    1979-01-01

    designed to teach physical chemistry concepts in a laboratory setting, a portion of which was designed to teach thcse concepts exclusive of the L lecture...validation of a set of curriculum materials designed to teach certain physical chemistry concepts with little or no reinforcement from a lecture setting...8217 understanding of the discipline being studied. Anderson says not only is there a need for new perspectives for teaching science, but It is especially

  9. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  10. Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Nunn, J. A.; Sears, S. O.

    2008-12-01

    Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults

  11. Pharmaceutical process chemistry: evolution of a contemporary data-rich laboratory environment.

    PubMed

    Caron, Stéphane; Thomson, Nicholas M

    2015-03-20

    Over the past 20 years, the industrial laboratory environment has gone through a major transformation in the industrial process chemistry setting. In order to discover and develop robust and efficient syntheses and processes for a pharmaceutical portfolio with growing synthetic complexity and increased regulatory expectations, the round-bottom flask and other conventional equipment familiar to a traditional organic chemistry laboratory are being replaced. The new process chemistry laboratory fosters multidisciplinary collaborations by providing a suite of tools capable of delivering deeper process understanding through mechanistic insights and detailed kinetics translating to greater predictability at scale. This transformation is essential to the field of organic synthesis in order to promote excellence in quality, safety, speed, and cost efficiency in synthesis.

  12. Academic Success in Context-Based Chemistry: Demonstrating fluid transitions between concepts and context

    NASA Astrophysics Data System (ADS)

    King, Donna Therese; Ritchie, Stephen M.

    2013-05-01

    Curriculum developers and researchers have promoted context-based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for student connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. This interpretive study explored the learning transactions in one 11th grade context-based chemistry classroom where the context was the local creek. The dialectic of agency/structure was used as a lens to examine how the practices in classroom interactions afforded students the agency for learning. The results suggest that first, fluid transitions were evident in the student-student interactions involving successful students; and second, fluid transitions linking concepts to context were evident in the students' successful reports. The study reveals that the structures of writing and collaborating in groups enabled students' agential and fluent movement between the field of the real-world creek and the field of the formal chemistry classroom. Furthermore, characteristics of academically successful students in context-based chemistry are highlighted. Research, teaching, and future directions for context-based science teaching are discussed.

  13. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    ERIC Educational Resources Information Center

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  14. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    SciTech Connect

    Not Available

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  15. Incorporating Guided-Inquiry Learning into the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Gaddis, Barbara A.; Schoffstall, Allen M.

    2007-01-01

    Guided-inquiry experiments also known as discovery-based experiments, which combine the pedagogical advantages of open-inquiry methods with the practical advantages of expository experiments, are described. Unlike open-inquiry or problem-based experiments, guided-inquiry experiments could be readily adapted to large laboratory sections and induces…

  16. Crystal Model Kits for Use in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Kildahl, Nicholas J.; And Others

    1986-01-01

    Dynamic crystal model kits are described. Laboratory experiments in which students use these kits to build models have been extremely successful in providing them with an understanding of the three-dimensional structures of the common cubic unit cells as well as hexagonal and cubic closest-packing of spheres. (JN)

  17. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  18. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  19. A Simultaneous Analysis Problem for Advanced General Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Leary, J. J.; Gallaher, T. N.

    1983-01-01

    Oxidation of magnesium metal in air has been used as an introductory experiment for determining the formula of a compound. The experiment described employs essentially the same laboratory procedure but is significantly more advanced in terms of information sought. Procedures and sample calculations/results are provided. (JN)

  20. Students' Experience in a General Chemistry Cooperative Problem Based Laboratory

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.; Bhattacharyya, Gautam

    2011-01-01

    Most educators and scientists would agree that science laboratory instruction has the potential of developing science practices fundamental to achieving scientific literacy. However, there is scant evidence to support that this potential is realized, particularly in tertiary level education. This paper reports qualitative results from a sequential…

  1. Use of Learning Miniprojects in a Chemistry Laboratory for Engineering

    ERIC Educational Resources Information Center

    Cancela, Angeles; Maceiras, Rocio; Sánchez, Angel; Izquierdo, Milagros; Urréjola, Santiago

    2016-01-01

    The aim of this paper is to describe the design of chemical engineering laboratory sessions in order to focus them on the learning company approach. This is an activity carried out in the classroom similar to the activities that exist in real companies. This could lead classroom practice to a more cooperative learning and a different style of…

  2. The Use and Evaluation of Videodiscs in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Russell, Arlene A.; And Others

    1985-01-01

    Describes a quantitative evaluation of an interactive videodisc program in which students measure the temperature dependence of the solubility product of lead chloride by titration of chloride with silver nitrate using a Mohr titration. Student reaction (based on responses made using the program, quiz answers, and laboratory performance) was…

  3. An Integrated Protein Chemistry Laboratory: Chlorophyll and Chlorophyllase

    ERIC Educational Resources Information Center

    Arkus, Kiani A. J.; Jez, Joseph M.

    2008-01-01

    Chlorophyll, the most abundant pigment in nature, is degraded during normal plant growth, when leaves change color, and at specific developmental stages. Chlorophyllase catalyzes the first chemical reaction in this process, that is, the hydrolysis of chlorophyll into chlorophyllide. Here, we describe a series of laboratory sessions designed to…

  4. Radiation Induced Chemistry of Icy Surfaces: Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Lignell, Antti; Li, Irene; Yang, Rui; Jacovi, Ronen

    2011-01-01

    We will discuss laboratory experiments designed to enhance our understanding the chemical processes on icy solar system bodies, enable interpretation of in-situ and remote-sensing data, and help future missions to icy solar system bodies, such as comets, Europa, Ganymede, Enceladus etc.

  5. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  6. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  7. Assessment of the Laboratory Learning Environment in an Inquiry-Oriented Chemistry Laboratory in Arab and Jewish High Schools in Israel

    ERIC Educational Resources Information Center

    Dkeidek, Iyad; Mamlok-Naaman, Rachel; Hofstein, Avi

    2012-01-01

    An inquiry-oriented laboratory in chemistry was integrated into the chemistry curriculum in Jewish high schools in Israel, and after a short period was also implemented in Arab sector. In this study, we investigated the effect of culture on the perceptions of laboratory classroom learning environments by comparing the perceptions of Arab and…

  8. "No one does this for fun": Contextualization and process writing in an organic chemistry laboratory course

    NASA Astrophysics Data System (ADS)

    Gay, Andrea

    This study investigated the introduction of curriculum innovations into an introductory organic chemistry laboratory course. Pre-existing experiments in a traditional course were re-written in a broader societal context. Additionally, a new laboratory notebook methodology was introduced, using the Decision/Explanation/Observation/Inference (DEOI) format that required students to explicitly describe the purpose of procedural steps and the meanings of observations. Experts in organic chemistry, science writing, and chemistry education examined the revised curriculum and deemed it appropriate. The revised curriculum was introduced into two sections of organic chemistry laboratory at Columbia University. Field notes were taken during the course, students and teaching assistants were interviewed, and completed student laboratory reports were examined to ascertain the impact of the innovations. The contextualizations were appreciated for making the course more interesting; for lending a sense of purpose to the study of chemistry; and for aiding in students' learning. Both experts and students described a preference for more extensive connections between the experiment content and the introduced context. Generally, students preferred the DEOI method to journal-style laboratory reports believing it to be more efficient and more focused on thinking than stylistic formalities. The students claimed that the DEOI method aided their understanding of the experiments and helped scaffold their thinking, though some students thought that the method was over-structured and disliked the required pre-laboratory work. The method was used in two distinct manners; recursively writing and revising as intended and concept contemplation only after experiment completion. The recursive use may have been influenced by TA attitudes towards the revisions and seemed to engender a sense of preparedness. Students' engagement with the contextualizations and the DEOI method highlight the need for

  9. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    NASA Astrophysics Data System (ADS)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  10. Use of learning miniprojects in a chemistry laboratory for engineering

    NASA Astrophysics Data System (ADS)

    Cancela, Angeles; Maceiras, Rocio; Sánchez, Angel; Izquierdo, Milagros; Urréjola, Santiago

    2016-01-01

    The aim of this paper is to describe the design of chemical engineering laboratory sessions in order to focus them on the learning company approach. This is an activity carried out in the classroom similar to the activities that exist in real companies. This could lead classroom practice to a more cooperative learning and a different style of experimentation. The stated goal is to make a design that seeks to motivate students in a cooperative manner to perform their experiments self-directed and self-organised. The teaching organisation and development of participatory action research are described.

  11. Use of Laboratory Data to Model Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.

    2006-01-01

    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.

  12. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration.

  13. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    ERIC Educational Resources Information Center

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  14. Communications: Blood chemistry of laboratory-reared Golden trout

    USGS Publications Warehouse

    Hunn, Joseph B.; Wiedmeyer, Ray H.; Greer, Ivan E.; Grady, Andrew W.

    1992-01-01

    Golden trout Oncorhynchus aguabonita obtained from a wild stock as fertilized eggs were reared in the laboratory for 21 months. The laboratory-reared golden trout in our study reached sexual maturity earlier and grew more rapidly than wild golden trout do (according to the scientific literature). Male fish averaged 35.6 cm in total length and 426 g in weight, and females averaged 36.2 cm and 487 g. All golden trout were sexually mature when used for hematological analysis. The hematological profile (hematocrit, red blood cells, white blood cells, and thrombocytes) of golden trout was similar to that reported elsewhere for other trout species. Male and female golden trout did not have significantly different thrombocyte counts; however, the immobilization treatment used on the fish (anesthesia versus a blow to the head) resulted in significant treatment differences in thrombocyte numbers and interaction effect of sex in treatment for hematocrits. Gravid female golden trout had significantly higher plasma protein and calcium levels than did males. The ionic compositions of plasma (sodium, potassium, calcium, magnesium, copper, zinc, iron, and chloride) and gallbladder bile (calcium and chloride) were similar to those reported for other salmonids.

  15. The Academic Tree of Howard V. Malmstadt: From Early Scientific Exploration to Modern Analytical Chemistry.

    PubMed

    Storey, Andrew P; Hieftje, Gary M

    2016-12-01

    Over the last several decades, science has benefited tremendously by the implementation of digital electronic components for analytical instrumentation. A pioneer in this area of scientific inquiry was Howard Malmstadt. Frequently, such revolutions in scientific history can be viewed as a series of discoveries without a great deal of attention as to how mentorship shapes the careers and methodologies of those who made great strides forward for science. This paper focuses on the verifiable relationships of those who are connected through the academic tree of Malmstadt and how their experiences and the context of world events influenced their scientific pursuits. Particular attention is dedicated to the development of American chemistry departments and the critical role played by many of the individuals in the tree in this process.

  16. Achieving Greater Feedback and Flexibility Using Online Pre-Laboratory Exercises with Non-Major Chemistry Students

    ERIC Educational Resources Information Center

    Chittleborough, Gail D.; Mocerino, Mauro; Treagust, David F.

    2007-01-01

    The design and effects of using online pre-laboratory exercises in an introductory first-year university chemistry course that requires no previous knowledge of chemistry for non-major chemistry students is reported. The results have indicated that the majority of students involved in the study considered that their learning opportunities were…

  17. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  18. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    PubMed

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology.

  19. The Influence of Self-Efficacy and Motivational Factors on Academic Performance in General Chemistry Course: A Modeling Study

    ERIC Educational Resources Information Center

    Alci, Bulent

    2015-01-01

    This study aims to determine the predictive and explanatory model in terms of university students' academic performance in "General Chemistry" course and their motivational features. The participants were 169 university students in the 1st grade at university. Of the participants, 132 were female and 37 were male students. Regarding…

  20. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  1. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  2. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  3. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  4. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  5. The Implementation of a Service-Learning Component in an Organic Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Glover, Sarah R.; Sewry, Joyce D.; Bromley, Candice L.; Davies-Coleman, Michael T.; Hlengwa, Amanda

    2013-01-01

    avenues for the implementation of service-learning into their curricula. A second-year undergraduate organic chemistry laboratory experiment, in which the undergraduate students make azo dyes, can provide a vehicle for a service-learning module in which university undergraduate…

  6. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  7. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  8. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  9. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  10. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances.

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-01-01

    Describes a freshman laboratory program designed to interface between the substances that surround students in their ordinary lives and abstract principles presented in chemistry classrooms. Course organization is based on the nature of the materials themselves, which include household chemicals such as hydrogen peroxide, food and beverages, pills…

  11. Using a Thematic Laboratory-Centered Curriculum to Teach General Chemistry

    ERIC Educational Resources Information Center

    Hopkins, Todd A.; Samide, Michael

    2013-01-01

    This article describes an approach to general chemistry that involves teaching chemical concepts in the context of two thematic laboratory modules: environmental remediation and the fate of pharmaceuticals in the environment. These modules were designed based on active-learning pedagogies and involve multiple-week projects that dictate what…

  12. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  13. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  14. Creative Uses for Calculator-based Laboratory (CBL) Technology in Chemistry.

    ERIC Educational Resources Information Center

    Sales, Cynthia L.; Ragan, Nicole M.; Murphy, Maureen Kendrick

    1999-01-01

    Reviews three projects that use a graphing calculator linked to a calculator-based laboratory device as a portable data-collection system for students in chemistry classes. Projects include Isolation, Purification and Quantification of Buckminsterfullerene from Woodstove Ashes; Determination of the Activation Energy Associated with the…

  15. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  16. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  17. Reform in a General Chemistry Laboratory: How Do Students Experience Change in the Instructional Approach?

    ERIC Educational Resources Information Center

    Chopra, I.; O'Connor, J.; Pancho, R.; Chrzanowski, M.; Sandi-Urena, S.

