Science.gov

Sample records for academic research laboratories

  1. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  2. Case studies identify savings of up to $40,000 for academic research laboratories with the use of video journals

    NASA Astrophysics Data System (ADS)

    Pritsker, Moshe

    2015-04-01

    Recent studies indicate that 70% to 90% of results published in science journals are not reproducible, which presents troubling uncertainty about the future of scientific research. In contrast to the text format of traditional journals, novel video-based journals allow for systematic, step-by-step visualized demonstrations of research experiments. Video articles produce a more efficient transfer of knowledge between laboratories and therefore offer a viable solution to the issue of reproducibility. To quantify the savings of time and money generated by this alternative mode of scientific communication, we conducted a number of case studies among academic laboratories who use the peer-reviewed video journal JoVE. One study determined that using video as a guide to learn a new dissection technique saved a bioengineering lab at the University of Washington 40,000. A second case study found that a laboratory at Cornell University studying muscular dystrophy eliminated 6 months of experimentation by learning a new complex stem cell injection technique from the video journal. Results from a third study indicated that a laboratory at the University of Helsinki shortened the time to learn a surgical technique from 1 year to 2 weeks. Together, these studies indicate that video publication significantly enhances the reproducibility and productivity of scientific research.

  3. Becoming an Academic Researcher

    ERIC Educational Resources Information Center

    Angervall, Petra; Gustafsson, Jan

    2014-01-01

    The neo-liberal restructuring of academia justifies research concerning what constitutes academic work, what it means to be an academic researcher and how researchers manoeuvre in academia. The aim of this article is to investigate how this reshaping of higher education affects how research careers are formed and impacts on "becoming…

  4. Students' perceptions of academic dishonesty in the chemistry classroom laboratory

    NASA Astrophysics Data System (ADS)

    del Carlo, Dawn I.; Bodner, George M.

    2004-01-01

    Although the literature on both academic dishonesty and scientific misconduct is extensive, research on academic dishonesty has focused on quizzes, exams, and papers, with the virtual exclusion of the classroom laboratory. This study examined the distinctions undergraduate chemistry majors made between academic dishonesty in the classroom laboratory and scientific misconduct in the research laboratory. Across the spectrum of undergraduate chemistry courses, from the introductory course for first-semester chemistry majors to the capstone course in instrumental analysis, we noted that students believe the classroom lab is fundamentally different from a research or industrial lab. This difference is so significant that it carries over into students' perceptions of dishonesty in these two environments.

  5. Academic Listening: Research Perspectives.

    ERIC Educational Resources Information Center

    Flowerdew, John, Ed.

    A collection of essays address a variety of issues in listening in the academic context, particularly in a foreign or second language. Articles include: "Research of Relevance to Second Language Lecture Comprehension--An Overview" (John Flowerdew); "Expectation-Driven Understanding in Information Systems Lecture Comprehension" (Steve Tauroza,…

  6. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  7. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  8. Kennedy: Future Academic Research Policy.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    The president of Stanford University discusses his views on problems facing research universities, including research secrecy, ethics, and economics of proprietary knowledge generated in the university, faculty conflict of interest, place of humanities in a society driven by technology, and decline of government support for academic research.…

  9. Research Productivity and Academics' Conceptions of Research

    ERIC Educational Resources Information Center

    Brew, Angela; Boud, David; Namgung, Sang Un; Lucas, Lisa; Crawford, Karin

    2016-01-01

    This paper asks the question: do people with different levels of research productivity and identification as a researcher think of research differently? It discusses a study that differentiated levels of research productivity among English and Australian academics working in research-intensive environments in three broad discipline areas: science,…

  10. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  11. Contradictions in Irish Academic Research

    ERIC Educational Resources Information Center

    Jerrams, Steve; Donovan, John

    2005-01-01

    The conditions that govern academic research vary greatly from country to country and research in the Republic of Ireland was and remains markedly different from that of its larger European neighbours and the United States. Despite the quality of its education system and the excellent reputation of its universities, until recently Ireland had…

  12. Green Building Research Laboratory

    SciTech Connect

    Sailor, David Jean

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  13. Academic Research Integration System

    ERIC Educational Resources Information Center

    Surugiu, Iula; Velicano, Manole

    2008-01-01

    This paper comprises results concluding the research activity done so far regarding enhanced web services and system integration. The objective of the paper is to define the software architecture for a coherent framework and methodology for enhancing existing web services into an integrated system. This document presents the research work that has…

  14. The Value of Research in Academic Libraries

    ERIC Educational Resources Information Center

    Perkins, Gay Helen; Slowik, Amy J. W.

    2013-01-01

    In the summer of 2010, two researchers interviewed twenty-three library administrators of comparable academic libraries at American universities for their views of the value of research in academic libraries. The interview questions focused on the administrators' perceived value of academic librarians' research, incentives given to academic…

  15. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  16. Understanding Chinese TEFL Academics' Capacity for Research

    ERIC Educational Resources Information Center

    Bai, Li; Hudson, Peter

    2011-01-01

    This study aims to benchmark Chinese TEFL academics' research productivities to identify and address research productivity issues. Using a literature-based survey, this study examined 182 Chinese TEFL academics' research output, perceptions about research, personal dispositions for conducting research and workplace context for conducting research…

  17. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  18. Pollution Prevention Guideline for Academic Laboratories.

    ERIC Educational Resources Information Center

    Li, Edwin; Barnett, Stanley M.; Ray, Barbara

    2003-01-01

    Explains how to manage waste after a classroom laboratory experiment which generally has the potential to generate large amounts of waste. Focuses on pollution prevention and the selection processes to eliminate or minimize waste. (YDS)

  19. Academic Freedom: A Call for Research.

    ERIC Educational Resources Information Center

    Ochoa, Anna

    The need for research on academic freedom as it applies to the K-12 level is addressed. The existing literature in the area of academic freedom, while often critical, rhetorical, and prescriptive, never calls for research. Indeed, there are very few examples of research in this area. Two separate ERIC (Educational Research Information Center)…

  20. DNA banking and DNA databanking by academic and commercial laboratories

    SciTech Connect

    McEwen, J.E. |; Reilly, P.R.

    1994-09-01

    The advent of DNA-based testing is giving rise to DNA banking (the long-term storage of cells, transformed cell lines, or extracted DNA for subsequent retrieval and analysis) and DNA data banking (the indefinite storage of information derived from DNA analysis). Large scale acquisition and storage of DNA and DNA data has important implications for the privacy rights of individuals. A survey of 148 academically based and commercial DNA diagnostic laboratories was conducted to determine: (1) the extent of their DNA banking activities; (2) their policies and experiences regarding access to DNA samples and data; (3) the quality assurance measures they employ; and (4) whether they have written policies and/or depositor`s agreements addressing specific issues. These issues include: (1) who may have access to DNA samples and data; (2) whether scientists may have access to anonymous samples or data for research use; (3) whether they have plans to contact depositors or retest samples if improved tests for a disorder become available; (4) disposition of samples at the end of the contract period if the laboratory ceases operations, if storage fees are unpaid, or after a death or divorce; (5) the consequence of unauthorized release, loss, or accidental destruction of samples; and (6) whether depositors may share in profits from the commercialization of tests or treatments developed in part from studies of stored DNA. The results suggest that many laboratories are banking DNA, that many have already amassed a large number of samples, and that a significant number plan to further develop DNA banking as a laboratory service over the next two years. Few laboratories have developed written policies governing DNA banking, and fewer still have drafted documents that define the rights and obligations of the parties. There may be a need for increased regulation of DNA banking and DNA data banking and for better defined policies with respect to protecting individual privacy.

  1. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to…

  2. Unpredictable Feelings: Academic Women under Research Audit

    ERIC Educational Resources Information Center

    Grant, Barbara M.; Elizabeth, Vivienne

    2015-01-01

    Academic research is subject to audit in many national settings. In Aotearoa/New Zealand, the government regulates the flow of publicly funded research income into tertiary institutions through the Performance-Based Research Fund (PBRF). This article enquires into the effects of the PBRF by exploring data collected from 16 academic women of…

  3. Establishing an academic laboratory: mentoring as a business model

    PubMed Central

    Greco, Valentina

    2014-01-01

    It is a tremendous honor for my group and me to receive the recognition of the 2014 Women in Cell Biology Junior Award. I would like to take the opportunity of this essay to describe my scientific journey, discuss my philosophy about running a group, and propose what I think is a generalizable model to efficiently establish an academic laboratory. This essay is about my view on the critical components that go into establishing a highly functional academic laboratory during the current tough, competitive times. PMID:25360043

  4. An Investigation into the Relationship between Academic Risk Taking and Chemistry Laboratory Anxiety in Turkey

    ERIC Educational Resources Information Center

    Öner Sünkür, Meral

    2015-01-01

    This study evaluates the relationship between academic risk taking and chemistry laboratory anxiety using a relational scanning model. The research sample consisted of 127 undergraduate students (sophomores, juniors and seniors) in the Chemistry Teaching Department at Dicle University. This research was done in the spring semester of the 2012 to…

  5. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  6. Laboratory Management, Academic Production, and the Building Blocks of Academic Capitalism

    ERIC Educational Resources Information Center

    Cantwell, Brendan

    2015-01-01

    Academic capitalism has been among the most influential lines of research into markets in higher education. This paper takes up the distinct but related topic of academic production. This study makes use of a theory of fields and the concept of strategic action fields Fligstein and McAdam ("Social Theory" 29:1-26, 2011; "A theory of…

  7. Naval Research Laboratory Overview

    DTIC Science & Technology

    2012-10-01

    1930 1940 1950 1960 1920 Aqueous Film Forming Foam 1966 Plan-Position Indicator Gamma - Ray Radiography Liquid Thermal Diffusion Process...Synthetic lubricants Improved Aircraft Canopy Deep Ocean Search First U.S. radar patents Submarine, airborne & OTH radars & IFF First Detection of X... Rays from the Sun submarine life support Over the Horizon Radar The Navy and Marine Corps Corporate Laboratory Dragon Eye UAV 2002 Navy

  8. Academic Freedom: Problems in Conceptualization and Research

    ERIC Educational Resources Information Center

    Abdel Latif, Muhammad M. M.