    2017-01-01

    This qualitative study investigated the experience of a cohort of students exposed consecutively to two substantially different environments in their General Chemistry Laboratory programme. To this end, the first semester in a traditional expository programme was followed by a semester in a cooperative, problem-based, multi-week format. The focus…

  18. The Evolution of a Green Chemistry Laboratory Experiment: Greener Brominations of Stilbene

    ERIC Educational Resources Information Center

    McKenzie, Lallie C.; Huffman, Lauren M.; Hutchison, James E.

    2005-01-01

    The use of green metrics to compare three bromination laboratory procedures demonstrates the effectiveness of an incremental greening process for chemistry curricula. Due to this process, the bromination of alkenes can be introduced to students through the use of a safe, effective, modern practice.

  19. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    ERIC Educational Resources Information Center

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  20. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    ERIC Educational Resources Information Center

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  1. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  2. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    ERIC Educational Resources Information Center

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  3. Annotated List of Chemistry Laboratory Experiments with Computer Access. Final Report.

    ERIC Educational Resources Information Center

    Bunce, S. C.; And Others

    Project Chemlab was designed to prepare an "Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education (1957-1979)" and to develop a computer file and program to search for specific types of experiments. Provided in this document are listings (photoreduced copies of printouts) of over 1500 entries…

  4. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  5. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  6. The Purpose of Laboratory Instruction in High School Chemistry: A Historical Survey.

    ERIC Educational Resources Information Center

    Kapuscinski, B. P.

    1981-01-01

    Reviews the purposes of laboratory instruction as they were perceived in the literature from 1865 to the present. The paper is divided into three sections based upon the main influences on chemistry instruction: the university community, economic conditions, and technological development. Future trends in science education are also discussed. (CS)

  7. Investigating Macroscopic, Submicroscopic, and Symbolic Connections in a College-Level General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thadison, Felicia Culver

    2011-01-01

    Explanations of chemical phenomena rely on understanding the behavior of submicroscopic particles. Because this level is "invisible," it is described using symbols such as models, diagrams and equations. For this reason, students often view chemistry as a "difficult" subject. The laboratory offers a unique opportunity for the students to…

  8. Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Powell, Mary Cynthia Barton

    2010-01-01

    Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones [arrow right] or iPod touches [arrow right]. Research focused in three areas: the extent of podcast…

  9. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott

    2016-01-01

    Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…

  10. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  11. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  12. Using Pooled Data and Data Visualization to Introduce Statistical Concepts in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.

    2008-01-01

    I describe how data pooling and data visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set. The pooled data are plotted as a 1-D scatterplot, a purpose-designed number line through which statistical features of the data are…

  13. Construction of an Instructional Design Model for Undergraduate Chemistry Laboratory Design: A Delphi Approach

    ERIC Educational Resources Information Center

    Bunag, Tara

    2012-01-01

    The purpose of this study was to construct an instructional systems design model for chemistry teaching laboratories at the undergraduate level to accurately depict the current practices of design experts. This required identifying the variables considered during design, prioritizing and ordering these variables, and constructing a model. Experts…

  14. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    ERIC Educational Resources Information Center

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  15. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  16. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  17. A Green, Guided-Inquiry Based Electrophilic Aromatic Substitution for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Eby, Eric; Deal, S. Todd

    2008-01-01

    We developed an alternative electrophilic aromatic substitution reaction for the organic chemistry teaching laboratory. The experiment is an electrophilic iodination reaction of salicylamide, a popular analgesic, using environmentally friendly reagents--sodium iodide and household bleach. Further, we designed the lab as a guided-inquiry…

  18. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    ERIC Educational Resources Information Center

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  19. Topics in Chemical Instrumentation: XCVIII. Experiments Involving Thermal Methods of Analysis for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1978-01-01

    Explains some experiments involving thermal methods of analysis for undergraduate chemistry laboratories. Some experiments are: (1) the determination of the density and degree of crystallinity of a polymer; and (2) the determination of the specific heat of a nonvolatile compound. (HM)

  20. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  1. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  2. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    ERIC Educational Resources Information Center

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  3. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  4. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  5. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    ERIC Educational Resources Information Center

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  6. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  7. Development and Implementation of a Series of Laboratory Field Trips for Advanced High School Students to Connect Chemistry to Sustainability

    ERIC Educational Resources Information Center

    Aubrecht, Katherine B.; Padwa, Linda; Shen, Xiaoqi; Bazargan, Gloria

    2015-01-01

    We describe the content and organization of a series of day-long field trips to a university for high school students that connect chemistry content to issues of sustainability. The seven laboratory activities are in the areas of environmental degradation, energy production, and green chemistry. The laboratory procedures have been modified from…

  8. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    ERIC Educational Resources Information Center

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  9. Enhancing Academic Achievement and Retention in Senior Secondary School Chemistry through Discussion and Lecture Methods: A Case Study of Some Selected Secondary Schools in Gboko, Benue State, Nigeria

    ERIC Educational Resources Information Center

    Omwirhiren, Efe M.

    2015-01-01

    The present study was initiated to determine how academic achievement and retention in chemistry is enhanced using the two instructional methods among SSII students and ascertained the differential performance of male and female students in chemistry with a view of improving student performance in chemistry. The study adopted a non-equivalent…

  10. The status of electronic laboratory notebooks for chemistry and biology.

    PubMed

    Taylor, Keith T

    2006-05-01

    Documenting an experiment in a way that ensures that the record can act as evidence to support a patent claim or to demonstrate compliance with the US Food and Drug Administration's (FDA's) predicate rules, puts demands on an electronic laboratory notebook (ELN) that are not trivial. The 1996 General Agreement on Tariffs and Trade (GATT) allowed notebook records that were generated outside of the US to be used to claim precedence in US patent claims. This agreement spurred interest in the development of ELNs in Europe. The pharmaceutical research process became dependent on computer systems during the latter part of the 1990s, and this also led to a wider interest in ELNs. More recently, the FDA began to encourage submissions in an all-electronic form, leading to great interest in the use of ELNs in development and manufacturing. As a result of these influences, the pharmaceutical industry is now actively pursuing ELN evaluations and implementations. This article describes some of the early efforts and the recent drivers for ELN adoption. The state of the ELN market in 2005 is also described.

  11. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  12. Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Schmitz, Joel R.; Dolson, David A.

    2015-06-01

    Many third-year physical chemistry laboratory students in the US analyze the vibration-rotation spectrum of HCl in support of lecture concepts in quantum theory and molecular spectroscopy. Contemporary students in physical chemistry teaching laboratories increasingly have access to FTIR spectrometers with 1/8th wn resolution, which allows for expanded choices of molecules for vibration-rotation spectroscopy. Here we present the case for choosing HBr/DBr for such a study, where the 1/8th wn resolution enables the bromine isotopic lines to be resolved. Vibration-rotation lines from the fundamental and first-overtone bands of four hydrogen bromide isotopomers are combined in a global analysis to determine molecular spectroscopic constants. Sample production, spectral appearance, analysis and results will be presented for various resolutions commonly available in teaching laboratories.

  13. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: Code of Conduct, Version 2--2008.

    PubMed

    McMurray, Janet; Zerah, Simone; Hallworth, Michael; Koeller, Ursula; Blaton, Victor; Tzatchev, Kamen; Charilaou, Charis; Racek, Jaroslav; Johnsen, Anders; Tomberg, Karel; Harmoinen, Aimo; Baum, Hannsjörg; Rizos, Demetrios; Kappelmayer, Janos; O'Mullane, John; Nubile, Giuseppe; Pupure, Silvija; Kucinskiene, Zita; Opp, Matthias; Huisman, Wim; Solnica, Bogdan; Reguengo, Henrique; Grigore, Camelia; Spanár, Július; Strakl, Greta; Queralto, Josep; Wallinder, Hans; Schuff-Werner, Peter

    2009-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 10 years, more than 2000 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Federation of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). A Code of Conduct was adopted in 2003 and a revised and updated version, taking account particularly of the guidelines of the Conseil Européen des Professions Libérales (CEPLIS) of which EFCC is a member, is presented in this article. The revised version was approved by the EC4 Register Commission and by the EFCC Executive Board in Paris on 6 November, 2008.

  14. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010.

    PubMed

    McMurray, Janet; Zérah, Simone; Hallworth, Michael; Schuff-Werner, Peter; Haushofer, Alexander; Szekeres, Thomas; Wallemacq, Pierre; Tzatchev, Kamen; Charilaou, Charis; Racek, Jaroslav; Johnsen, Anders; Tomberg, Karel; Harmoinen, Aimo; Baum, Hannsjörg; Rizos, Demetrios; Kappelmayer, Janos; O'Mullane, John; Nubile, Giuseppe; Pupure, Silvija; Kucinskiene, Zita; Opp, Matthias; Jansen, Rob; Solnica, Bogdan; Reguengo, Henrique; Grigore, Camelia; Spanár, Július; Strakl, Greta; Queralto, Josep; Wallinder, Hans; Wieringa, Gijsbert

    2010-07-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous Guides to the Register have been published, one in 1997 and another in 2003. The third version of the Guide is presented in this article and is based on the experience gained and development of the profession since the last revision. Registration is valid for 5 years and the procedure and criteria for re-registration are presented as an Appendix at the end of the article.

  15. Laboratory evaluation of the Beckman Synchron CX3 clinical chemistry analyzer.

    PubMed

    Peake, M J; Pejakovic, M; White, G H

    1988-02-01

    In this evaluation of the Beckman Synchron CX3, the multi-analyte clinical chemistry analyzer exhibited high precision, good linearity, and no carryover for each of the eight analytes measured. Results obtained correlated well with those produced by our routine instrumentation (Beckman Astra, Varian atomic absorption spectrophotometer). The instrument can process up to 75 samples per hour (600 tests per hour if all tests available are requested) and, after calibration, can provide urgent results for the complete panel of tests within 2 1/2 min. The performance characteristics of this instrument make it ideal as a routine or a "stat" analyzer for commonly requested tests in the clinical chemistry laboratory.

  16. The effectiveness of computer-generated 3D animations in inquiry chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Theall, Rachel Morgan

    It has been shown that students need a molecular-level understanding of substances in order to comprehend chemistry. For solid structures, atomic-level understanding requires students to learn additional and different concepts than for other states of matter. To aid understanding, animations were created to model unit cell structures and depict the properties of unit cells. In order to determine if these animations are helpful to students, they were tested during a laboratory exercise in which students had previously been using model kits and images from textbooks to learn about solid structures. Students evaluated in this study were from two lecture sections of general chemistry, one that routinely used animations during lecture and one that used a more traditional lecture format that did not include animations or models. Twelve laboratory sections of these lectures, taught by six different instructors each teaching two sections, were chosen for participation. One section for each instructor was given the animations as an optional tool for completing the laboratory assignment, which consisted of questions about unit cells and crystal structures. The results of the study indicate that students who looked at the animations performed significantly better on the assignment. For the control group, students who routinely viewed multiple representations of chemistry in lecture performed significantly better on the lab assignment than students in the lecture section where chemistry concepts were only presented on the chalkboard and overhead projector. Students in the traditional lecture section also had significantly less appreciation for the model kits used in the laboratory than students in the other lecture section. Observations of students in the lab combined with statistical results led to the revision of the solid structures investigation. Additional animations were created and inserted into the module that covered areas where students indicated more help was needed

  17. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    ERIC Educational Resources Information Center

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  18. openBIS ELN-LIMS: an open-source database for academic laboratories

    PubMed Central

    Barillari, Caterina; Ottoz, Diana S. M.; Fuentes-Serna, Juan Mariano; Ramakrishnan, Chandrasekhar; Rinn, Bernd; Rudolf, Fabian

    2016-01-01

    Summary: The open-source platform openBIS (open Biology Information System) offers an Electronic Laboratory Notebook and a Laboratory Information Management System (ELN-LIMS) solution suitable for the academic life science laboratories. openBIS ELN-LIMS allows researchers to efficiently document their work, to describe materials and methods and to collect raw and analyzed data. The system comes with a user-friendly web interface where data can be added, edited, browsed and searched. Availability and implementation: The openBIS software, a user guide and a demo instance are available at https://openbis-eln-lims.ethz.ch. The demo instance contains some data from our laboratory as an example to demonstrate the possibilities of the ELN-LIMS (Ottoz et al., 2014). For rapid local testing, a VirtualBox image of the ELN-LIMS is also available. Contact: brinn@ethz.ch or fabian.rudolf@bsse.ethz.ch PMID:26508761

  19. A clinical chemistry analyzer evaluated by NCCLS guidelines for use in a military field laboratory unit.

    PubMed

    Sullinger, J; Garrett, P E

    1989-11-01

    In a previous comparison study of "dry chemistry" desktop analyzers, the ChemPro 1000 (Arden Medical Systems) was one of several instruments found suitable for field use. We have now evaluated the linearity, accuracy, and precision of the ChemPro 1000, according to NCCLS Document EP 10-P. We also compared results with those by the SMAC (Technicon) and the Nova 9 (Nova Biomedical) for electrolytes, serum urea nitrogen, and ionized calcium in field and laboratory environments. The precision (CV) of the ChemPro was within acceptable ranges for dry chemistry desktop analyzers for all analytes tested. This instrument is a suitable and reasonable alternative to manual chemistry or to large, automated instrumentation in a field environment.

  20. 50th anniversary of Clinical Chemistry and Laboratory Medicine--a historical overview.

    PubMed

    Körber, Friedrich; Plebani, Mario

    2013-01-01

    In the early 1960s, Joachim Brugsch, one of the founders of Clinical Chemistry and Laboratory Medicine (CCLM) (then Zeitschrift für Klinische Chemie), had the idea to found a journal in the upcoming field of clinical chemistry. He approached Ernst Schütte, who was associated with the De Gruyter publishing house through another journal, to participate, and Schütte thus became the second founder of this Journal. The aim was to create a vehicle allowing the experts to express their opinions and raise their voices more clearly than they could in a journal that publishes only original experimental papers, a laborious and difficult, but important endeavor, as the profession of clinical chemistry was still in the early stages of development at this time. The first issue of this Journal was published in early 1963, and today, we are proud to celebrate the 50th anniversary of CCLM. This review describes the development of this Journal in light of the political situation of the time when it was founded, the situation of the publisher Walter De Gruyter after the erection of the Berlin Wall, and the development of clinical chemistry, and later on, laboratory medicine as a well-acknowledged discipline and profession.