    2014-01-01

    Academic freedom is of central importance to higher education and it affects all aspects of work at universities. It symbolizes academics' acceptance of the need for openness and flexibility (Balyer, 2011) and it protects the conditions leading to the creation of good teaching and learning, sound research, and scholarship (Atkinson, 2004).…

  9. Virtual robotics laboratory for research

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  10. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  11. Naval Research Laboratory 1983 Review.

    DTIC Science & Technology

    1983-01-01

    U.S. military, industry , and academia. During 1983, NRL celebrated 60 years of research. To keep pace with naval and national needs, the Laboratory has...that the Laboratory is a dynamic family working together to promote the programs, progress, and innovations that will continue to foster discoveries...inventiveness, and scientific advances for the Navy of the future. v’- . . ..,-. . . . . . . . . o ., .- A .7 . ;-..-. DEDICATION iii PREFACE v Capt

  12. Academic Libraries and the Research Quality Framework

    ERIC Educational Resources Information Center

    Haddow, Gaby

    2007-01-01

    The Federal Government is introducing a new funding model for research in Australian higher education institutions, the Research Quality Framework (RQF). This paper provides an overview of the RQF and looks at possible impacts of the RQF on academic libraries in Australia. These impacts are drawn from experience at one Australian university,…

  13. Fostering Research and Publication in Academic Libraries

    ERIC Educational Resources Information Center

    Sassen, Catherine; Wahl, Diane

    2014-01-01

    This study concerns administrative support provided to encourage the research and publishing activities of academic librarians working in Association of Research Libraries member libraries. Deans and directors of these libraries were asked to respond to an online survey concerning the support measures that their libraries provide, as well as their…

  14. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. SESAME/Environmental Research Laboratories

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Environmental Research Laboratories (ERL) have been designated as the basic research group of the National Oceanic and Atmospheric Administration (NOAA). ERL performs an integrated program of research and research services directed toward understanding the geophysical environment, protecting the environment, and improving the forecasting ability of NOAA. Twenty-four laboratories located throughout the United States comprise ERL. The Project SESAME (Severe Environmental Storms and Mesoscale Experiment) Planning Office is a project office within ERL. SESAME is conceived as a joint effort involving NOAA, NASA, NSF, and the atmospheric science community to lay the foundation for improved prediction of severe convective storms. The scientific plan for SESAME includes a phased buildup of analysis, modeling, instrumentation development and procurement, and limited-scale observational activities.

  16. Opening up Academic Biomedical Research

    NASA Video Gallery

    Eva Guinan, MD, Associate Professor of Pediatrics, Associate Direction, Center for Clinical and Translational Research at Harvard Medical School, was featured during the September 7, 2011 Innovatio...

  17. Mutual benefits of research collaborations between zoos and academic institutions.

    PubMed

    Fernandez, Eduardo J; Timberlake, William

    2008-11-01

    Zoos focus on welfare, conservation, education, and research related to animals they keep. Academic institutions emphasize description, experimentation, modeling, and teaching of general and specific animal biology and behavior through work in both laboratory and field. The considerable overlap in concerns and methods has increased interest in collaborative projects, but there is ample room for closer and more extensive interactions. The purpose of this article is to increase awareness of potential research collaborations in three areas: (1) control and analysis of behavior, (2) conservation and propagation of species, and (3) education of students and the general public. In each area, we outline (a) research in zoos, (b) research in academics, and (c) potential collaborative efforts. Zoo Biol 27:470-487, 2008. (c) 2008 Wiley-Liss, Inc.

  18. Leadership of Academics in Research

    ERIC Educational Resources Information Center

    Ball, Stephen

    2007-01-01

    Leadership is a key issue for universities and is increasingly regarded as beneficial to improved performance across all activities, including research. This article reports on part of a completed doctoral study that had the aim of developing a deeper understanding of the role of leadership as it relates to hospitality management research by…

  19. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7710 ● JUNE 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Telemetry Warehouse by Theron...longer needed. Do not return it to the originator. ARL-TR-7710 ● JUNE 2016 US Army Research Laboratory Network Science Research...Laboratory (NSRL) Telemetry Warehouse by Andrew J Toth Computational and Information Sciences Directorate, ARL and Theron Trout Stormfish

  20. Research Instruction in Connecticut's Academic Libraries.

    ERIC Educational Resources Information Center

    Natale, Barbara

    A survey on bibliographic instruction was sent to all 63 academic libraries in Connecticut in the winter of 1985-86. Librarians were asked if they offered library research as a separate course, a required unit in a broader course, or integrated with instruction at the invitation of the professor. Questions were included on faculty workshops,…

  1. Measuring Academic Capacity: Research in Relationship

    ERIC Educational Resources Information Center

    Fletcher, Fay; Rousell, Davina D.; Worrell, Stephanie; McLean, Barb; Baydala, Lola

    2012-01-01

    Successful, sustainable initiatives in communities are community-based, community-paced, and community-led. In addition, the unique culture of each community is a protective factor, contributing to that community's physical, mental, spiritual, and emotional health. Academic researchers working with six First Nations and one Metis Settlement asked,…

  2. Teaching Research for Academic Purposes

    ERIC Educational Resources Information Center

    Pashaie, Billy

    2010-01-01

    Teaching the ability to find, analyze, evaluate, and synthesize information is an important part of creating an environment in which ESL students feel empowered in the information age. However, a preliminary search of professional literature shows that there is a lack of research in information-literacy programs for ESL learners in higher…

  3. Academic research: policies and practice.

    PubMed

    Bertha, S L

    1996-04-01

    The Bayh-Dole Act of 1980 allowed universities in the US to own and manage inventions obtained using federal funds. This Act laid the foundation for university technology transfer activities in most major research universities of the country. Consequently, the interaction between universities and industry has increased, and so has the sophistication in university intellectual property management. UIC's model for managing its intellectual property is efficient and successful, and is the one increasingly used by university technology transfer offices. The model deals with all aspects of UIC's intellectual property: disclosure, protection, marketing, negotiating and licensing, as well as intellectual property provisions in UIC's research agreements, material transfer agreements, option agreements, licensing agreements and others. In a pioneer effort, UIC has developed a policy on contracts for collecting natural product samples for drug discovery which includes royalty sharing and other important provisions. Accompanying this policy we have also drafted a standard contractual agreement for collectors.

  4. Feasibility of Developing Academic Laboratories Using a Low-Cost Robot

    DTIC Science & Technology

    2009-09-01

    DEVELOPING ACADEMIC LABORATORIES USING A LOW-COST ROBOT by Antonio Valle September 2009 Thesis Advisor: Xiaoping Yun Second Reader...TITLE AND SUBTITLE Feasibility of Developing Academic Laboratories using a Low-cost Robot 6. AUTHOR(S) Antonio Valle 5. FUNDING NUMBERS 7...investigate the feasibility of developing new academic laboratories for an introductory robotics course at the Naval Postgraduate School (NPS) using

  5. A pocket guide to electronic laboratory notebooks in the academic life sciences

    PubMed Central

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it? PMID:26835004

  6. A pocket guide to electronic laboratory notebooks in the academic life sciences.

    PubMed

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  7. Evaluating the Non-Academic Impact of Academic Research: Design Considerations

    ERIC Educational Resources Information Center

    Gunn, Andrew; Mintrom, Michael

    2017-01-01

    Evaluation of academic research plays a significant role in government efforts to steer public universities. The scope of such evaluation is now being extended to include the "relevance" or "impact" of academic research outside the academy. We address how evaluation of non-academic research impact can promote more such impact…

  8. openBIS ELN-LIMS: an open-source database for academic laboratories

    PubMed Central

    Barillari, Caterina; Ottoz, Diana S. M.; Fuentes-Serna, Juan Mariano; Ramakrishnan, Chandrasekhar; Rinn, Bernd; Rudolf, Fabian

    2016-01-01

    Summary: The open-source platform openBIS (open Biology Information System) offers an Electronic Laboratory Notebook and a Laboratory Information Management System (ELN-LIMS) solution suitable for the academic life science laboratories. openBIS ELN-LIMS allows researchers to efficiently document their work, to describe materials and methods and to collect raw and analyzed data. The system comes with a user-friendly web interface where data can be added, edited, browsed and searched. Availability and implementation: The openBIS software, a user guide and a demo instance are available at https://openbis-eln-lims.ethz.ch. The demo instance contains some data from our laboratory as an example to demonstrate the possibilities of the ELN-LIMS (Ottoz et al., 2014). For rapid local testing, a VirtualBox image of the ELN-LIMS is also available. Contact: brinn@ethz.ch or fabian.rudolf@bsse.ethz.ch PMID:26508761

  9. Deepening Our Understanding of Academic Inbreeding Effects on Research Information Exchange and Scientific Output: New Insights for Academic Based Research

    ERIC Educational Resources Information Center

    Horta, Hugo

    2013-01-01

    This paper analyzes the impact of academic inbreeding in relation to academic research, and proposes a new conceptual framework for its analysis. We find that mobility (or lack of) at the early research career stage is decisive in influencing academic behaviors and scientific productivity. Less mobile academics have more inward oriented…

  10. Academic Research Vessels 1985-1990.

    DTIC Science & Technology

    1982-01-01

    Ocean Sciences Board Commission on Physical Sciences, Mathematics , and Resources National Research Council Accession For NTIS GfA&I- ccrTrC TAB DI... MATHEMATICS , AND RESOURCES HERBERT FRIEDMAN, National Research Council, Cochairman ROBERT M. WHITE, University Corporation for Atmospheric Research...Technology GERHART FRIEDLANDER, Brookhaven National Laboratory EDWARD A. FRIEMAN, Science Applications , Inc. EDWARD D. GOLDBERG, Scripps Institution of

  11. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    PubMed

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  12. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  13. Student Voice as a Methodological Issue in Academic Literacies Research

    ERIC Educational Resources Information Center

    Paxton, Moragh

    2012-01-01

    Academic literacies research has been identified as an emerging but significant field in higher education. This article extends the discussions around methodology in academic literacies research by drawing on the current text and context debates in sociolinguistics and linguistic ethnography. It uses illustrations from a recent academic literacies…

  14. The Academic Researcher Role: Enhancing Expectations and Improved Performance

    ERIC Educational Resources Information Center

    Kyvik, Svein

    2013-01-01

    This article distinguishes between six tasks related to the academic researcher role: (1) networking; (2) collaboration; (3) managing research; (4) doing research; (5) publishing research; and (6) evaluation of research. Data drawn from surveys of academic staff, conducted in Norwegian universities over three decades, provide evidence that the…

  15. Institutional Conflicts of Interest in Academic Research.

    PubMed

    Resnik, David B

    2015-10-07

    Financial relationships in academic research can create institutional conflicts of interest (COIs) because the financial interests of the institution or institutional officials may inappropriately influence decision-making. Strategies for dealing with institutional COIs include establishing institutional COI committees that involve the board of trustees in conflict review and management, developing policies that shield institutional decisions from inappropriate influences, and establishing private foundations that are independent of the institution to own stock and intellectual property and to provide capital to start-up companies.

  16. Academic Information Security Researchers: Hackers or Specialists?

    PubMed

    Dadkhah, Mehdi; Lagzian, Mohammad; Borchardt, Glenn

    2017-04-10

    In this opinion piece, we present a synopsis of our findings from the last 2 years concerning cyber-attacks on web-based academia. We also present some of problems that we have faced and try to resolve any misunderstandings about our work. We are academic information security specialists, not hackers. Finally, we present a brief overview of our methods for detecting cyber fraud in an attempt to present general guidelines for researchers who would like to continue our work. We believe that our work is necessary for protecting the integrity of scholarly publishing against emerging cybercrime.

  17. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  18. Interactions Between the Academic Business Library and Research Data Services

    ERIC Educational Resources Information Center

    Bennett, Terrence B.; Nicholson, Shawn W.

    2004-01-01

    The use of numeric data has historical significance in the research of many academic disciplines, but today it is burgeoning. Responses from academic business librarians to a 33-item questionnaire are the basis for this study that investigates the interactions between academic business libraries and other local units supplying numeric data…

  19. Research Productivity by Career Stage among Korean Academics

    ERIC Educational Resources Information Center

    Jung, Jisun

    2014-01-01

    This study explores Korean academics' changes in research productivity by career stage. Career stage in this study is defined as a specific cohort based on one's length of job experience, with those in the same stage sharing similar interests, values, needs, and tasks; it is categorized into fledglings, maturing academics, established academics,…

  20. Air Force Research Laboratory Technology Milestones 2008

    DTIC Science & Technology

    2008-01-01

    Air Force Research Laboratory ( AFRL ) is the only science and technology (S&T) organization for the Air Force . Accordingly, AFRL fulfills a mission to...Readership survey is sponsored by the Air Force Research Laboratory ( AFRL ), Wright-Patterson Air Force Base, Ohio. Thank you in advance for your...Base Defense AFRL researchers participated in the Robotic Physical Security Experiment, conducted at

  1. 77 FR 36277 - Academic Development of a Training Program for Good Laboratory Practices in High Containment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... HUMAN SERVICES Food and Drug Administration Academic Development of a Training Program for Good Laboratory Practices in High Containment Environments (U24) AGENCY: Food and Drug Administration, HHS. ACTION... the support of a Funding Opportunity Announcement (FOA) entitled ``Academic Development of a...

  2. Mathematics Laboratory Report: Activities during Academic Year, 1983-1984 [and] Plans for Academic Year, 1984-1985.

    ERIC Educational Resources Information Center

    Capps, Joan P.

    During the 1983-84 academic year, a mathematics laboratory was established at Somerset County College to provide tutorial and testing services for high-risk students. This report describes and evaluates the first-year activities of the lab and proposes plans for increasing and evaluating the services and use of the lab during 1984-85. First, the…

  3. The Cost Function and Scale Economies in Academic Research Libraries.

    ERIC Educational Resources Information Center

    Liu, Lewis G.

    2003-01-01

    This empirical research examined scale economies of academic research libraries and developed a total cost function for estimating economies of scale. Suggests that libraries in general, and academic research libraries in particular, are information provision organizations that provide multiproducts and multiservices. Findings indicate that slight…

  4. The Relevance of Academic Research in OSCM Practice

    ERIC Educational Resources Information Center

    Raffield, Wiliam D.; Vang, David O.; Lundsten, Lorman L.

    2016-01-01

    The authors examine the relevance of academic research for operations and supply chain management (OSCM) professionals. Members of a major metropolitan APICS chapter were surveyed. Consistent with prior research, findings indicate that OSCM practitioners prefer trade journal articles to academic research. Nonetheless, respondents indicate interest…

  5. New Academics and Identities: Research as a Process of "Becoming"

    ERIC Educational Resources Information Center

    McLeod, Heather; Badenhorst, Cecile

    2014-01-01

    We are new academics involved in the process of becoming researchers. We believe that gathering, reflecting, sharing and producing knowledge are important parts of constructing a strong identity as a researcher that we produce and own rather than being produced by the prevailing academic discourse. We decenter research as a product and bring into…

  6. Learning in Academia Is More than Academic Learning: Action Research in Academic Practice for and with Medical Academics

    ERIC Educational Resources Information Center

    Trevitt, Chris

    2008-01-01

    Academic learning traditionally involves research, and the production of journal papers, books, etc. "Learning in academia" refers to academics becoming more skilful in what they do. It is what legal or medical clinicians would refer to as continuing professional education (or development) (CPE/D) which, by analogy, invokes the notion of CPE in…

  7. Cookstove Laboratory Research - Fiscal Year 2016 Report

    EPA Science Inventory

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, ...

  8. Research Laboratories and Centers Fact Sheet

    EPA Pesticide Factsheets

    The Office of Research and Development is the research arm of the U.S. Environmental Protection Agency. It has three national laboratories and four national centers located in 14 facilities across the country.

  9. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  10. A roadmap for academic health centers to establish good laboratory practice-compliant infrastructure.

    PubMed

    Adamo, Joan E; Bauer, Gerhard; Berro, Marlene; Burnett, Bruce K; Hartman, Karen A; Masiello, Lisa M; Moorman-White, Diane; Rubinstein, Eric P; Schuff, Kathryn G

    2012-03-01

    Prior to human clinical trials, nonclinical safety and toxicology studies are required to demonstrate that a new product appears safe for human testing; these nonclinical studies are governed by good laboratory practice (GLP) regulations. As academic health centers (AHCs) embrace the charge to increase the translation of basic science research into clinical discoveries, researchers at these institutions increasingly will be conducting GLP-regulated nonclinical studies. Because the consequences for noncompliance are severe and many AHC researchers are unfamiliar with Food and Drug Administration regulations, the authors describe the regulatory requirements for conducting GLP research, including the strict documentation requirements, the necessary personnel training, the importance of study monitoring, and the critical role that compliance oversight plays in the process. They then explain the process that AHCs interested in conducting GLP studies should take before the start of their research program, including conducting a needs assessment and a gap analysis and selecting a model for GLP compliance. Finally, the authors identify and analyze several critical barriers to developing and implementing a GLP-compliant infrastructure at an AHC. Despite these challenges, the capacity to perform such research will help AHCs to build and maintain competitive research programs and to facilitate the successful translation of faculty-initiated research from nonclinical studies to first-in-human clinical trials.

  11. Research Policy and Academic Performativity: Compliance, Contestation and Complicity

    ERIC Educational Resources Information Center

    Leathwood, Carole; Read, Barbara

    2013-01-01

    Research, a major purpose of higher education, has become increasingly important in a context of global economic competitiveness. In this paper, we draw on data from email interviews with academics in Britain to explore responses to current research policy trends. Although the majority of academics expressed opposition to current policy…

  12. The Economic Behavior of Academic Research Libraries: Toward a Theory.

    ERIC Educational Resources Information Center

    Liu, Lewis G.