  1. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect

    Jordan, R. A.

    1998-09-01

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  2. Determining the EDTA Content in a Consumer Shower Cleaner. An Introductory Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Weigand, Willis A.

    2000-10-01

    At Altoona College, Chemistry 11 is offered to students as a preparatory course for the University's Chemical Principles course, Chem 12. A relevant laboratory is a source of motivation for the students to learn the chemistry. One way of making the laboratory relevant is to analyze the chemical components of consumer products. Several new shower-cleaning products have been introduced, which advertise that cleaning the shower is no longer necessary. The cleaners work using a combination of surfactants, alcohols, and a chelating agent. The Web site of a popular shower cleaner lists EDTA (ethylenediamine tetraacetate ion) as the chelating agent. The classic EDTA/calcium complexometric titration can be used to determine the EDTA content of the cleaner. This article describes the experiment to determine the EDTA content in a shower-cleaning product.

  3. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    PubMed

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  4. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    NASA Astrophysics Data System (ADS)

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-12-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported laboratory will become awkward with the growth of the number of applications and use cases. In particular, using and switching between applications is likely to induce extraneous cognitive load that can easily be avoided. The manuscript describes the design of a prototype smartphone web app (LabBuddy) designed to support students in food chemistry laboratory classes. The manuscript describes a case study ( n = 26) of the use of a LabBuddy prototype in such a laboratory class. Based on the evaluation of this case study, design requirements for LabBuddy were articulated. LabBuddy should work on HTML5 capable devices, independent of screen size, by having a responsive layout. In addition, LabBuddy should enable a student using LabBuddy to switch between devices without much effort. Finally, LabBuddy should offer an integrated representation of information.

  5. The economic impact of poor sample quality in clinical chemistry laboratories: results from a global survey.

    PubMed

    Erdal, Erik P; Mitra, Debanjali; Khangulov, Victor S; Church, Stephen; Plokhoy, Elizabeth

    2017-03-01

    Background Despite advances in clinical chemistry testing, poor blood sample quality continues to impact laboratory operations and the quality of results. While previous studies have identified the preanalytical causes of lower sample quality, few studies have examined the economic impact of poor sample quality on the laboratory. Specifically, the costs associated with workarounds related to fibrin and gel contaminants remain largely unexplored. Methods A quantitative survey of clinical chemistry laboratory stakeholders across 10 international regions, including countries in North America, Europe and Oceania, was conducted to examine current blood sample testing practices, sample quality issues and practices to remediate poor sample quality. Survey data were used to estimate costs incurred by laboratories to mitigate sample quality issues. Results Responses from 164 participants were included in the analysis, which was focused on three specific issues: fibrin strands, fibrin masses and gel globules. Fibrin strands were the most commonly reported issue, with an overall incidence rate of ∼3%. Further, 65% of respondents indicated that these issues contribute to analyzer probe clogging, and the majority of laboratories had visual inspection and manual remediation practices in place to address fibrin- and gel-related quality problems (55% and 70%, respectively). Probe maintenance/replacement, visual inspection and manual remediation were estimated to carry significant costs for the laboratories surveyed. Annual cost associated with lower sample quality and remediation related to fibrin and/or gel globules for an average US laboratory was estimated to be $100,247. Conclusions Measures to improve blood sample quality present an important step towards improved laboratory operations.

  6. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning during General Chemistry Laboratories

    ERIC Educational Resources Information Center

    Powell, Cynthia B.; Mason, Diana S.

    2013-01-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high…

  7. Blended learning in chemistry laboratory courses: Enhancing learning outcomes and aligning student needs with available resources

    NASA Astrophysics Data System (ADS)

    Burchett, Shayna Brianne

    Freshman science courses are intended to prepare students for the rigor and expectations of subsequent college science. While secondary education aims to prepare students for the college curriculum, many incoming freshman lack the sense of responsibility for their own learning that is essential for success in a college-level course. The freshman general-chemistry laboratory course at Missouri University of Science and Technology (Missouri S&T) was identified as a bottleneck course with a demand beyond accommodation capacity. To address the bottleneck and develop a sense of learner responsibility, a decision was made to investigate laboratory course delivery strategies. As a result of the investigation into delivery strategies, a blended freshman general-chemistry laboratory course was designed and implemented at Missouri S&T, which increased student access to the bottleneck course and improved learner engagement while meeting American Chemical Society (ACS) guidelines. The implementation of the Missouri S&T project and its continued evolution at other institutions have a great potential to provide insight on the impact of blended teaching on learner success. This dissertation describes research and design of a blended laboratory course that economically improves capacity while intentionally focusing pedagogy to support learner success, meet industry expectations, and maintain ACS certification. To evaluate success, the project documented and analyzed student performance during the development of the transformation to a blended freshman chemistry laboratory course at Missouri S&T. The findings support the efficacy of the blended teaching model and offer a structure upon which future courses may build.

  8. A pocket guide to electronic laboratory notebooks in the academic life sciences

    PubMed Central

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it? PMID:26835004

  9. A pocket guide to electronic laboratory notebooks in the academic life sciences.

    PubMed

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  10. Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis

    2003-11-01

    Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis. They are more affordable than notebook computers and are more widely applicable than programmable calculators. This study focuses on acid base titration experiments that are commonly used in introductory chemistry courses. We wrote an interactive Basic language program that allowed a Palm device to measure pH during the course of a titration, and we used a compatible interface for the data acquisition, which we found to record accurate voltage measurements. After synchronizing the device to a laboratory workstation, the experimental data could be transferred into a spreadsheet file, viewed in graphical form and analyzed. Many other applications of handheld computers in the laboratory are possible with the ability to write individual programs on a handheld device. Therefore, the Palm's size, ease of use, and affordability make it an attractive alternative to previous data acquisition methods for use in the chemical laboratory.

  11. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  12. Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.

    2016-01-01

    Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…

  13. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  14. Meaningful Learning in a First-Year Chemistry Laboratory Course: Differences across Classical, Discovery, and Instrumental Experiments

    ERIC Educational Resources Information Center

    Emenike, Mary Elizabeth; Danielson, Neil D.; Bretz, Stacey Lowery

    2011-01-01

    At Miami University in Oxford, Ohio, the second-semester general chemistry course for chemistry majors is the equivalent of an analytical laboratory course. The experiments in the course are classified as classical, discovery, or instrumental on the basis of their structure and purpose. To investigate students' perceptions of learning through…

  15. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  16. Measurement of the Order Parameter in a Room Temperature Liquid Crystal: An Experiment for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    DuPre, Donald B.; Chapoy, L. Lawrence

    1979-01-01

    Presented here is a laboratory experiment for a course in physical chemistry. Students are requested to directly measure the degree of orientational order in a liquid crystal at room temperature. A minimum amount of equipment is necessary. (Author/SA)

  17. A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom

    NASA Astrophysics Data System (ADS)

    Martinez, Lance Michael

    This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.

  18. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    NASA Astrophysics Data System (ADS)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  19. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation).

    PubMed

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-08-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory

  20. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation)

    PubMed Central

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-01-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory

  1. Getting Technical: The Vicissitudes of Academic Industrial Chemistry in Nineteenth-Century Britain.

    ERIC Educational Resources Information Center

    Donnelly, J. F.

    1997-01-01

    Recounts the history of chemistry instruction in English higher education, particularly the development of technical, or industrial, chemistry. Describes attempts to develop independent courses and departments of technical chemistry in the second half of the 19th century and the difficulties experienced. Extends the discussion to applied science…

  2. Students’ Perception of Self-Efficacy Following Medicinal Chemistry Skills Laboratory Exercises

    PubMed Central

    Roche, Victoria F.; Qi, Yongyue

    2016-01-01

    Objective. To analyze student perceptions of self-efficacy in meeting medicinal chemistry course related educational outcomes and skills following a medicinal chemistry skills laboratory. Methods. Four activities were implemented in a pharmacy skills laboratory (PSL) for second-year pharmacy students. Students (n=121) worked individually on exercises for three of the four activities. Pre/post-laboratory surveys on self-efficacy were administered. The McNemar test was performed to evaluate students’ self-efficacy above 70% related to course outcomes before and after the exercises in each activity. An independent t test was conducted to compare the mean of students’ responses on meeting course outcomes based on the 70% anchor for the perspective confidence on meeting course outcomes. Results. The post-PSL scores on all self-efficacy questions improved. The majority of students reported skill development in all exercises. Students and clinical faculty qualitative responses indicated they felt exercises were effective. Conclusion. A PSL can serve as a valuable opportunity to address course related educational outcomes and specific skill development and can help students assess their self-efficacy in meeting them. PMID:27402979

  3. Students' Perception of Self-Efficacy Following Medicinal Chemistry Skills Laboratory Exercises.

    PubMed

    Alsharif, Naser Z; Roche, Victoria F; Qi, Yongyue

    2016-06-25

    Objective. To analyze student perceptions of self-efficacy in meeting medicinal chemistry course related educational outcomes and skills following a medicinal chemistry skills laboratory. Methods. Four activities were implemented in a pharmacy skills laboratory (PSL) for second-year pharmacy students. Students (n=121) worked individually on exercises for three of the four activities. Pre/post-laboratory surveys on self-efficacy were administered. The McNemar test was performed to evaluate students' self-efficacy above 70% related to course outcomes before and after the exercises in each activity. An independent t test was conducted to compare the mean of students' responses on meeting course outcomes based on the 70% anchor for the perspective confidence on meeting course outcomes. Results. The post-PSL scores on all self-efficacy questions improved. The majority of students reported skill development in all exercises. Students and clinical faculty qualitative responses indicated they felt exercises were effective. Conclusion. A PSL can serve as a valuable opportunity to address course related educational outcomes and specific skill development and can help students assess their self-efficacy in meeting them.

  4. Fostering expert inquiry skills and beliefs about chemistry through the MORE laboratory experience

    NASA Astrophysics Data System (ADS)

    Tien, Lydia Tsing

    Typical college science instruction fails to promote an accurate view of science as a discipline and a practice. This is likely due to the fact that the experiences of students in the classroom are very different from the actions and thought processes of scientists. Thus, students often leave the classroom experience with poor inquiry skills and naive beliefs about scientific practice. In order to bridge the gap between the typical classroom experience and expert practice, the MORE Project laboratory curriculum was developed to accompany the general chemistry course at the University of California at Berkeley. The framework guiding the curriculum development considered findings from educational and cognitive science research. The three components of the framework are: (a) exploration of concepts through authentic scientific inquiry; (b) promotion of metacognition; and (c) support for guided discovery. The curriculum provides students with a cognitive model of expert research, the MORE (Model-Observe-Reflect-Explain) Cycle, to encourage students to explore conceptually-rich systems through authentic research opportunities, such as designing experiments and refining explanatory models. By embedding the MORE structure into the laboratory curriculum, we provide students with a model for how scientists think through the inquiry process. In order to assess the impact of the MORE Project learning environment, it was implemented in two sections concurrent with the traditional laboratory experience. Various instruments were administered to determine any differences between the test and control groups with regards to attitudes towards chemistry, conceptual understanding, inquiry skills, and beliefs about scientific practice. Based on the analyses, students experiencing the MORE classroom achieved significant gains in all areas compared with students enrolled in the more traditional laboratory class. Specifically, students in the MORE class (a) recognized the complex, dynamic

  5. Changing resident test ordering behavior: a multilevel intervention to decrease laboratory utilization at an academic medical center.

    PubMed

    Vidyarthi, Arpana R; Hamill, Timothy; Green, Adrienne L; Rosenbluth, Glenn; Baron, Robert B

    2015-01-01

    Hospital laboratory test volume is increasing, and overutilization contributes to errors and costs. Efforts to reduce laboratory utilization have targeted aspects of ordering behavior, but few have utilized a multilevel collaborative approach. The study team partnered with residents to reduce unnecessary laboratory tests and associated costs through multilevel interventions across the academic medical center. The study team selected laboratory tests for intervention based on cost, volume, and ordering frequency (complete blood count [CBC] and CBC with differential, common electrolytes, blood enzymes, and liver function tests). Interventions were designed collaboratively with residents and targeted components of ordering behavior, including system changes, teaching, social marketing, academic detailing, financial incentives, and audit/feedback. Laboratory ordering was reduced by 8% cumulatively over 3 years, saving $2 019 000. By involving residents at every stage of the intervention and targeting multiple levels simultaneously, laboratory utilization was reduced and cost savings were sustained over 3 years.

  6. Development and Evaluation of a Chemistry-Specific Version of the Academic Motivation Scale (AMS-Chemistry)

    ERIC Educational Resources Information Center

    Liu, Yujuan; Ferrell, Brent; Barbera, Jack; Lewis, Jennifer E.

    2017-01-01

    Fundamentally concerned with motivation, self-determination theory (SDT) represents a framework of several mini-theories to explore how social context interacts with people's motivational types categorized by degree of regulation internalization. This paper aims to modify an existing theory-based instrument (Academic Motivation Scale, or AMS) and…

  7. What defines effective chemistry laboratory instruction? Student and teaching assistant perspectives

    NASA Astrophysics Data System (ADS)

    Herrington, Deborah Gayle

    2003-10-01

    This study investigates student and teaching assistant (TA) perceptions of effective laboratory instruction within the context of the introductory chemistry laboratory. Questionnaires, interviews, and researcher observations were used to explore students' and TAs' perceptions of the qualities important for effective laboratory instruction. This study was conducted in two phases. Phase one of the study employed a questionnaire containing both Likert-type statements and free response questions to assess students' and TAs' perceptions of effective laboratory instruction. Based on the results for Phase One, the student and TA questionnaires were modified to include only free response questions. The revised questionnaire was tested in the Phase Two pilot study. In addition to the revised questionnaire, the Phase Two main study employed researcher observations and semi-structured interviews to obtain a richer source of data. Student and TA questionnaire responses and researcher observations of the laboratory sections were used to generate interview questions for the student and TA individual and focus group interviews. The findings of this study suggested that there was considerable agreement between students and TAs, and between groups of students in two different laboratory environments concerning the qualities important for effective laboratory instruction. However, closer examination of student and TA perceptions suggested that the characteristics, actions and behaviors that students perceived important described a proactive TA whereas researcher observations and TAs' self report of actions in the interviews described a more reactive TA role. These findings were used to suggest implications for TA training programs. Additionally, comparison of Phase Two pilot and Phase Two main study questionnaire responses indicated that the relative importance placed on different types of qualities may be dependent upon the laboratory instructional environment.

  8. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1992-01-01

    The purpose of the project is to perform laboratory measurements of reaction rate coefficients at low temperature. The reactions and temperatures of interest are those that are important in the chemistry of the hydrocarbon rich atmospheres of the outer planets and their satellites. In this stage of the study we are investigating reactions of ethynyl radicals, C2H, with acetylene (C2H2), methane (CH4), and hydrogen (H2). In the previous status report from 24 Jan. 1992, we reported on the development of the experimental apparatus and the first, preliminary data for the C2H + C2H2 reaction.

  9. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    PubMed Central

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories. PMID:25774064

  10. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  11. Student Perceptions of Chemistry Laboratory Learning Environments, Student-Teacher Interactions and Attitudes in Secondary School Gifted Education Classes in Singapore

    ERIC Educational Resources Information Center

    Lang, Quek Choon; Wong, Angela F. L.; Fraser, Barry J.

    2005-01-01

    This study investigated the chemistry laboratory classroom environment, teacher-student interactions and student attitudes towards chemistry among 497 gifted and non-gifted secondary-school students in Singapore. The data were collected using the 35-item Chemistry Laboratory Environment Inventory (CLEI), the 48-item Questionnaire on Teacher…

  12. Pre-Nursing Students Perceptions of Traditional and Inquiry Based Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Rogers, Jessica

    This paper describes a process that attempted to meet the needs of undergraduate students in a pre-nursing chemistry class. The laboratory was taught in traditional verification style and students were surveyed to assess their perceptions of the educational goals of the laboratory. A literature review resulted in an inquiry based method and analysis of the needs of nurses resulted in more application based activities. This new inquiry format was implemented the next semester, the students were surveyed at the end of the semester and results were compared to the previous method. Student and instructor response to the change in format was positive. Students in the traditional format placed goals concerning technique above critical thinking and felt the lab was easy to understand and carry out. Students in the inquiry based lab felt they learned more critical thinking skills and enjoyed the independence of designing experiments and answering their own questions.

  13. The Role of Heterogeneous Chemistry of Volatile ORganic Compounds: A Modeling and Laboratory Study

    SciTech Connect

    Gregory R. Carmichael; Vicki H. Grassian

    2007-03-01

    Overview The outputs of this research have been reported annually via the RIMS system. This report serves as an update and final report. The focus of our DOE BES funded project is on the importance of heterogeneous reactions in the troposphere. The primary objectives of our study were to: (i) Evaluate the extent to which heterogeneous chemistry affects the photochemical oxidant cycle, particularly, sources and sinks of tropospheric ozone; and (ii) Conduct laboratory studies on heterogeneous reactions involving NOy, O3 and VOCs on aerosol surfaces. These objectives were pursued through a multidisciplinary approach that combines modeling and laboratory components as discussed in more detail below. In addition, in response to the reconfiguring of the Atmospheric Science Program to focus on aerosol radiative forcing of climate, we also began to investigate the radiative properties of atmospheric aerosol.

  14. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  15. Implementation of Gas Chromatography and Microscale Distillation into the General Chemistry Laboratory Curriculum as Vehicles for Examining Intermolecular Forces

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2011-01-01

    As part of an NSF-funded Course Curriculum and Laboratory Improvement (CCLI) project that seeks, in part, to increase student exposure to scientific instrumentation, a gas chromatography experiment has been integrated into the second-semester general chemistry laboratory curriculum. The experiment uses affordable, commercially available equipment…

  16. Incrementally Approaching an Inquiry Lab Curriculum: Can Changing a Single Laboratory Experiment Improve Student Performance in General Chemistry?

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2009-01-01

    Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…

  17. Prepare, Do, Review: A Model Used to Reduce the Negative Feelings towards Laboratory Classes in an Introductory Chemistry Undergraduate Unit

    ERIC Educational Resources Information Center

    Spagnoli, Dino; Wong, Lawrence; Maisey, Shannan; Clemons, Tristan D.

    2017-01-01

    Student feelings towards the laboratory component of an introductory chemistry unit were evaluated in an action research study, over a three-year period at the University of Western Australia. In 2013 we found that the percentage of students with negative feelings towards the laboratory increased over the duration of a semester. In 2014 we…

  18. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory

    NASA Astrophysics Data System (ADS)

    Cancilla, Devon A.

    2001-12-01

    Environmental chemists face difficult challenges related to generating, interpreting, and communicating complex chemical data in a manner understandable by nonchemists. For this reason, it is essential that environmental chemistry students develop the skills necessary not only to collect and interpret complex data sets, but also to communicate their findings in a credible manner in nonscientific forums. Key to this requirement is an understanding of the quality assurance/quality control (QA/QC) elements used to support specific findings. This paper describes the development of a problem-based undergraduate environmental analytical chemistry laboratory and its integration with an undergraduate environmental law course. The course is designed to introduce students to the principles of performance-based analytical methods and the use of environmental indicators to perform environmental assessments. Conducting a series of chemical and toxicological tests, chemistry students perform an environmental assessment on the watershed of the mythical City of Rowan. Law students use these assessments to develop legal arguments under both the Safe Drinking Water Act and the Clean Water Act.

  19. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  20. Applying Statistics in the Undergraduate Chemistry Laboratory: Experiments with Food Dyes

    NASA Astrophysics Data System (ADS)

    Thomasson, Kathryn A.; Lofthus-Herschman, Sheila; Humbert, Michelle; Kulevsky, Norman

    1998-02-01

    Simple experiments have been developed using visible spectroscopy to introduce students to statistical analysis of data. Students in chemistry often gain their first substantial experience with statistics in undergraduate chemistry laboratories (Quantitative Analysis and Physical Chemistry). Simple experiments using Beer's Law of absorption spectroscopy help introduce students to applying statistics. We have chosen two food coloring dyes found in many household items: FD and C Red #40 and FD and C Blue #1. To learn to evaluate their data, the students determine the concentration of a solution at a variety of confidence limits, and treat their data for suspicious values using the Q-test. Other experiments can be done to learn the concept of pooled variance. For example, students compare solutions they make themselves to determine if they are the same to what confidence level. Furthermore, Beer's Law can be used to teach linear least squares fitting by using a serial dilution of a colored compound and measuring absorbance for each concentration. Finally, by using common household substances and a simple analysis technique, students find that statistics can be considerably less threatening, and in some cases even fun.

  1. Podcast effectiveness as scaffolding support for students enrolled in first-semester general chemistry laboratories

    NASA Astrophysics Data System (ADS)

    Powell, Mary Cynthia Barton

    Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones→ or iPod touches→. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and research teams, and student performance on graded assignments. Data analysis indicates that the podcast treatment research teams accessed a podcast 2.86 times on average during each week that podcasts were available. Comparison of interaction data for the lecture treatment research teams and podcast treatment research teams reveals that interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre-laboratory lecture. The implication of the results is that student research teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically significant difference is between students judged to be highly motivated; for this sub-group the students in the podcast treatment group earned a course average that was statistically significantly higher than those in the lecture treatment group. This research study provides some of the first data collected on the effectiveness of podcasts delivered as needed in a first-semester general chemistry laboratory setting.

  2. Adult Hematology and Clinical Chemistry Laboratory Reference Ranges in a Zimbabwean Population

    PubMed Central

    Mandozana, Gibson; Tinago, Willard; Nhando, Nehemiah; Mgodi, Nyaradzo M.; Bwakura-Dangarembizi, Mutsawashe F.

    2016-01-01

    Background Laboratory reference ranges used for clinical care and clinical trials in various laboratories in Zimbabwe were derived from textbooks and research studies conducted more than ten years ago. Periodic verification of these ranges is essential to track changes over time. The purpose of this study was to establish hematology and chemistry laboratory reference ranges using more rigorous methods. Methods A community-based cross-sectional study was carried out in Harare, Chitungwiza, and Mutoko. A multistage sampling technique was used. Samples were transported from the field for analysis at the ISO15189 certified University of Zimbabwe-University of California San Francisco Central Research Laboratory. Hematology and clinical chemistry reference ranges lower and upper reference limits were estimated at the 2.5th and 97.5th percentiles respectively. Results A total of 769 adults (54% males) aged 18 to 55 years were included in the analysis. Median age was 28 [IQR: 23–35] years. Males had significantly higher red cell counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin compared to females. Females had higher white cell counts, platelets, absolute neutrophil counts, and absolute lymphocyte counts compared to males. There were no gender differences in eosinophils, monocytes, and absolute basophil count. Males had significantly higher levels of urea, sodium, potassium, calcium, creatinine, amylase, total protein, albumin and liver enzymes levels compared to females. Females had higher cholesterol and lipase compared with males. There are notable differences in the white cell counts, neutrophils, cholesterol, and creatinine kinase when compared with the currently used reference ranges. Conclusion Data from this study provides new country specific reference ranges which should be immediately adopted for routine clinical care and accurate monitoring of adverse events in research studies. PMID:27812172

  3. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  4. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    NASA Astrophysics Data System (ADS)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  5. Institutional Struggles for Recognition in the Academic Field: The Case of University Departments in German Chemistry

    ERIC Educational Resources Information Center

    Munch, Richard; Baier, Christian

    2012-01-01

    This paper demonstrates how the application of New Public Management (NPM) and the accompanying rise of academic capitalism in allocating research funds in the German academic field have interacted with a change from federal pluralism to a more stratified system of universities and departments. From this change, a tendency to build cartel-like…

  6. Practical Applications as a Source of Credibility: A Comparison of Three Fields of Dutch Academic Chemistry

    ERIC Educational Resources Information Center

    Hessels, Laurens K.; van Lente, Harro

    2011-01-01

    In many Western science systems, funding structures increasingly stimulate academic research to contribute to practical applications, but at the same time the rise of bibliometric performance assessments have strengthened the pressure on academics to conduct excellent basic research that can be published in scholarly literature. We analyze the…

  7. "Having the Right Chemistry": A Qualitative Study of Mentoring in Academic Medicine.

    ERIC Educational Resources Information Center

    Jackson, Vicki A.; Palepu, Anita; Szalacha, Laura; Caswell, Cheryl; Carr, Phyllis L.; Inui, Thomas

    2003-01-01

    Sought to develop a deeper understanding of mentoring by exploring lived experiences of academic medicine faculty members. Almost 98 percent of participants identified lack of mentoring as the first or second most important factor hindering career progress in academic medicine. Prized mentors have "clout," knowledge, and interest in the…

  8. Two Worlds of Academic Publishing: Chemistry and German Sociology in Comparison

    ERIC Educational Resources Information Center

    Volkmann, Ute; Schimank, Uwe; Rost, Markus

    2014-01-01

    The communication infrastructure of modern science is provided by profit-oriented business firms: the publishing houses which print and distribute academic books and journals. Surprisingly, beyond some rather superficial impressions, in science studies little is known about how academic publishers work--in particular, how markets for books and…

  9. Exploring students' interactions, arguments, and reflections in general chemistry laboratories with different levels of inquiry

    NASA Astrophysics Data System (ADS)

    Xu, Haozhi

    Students' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis, cognitive processing, and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work. In general, our results elicit trends and highlight issues

  10. Development of the formal reasoning abilities of college students in a general chemistry guided-inquiry laboratory

    NASA Astrophysics Data System (ADS)

    Monteyne, Kereen

    Reform efforts in science education have been galvanized around the idea that instruction based on inquiry will increase science achievement and promote the development of higher-order thinking skills. The problem with many inquiry-oriented curriculum materials at the college level that aim to increase conceptual understanding of science is the implicit assumption that students are already skilled in higher-order thinking. Research has shown that only 25% of college freshmen consistently apply these skills. The purpose of this research study is to compare the effectiveness of a formal-reasoning-centered to a chemistry-concept-centered general chemistry guided-inquiry laboratory curriculum. Each curriculum was delivered during twelve laboratory meetings over a period of one semester to a sample of 91 college students enrolled in a first-term general chemistry course. Measures used in this study include the ability to use formal reasoning skills, the ability to abstract use of formal reasoning from context, understanding of chemistry concepts, and perception of learning gains (attitude). The results of this research show that a formal-reasoning-centered curriculum is more effective than a chemistry-concept-centered curriculum on specific-transfer measures of formal reasoning using a chemistry context. No differences between the two curricula were found on specific- or nonspecific-transfer measures of formal reasoning using a general (non-chemistry) context. Students using a formal-reasoning-centered curriculum were more able to abstract use of formal reasoning from context. No differences between the curricula were found on measures of understanding chemistry concepts. Students using a chemistry-concept-centered curriculum reported more positive attitudes towards laboratory-based instruction.