    2003-01-01

    Examines the economic behavior of academic research libraries, arguing that academic research libraries seek to maximize universities' utility by expanding library collections. Findings are consistent with those from a previous study using a different ranking system and sample data and reconfirm that library collections contribute significantly to…

  13. A Career Success Model for Academics at Malaysian Research Universities

    ERIC Educational Resources Information Center

    Abu Said, Al-Mansor; Mohd Rasdi, Roziah; Abu Samah, Bahaman; Silong, Abu Daud; Sulaiman, Suzaimah

    2015-01-01

    Purpose: The purpose of this paper is to develop a career success model for academics at the Malaysian research universities. Design/methodology/approach: Self-administered and online surveys were used for data collection among 325 academics from Malaysian research universities. Findings: Based on the analysis of structural equation modeling, the…

  14. Federal Restrictions on Research: Academic Freedom and National Security.

    ERIC Educational Resources Information Center

    Rosenbaum, Robert A.; And Others

    1982-01-01

    The American Association of University Professors' Committee A on Academic Freedom and Tenure reports on potential problems and concerns in government regulation of research opportunities, methods, and use of research results. Federal actions, campus responses to these actions, and the relationship of academic freedom and national security are…

  15. The Contribution of Academics' Engagement in Research to Undergraduate Education

    ERIC Educational Resources Information Center

    Hajdarpasic, Ademir; Brew, Angela; Popenici, Stefan

    2015-01-01

    Can current trends to develop teaching-only academic positions be reconciled with the notion of the interrelationship of teaching and research as a defining characteristic of universities? In particular, what does academics' engagement in research add to students' learning? A study of 200 undergraduates' perceptions of the role of staff research…

  16. 82 FR 11438 - Establishment of Academic Research Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2017-02-23

    ...'s Office of Research advice and feedback on research methodologies, framing research questions, data... Research advice and feedback on research methodologies, framing research questions, data collection, and... Doc No: 2017-03494] BUREAU OF CONSUMER FINANCIAL PROTECTION Establishment of Academic Research...

  17. The Construction of Academic Time: Sub/Contracting Academic Labour in Research.

    ERIC Educational Resources Information Center

    Hey, Valerie

    2001-01-01

    Offers a poststructuralist analysis of the UK higher education sector's academic division of labor, exploring some new contradictions from a contract researcher's standpoint. Raises political, social, and methodological questions about these divisions by exploring their class and gender dimensions. Too many academics remain silent about adverse…

  18. Virtual Instruction: A Qualitative Research Laboratory Course

    ERIC Educational Resources Information Center

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  19. Annotated Bibliography of Recent Research Related to Academic Advising

    ERIC Educational Resources Information Center

    Mottarella, Karen, Comp.

    2011-01-01

    This article presents an annotated bibliography of recent research related to academic advising. It includes research papers that focus on advising and a special section of the "Journal of Career Development" that is devoted to multicultural graduate advising relationships.

  20. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  1. Naval Research Laboratory Arctic Initiatives

    DTIC Science & Technology

    2011-06-01

    Initiatives • Naval Arctic Environmental Research – Improved Physical Understanding – Integrated Arctic Modeling and Prediction – Developing New ...of the Arctic environment and important coupled processes operating in the Arctic region • Development of a new , dynamic, fully-integrated Arctic...longer lead times, including the use of satellite SAR data for assimilation into integrated models • Generation of new technologies (platforms

  2. Lawrence Berkeley Laboratory catalog of research projects

    SciTech Connect

    Not Available

    1991-01-01

    Research from Lawrence Berkeley Laboratory is briefly presented. Topics include: (1) Applied Science; (2) Chemical Sciences; (3) Earth Sciences; (4) Materials Sciences; (5) Accelerator and Fusion Research; (6) Nuclear Science; (7) Physics; (8) Cell and Molecular Biology; (9) Chemical Biodynamics; (10) Research Medicine and Radiation Biophysics; (11) Engineering; (12) Environmental Protection, Health and Safety; and (13) Information and Computing Sciences. (WET)

  3. Academic Maturation and Metacognitive Strategies in Academic Research and Production

    ERIC Educational Resources Information Center

    Filipovic, Jelena; Jovanovic, Ana

    2016-01-01

    This qualitative research aims at linking recent findings related to cognition and self-regulated learning with complexity-driven educational framework that promotes Teacher-Learner communities of practice, in which knowledge is generated and constructed through a complex process of reflection and negotiation. Building on the data that was…

  4. Naval Research Laboratory 1986 Review

    DTIC Science & Technology

    1986-01-01

    Lanzano, P., Earth , Moon, and Planets 25:27- 2763 34:283-304 Temperature Measurements of Shocked Water Using a Fluorescence Probe, by Jus- INSTRUMENTATION...51 Steep and Breaking Deep Water Waves 53 ,. Rapid Three-Dimensional Ocean Acoustic Computations 56 " Inertial Wave Dynamics 58 * Nonlinear Salt...itability, lubricants, shipbuilding materials, fire use in microsurgery. On Earth . NRL researchers figihting. along with the study of sound in the sea. helped

  5. Naval Research Laboratory 1984 Review.

    DTIC Science & Technology

    1985-07-16

    M.E. . A Method for Measuring the Frequency Haran and B.D. Cool [J. Acoust. Soc. Am. Dispersion for Broadband Pulses 73, 774-779 (1983)], by Trivett...Sound, pioneered in the fields of transferred to this office, NRL thus became the high - frequency radio and underwater sound prop- corporate research...and a scanning/transmission tion facility, and facilities for high frequency electron microscope; an ion implantation facility; (HF) and signal analysis

  6. 1980 Naval Research Laboratory Review

    DTIC Science & Technology

    1981-07-01

    the highest sensitivity and drive level possi- 10000 psi and at temperatures from 0 to 35C. ble, consistent with omnidirectional characteris...height swell separately, but not both simultaneously. measurements from nadir-looking radars. Efforts have been made to remove the effects of An airborne ...efficiently is a dynamic process that requires con- tinual attention from managers at all levels . One pioneered naval research into space, from atmos

  7. Faculty Research Productivity in Hong Kong across Academic Discipline

    ERIC Educational Resources Information Center

    Jung, Jisun

    2012-01-01

    This study examines the research productivity of Hong Kong academics. Specifically, it explores the individual and institutional factors that contribute to their productivity while also comparing determinants across academic disciplines. We have conducted OLS regression analysis using the international survey data from "The Changing Academics…

  8. An Applied Introduction to Qualitative Research Methods in Academic Advising

    ERIC Educational Resources Information Center

    Hurt, Robert L.; McLaughlin, Eric J.

    2012-01-01

    Academic advising research aids faculty members and advisors in detecting, explaining, and addressing macro-level trends beyond their local campus. It also helps legitimize the professional nature of academic advising, moving it beyond mere prescriptive models that focus on rules and course selection. Due to the erroneous belief that skills in…

  9. Academic Development, SoTL and Educational Research

    ERIC Educational Resources Information Center

    Geertsema, Johan

    2016-01-01

    This essay considers the relation between academic development, the scholarship of teaching and learning, and educational research. It does so with reference to questions of academic identity and disciplinary expertise, arguing that as developers we need to consider carefully the ways in which we frame how we approach attempts to foster reflective…

  10. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  11. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  12. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  13. Chemical research at Argonne National Laboratory

    SciTech Connect

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  14. Postgraduate Research Students and Academic Integrity: "It's about Good Research Training"

    ERIC Educational Resources Information Center

    Mahmud, Saadia; Bretag, Tracey

    2013-01-01

    Findings from a study on academic integrity at Australian universities challenge the presumption that postgraduate research students have prior knowledge of academic integrity. A review of online academic integrity policy in 39 Australian universities found that one in five policies had no mention of higher degree by research (HDR) students.…

  15. Funding Computer-Assisted Reference in Academic Research Libraries.

    ERIC Educational Resources Information Center

    Beltran, Ann Bristow

    1987-01-01

    Develops the argument that academic research libraries should use their materials budget to provide access to materials in all formats, including machine readable information in both locally available systems and commercially owned remote online databases. (CLB)

  16. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  17. Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Nunn, J. A.; Sears, S. O.

    2008-12-01

    Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults

  18. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    SciTech Connect

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G. )

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

  19. US Naval Research Laboratory focus issue: introduction.

    PubMed

    Hoffman, Craig A

    2015-11-01

    Rather than concentrate on a single topic, this feature issue presents the wide variety of research in optics that takes place at a single institution, the United States Naval Research Laboratory (NRL) and is analogous to an NRL feature issue published in Applied Optics in 1967. NRL is the corporate research laboratory for the Navy and Marine Corps. It conducts a broadly based multidisciplinary program of scientific research and advanced technological development in the physical, engineering, space, and environmental sciences related to maritime, atmospheric, and space domains. NRL's research is directed toward new and improved materials, techniques, equipment, and systems in response to identified and anticipated Navy needs. A number of articles in this issue review progress in broader research areas while other articles present the latest results on specific topics.

  20. Safety in Academic Chemistry Laboratories: Volume 2. Accident Prevention for Faculty and Administrators, 7th Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book contains volume 2 of 2 and describes safety guidelines for academic chemistry laboratories to prevent accidents for college and university students. Contents include: (1) "Organizing for Accident Prevention"; (2) "Personal Protective Equipment"; (3) "Labeling"; (4) "Material Safety Data Sheets (MSDSs)"; (5) "Preparing for Medical…

  1. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  2. Situated Mathematical Research: The Interaction of Academic and Non-Academic Practice

    ERIC Educational Resources Information Center

    Palmer, Miquel Alberti

    2010-01-01

    What is the relationship between research mathematics and the mathematics that arises in non-academic mathematical practices? I answer this question in terms of situated mathematical research, which comprises situated mathematical interpretations and situated mathematical applications. A situated mathematical interpretation of a practice takes…

  3. The Cost Function and Scale Economies in Academic Research Libraries.

    ERIC Educational Resources Information Center

    Liu, Lewis Guodo

    2002-01-01

    This empirical research examined scale economies of academic research libraries that belong to the Association of Research Libraries and developed a total cost function for estimating economies of scale. Argues that libraries are information provision organizations that provide multiproducts and multiservices and compares this study with previous…

  4. New Strategies of Control: Academic Freedom and Research Ethics Boards

    ERIC Educational Resources Information Center

    Lewis, Magda

    2008-01-01

    This article, detailing the implications of "ethics drift" for critical work in the academy, reports on an ethics challenge to a non-research-based scholarly text. It analyzes how General Research Ethics Boards (GREBs) can threaten academic freedom when they lack a clear definition of "human subject" research, fail to…

  5. Assessment as Action Research: Bridging Academic Scholarship and Everyday Practice

    ERIC Educational Resources Information Center

    Malenfant, Kara J.; Hinchliffe, Lisa Janicke; Gilchrist, Debra

    2016-01-01

    This introductory essay to this special issue demonstrates that action research has a vital role in evidence-informed practice in academic libraries. This special issue of "College and Research Libraries" ("C&RL") proudly features a selection of action research studies by participants of the Association of College and…

  6. A Division of Research in an Academic Clinical Department.

    ERIC Educational Resources Information Center

    Traystman, Richard J.

    1982-01-01

    Discusses in general the importance of a research division, whether basic or clinical, in an academic setting and factors to consider in establishing one. Uses John Hopkins' newly created research division for Anesthesiology and Critical Care Medicine to specifically address funding and intra- and interdepartmental clinical research programs. (DC)

  7. A Bibliography of Research on Academic Test Anxiety.

    ERIC Educational Resources Information Center

    Hembree, Ray

    This bibliography identifies reports of research on correlates, causes, effects, and treatment of test anxiety. The listing was developed for a synthesis of research, performed by meta-analysis at Adrian College, Michigan in 1986-87. Guidelines for including studies were applied as follows: (1) the research concerned academic test anxiety, using…

  8. Negotiating the University Research Culture: Collaborative Voices of New Academics

    ERIC Educational Resources Information Center

    Tynan, Belinda R.; Garbett, Dawn L.

    2007-01-01

    This paper contributes to the wider discussion of the collaborative research process and the situation of new academics in the early stages of their research careers. It draws on our lived experience through several collaborative research projects and is descriptive and autobiographical in nature. As such, it provides an opportunity for our voices…

  9. [Science and research in academic plastic surgery in Germany].

    PubMed

    Giunta, R E; Machens, H-G

    2009-12-01

    Plastic surgery has passed through a very positive evolution in the last decades on the solid fundament of constantly developing academic plastic surgery. Aim of this paper is an objective evaluation of the current status of academic plastic surgery regarding research topics, currently available ressources and scientific outcome based on a questionnaire. The return rate of the questionnaire in academic departments was 92%. Main topics in research besides wound healing were topics from regenerative medicine such as tissue engineering, biomaterials, genetherapy and angiogenesis with the main focus on skin and fat tissues. In the past five years a total of 25 million Euros of third party research grants were raised. Research relied mainly on interdisciplinary research facilities. Regarding the scientific outcome more than 200 scientific papers were published in basic science research journals having an impactfactor higher than two. These results clearly demonstrate that plastic surgery is scientifically highly productive in academic surroundings where independent departments are established. Considering that independent units of plastic surgery exist in a relatively small number of all 36 university hospitals in germany, it has to be claimed for further independent departments so to provide adequate research facilities for further evolution of academic plastic surgery.

  10. Lost Dollars Threaten Research in Public Academic Health Centers.

    PubMed

    Bourne, Henry R; Vermillion, Eric B

    2017-03-01

    The decrease of federal and state support threatens long-term sustainability of research in publicly supported academic health centers. In weathering these financial threats, research at the University of California, San Francisco (UCSF), has undergone 3 substantial changes: institutional salary support goes preferentially to senior faculty, whereas the young increasingly depend on grants; private and government support for research grows apace in clinical departments but declines in basic science departments; and research is judged more on its quantity (numbers of investigators and federal and private dollars) than on its goals, achievements, or scientific quality. We propose specific measures to alleviate these problems. Other large public academic health centers probably confront similar issues, but-except for UCSF-such centers have not been subjected to detailed public analysis.-Bourne, H. R., Vermillion, E. B. Lost dollars threaten research in public academic health centers.

  11. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Idaho National Laboratory Research & Development Impacts

    SciTech Connect

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  13. Optics at the naval research laboratory.

    PubMed

    Sanderson, J A

    1967-12-01

    Edward O. Hulburt initiated optical research at The Naval Research Laboratory in June 1924, choosing, fields of investigation such as the upper atmosphere of the earth, especially the ionosphere, gas discharges, the optical properties of the atmosphere and of the sea, visibility, ultraviolet and infrared physics, photoelasticity, and similar subjects. Ultraviolet and x-ray experiments from rockets were an outgrowth from continuing interest in the upper atmosphere, ultimately leading to the establishment of the E. O. Hulburt Center for Space Research in February 1963. Several divisions of the NRL conduct optical research in chemical spectroscopy, the properties of solids, and plasma physics, in addition to broad programs in the Optical Physics Division.

  14. Safety in the Chemical Laboratory. Chemical Laboratory Safety: The Academic Anomaly.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1990-01-01

    Discussed are accidents that occur in the laboratories of highly trained chemists. Four examples are provided to illustrate potential hazards that are often overlooked in chemistry laboratories, molten inorganic salt baths, the reaction of acetone and hydrogen peroxide, halogenated acetylene compounds, and the reaction of hydrogen peroxide and…

  15. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Earpiece System, or ACCES®, under a Cooperative Research and Development Agreement with Westone Laboratories, Inc. The innovative technology improves...trained in creating impressions for the custom-molded earpieces . Often this meant contacting researchers at AFRL. With hundreds of sets of this product...the flyers’ ears. By integrating specialized electronics into custom-molded earpieces , ACCES allows wearers to experience clear audio communications

  16. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  17. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    DTIC Science & Technology

    2009-03-01

    Research Laboratory (NRL) in Washington, DC; and the Air Force Research Laboratory ( AFRL ) in Dayton, Ohio respectively. These individuals are: John Lyons...13 Vincent Russo and the Air Force Research Laboratory The Air Force Research Laboratory ( AFRL ) was activated in 1997. Prior to the creation of... AFRL , the Air Force conducted its research at four major

  18. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    PubMed

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  19. Reputational Risk, Academic Freedom and Research Ethics Review

    PubMed Central

    Hedgecoe, Adam

    2015-01-01

    Drawing on scholarship around academic freedom and new public management, this article explores the way in which research ethics committees in UK universities (URECs) can come to exhibit behaviour – common in their US equivalents – that prioritises the reputational protection of their host institution over and above academic freedom and the protection of research subjects. Drawing on two case studies the article shows both how URECs can serve to restrict research that may be ‘embarrassing’ for a university and how, in high profile cases, university management come to use such committees as mechanisms for internal discipline. PMID:27330226

  20. Contract Research, the University, and the Academic.

    ERIC Educational Resources Information Center

    Crawshaw, Bruce

    1985-01-01

    Implications of the growth of university-based contract research are examined, including moral and ethical issues, legal aspects, ownership of research results, staff rights, researcher status, publication, authority, responsibility, social justice, and conflicts between teaching and research. Eleven suggestions for successful contract research…

  1. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  2. Development of Research Projects in Advanced Laboratory

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Guha, Suchi

    2008-04-01

    Advanced laboratory serves as a bridge spanning primary physics laboratory and scientific research or industrial activities for undergraduate students. Students not only study modern physics experiments and techniques but also acquire the knowledge of advanced instrumentation. It is of interest to encourage students using the knowledge into research projects at a later stage of the course. We have designed several scientific projects for advanced laboratory to promote student's abilities of independent research. Students work as a team to select the project and search literatures, to perform experiments, and to give presentations. During the research project, instructor only provides necessary equipment for the project without any pre-knowledge of results, giving students a real flavor of scientific research. Our initial attempt has shown some interesting results. We found that students showed a very strong motivation in these projects, and student performances exceeded our expectation. Almost all the students in our first batch of the course have now joined graduate school in Physics and Materials Science. In the future we will also arrange graduate students working with undergraduate students to build a collaborative environment. In addition, a more comprehensive method will be used to evaluate student achievements.

  3. Stirling engine research at Argonne National Laboratory

    SciTech Connect

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  4. Academic Conferences: Representative and Resistant Sites for Higher Education Research

    ERIC Educational Resources Information Center

    Henderson, Emily F.

    2015-01-01

    The overarching argument made in this article is twofold. Firstly, academic conferences are posited as sites for higher education research. Secondly, the well-recognised emotional and social processes of conferences are used to make space at the boundaries of higher education research for psychosocial analysis. The article theorises conferences in…

  5. Demystifying the IRB: Human Subjects Research in Academic Libraries

    ERIC Educational Resources Information Center

    Smale, Maura A.