  11. Comprehensive Reference Ranges for Hematology and Clinical Chemistry Laboratory Parameters Derived from Normal Nigerian Adults

    PubMed Central

    Miri-Dashe, Timzing; Osawe, Sophia; Tokdung, Monday; Daniel, Nenbammun; Choji, Rahila Pam; Mamman, Ille; Deme, Kurt; Damulak, Dapus; Abimiku, Alash’le

    2014-01-01

    Background Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women. Methods and findings Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors’ questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4%) males, 125 (32.6%) non-pregnant females and 134 pregnant females (35.2%) with a mean age of 31 years. Our results showed that the red blood cells count (RBC), Hemoglobin (HB) and Hematocrit (HCT) had significant gender difference (p = 0.000) but not for total white blood count (p>0.05) which was only significantly higher in pregnant verses non-pregnant women (p = 0.000). Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000). Platelets were significantly higher in females than men (p = 0.001) but lower in pregnant women (p = 0.001) with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05) but gender difference exists for Bicarbonate (HCO3), Urea nitrogen, Creatinine as well as the lipids (p<0.05). Total bilirubin was significantly higher in males than females (p = 0.000). Significant differences exist for all chemistry parameters between pregnant and non-pregnant women in this study (p<0.05), except Amylase and total cholesterol (p>0.05). Conclusions Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non

  12. High school students' enactment of chemistry knowing in open-entry laboratory investigations

    NASA Astrophysics Data System (ADS)

    Pilane, Sentsetsa M.

    2003-10-01

    This study is an exploration of student meaning making in a non-traditional, high activity, hands-on grade 12 high school chemistry setting. The study focused on a sequence of three "open-entry" laboratory investigations (i.e., iodine clock reaction, pop-can cell and electroplating). These open-entry laboratory investigations were designed to be flexible and to take place in settings where students could make an impact. Students were responsible for devising their own problem and entry strategy, for making decisions about what reagents to use, what variables to manipulate, and how to proceed to develop the problem to a resolution acceptable to them and to the teacher. To explore students' meaning making in open-entry laboratory settings, their interactions were video taped and samples of their written laboratory reports were collected from time to time. Students were also requested to write reflective notes on their experiences of each investigation, some students were interviewed at the end of the course. This thesis consists of accounts and interpretations of what students did and said as they made meaning in these open-entry, hands-on laboratory investigations. The research uses an enactivist perspective to explore the meanings emerging from the study. From an enactivist view, cognition is seen as perceptually guided action in which a knower brings forth a world of significance with others. Enactivism suggests that students do not only express their knowing in what they say or write but also in their actions with others within this learning community. The research revealed that meaning making in these circumstances was highly complex. It involved systematic trial and error at various levels within the multiple iterative feedback loops. Students' interactions in this setting were mediated by the culture of chemistry which is embodied in the practices of the discipline. With students having to make decisions with every action, their meaning making was not only

  13. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    PubMed

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.

  14. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  15. Vygotskian-based grouping: Utilizing the zone of proximal development in a chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Briggle, Justin David

    A large portion of any science major's curriculum utilizes laboratories. Many of these laboratories now incorporate cooperative learning as a result of studies attesting to its beneficial effects. However, little attention has been given to the composition of those groups, specifically at post-secondary education institutes. We have therefore investigated the effectiveness of a grouping technique based on the theories of L. S. Vygotsky and his construct of the zone of proximal development (ZPD) in the context of an undergraduate general chemistry laboratory course at The University of Texas at Austin. All students were responsible for the completion of a short, 11 question, pre-quiz. Depending on their respective classes, students were grouped either according to the ZPD-scheme, based on pre-quiz scores, or randomly, regardless of pre-quiz score. Achievement of the students in each of the two groups was compared in order to determine grouping effectiveness. This study was carried out for 3 semesters (spring 2003, spring 2004, and fall 2004) under two different instructors. Overall, results indicate that grouping according to the ZPD-scheme revealed higher student achievement versus random grouping. Moreover, students scoring low and average on pre-quizzes benefited far more from this grouping method than higher scoring students. The protocol for implementing this grouping scheme is straightforward and is discussed in detail.

  16. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  17. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  18. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions.

    PubMed

    Flemmer, Michael M; Ham, Jason E; Wells, J R

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with alpha-terpineol on a vinyl surface over 72 h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with alpha-terpineol were collected from both zero and 100 ppb (parts per 10(9)) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100 ppb (over 339 h) provided a pooled standard deviation of 1.65 ppb and a 95% tolerance of 3.3 ppb. Humidity data from 17 experiments at 50% relative humidity (over 664 h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300 ml/min (over 548 h) provided a pooled standard deviation of 3.02 ml/min and a 95% tolerance range of 6.03 ml/min. Initial experimental results yielded long term emissions of ozone/alpha-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  19. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    NASA Astrophysics Data System (ADS)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  20. Free-expansion experiments and modeling in detonation: Chemistry and hydrodynamics on a laboratory scale

    SciTech Connect

    Greiner, N.R.; Blais, N.

    1989-01-01

    Laboratory-scale (25-50 mg) detonations of PETN, RDX, HNS, and TNT have been carried out in a high-vacuum chamber, and collisionless molecular beams of the freely expanding detonation products have been analyzed as a function of time with a mass spectrometer. Concurrently, time-sequenced schlieren and shadowgraph images of the initial expansion of the product plume are recorded using a pulsed laser for illumination. These data tie the chemistry and hydrodynamics of the detonation event together. The results, interpreted with the aid of a computer model, suggest that this experiment freezes the chemical reactions of detonation by rapid adiabatic cooling and provides a continuum of samples in the molecular beam, representing the sequence of reactions in the detonating charge. With a suitable model of the expansion hydrodynamics, the hydrodynamic histories of a sequence of volume elements can be associated with their frozen chemistries. We expect experiments like this to provide a test for molecular models of detonation. 10 refs., 5 figs.

  1. Presidential Green Chemistry Challenge: 2010 Academic Award - James C. Liao and Easel Biotechnologies, LLC

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2010 award winner, Dr. James C. Liao, genetically engineered microorganisms to make higher alcohols (with 3 to 8 carbon atoms) from glucose or directly from carbon dioxide (CO2).

  2. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    NASA Astrophysics Data System (ADS)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  3. Education: a microfluidic platform for university-level analytical chemistry laboratories.

    PubMed

    Greener, Jesse; Tumarkin, Ethan; Debono, Michael; Dicks, Andrew P; Kumacheva, Eugenia

    2012-02-21

    We demonstrate continuous flow acid-base titration reactions as an educational microfluidic platform for undergraduate and graduate analytical chemistry courses. A series of equations were developed for controlling and predicting the results of acid-base neutralisation reactions conducted in a microfluidic format, including the combinations of (i) a strong base and a strong acid, (ii) a strong base and a weak acid, and (iii) a strong base and a multiprotic acid. Microfluidic titrations yielded excellent repeatability. The small experimental footprint is advantageous in crowded teaching laboratories, and it offers limited waste and exposure to potentially hazardous acids and bases. This platform will help promote the utilisation of microfluidics at an earlier stage of students' careers.

  4. A history of HbA1c through Clinical Chemistry and Laboratory Medicine.

    PubMed

    Gillery, Philippe

    2013-01-01

    HbA(1c) was discovered in the late 1960s and its use as marker of glycemic control has gradually increased over the course of the last four decades. Recognized as the gold standard of diabetic survey, this parameter was successfully implemented in clinical practice in the 1970s and 1980s and internationally standardized in the 1990s and 2000s. The use of standardized and well-controlled methods, with well-defined performance criteria, has recently opened new directions for HbA(1c) use in patient care, e.g., for diabetes diagnosis. Many reports devoted to HbA1c have been published in Clinical Chemistry and Laboratory Medicine (CCLM) journal. This review reminds the major steps of HbA(1c) history, with a special emphasis on the contribution of CCLM in this field.

  5. Laboratory chemistry relevant to understanding and modeling the ionosphere of Titan.

    PubMed

    Adams, Nigel G; Mathews, L Dalila; Osborne, David

    2010-01-01

    Laboratory data have a dual and critical role in interpreting information obtained from the Cassini spacecraft in its passes through the Titan ionosphere. Firstly, in situ mass spectra are obtained by Cassini and their conversion into atmospheric molecular composition requires chemical modeling to create agreement between the observed mass spectra and those determined from the models. Secondly, once agreement is obtained, then the chemical model can be considered to represent the evolution of the Titan atmosphere. As a contribution to these endeavors in the past, laboratory measurements have been made in the Selected Ion Flow Tube (SIFT) of the reactions of a series of ring molecules with the important ionospheric ion CH3+. These reactions showed that a dominant reaction channel is association. In the present study, this work has been extended to reactions of another important Titan ion C3H3+. These ion-molecule reactions have also been studied at room temperature using a SIFT. Reactions have been studied in detail with benzene, toluene and pyridine and show again that association is very important. The loss of ionization in the ionosphere is then controlled by electron-ion dissociative recombination of the association ions and their progeny. The recombination reactions have been studied as a function of temperature (300 to 550 K) using a flowing afterglow. These combined data have been used to develop a subset of the chemistry and test its viability. They have indicated that association of the important Titan ions with the abundant nitrogen, followed by switching of the nitrogen for the ring compounds, can build up larger species, perhaps resulting in multi-rings. Recombination of such species can affect the ionization balance and provide species which can contribute to the parallel neutral chemistry. Species are suggested that should be looked for in the in situ mass spectra.

  6. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be

  7. EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine: version 3 - 2005.

    PubMed

    Zerah, Simone; McMurray, Janet; Bousquet, Bernard; Baum, Hannsjorg; Beastall, Graham H; Blaton, Vic; Cals, Marie-Josèphe; Duchassaing, Danielle; Gaudeau-Toussaint, Marie-Françoise; Harmoinen, Aimo; Hoffmann, Hans; Jansen, Rob T; Kenny, Desmond; Kohse, Klaus P; Köller, Ursula; Gobert, Jean-Gérard; Linget, Christine; Lund, Erik; Nubile, Giuseppe; Opp, Matthias; Pazzagli, Mario; Pinon, Georges; Queralto, José M; Reguengo, Henrique; Rizos, Demetrios; Szekeres, Thomas; Vidaud, Michel; Wallinder, Hans

    2006-01-01

    The EC4 Syllabus for Postgraduate Training is the basis for the European Register of Specialists in Clinical Chemistry and Laboratory Medicine. The syllabus: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. The syllabus is not primarily meant to be a training guide, but on the basis of the overview given (common minimal programme), national societies should formulate programmes that indicate where knowledge and experience is needed. The main points of this programme are: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory management; and Quality insurance management. The aim of this version of the syllabus is to be in accordance with the Directive of Professional Qualifications published on 30 September 2005. To prepare the common platforms planned in this directive, the disciplines are divided into four categories: Indicates the level of requirements in postgraduate training to harmonise the postgraduate education in the European Union (EU); Indicates the level of content of national training programmes to obtain adequate knowledge and experience; Is approved by all EU societies for clinical chemistry and laboratory medicine. Knowledge in biochemistry, haematology, immunology, etc.; Pre-analytical conditions; Evaluation of results; Interpretations (post-analytical phase); Laboratory

  8. Question Posing, Inquiry, and Modeling Skills of Chemistry Students in the Case-Based Computerized Laboratory Environment

    ERIC Educational Resources Information Center

    Kaberman, Zvia; Dori, Yehudit Judy

    2009-01-01

    A new learning unit in chemistry, "Case-based Computerized Laboratories" (CCL) and Computerized Molecular Modeling" (CMM) was developed at the Technion. The CCL and CMM curriculum integrates computerized desktop experiments and molecular modeling with an emphasis on scientific inquiry and case studies. Our research aimed at…

  9. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  10. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  11. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  12. Bringing Research into a First Semester Organic Chemistry Laboratory with the Multistep Synthesis of Carbohydrate-Based HIV Inhibitor Mimics

    ERIC Educational Resources Information Center

    Pontrello, Jason K.

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a…

  13. A Guided Inquiry Experiment for the Measurement of Activation Energies in the Biophysical Chemistry Laboratory: Decarboxylation of Pyrrole-2-Carboxylate

    ERIC Educational Resources Information Center

    Hutchinson, Kelly M.; Bretz, Stacey Lowery; Mettee, Howard D.; Smiley, Jeffrey A.

    2005-01-01

    A laboratory experiment for undergraduate biophysical chemistry is described, in which the acid concentration and temperature dependences of the decarboxylation of pyrrole-2-carboxylate are measured using a continuous ultraviolet (UV) spectrophotometric assay. Data collection and analysis are structured using principles of guided inquiry. Data…

  14. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  15. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  16. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  17. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  18. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    ERIC Educational Resources Information Center

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  19. A Service-Learning Project Based on a Research Supportive Curriculum Format in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kalivas, John H.

    2008-01-01

    This article describes a two-semester general chemistry laboratory teaching approach to assist students in gaining experience with science-process skills. The ultimate goal is successful completion of a second-semester service-learning project requiring use of their newly developed science-process skills. The project entails creating an…

  20. Changing the First-Year Chemistry Laboratory Manual to Implement a Problem-Based Approach that Improves Student Engagement

    ERIC Educational Resources Information Center

    Laredo, Thamara

    2013-01-01

    For students who are not science majors, problem-based (PB) laboratories for first-year chemistry provide a more comprehensive experience than conventional expository ones. Implementing PB labs is reasonably easy, as the lab experiments may not need to change; what changes is the way the lab manual is set up and how the actual session is carried…

  1. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  2. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  3. Electrochemistry of (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part III

    ERIC Educational Resources Information Center

    Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.