    2010-01-01

    Many academic librarians are interested in pursuing research studies that involve students, faculty, and other library patrons; these projects must be approved by an institutional review board (IRB). This article reviews federal requirements and regulations for human subjects research and explains the IRB application process. The author discusses…

  6. Applying DEA Technique to Library Evaluation in Academic Research Libraries.

    ERIC Educational Resources Information Center

    Shim, Wonsik

    2003-01-01

    This study applied an analytical technique called Data Envelopment Analysis (DEA) to calculate the relative technical efficiency of 95 academic research libraries, all members of the Association of Research Libraries. DEA, with the proper model of library inputs and outputs, can reveal best practices in the peer groups, as well as the technical…

  7. Constructing a Roadmap for Future Universal Screening Research beyond Academics

    ERIC Educational Resources Information Center

    Cook, Clayton R.; Volpe, Robert J.; Livanis, Andrew

    2010-01-01

    The majority of the literature on universal screening in education is devoted to academic screeners. However, research clearly indicates that other aspects of student functioning are closely associated with outcomes inside and outside of school. As a result, there are gaps in the current literature that call for additional research extending…

  8. Strategic Planning for Academic Research: A Canadian Perspective

    ERIC Educational Resources Information Center

    Sa, Creso M.; Tamtik, Merli

    2012-01-01

    This paper reports on an empirical study of research planning in Canadian universities. Drawing on data compiled during interviews with senior administrators from 27 academic units in 10 universities, the paper analyses how strategic planning has been applied to the research mission over the past decade. Findings reveal variability in processes…

  9. The Research Paper: From Personal to Academic Writing (Instructional Note).

    ERIC Educational Resources Information Center

    Malinowski, Patricia A.

    1990-01-01

    Describes a research project designed to take students from personal writing to academic writing requiring research and application of documentation skills. Explains that the project involves choosing a career, is divided into four parts, and is completed over a four- to five-week period. (MG)

  10. Undergraduate Research and Academic Archives: Instruction, Learning and Assessment

    ERIC Educational Resources Information Center

    Krause, Magia G.

    2010-01-01

    Colleges and universities are increasingly investing resources to promote undergraduate research. Undergraduate research can be broadly defined to incorporate scientific inquiry, creative expression, and scholarship with the result of producing original work. Academic archives and special collections can play a vital role in the undergraduate…

  11. When Academics Integrate Research Skill Development in the Curriculum

    ERIC Educational Resources Information Center

    Willison, J. W.

    2012-01-01

    This study considered outcomes when 27 academics explicitly developed and assessed student research skills in 28 regular (non-research methods) semester-length courses. These courses ranged from small (n = 17) to medium-large (n = 222) and included those from first year to masters in business, engineering, health science, humanities and science,…

  12. No Academic Borders?: Transdisciplinarity in University Teaching and Research

    ERIC Educational Resources Information Center

    Russell, A. Wendy

    2005-01-01

    Transdisciplinarity has been a veritable mantra, especially in the humanities and social sciences, for twenty years or more. Yet academic structures and research application requirements still struggle to come to grips with cross-boundary research and teaching. Making universities more trans-discipline-friendly is a tricky task, however. As Wendy…

  13. Fair Use Challenges in Academic and Research Libraries

    ERIC Educational Resources Information Center

    Association of Research Libraries, 2010

    2010-01-01

    This report summarizes research into the current application of fair use to meet the missions of U.S. academic and research libraries. Sixty-five librarians were interviewed confidentially by telephone for around one hour each. They were asked about their employment of fair use in five key areas of practice: support for teaching and learning,…

  14. Integrating Research into LIS Field Experiences in Academic Libraries

    ERIC Educational Resources Information Center

    Berg, Selinda Adelle; Hoffmann, Kristin; Dawson, Diane

    2009-01-01

    Field experiences function as a link between LIS theory and practice. Students should be provided with an experience that is a true reflection of the professional environment. The increasing focus on research by academic librarians provides an opportunity and responsibility to integrate research into the field experiences of LIS students.…

  15. Exercise Science Academic Programs and Research in the Philippines

    PubMed Central

    MADRIGAL, NORBERTO; REYES, JOSEPHINE JOY; PAGADUAN, JEFFREY; ESPINO, REIL VINARD

    2010-01-01

    In this invited editorial, professors from leading institutions in the Philippines, share information regarding their programs relating to Exercise Science. They have provided information on academic components such as entrance requirements, progression through programs, and professional opportunities available to students following completion; as well as details regarding funding available to students to participate in research, collaboration, and specific research interests. PMID:27182343

  16. Laboratory Directed Research and Development FY 2000

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  17. Decline of clinical research in academic medical centers.

    PubMed

    Meador, Kimford J

    2015-09-29

    Marked changes in US medical school funding began in the 1960s with progressively increasing revenues from clinical services. The growth of clinical revenues slowed in the mid-1990s, creating a funding crisis for US academic health care centers, who responded by having their faculty increase their clinical duties at the expense of research activities. Surveys document the resultant stresses on the academic clinician researcher. The NIH provides greater funding for basic and translational research than for clinical research, and the new Patient-Centered Outcomes Research Institute is inadequately funded to address the scope of needed clinical research. An increasing portion of clinical research is funded by industry, which leaves many important clinical issues unaddressed. There is an inadequate supply of skilled clinical researchers and a lack of external support for clinical research. The impact on the academic environment in university medical centers is especially severe on young faculty, who have a shrinking potential to achieve successful academic careers. National health care research funding policies should encourage the right balance of life-science investigations. Medical universities need to improve and highlight education on clinical research for students, residents, fellows, and young faculty. Medical universities also need to provide appropriate incentives for clinical research. Without training to ensure an adequate supply of skilled clinical researchers and a method to adequately fund clinical research, discoveries from basic and translational research cannot be clinically tested and affect patient care. Thus, many clinical problems will continue to be evaluated and treated with inadequate or even absent evidence-based knowledge.

  18. Academic-industry Collaborations in Translational Stroke Research.

    PubMed

    Boltze, Johannes; Wagner, Daniel-Christoph; Barthel, Henryk; Gounis, Matthew J

    2016-08-01

    Academic-industry collaborations are an emerging format of translational stroke research. Next to classic contract research models, a multitude of collaboration models has been developed, some of which even allowing for multinational or intercontinental research programs. This development has recently been paralleled by first successful attempts to overcome the translational stroke research road block, such as the unprecedented success of novel endovascular approaches or the advent of the multicenter preclinical trial concept. While the first underlines the role of the industry as a major innovation driver in stroke research, the latter will require enrollment of industrial partners for optimal output. Moreover, academic-industry partnerships are invaluable to bridge the translational "valley of death" as well as funding gaps in times of dwindling public funding and declining high risk capital investments. However, these collaborations are also subject to relevant challenges because interests, values, and aims often significantly differ between cademia and industry. Here, we describe common academic-industry collaboration models as well as associated benefits and challenges in the stroke research arena. We also suggest strategies for improved planning, implementation, guidance, and utilization of academic-industry collaborations to the maximum mutual benefit.

  19. Metrics in academic profiles: a new addictive game for researchers?

    PubMed

    Orduna-Malea, Enrique; Martín-Martín, Alberto Martín-Martín; Delgado López-Cózar, Emilio

    2016-09-22

    This study aims to promote reflection and bring attention to the potential adverse effects of academic social networks on science. These academic social networks, where authors can display their publications, have become new scientific communication channels, accelerating the dissemination of research results, facilitating data sharing, and strongly promoting scientific collaboration, all at no cost to the user.One of the features that make them extremely attractive to researchers is the possibility to browse through a wide variety of bibliometric indicators. Going beyond publication and citation counts, they also measure usage, participation in the platform, social connectivity, and scientific, academic and professional impact. Using these indicators they effectively create a digital image of researchers and their reputations.However, although academic social platforms are useful applications that can help improve scientific communication, they also hide a less positive side: they are highly addictive tools that might be abused. By gamifying scientific impact using techniques originally developed for videogames, these platforms may get users hooked on them, like addicted academics, transforming what should only be a means into an end in itself.

  20. Purposeful Design of Formal Laboratory Instruction as a Springboard to Research Participation

    ERIC Educational Resources Information Center

    Cartrette, David P.; Miller, Matthew L.

    2013-01-01

    An innovative first- and second-year laboratory course sequence is described. The goal of the instructional model is to introduce chemistry and biochemistry majors to the process of research participation earlier in their academic training. To achieve that goal, the instructional model incorporates significant hands-on experiences with chemical…

  1. National Renewable Energy Laboratory 2005 Research Review

    SciTech Connect

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  2. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  3. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    ERIC Educational Resources Information Center

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  4. Academic Factors that Affect Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Taraban, Roman; Logue, Erin

    2012-01-01

    Undergraduate research experiences are considered an essential component in college curricula, and there is an ideological push to provide these experiences to all students. However, it is not clear whether engagement in research is better suited for higher ability undergraduates late in their programs or for all undergraduates and whether…

  5. MSU-DOE Plant Research Laboratory

    SciTech Connect

    Not Available

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  6. Expanding Research in Academic Advising: Methodological Strategies to Engage Advisors in Research

    ERIC Educational Resources Information Center

    Aiken-Wisniewski, Sharon A.; Smith, Joshua S.; Troxel, Wendy G.