    2007-01-01

    Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…

  4. A roadmap for academic health centers to establish good laboratory practice-compliant infrastructure.

    PubMed

    Adamo, Joan E; Bauer, Gerhard; Berro, Marlene; Burnett, Bruce K; Hartman, Karen A; Masiello, Lisa M; Moorman-White, Diane; Rubinstein, Eric P; Schuff, Kathryn G

    2012-03-01

    Prior to human clinical trials, nonclinical safety and toxicology studies are required to demonstrate that a new product appears safe for human testing; these nonclinical studies are governed by good laboratory practice (GLP) regulations. As academic health centers (AHCs) embrace the charge to increase the translation of basic science research into clinical discoveries, researchers at these institutions increasingly will be conducting GLP-regulated nonclinical studies. Because the consequences for noncompliance are severe and many AHC researchers are unfamiliar with Food and Drug Administration regulations, the authors describe the regulatory requirements for conducting GLP research, including the strict documentation requirements, the necessary personnel training, the importance of study monitoring, and the critical role that compliance oversight plays in the process. They then explain the process that AHCs interested in conducting GLP studies should take before the start of their research program, including conducting a needs assessment and a gap analysis and selecting a model for GLP compliance. Finally, the authors identify and analyze several critical barriers to developing and implementing a GLP-compliant infrastructure at an AHC. Despite these challenges, the capacity to perform such research will help AHCs to build and maintain competitive research programs and to facilitate the successful translation of faculty-initiated research from nonclinical studies to first-in-human clinical trials.

  5. The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander

    NASA Astrophysics Data System (ADS)

    Kounaves, Samuel P.; Hecht, Michael H.; West, Steven J.; Morookian, John-Michael; Young, Suzanne M. M.; Quinn, Richard; Grunthaner, Paula; Wen, Xiaowen; Weilert, Mark; Cable, Casey A.; Fisher, Anita; Gospodinova, Kalina; Kapit, Jason; Stroble, Shannon; Hsu, Po-Chang; Clark, Benton C.; Ming, Douglas W.; Smith, Peter H.

    2009-03-01

    To analyze and interpret the chemical record, the 2007 Phoenix Mars Lander includes four wet chemistry cells. These Wet Chemistry Laboratories (WCLs), part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) package, each consist of a lower "beaker" containing sensors designed to analyze the chemical properties of the regolith and an upper "actuator assembly" for adding soil, water, reagents, and stirring. The beaker contains an array of sensors and electrodes that include six membrane-based ion selective electrodes (ISE) to measure Ca2+, Mg2+, K+, Na+, NO3-/ClO4-, and NH4+; two ISEs for H+ (pH); a Ba2+ ISE for titrimetric determination of SO42-; two Li+ ISEs as reference electrodes; three solid crystal pellet ISEs for Cl-, Br-, and I-; an iridium oxide electrode for pH; a carbon ring electrode for conductivity; a Pt electrode for oxidation reduction potential (Eh); a Pt and two Ag electrodes for determination of Cl-, Br-, and I- using chronopotentiometry (CP); a Au electrode for identifying redox couples using cyclic voltammetry (CV); and a Au microelectrode array that could be used for either CV or to indicate the presence of several heavy metals, including Cu2+, Cd2+, Pb2+, Fe2/3+, and Hg2+ using anodic stripping voltammetry (ASV). The WCL sensors and analytical procedures have been calibrated and characterized using standard solutions, geological Earth samples, Mars simulants, and cuttings from a Martian meteorite. Sensor characteristics such as limits of detection, interferences, and implications of the Martian environment are also being studied. A sensor response library is being developed to aid in the interpretation of the data.

  6. The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander

    NASA Astrophysics Data System (ADS)

    Kounaves, Samuel P.; Hecht, Michael H.; West, Steven J.; Morookian, John-Michael; Young, Suzanne M. M.; Quinn, Richard; Grunthaner, Paula; Wen, Xiaowen; Weilert, Mark; Cable, Casey A.; Fisher, Anita; Gospodinova, Kalina; Kapit, Jason; Stroble, Shannon; Hsu, Po-Chang; Clark, Benton C.; Ming, Douglas W.; Smith, Peter H.

    2009-02-01

    To analyze and interpret the chemical record, the 2007 Phoenix Mars Lander includes four wet chemistry cells. These Wet Chemistry Laboratories (WCLs), part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) package, each consist of a lower ``beaker'' containing sensors designed to analyze the chemical properties of the regolith and an upper ``actuator assembly'' for adding soil, water, reagents, and stirring. The beaker contains an array of sensors and electrodes that include six membrane-based ion selective electrodes (ISE) to measure Ca2+, Mg2+, K+, Na+, NO3 -/ClO4 -, and NH4 +; two ISEs for H+ (pH); a Ba2+ ISE for titrimetric determination of SO4 2- two Li+ ISEs as reference electrodes; three solid crystal pellet ISEs for Cl-, Br-, and I- an iridium oxide electrode for pH; a carbon ring electrode for conductivity; a Pt electrode for oxidation reduction potential (Eh); a Pt and two Ag electrodes for determination of Cl-, Br-, and I- using chronopotentiometry (CP); a Au electrode for identifying redox couples using cyclic voltammetry (CV); and a Au microelectrode array that could be used for either CV or to indicate the presence of several heavy metals, including Cu2+, Cd2+, Pb2+, Fe2/3+, and Hg2+ using anodic stripping voltammetry (ASV). The WCL sensors and analytical procedures have been calibrated and characterized using standard solutions, geological Earth samples, Mars simulants, and cuttings from a Martian meteorite. Sensor characteristics such as limits of detection, interferences, and implications of the Martian environment are also being studied. A sensor response library is being developed to aid in the interpretation of the data.

  7. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    NASA Astrophysics Data System (ADS)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    In order to confront the abstractness of the freshman chemistry syllabus and the consequent failure of students to relate what they learn to their everyday lives, we have designed a new freshman laboratory program. It is intended as an interface between the substances that surround the students in their ordinary lives and the abstract principles presented in chemistry classrooms (1). A laboratory should provide the organized experiences and observations that underlie the intellectual constructs of chemistry, and tying these experiences and observations to the real world can help to provide motivation for study of the principles. The freshman laboratory program constitutes the foundation for subsequent laboratory courses. However, the good habits we strive to develop there (careful observation, thorough record keeping, proper use of equipment, objective data analysis) are essential to all scientific work, and are intended to provide lasting educational value for all students, especially those who do not take later laboratory work. What We Do A list of the laboratory exercises carried out during 1994-1995 is presented in Table 1. The course incorporates the following features. 1. The exercises deal with recognizable, everyday substances, not just with "chemicals". That "baking soda" and "sodium bicarbonate" are the same is a chemical truism of which the students may be aware, but the visible presence of the Arm and Hammer box nevertheless helps them to make connections to the world outside the laboratory. Perceiving the connections, students may be inspired by curiosity to understand chemical phenomena better, not just to tolerate what they are being taught, as an irrelevant hurdle in the pursuit of a career. 2. Since many significant substances around students in the everyday world are organic, we work in the lab with organic as well as the usual inorganic materials. These include analgesics, vitamins, antifreeze, foodstuffs, dyestuffs, plastics, and fibers. In

  8. Appropriating Scientific Vocabulary in Chemistry Laboratories: A Multiple Case Study of Four Community College Students with Diverse Ethno-Linguistic Backgrounds

    ERIC Educational Resources Information Center

    Cink, Ruth B.; Song, Youngjin

    2016-01-01

    This multiple case study investigated how college students with diverse ethno-linguistic backgrounds used chemistry vocabulary as a way to look at their discursive identities and cultural border crossings during first semester general chemistry laboratories. The data were collected in two major forms: video-taped laboratory observations and…

  9. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  10. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  11. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  12. Is laboratory medicine ready for the era of personalized medicine? A survey addressed to laboratory directors of hospitals/academic schools of medicine in Europe.

    PubMed

    Malentacchi, Francesca; Mancini, Irene; Brandslund, Ivan; Vermeersch, Pieter; Schwab, Matthias; Marc, Janja; van Schaik, Ron H N; Siest, Gerard; Theodorsson, Elvar; Pazzagli, Mario; Di Resta, Chiara

    2015-06-01

    Developments in "-omics" are creating a paradigm shift in laboratory medicine leading to personalized medicine. This allows the increase in diagnostics and therapeutics focused on individuals rather than populations. In order to investigate whether laboratory medicine is ready to play a key role in the integration of personalized medicine in routine health care and set the state-of-the-art knowledge about personalized medicine and laboratory medicine in Europe, a questionnaire was constructed under the auspices of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and the European Society of Pharmacogenomics and Personalised Therapy (ESPT). The answers of the participating laboratory medicine professionals indicate that they are aware that personalized medicine can represent a new and promising health model, and that laboratory medicine should play a key role in supporting the implementation of personalized medicine in the clinical setting. Participants think that the current organization of laboratory medicine needs additional/relevant implementations such as (i) new technological facilities in -omics; (ii) additional training for the current personnel focused on the new methodologies; (iii) incorporation in the laboratory of new competencies in data interpretation and counseling; and (iv) cooperation and collaboration among professionals of different disciplines to integrate information according to a personalized medicine approach.

  13. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  14. The Effects of Problem-Based Learning on Metacognitive Awareness and Attitudes toward Chemistry of Prospective Teachers with Different Academic Backgrounds

    ERIC Educational Resources Information Center

    Tosun, Cemal; Senocak, Erdal

    2013-01-01

    The aim of this study was to reveal the effects of Problem-based Learning (PBL) on the metacognitive awareness and attitudes toward chemistry of teacher candidates with different academic backgrounds. The study was carried out on one group using both pre-and post-test experimental studies. The findings of the study were obtained through…

  15. How Does the Science Writing Heuristic Approach Affect Students' Performances of Different Academic Achievement Levels? A Case for High School Chemistry

    ERIC Educational Resources Information Center

    Kingir, Sevgi; Geban, Omer; Gunel, Murat

    2012-01-01

    This study investigates the effects of the Science Writing Heuristic (SWH), known as an argumentation-based science inquiry approach, on Grade 9 students' performance on a post-test in relation to their academic achievement levels. Four intact classes taught by 2 chemistry teachers from a Turkish public high school were selected for the study; one…

  16. Laboratory experiments for Titan's ionosphere : the chemistry of N2+, N+, and N2++ nitrogen ions

    NASA Astrophysics Data System (ADS)

    Thissen, R.; Alcaraz, C.; Dutuit, O.; Nicolas, C.; Soldi-Lose, H.; Zabka, J.; Franceschi, P.

    Laboratory experiments for Titan's ionosphere : the chemistry of N+ , N+ , and N2+ nitrogen ions 2 2 R. Thissen (1), C. Alcaraz (1), O. Dutuit (1), C. Nicolas (2), H. Soldi-Lose (3), J. Zabka (4), P. Franceschi (5) (1) LCP, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex, France, (2) Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France, (3) Institut für Chemie, Fachgruppe Organische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, (4) J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, CZ 18223 Praha 8 - Kobylisy, Czech Republik, (5) Dept. of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy (christian.alcaraz@lcp.u-psud.fr) N2 is the major neutral componant of Titan's atmosphere, its ionisation by solar radiation and by magnetospheric electron impact is the most important production of ions in Titan's ionosphere. These primary processes not only lead to N+ molecular 2 monocations but also to N+ atomic ions and to N2+ molecular dications, which can 2 pertain some internal or translational excitation. This contribution will summarize our efforts to caracterize in gaz phase laboratory experiments the reactivity of the nitrogen ions with the most important neutral targets of the Titan's atmosphere [1-3]: • N+ + CH4 , C2 H2 , and C2 H6 2 • N+ (3 P, 1 D) + CH4 , and C2 H4 • N2+ + N2 , CH4 , and C2 H4 2 In this work, particular attention has been paid on the effect of internal and/or translational excitation of the primary nitrogen ions on the rate constant and branching ratio of these ion-molecule reactions. The results from these studies have been compared to the literature values when available and some significant differences have been found. These new values have been used as input data in 1D models of the Titan's ionosphere to show the effect on the final density profiles of the main ions [4] and to demonstrate the existence of a N2+2 dication

  17. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Balucani, N.; Casavecchia, P.

    Molecular nitrogen is a very stable molecule, practically inert from a chemical point of view. For a nitrogen chemistry to occur in the planetary atmospheres which contain N2 , it is necessary to transform it into an active form, such as atoms or ions. As far as the production of atomic nitrogen in the upper atmospheres of planets (like Mars) or moons (like Titan) is concerned, several processes - as N2 dissociation induced by electron impact, EUV photolysis (λ <80 nm) and dissociative photoionization, or galactic cosmic ray absorption and N+ dissociative recombination all 2 lead to atomic nitrogen, notably in the ground, 4 S3/2 , and first electronically excited, 2 D3/2,5/2 , states with comparable yields. The radiative lifetimes of the metastable states 2 D3/2 and 2 D5/2 are quite long (12.3 and 48 hours, respectively), because the transition from a doublet to a quartet state is strongly forbidden. In addition, the physical quenching of N(2 D) is often a slow process and in some important cases the main fate of N(2 D) is chemical reaction with other constituents of the planetary atmospheres. The production of N atoms in the 2 D state is an important fact, because N(4 S) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small. Unfortunately laboratory experiments on the gas-phase reactions of N(2 D) have been lacking until recently, because of serious experimental difficulties in studying these reactive systems. Accurate kinetic data on the reactions of N(2 D) with the some molecules of relevance to the chemistry of planetary atmospheres have finally become available in the late 90's, but a better knowledge of the reactive behavior requires a dynamical investigation of N(2 D) reactions. The capability of generating intense continuous beams of N(2 D) achieved in our laboratory some years ago has opened up the possibility of studying the reactive scattering of this species under single

  18. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning During General Chemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Powell, Cynthia B.; Mason, Diana S.