    2010-01-01

    Research in academic advising has traditionally been conducted and disseminated by faculty researchers, graduate students, and higher education administrators (including advising directors). While significant in developing a body of literature to guide academic advising, the sources of the contribution also suggest that the frontline advisor does…

  7. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  8. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    2007-11-02

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  9. Academics Abroad: Conducting Scholarly Research in German Libraries.

    ERIC Educational Resources Information Center

    Askey, Dale

    2001-01-01

    Discusses problems encountered in conducting research in German academic libraries. Highlights include a lack of trained librarians with subject expertise who focus on helping users; numerous library catalogs rather than one integrated catalog; and an emphasis on collection preservation that includes closed stacks and restricted circulation. (LRW)

  10. Changes in Japanese Academics' Teaching and Research, 1992-2011

    ERIC Educational Resources Information Center

    Huang, Futao

    2015-01-01

    By analyzing relevant findings from two national surveys which were carried out in 1992 and 2011 with dozens of similar questions, the study explores changes in Japanese academics' major teaching and research activities and their views of these activities from 1992 to 2011. The study begins with a brief introduction to context and main policies…

  11. Pharmacological Intervention Research for Academic Outcomes for Students with ADHD

    ERIC Educational Resources Information Center

    Ryan, Joseph B.; Reid, Robert; Epstein, Michael H.; Ellis, Cynthia; Evans, Joseph H.

    2005-01-01

    This study reviews the status and trends of pharmacological intervention research focused on the academic functioning of children and adolescents with attention deficit hyperactivity disorder (ADHD). Forty-two studies involving 1,668 participants were included in the review. Results indicated: (1) information on participants is limited; (2)…

  12. Fraud in Academic Publishing: Researchers Under Cyber-Attacks.

    PubMed

    Dadkhah, Mehdi; Borchardt, Glenn; Maliszewski, Tomasz

    2017-01-01

    Day by day, researchers receive new suspicious e-mails in their inboxes. Many of them do not have sufficient information about these types of e-mails, and may become victims of cyber-attacks. In this short communication, we review current cyber threats in academic publishing and try to present general guidelines for authors.

  13. Research on Academic Literacy Development in Sheltered Instruction Classrooms

    ERIC Educational Resources Information Center

    Short, Deborah J.; Echevarria, Jana; Richards-Tutor, Catherine

    2011-01-01

    This article describes an extended program of research in sheltered instruction and the effects on the academic literacy development of English language learners. It also highlights the challenges of scaling up an instructional intervention. The intervention was the Sheltered Instruction Observation Protocol (SIOP) Model, an approach that teaches…

  14. Online Data Collection in Academic Research: Advantages and Limitations

    ERIC Educational Resources Information Center

    Lefever, Samuel; Dal, Michael; Matthiasdottir, Asrun

    2007-01-01

    Online data collection in academic research might be replacing paper-and-pencil surveys or questionnaires in the near future. This paper discusses the advantages and limitations of online data collection, with particular reference to the conduct of two qualitative studies involving upper secondary school teachers and students in Iceland in 2002.…

  15. Creating the Academic Commons: Guidelines for Learning, Teaching, and Research

    ERIC Educational Resources Information Center

    Gould, Thomas H.P.

    2011-01-01

    Today's library is still at the heart of all university activities, helping students and faculty become better learners, teachers, and researchers. In recent years there has emerged the formalizing of one or more of these activities into an Academic Commons. These centers of information have been labeled variously but they all share a commonality:…

  16. The Dispersion of Academic Research in the 1980s.

    ERIC Educational Resources Information Center

    Geiger, Roger; Feller, Irwin

    1995-01-01

    This study examined trends in dispersion of total research and development expenditures for the top 200 academic institutions between fiscal year (FY) 1979-80 and FY 1989-90. Although the most prestigious universities registered a significant overall decrease, dispersion did not adversely affect ratings of institutional quality. Medical and…

  17. A Summer Academic Research Experience for Disadvantaged Youth

    ERIC Educational Resources Information Center

    Kabacoff, Cathryn; Srivastava, Vasudha; Robinson, Douglas N.

    2013-01-01

    Internships are an effective way of connecting high school students in a meaningful manner to the sciences. Disadvantaged minorities have fewer opportunities to participate in internships, and are underrepresented in both science, technology, engineering, and mathematics majors and careers. We have developed a Summer Academic Research Experience…

  18. Writing in the Ether: A Collaborative Approach to Academic Research.

    ERIC Educational Resources Information Center

    Winograd, David; Milton, Katherine

    The purpose of this paper is to shed light on the developmental stages of academic publication collaborations through both research on the collaborative process itself, as well as through analysis of the discovery process. Using the qualitative software package, NUD*IST, the teleconferencing system, FirstClass, and standard e-mail, the study…

  19. International Research Students' Experiences in Academic Success

    ERIC Educational Resources Information Center

    Yeoh, Joanne Sin Wei; Terry, Daniel R.

    2013-01-01

    The flow of international students to study in Australia increases each year. It is a challenge for students to study abroad in a different sociocultural environment, especially for postgraduate research students, as they experience numerous difficulties in an unfamiliar and vastly different study environment. A study aimed to investigate the…

  20. The Other Danger... Scholasticism in Academic Research

    ERIC Educational Resources Information Center

    Mead, Lawrence M.

    2010-01-01

    Most members of the National Association of Scholars worry about the politicization of the university. Academia gives undue preference to racial minorities in student admissions and faculty appointments. Teaching and research is often slanted toward minority grievances and Third World claims against the United States. However, critics have largely…

  1. Financing Academic Research Facilities: A National Need.

    ERIC Educational Resources Information Center

    Norris, Julie T.

    1990-01-01

    This article examines possible changes to provide increased federal funding for university-based research facilities. The difficulties of converting between depreciation and use allowances are discussed, as is the possibility of using current market value versus acquisition cost as a basis for costing calculations and splitting the indirect cost…

  2. Summary of Research 1997, Interdisciplinary Academic Groups.

    DTIC Science & Technology

    1999-01-01

    Some countries may exploit overhead system vulnerabilities in order to enhance their own denial and deception programs. With multiattribute utility ...alternatives were examined through a number of trade-off studies in order to identify a preferred configuration. Multiple Attribute Utility Theory (MAUT...as well as with the private sector in defense-related technologies. The sponsored program utilizes Cooperative Research and Development Agreements

  3. Grant opportunities for academic research and training

    USGS Publications Warehouse

    ,

    2016-08-30

    As an unbiased, multidisciplinary science organization, the U.S. Geological Survey (USGS) is dedicated to the timely, relevant, and impartial study of the health of our ecosystems and environment, our natural resources, the impacts of climate and land-use change, and the natural hazards that affect our lives. Grant opportunities for researchers and faculty to participate in USGS science through the engagement of students are available in the selected programs described in this publication.

  4. A summer academic research experience for disadvantaged youth.

    PubMed

    Kabacoff, Cathryn; Srivastava, Vasudha; Robinson, Douglas N

    2013-01-01

    Internships are an effective way of connecting high school students in a meaningful manner to the sciences. Disadvantaged minorities have fewer opportunities to participate in internships, and are underrepresented in both science, technology, engineering, and mathematics majors and careers. We have developed a Summer Academic Research Experience (SARE) program that provides an enriching academic internship to underrepresented youth. Our program has shown that to have a successful internship for these disadvantaged youth, several issues need to be addressed in addition to scientific mentoring. We have found that it is necessary to remediate and/or fortify basic academic skills for students to be successful. In addition, students need to be actively coached in the development of professional skills, habits, and attitudes necessary for success in the workplace. With all these factors in place, these youths can become better students, compete on a more level playing field in their internships, and increase their potential of participating actively in the sciences in the future.

  5. Summary of Research Activities Academic Departments 1980-1981.

    DTIC Science & Technology

    1981-10-01

    collaboration with personnel of the Coastal Studies Institute of Louisiana State University. SCOUR AROUND MULTIPLE PILE GROUPS SUBJECTED TO UNIDIRECTIONAL AND...academic excellence of an educational institution is measured by the achievements of its faculty in teaching, research, and related scholarly endeavors. It...the faculty and outstanding midshipmen may flourish. The research activities of the faculty range from very applied cooperative studies with the Navy

  6. Summary of Research, Academic Departments, 1982-1983.

    DTIC Science & Technology

    1983-10-01

    PD-R1469659 SUMMARY OF RESEARCH ACADEMIC DEPARTMENTS 1982-1983(U) 1/3 NARIR RCRDEMY ANNAPOLIS NO Rd I HEFLIN OCT 93 USNR-AR-8 UNCLASSIFIED F/G 5/2 NI...SUMMARY OF RESEARCH 4, 1982- 1983 COMPILED AND EDITED BY PROFESSOR WILSON L. HEFLIN ENGLISH DEPARTMENT 1-4. OCTOBER 1983-M UNITED STATES NAVAL ACADEMY...WEAPONS Aerospace Engineering Department .......................................... 3 Electrical Engineering Department

  7. Modeling of Army Research Laboratory EMP simulators

    SciTech Connect

    Miletta, J.R.; Chase, R.J.; Luu, B.B. ); Williams, J.W.; Viverito, V.J. )

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  8. The Automated Primate Research Laboratory (APRL)

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, G. D.

    1972-01-01

    A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.

  9. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  10. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  11. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  12. Research and academic education in medical sexology.