    2013-04-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high instructor-to-student ratio, mobile devices can provide a platform for expert modeling and scaffolding during the laboratory sessions. This research study provides data collected on the effectiveness of podcasts delivered as needed in a first-semester general chemistry laboratory setting. Podcasts with audio and visual tracks covering essential laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones® or iPod touches®. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and student laboratory teams, and student performance on graded assignments. Data analysis indicates that on average the podcast treatment laboratory teams accessed a podcast 2.86 times during the laboratory period during each week that podcasts were available. Comparison of interaction data for the lecture treatment laboratory teams and podcast treatment laboratory teams reveals that scaffolding interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre-laboratory lecture. The implication of the results is that student laboratory teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format than in a pre-laboratory lecture format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically

  19. A Study to Determine Product Costs for Chemistry Laboratory Tests at Darnall Army Community Hospital

    DTIC Science & Technology

    1986-06-01

    purposes, many test procedures whose time values were identical were grouped together, e.g. all of the Dupont (trademark) automated chemistry analyzer tests...department for use in apportioning indirect expenses. 15 Figure 5. Dupont automated chemistry analyzer tests calcium bilirubin magnesium salicylic acid amylase...case mix cost accounting process ................ 9 4. Workcenter organization .................................... 14 5. DuPont automated chemistry

  20. The effect of participation in an extended inquiry project on general chemistry student laboratory interactions, confidence, and process skills

    NASA Astrophysics Data System (ADS)

    Krystyniak, Rebecca A.

    2001-12-01

    This study explored the effect of participation by second-semester general chemistry students in an extended open-inquiry laboratory investigation on their use of science process skills and confidence in performing specific aspects of laboratory investigations. In addition, verbal interactions of a student lab team among team members and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were investigated. Instruments included the Test of Integrated Skills (TIPS), a 36-item multiple-choice instrument, and the Chemistry Laboratory Survey (CLS), a researcher co-designed 20-item 8-point instrument. Instruments were administered at the beginning and close of the semester to 157 second-semester general chemistry students at the two universities; students at only one university participated in open-inquiry activity. A MANCOVA was performed to investigate relationships among control and experimental students, TIPS, and CLS post-test scores. Covariates were TIPS and CLS pre-test scores and prior high school and college science experience. No significant relationships were found. Wilcoxen analyses indicated both groups showed increase in confidence; experimental-group students with below-average TIPS pre-test scores showed a significant increase in science process skills. Transcribed audio tapes of all laboratory-based verbal interactions were analyzed. Coding categories, developed using the constant comparison method, led to an inter-rater reliability of .96. During open-inquiry activities, the lab team interacted less often, sought less guidance from their instructor, and talked less about chemistry concepts than during non-inquiry activities. Evidence confirmed that students used science process skills and engaged in higher-order thinking during both types of activities. A four-student focus shared their experiences with open-inquiry activities, indicating that they enjoyed the experience, viewed it as worthwhile, and believed

  1. Safety in the Chemical Laboratory: Safety in Academic Departments with Graduate and Undergraduate Programs.

    ERIC Educational Resources Information Center

    Landgrebe, John A.

    1985-01-01

    Describes the University of Kansas chemistry department's safety program. Comprehensive regulation, undergraduate regulations, safety equipment, handling accidents, inspections, and training are addressed. (JN)

  2. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  3. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  4. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1995-01-01

    The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.

  5. Using biocatalysis to integrate organic chemistry into a molecular biology laboratory course.

    PubMed

    Beers, Mande; Archer, Crystal; Feske, Brent D; Mateer, Scott C

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We have developed an inquiry-based module that uses the mutagenesis of the yeast reductase, YDL124w, to study the bioorganic synthesis of the taxol side-chain, a pharmacologically important molecule. Using related structures, students identify regions they think will affect enzyme stereoselective, design and generate site-specific mutants, and then characterize the effect of these changes on enzyme activity. This laboratory activity gives our students experience, working in a scientific discipline outside of biology and exposes them to techniques and equipment they do not normally work with in a molecular biology course. These inter-disciplinary experiences not only show the relevance of other sciences to biology, but also give our students the ability to communicate more effectively with scientists outside their discipline.

  6. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  7. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  8. The Effects of Research & Development Funding on Scientific Productivity: Academic Chemistry, 1990-2009

    PubMed Central

    Rosenbloom, Joshua L.; Ginther, Donna K.; Juhl, Ted; Heppert, Joseph A.

    2015-01-01

    This article examines the relationship between Research & Development (R&D) funding and the production of knowledge by academic chemists. Using articles published, either raw counts or adjusted for quality, we find a strong, positive causal effect of funding on knowledge production. This effect is similar across subsets of universities, suggesting a relatively efficient allocation of R&D funds. Finally, we document a rapid acceleration in the rate at which chemical knowledge was produced in the late 1990s and early 2000s relative to the financial and human resources devoted to its production. PMID:26372555

  9. The Effects of Research & Development Funding on Scientific Productivity: Academic Chemistry, 1990-2009.

    PubMed

    Rosenbloom, Joshua L; Ginther, Donna K; Juhl, Ted; Heppert, Joseph A

    2015-01-01

    This article examines the relationship between Research & Development (R&D) funding and the production of knowledge by academic chemists. Using articles published, either raw counts or adjusted for quality, we find a strong, positive causal effect of funding on knowledge production. This effect is similar across subsets of universities, suggesting a relatively efficient allocation of R&D funds. Finally, we document a rapid acceleration in the rate at which chemical knowledge was produced in the late 1990s and early 2000s relative to the financial and human resources devoted to its production.

  10. 2YC3 Joules: Anxiety Reduction for Beginning Chemistry Students.

    ERIC Educational Resources Information Center

    Abendroth, Walker; Friedman, Frank

    1983-01-01

    Anxiety reduction strategies (lasting 2.5 hours) were incorporated into chemistry laboratory sessions to reduce anxiety and increase academic performance. Treatment enabled students (N=23) to recognize and talk about their chemistry anxieties and experience relaxation techniques. Results showed that treatment significantly lowered level of…

  11. Using Chemistry and Color To Analyze Household Products: A 10-12 Hour Laboratory Project at the General Chemistry Level

    NASA Astrophysics Data System (ADS)

    Bosma, Wayne B.

    1998-02-01

    A general chemistry experiment is described in which the students use UV/Visible spectrometry as an analytical tool, for both compound identification and pH measurement. In the first portion of the experiment, the students compare spectra to determine which FD and C dyes are contained in household products. They furthermore use chromatography to separate the dyes in grape Kool-Aid, and analyze the products with the spectrometer. In the second portion of the experiment, the students use Beer's Law to determine the pH of solutions containing an acid/base indicator. The experiments are visually stimulating and provide a solid introduction to spectroscopy and perceived color.

  12. Application of Computers for Experiment Design, Data Acquisition, and Analysis in the Chemistry Laboratory

    DTIC Science & Technology

    1990-05-01

    Computers have found many roles in the teaching of chemistry over the years. The role of the computer can be split into two general categories: review and...tutorial programs are used as a step-by-step method of teaching about chemical concepts. For example, a gas law tutorial may begin by presenting written...quality of tutorial software has made it a viable option for teaching and learning chemistry in almost any school. In almost every chemistry

  13. The use of computer-aided learning in chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    Allred, Brian Robert Tracy

    This research involves developing and implementing computer software for chemistry laboratory instruction. The specific goal is to design the software and investigate whether it can be used to introduce concepts and laboratory procedures without a lecture format. This would allow students to conduct an experiment even though they may not have been introduced to the chemical concept in their lecture course. This would also allow for another type of interaction for those students who respond more positively to a visual approach to instruction. The first module developed was devoted to using computer software to help introduce students to the concepts related to thin-layer chromatography and setting up and running an experiment. This was achieved through the use of digitized pictures and digitized video clips along with written information. A review quiz was used to help reinforce the learned information. The second module was devoted to the concept of the "dry lab". This module presented students with relevant information regarding the chemical concepts and then showed them the outcome of mixing solutions. By these observations, they were to determine the composition of unknown solutions based on provided descriptions and comparison with their written observations. The third piece of the software designed was a computer game. This program followed the first two modules in providing information the students were to learn. The difference here, though, was incorporating a game scenario for students to use to help reinforce the learning. Students were then assessed to see how much information they retained after playing the game. In each of the three cases, a control group exposed to the traditional lecture format was used. Their results were compared to the experimental group using the computer modules. Based upon the findings, it can be concluded that using technology to aid in the instructional process is definitely of benefit and students were more successful in

  14. Using Chemistry and Color To Analyze Household Products: A 10-12-Hour Laboratory Project at the General Chemistry Level.

    ERIC Educational Resources Information Center

    Bosma, Wayne B.

    1998-01-01

    Describes a set of experiments using a UV-VIS spectrometer to identify food colorings and to measure the pH of soft drinks. The first laboratory component uses locations and shapes of visible absorption peaks as a means of identifying dyes while the second portion uses the spectrometer for determining pH. (PVD)

  15. Thermal and Chemical Denaturation of "Bacillus circulans" Xylanase: A Biophysical Chemistry Laboratory Module

    ERIC Educational Resources Information Center

    Raabe, Richard; Gentile, Lisa

    2008-01-01

    A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the…

  16. On the Successful Use of Inquiry-Driven Experiments in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mohrig, Jerry R.; Hammond, Christina Noring; Colby, David A.

    2007-01-01

    The mix of guided-inquiry and design based experiments is feasible to do in introductory organic chemistry lab courses. It can provide students with experience in two parts of experimental chemistry such as the significance and careful analysis of experimental data and the design of experiments.

  17. His majesty's subjects: from laboratory to human experiment in pneumatic chemistry.

    PubMed

    Stewart, Larry

    2009-09-20

    Experiments in pneumatic chemistry paved the way for medical innovation in the last quarter of the eighteenth century. Thomas Beddoes and James Watt were instrumental in the spread of the use of new gas chemistry in pneumatic therapy, but they were far from alone. There was no shortage of experimental subjects, as the practice was quickly taken up by medics throughout Britain.

  18. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  19. Computational Chemistry in the Undergraduate Laboratory: A Mechanistic Study of the Wittig Reaction

    ERIC Educational Resources Information Center

    Albrecht, Birgit

    2014-01-01

    The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…

  20. Incorporating Sustainability and Life Cycle Assessment into First-Year Inorganic Chemistry Major Laboratories

    ERIC Educational Resources Information Center

    Guron, Marta; Paul, Jared J.; Roeder, Margaret H.

    2016-01-01

    Although much of the scientific community concerns itself with ideas of a sustainable future, very little of this interest and motivation has reached the classroom experience of the average chemistry major, and therefore, it is imperative to expose students to these ideas early in their careers. The focus of most undergraduate chemistry curricula…

  1. Teaching Chemistry in the New Century: Inorganic Chemistry

    NASA Astrophysics Data System (ADS)

    Dorhout, Peter K.

    2001-09-01

    At the San Diego ACS meeting, members of the academic community came together to share their visions for teaching inorganic chemistry. They discussed new laboratory experiences, virtual textbooks, integration of computers in the laboratory, undergraduate research experiences, and new ways of classifying reactions to enable students to recognize and categorize reaction types. It was clear from the presentations that, while the toolbox of the inorganic chemist is not now as sophisticated as the organic chemist's, that toolbox must evolve (and is evolving) if we are to understand just a fraction of the unique chemistry that is inorganic.

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  3. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  4. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    ERIC Educational Resources Information Center

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  5. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC (stress-corrosion-cracking)

    SciTech Connect

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289/sup 0/C water at a low dissolved-oxygen concentration (<5 ppB). Cyclic loading experiments on fatigue precracked fracture-mechanics-type specimens of this material and Type 316NG were also performed at 289/sup 0/C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, Cu/sup 2 +/, etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials.

  6. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  7. Soluble salts at the Phoenix Lander site, Mars: A reanalysis of the Wet Chemistry Laboratory data

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-07-01

    The Wet Chemistry Laboratory (WCL) on the Phoenix Mars Scout Lander analyzed soils for soluble ions and found Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and ClO4-. The salts that gave rise to these ions can be inferred using aqueous equilibrium models; however, model predictions are sensitive to the initial solution composition. This is problematic because the WCL data is noisy and many different ion compositions are possible within error bounds. To better characterize ion concentrations, we reanalyzed WCL data using improvements to original analyses, including Kalman optimal smoothing and ion-pair corrections. Our results for Rosy Red are generally consistent with previous analyses, except that Ca2+ and Cl- concentrations are lower. In contrast, ion concentrations in Sorceress 1 and Sorceress 2 are significantly different from previous analyses. Using the more robust Rosy Red WCL analysis, we applied equilibrium models to determine salt compositions within the error bounds of the reduced data. Modeling with FREZCHEM predicts that WCL solutions evolve Ca-Mg-ClO4-rich compositions at low temperatures. These unusual compositions are likely influenced by limitations in the experimental data used to parameterize FREZCHEM. As an alternative method to evaluate salt assemblages, we employed a chemical divide model based on the eutectic temperatures of salts. Our chemical divide model predicts that the most probable salts in order of mass abundance are MgSO4·11H2O (meridianiite), MgCO3·nH2O, Mg(ClO4)2·6H2O, NaClO4·2H2O, KClO4, NaCl·2H2O (hydrohalite), and CaCO3 (calcite). If ClO3- is included in the chemical divide model, then NaClO3 precipitates instead of NaClO4·2H2O and Mg(ClO3)2·6H2O precipitates in addition to Mg(ClO4)2·6H2O. These salt assemblages imply that at least 1.3 wt.% H2O is bound in the soil, noting that we cannot account for water in hydrated insoluble salts or deliquescent brines. All WCL solutions within error bounds precipitate Mg(ClO4)2·6H2O and/or Mg

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  9. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    NASA Astrophysics Data System (ADS)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p < 0.001) compared to that of the students in the comparison group. PBL was shown to have a positive effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  10. Laboratory Investigations of Heterogeneous Chemistry Important to Ozone Depletion in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Renyi

    Results of laboratory investigations of heterogeneous chemistry important to ozone depletion in the stratosphere are presented. Thermodynamic properties (such as melting points, enthalpies of fusion, etc.) for acids which are present in the stratosphere (HCl, HNO_3 , and H_2SO_4 ) are studied using laboratory-assembled apparatus of electrical conductivity and differential thermal analysis and using a commercial differential scanning calorimeter (DSC). Vapor pressures and infrared spectra of liquid and supercooled solutions, and of liquid-solid and solid -solid coexistence mixtures for the HCl/H_2 O and H_2SO_4 /H_2O binary systems are investigated. Equilibrium constants and standard enthalpies of formation for the pure crystalline hydrates of those acids as well as their corresponding liquid compositions are determined from the vapor pressure and calorimetric data. A theoretical approach, which allows determination of vapor pressures for two adjacent hydrates in thermodynamic equilibrium and for the coexistence systems involving a hydrate and ice in a binary system, is presented in terms of chemical equilibrium principles and compared with the experimental data for thermodynamic consistence. Vapor pressures of HNO_3 and HCl over H_2SO_4 /HNO_3/H_2 O and H_2SO_4 /HCl/H_2O solutions as well as over H_2SO_4/HNO _3/HCl/H_2O solutions are also measured in order to predict incorporation of stratospheric acids into the background sulfate aerosols. From the data, the Henry's law solubility constants for those systems are determined and the equilibrium compositions of aqueous stratospheric aerosols are predicted as a function of ambient temperature and mixing ratios of H_2 O and HNO_3. The results indicate that at the low temperatures characteristic of the stratosphere at high latitudes in the winter and spring, the HNO_3 content reaches levels of the order of 10% wt in the background sulfate aerosols. The results also reveal that the amount of dissolved HCl in the

  11. Provocative Opinion - Instruction in the Organic Chemistry Laboratory: Past, Present, and Future

    ERIC Educational Resources Information Center

    Fife, Wilmer K.

    1975-01-01

    Traces the historical development of the university instructional laboratory. Describes the basic components of a problem-oriented laboratory program and identifies four forces that may dictate instructional change in the future. (GS)

  12. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  13. Team-based learning in the gross anatomy laboratory improves academic performance and students' attitudes toward teamwork.

    PubMed

    Huitt, Tiffany W; Killins, Anita; Brooks, William S

    2015-01-01

    As the healthcare climate shifts toward increased interdisciplinary patient care, it is essential that students become accomplished at group problem solving and develop positive attitudes toward teamwork. Team-based learning (TBL) has become a popular approach to medical education because of its ability to promote active learning, problem-solving skills, communication, and teamwork. However, its documented use in the laboratory setting and physical therapy education is limited. We used TBL as a substitute for one-third of cadaveric dissections in the gross anatomy laboratories at two Doctor of Physical Therapy programs to study its effect on both students' perceptions and academic performance. We surveyed students at the beginning and completion of their anatomy course as well as students who had previously completed a traditional anatomy course to measure the impact of TBL on students' perceptions of teamwork. We found that the inclusion of TBL in the anatomy laboratory improves students' attitudes toward working with peers (P < 0.01). Non-TBL students had significantly lower attitudes toward teamwork (P < 0.01). Comparison of academic performance between TBL and non-TBL students revealed that students who participated in TBL scored significantly higher on their first anatomy practical examination and on their head/neck written examination (P < 0.001). When asked to rate their role in a team, a 10.5% increase in the mean rank score for Problem Solver resulted after the completion of the TBL-based anatomy course. Our data indicate that TBL is an effective supplement to cadaveric dissection in the laboratory portion of gross anatomy, improving both students' grades and perceptions of teamwork.

  14. Safety Tips: Academic Laboratory Waste Disposal: Yes, You Can Get Rid of that Stuff Legally!

    ERIC Educational Resources Information Center

    Young, Jay A.

    1983-01-01

    Discusses three methods for removing wastes from educational laboratories. These include paying someone with Environmental Protection Agency (EPA) permits, doing part of the work before an EPA contractor carries out final steps, or reducing magnitude of future disposal problems by changing present laboratory procedures. Includes comments on…

  15. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  16. Instrumentation Needs of Academic Departments of Chemistry: A Survey Study. Report of a Joint Task Force of the Committee on Science and Committee on Chemistry and Public Affairs.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…

  17. Case studies identify savings of up to $40,000 for academic research laboratories with the use of video journals

    NASA Astrophysics Data System (ADS)

    Pritsker, Moshe

    2015-04-01

    Recent studies indicate that 70% to 90% of results published in science journals are not reproducible, which presents troubling uncertainty about the future of scientific research. In contrast to the text format of traditional journals, novel video-based journals allow for systematic, step-by-step visualized demonstrations of research experiments. Video articles produce a more efficient transfer of knowledge between laboratories and therefore offer a viable solution to the issue of reproducibility. To quantify the savings of time and money generated by this alternative mode of scientific communication, we conducted a number of case studies among academic laboratories who use the peer-reviewed video journal JoVE. One study determined that using video as a guide to learn a new dissection technique saved a bioengineering lab at the University of Washington 40,000. A second case study found that a laboratory at Cornell University studying muscular dystrophy eliminated 6 months of experimentation by learning a new complex stem cell injection technique from the video journal. Results from a third study indicated that a laboratory at the University of Helsinki shortened the time to learn a surgical technique from 1 year to 2 weeks. Together, these studies indicate that video publication significantly enhances the reproducibility and productivity of scientific research.

  18. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  19. The Use of Solid Aluminum Heat Transfer Devices in Organic Chemistry Laboratory Instruction and Research.

    ERIC Educational Resources Information Center

    Lodwig, Siegfried N.

    1989-01-01

    Presents a practical and attractive alternative to the sand bath used in the microscale procedures developed by Mayo, Pike, and Butcher. Urges the organic chemistry teaching community to continue towards complete conversion to microscale techniques. Presents the use of aluminum devices in the microlaboratory. (MVL)

  20. An Undergraduate Organic Chemistry Laboratory: The Facile Hydrogenation of Methyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    O'Connor, Kenneth J.; Zuspan, Kimberly; Berry, Lonnie

    2011-01-01

    Hydrogenation of alkenes is an important reaction in the synthesis of organic molecules. In this experiment, students conduct a high-yield microscale hydrogenation reaction of methyl "trans"-cinnamate using a readily available, safe, and convenient hydrogen source. The conditions are similar to those seen in an organic chemistry textbook for an…

  1. Circular Dichroism Investigation of Dess-Martin Periodinane Oxidation in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G.

    2005-01-01

    Dess-Martin periodinane oxidation is an experiment that provides an avenue to the introduction of Circular Dichroism (CD) spectroscopy in organic chemistry curriculum as a diagnostic tool for examination of the results of a familiar reaction, and absolute configuration. From the experiment, students increased their understanding of CD theory and…

  2. A Computer-Interfaced O2 Probe: Instrumentation for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Adamson, Gary E.; Nakhleh, Mary B.; Zimmerman, James R.

    1997-01-01

    Describes interfacing a hand-held oxygen probe with a microcomputer and suggests experiments for undergraduate chemistry courses that could facilitate student understanding of aquatic environmental processes which involve dissolved oxygen. Data can be analyzed through the program or exported into other software. Presents results of an experiment…

  3. Space Resources for Teachers: Chemistry; Including Suggestions for Classroom Activities and Laboratory Experiments.

    ERIC Educational Resources Information Center

    Lawrence, Richard M.

    This publication is composed of 10 units, each based on an area of space science and technology in which chemistry plays an important role. Each resource unit can be used independently of the others and materials can be selected from within a unit. The materials range in difficulty from the junior high level of understanding to those that will…

  4. A Practical Introduction to Separation and Purification Techniques for the Beginning Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Leonard, Jack E.

    1981-01-01

    Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)

  5. A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M.

    2008-01-01

    The Robinson annulation is a topic of importance in the second-year organic curriculum. A one-pot, enantioselective Robinson annulation is described. The experiment is completed in two lab periods and is geared towards the second-year organic chemistry major. To our knowledge, this is the first example of a one-pot enantioselective Robinson…

  6. Use of Microcomputers in the Undergraduate Chemistry Laboratory: An Absorption Spectrum Experiment.

    ERIC Educational Resources Information Center

    Terry, Ronald J.; And Others

    1989-01-01

    Describes a computer program designed to enable undergraduate students to apply computer skills for data acquisition and processing in experimental chemistry. An example is given that examines the absorption spectra of conjugated molecules such as carbocyanine dyes, and the free electron model is explained. (six references) (LRW)

  7. What can we learn from Wet Chemistry onboard the Mars Science Laboratory SAM Suite?

    NASA Astrophysics Data System (ADS)

    Buch, A.; Szopa, C.; Coll, P.; Eigenbrode, J.; Coscia, D.; Navarro Gonzalez, R.; Cabane, M.; MSL Science Team

    2013-09-01

    Direct pyrolysis of Mars soil samples has been used up today today to analyse their content in volatile molecules. However, this technique has been shown to have limitation for the analysis of a few chemical families, or macromolecules. The SAM experiment is the first space instrument onboarding a device based on wet chemistry to overcome this limitation.

  8. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  9. Learning Chemistry Research Outside the Laboratory: Novel Graduate and Undergraduate Courses in Research Methodology.

    ERIC Educational Resources Information Center

    Schildcrout, Steven M.

    2002-01-01

    Describes two courses in research methodology, required respectively for graduate and undergraduate chemistry students as they begin research projects. The courses include traditional classroom sessions with discussion as well as exercises in writing and speaking, critiquing a journal article and a thesis, and preparing a research proposal.…

  10. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  11. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  12. Chemistry Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume III.

    ERIC Educational Resources Information Center

    Crosby, Glenn; And Others

    A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…

  13. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  14. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  15. A guided inquiry experiment for the measurement of activation energies in the biophysical chemistry laboratory: Decarboxylation of pyrrole-2-carboxylate.

    PubMed

    Hutchinson, Kelly M; Bretz, Stacey Lowery; Mettee, Howard D; Smiley, Jeffrey A

    2005-03-01

    A laboratory experiment for undergraduate biophysical chemistry is described, in which the acid concentration and temperature dependences of the decarboxylation of pyrrole-2-carboxylate are measured using a continuous ultraviolet (UV) spectrophotometric assay. Data collection and analysis are structured using principles of guided inquiry. Data leading to the calculation of multiple rate constants at varying temperatures and acid concentrations can be collected within one laboratory period, using inexpensive reagents and standard instrumentation. These experiments permit determination of activation energies that are lower at high acid concentration, indicative of a subtle change in the reaction mechanism with decreasing pH. The reaction is readily observable by students as they collect UV spectrophotometry data, and the decarboxylation reaction is related to biologically relevant enzymatic reactions.

  16. [Evolution of chemistry laboratory and instruments looked from plates books from XVIIth to the end of the first half of XIXth century].

    PubMed

    Viel, Claude

    2009-10-01

    After a general presentation of the laboratory, the Lavoisier and Guyton de Morveau laboratories are described from Arthur Young's memoirs. After, more important furnaces, distillatory apparatus, vessels and pneumatic chemistry instruments are exposed, balances and the different mixtures to seal distillery vessels are rapidly presented.

  17. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  18. Inter-laboratory study to improve the quality of the analysis of nutrients in rainwater chemistry

    NASA Astrophysics Data System (ADS)

    Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar; He, Jun

    This paper describes the results of an inter-laboratory study conducted for the analysis of nutrients (nitrate, ammonium, phosphate, total nitrogen (TN), and total phosphorus (TP)) in natural rainwater. For this purpose, rainwater samples were collected and aggregated in Singapore and homogenized. These samples were immediately filtered through 0.45 μm membrane filters and autoclaved for 15 min at 80 °C in order to stabilize the nutrients. The homogeneity and the stability of nutrients were rigorously tested for a period of three months initially. Upon ensuring the homogeneity and stability, the samples were distributed to 15 different laboratories from various countries around the world (Australia, Brazil, India, Mauritius, Singapore, Slovenia, Spain, Taiwan, and USA). Almost all laboratories have reported the analytical results for nitrate whereas only 8 of the 15 laboratories reported results for other nutrients such as ammonium, phosphate, TN, and TP. The discrepancy was mainly due to the presence of these nutrients in low concentration levels (particularly ammonium ion and phosphate). Not all the laboratories were equipped with analytical capabilities to conduct the analysis of nutrients in low concentration levels. Further, the uncertainty associated with the analysis of TN and TP restricted the number of laboratories that could report their analytical data on nutrients. All 14 laboratories reported nitrate-nitrogen results which were in good agreement with each other (0.68 ± 0.07 mg l -1). Similarly, the results of TN and TP were also comparable among at least 8 laboratories. This inter-laboratory study on the analysis of nutrients in natural rainwater, conducted for the first time, provided an opportunity to the participating laboratories to assess and improve their laboratory performance, thereby, improving the quality of their analytical data.

  19. The Expectations of Teachers and Students Who Visit a Non-Formal Student Chemistry Laboratory

    ERIC Educational Resources Information Center

    Garner, Nicole; Eilks, Ingo

    2015-01-01

    Non-formal student laboratory environments for primary and secondary school science education have become a major trend in the German educational arena in recent years. These non-formal student laboratory environments are thought to offer unique experimental learning experiences that often cannot be realized in daily school routines. The biggest…

  20. Can Report Templates Aid Student Learning in Undergraduate Chemistry Laboratory Classes?

    ERIC Educational Resources Information Center

    Paton-Walsh, Clare

    2015-01-01

    This paper describes a study aimed at assessing the ability of report templates to help students learn key concepts during undergraduate laboratory classes. The report templates were designed so that a set of assessment questions led the students through the logical steps required to perform the laboratory exercise and to calculate the required…