    PubMed

    Pinchera, A; Jannini, E A; Lenzi, A

    2003-01-01

    Advances in sexual pharmacology have stimulated the development of new analytical instruments in the management of sexual dysfunction, with increasing research in the area of basic mechanisms of human sexual response. However, the public is greatly interested and eager for new discoveries and pharmacological treatments to enhance sexual performance and relationships, and cure common sexual dysfunctions and symptoms. The need for sexology--in this case, a new "medical" sexology--to utilize scientific tools and be taught in medical schools is therefore evident.

  13. Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study

    DTIC Science & Technology

    2015-02-01

    Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study by Nora M Eldredge ARL-SR-0311 February 2015...Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study Nora M Eldredge Weapons and Materials Research Directorate, ARL...September 2014 4. TITLE AND SUBTITLE Weapons and Materials Research Directorate (WMRD) Laboratory Demonstration Study 5a. CONTRACT NUMBER 5b

  14. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  15. A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program.

    PubMed

    Schug, Thaddeus T; Heindel, Jerrold J; Camacho, Luísa; Delclos, K Barry; Howard, Paul; Johnson, Anne F; Aungst, Jason; Keefe, Dennis; Newbold, Retha; Walker, Nigel J; Thomas Zoeller, R; Bucher, John R

    2013-09-01

    Recently, medical research has seen a strong push toward translational research, or "bench to bedside" collaborations, that strive to enhance the utility of laboratory science for improving medical treatment. The success of that paradigm supports the potential application of the process to other fields, such as risk assessment. Close collaboration among academic, government, and industry scientists may enhance the translation of scientific findings to regulatory decision making. The National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), and U.S. Food and Drug Administration (FDA) developed a consortium-based research program to link more effectively academic and guideline-compliant research. An initial proof-of-concept collaboration, the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), uses bisphenol A (BPA) as a test chemical. The CLARITY-BPA program combines a core perinatal guideline-compliant 2-year chronic toxicity study with mechanistic studies/endpoints conducted by academic investigators. Twelve extramural grantees were selected by NIEHS through an RFA-based initiative to participate in the overall study design and conduct disease-relevant investigations using tissues and animals from the core study. While the study is expected to contribute to our understanding of potential effects of BPA, it also has ramifications beyond this specific focus. Through CLARITY-BPA, NIEHS has established an unprecedented level of collaboration among extramural grantees and regulatory researchers. By drawing upon the strengths of academic and regulatory expertise and research approaches, CLARITY-BPA represents a potential new model for filling knowledge gaps, enhancing quality control, informing chemical risk assessment, and identifying new methods or endpoints for regulatory hazard assessments.

  16. Bringing ayahuasca to the clinical research laboratory.

    PubMed

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  17. Laboratory Directed Research and Development FY 1992

    SciTech Connect

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  18. Research evaluation and competition for academic positions in occupational medicine.

    PubMed

    Franco, Giuliano

    2013-01-01

    Citation analysis is widely used to evaluate the performance of individual researchers, journals, and universities. Its outcome plays a crucial role in the decision-making process of ranking applicants for an academic position. A number of indicators, including the h-index reflecting both scientific productivity and its relevance in medical fields, are available through the Web of Knowledge( sm ) and Scopus®. In the field of occupational medicine, the adoption of the h-index in assessing the value of core journals shows some advantages compared with traditional bibliometrics and may encourage researchers to submit their papers. Although evaluation of the overall individual performance for academic positions should assess several aspects, scientific performance is usually based on citation analysis indicators. Younger researchers should be aware of the new approach based on transparent threshold rules for career promotion and need to understand the new evaluation systems based on metrics.

  19. Career research opportunities for the medical laboratory scientist.

    PubMed

    McGlasson, David L

    2011-01-01

    Medical Laboratory Scientists (MLS) typically practice in hospital laboratories; however there are multiple alternatives in research. This article details the advantages of working in a variety of research laboratory settings. These include public institutions, federal laboratory workplaces, private facilities, and industry settings. A view of the different research laboratory settings such as public institutions, federal laboratory workplaces, private facilities, and industry settings will be provided. An assessment on how MLS professionals can prepare for a career in research is outlined and the report concludes with a brief summary of the various aspects of the research setting.

  20. A research agenda for academic petroleum engineering programs. [Final report

    SciTech Connect

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  1. A research agenda for academic petroleum engineering programs

    SciTech Connect

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  2. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  3. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  4. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  5. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  6. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  7. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  8. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  9. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Laboratory and research... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession...

  10. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  11. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  12. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  13. The Role of Entrepreneurial Activities in Academic Pharmaceutical Science Research

    PubMed Central

    Stinchcomb, Audra L.

    2010-01-01

    Academic pharmaceutical science research is expanding further and further from the University setting to encompass the for-profit private company setting. This parallels the National Institutes of Health momentum to include multiple funding opportunities for University and private company collaboration. It has been recognized that the non-profit and for-profit combination research model can accelerate the commercialization of pharmaceutical products, and therefore more efficiently improve human health. Entrepreneurial activities require unique considerations in the University environment, but can be modeled after the commercialization expansion of the academic healthcare enterprise. Challenges and barriers exist to starting a company as an entrepreneurial faculty member, but the rewards to one's personal and professional lives are incomparable. PMID:20017206

  14. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  15. Current and planned cochlear implant research at New York University Laboratory for Translational Auditory Research.

    PubMed

    Svirsky, Mario A; Fitzgerald, Matthew B; Neuman, Arlene; Sagi, Elad; Tan, Chin-Tuan; Ketten, Darlene; Martin, Brett

    2012-06-01

    The Laboratory of Translational Auditory Research (LTAR/NYUSM) is part of the Department of Otolaryngology at the New York University School of Medicine and has close ties to the New York University Cochlear Implant Center. LTAR investigators have expertise in multiple related disciplines including speech and hearing science, audiology, engineering, and physiology. The lines of research in the laboratory deal mostly with speech perception by hearing impaired listeners, and particularly those who use cochlear implants (CIs) or hearing aids (HAs). Although the laboratory's research interests are diverse, there are common threads that permeate and tie all of its work. In particular, a strong interest in translational research underlies even the most basic studies carried out in the laboratory. Another important element is the development of engineering and computational tools, which range from mathematical models of speech perception to software and hardware that bypass clinical speech processors and stimulate cochlear implants directly, to novel ways of analyzing clinical outcomes data. If the appropriate tool to conduct an important experiment does not exist, we may work to develop it, either in house or in collaboration with academic or industrial partners. Another notable characteristic of the laboratory is its interdisciplinary nature where, for example, an audiologist and an engineer might work closely to develop an approach that would not have been feasible if each had worked singly on the project. Similarly, investigators with expertise in hearing aids and cochlear implants might join forces to study how human listeners integrate information provided by a CI and a HA. The following pages provide a flavor of the diversity and the commonalities of our research interests.

  16. Battery research at Argonne National Laboratory

    SciTech Connect

    Thackeray, M.M.

    1997-10-01

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  17. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  18. Safety in Academic Chemistry Laboratories: Volume 1. Accident Prevention for College and University Students, 7th Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book contains volume 1 of 2 and describes safety guidelines for academic chemistry laboratories to prevent accidents for college and university students. Contents include: (1) "Your Responsibility for Accident Prevention"; (2) "Guide to Chemical Hazards"; (3) "Recommended Laboratory Techniques"; and (4) "Safety Equipment and Emergency…

  19. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  20. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  1. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  2. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  3. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  4. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  5. Does research during general surgery residency correlate with academic pursuits after pediatric surgery residency?

    PubMed

    Lessin, M S; Klein, M D

    1995-09-01

    A study was designed to evaluate whether successful candidates in pediatric surgery have performed laboratory research with publication, and if such preparation leads to continued investigations. We requested a curriculum vitae from the 248 pediatric surgeons who began their pediatric surgery residencies (PSR) between 1979 and 1992. For nonresponders, data were collected from physician directories. Indicators of academic status, personal information, and publication data were obtained. Responders had more publications before, during, and after PSR. Those who published during general surgery residency (GSR) had more research years during their residency. Among responders, 59% had spent time in the laboratory, and the percentage with laboratory time increased over the study period. Those with laboratory experience had more laboratory and clinical papers before PSR. Ninety-four percent were from university-based GSRs and 6% were from community GSRs. University general surgery residents did not have more publications during GSR or PSR but had a greater number of publications after PSR. University general surgery residents had more laboratory publications during GSR and after PSR, but did not have more clinical publications. Publications during GSR and after PSR increased during the study period, but not during PSR. Time in the laboratory during GSR did not independently predict continued laboratory research. Those with laboratory papers during GSR did not publish more basic science papers after PSR. Several surgeons had basic science publications that were initiated only after their PSR. In a recent study that compared successful and unsuccessful PSR candidates, the successful candidates were found to have more publications.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Early Career Academic Perceptions, Attitudes and Professional Development Activities: Questioning the Teaching and Research Gap to Further Academic Development

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Lodge, Jason M.; Bosanquet, Agnes

    2014-01-01

    Early career academia is a challenging time, particularly as academics are facing increasing pressures to excel across a range of areas. Boyer argued for the "true scholar" versed in the overlapping areas of scholarship in research, teaching, integration and engagement. Academic developers have an important role to play in assisting the…

  7. Review of carbon dioxide research staffing and academic support

    NASA Astrophysics Data System (ADS)

    Clark, S. B.; Howard, L.; Stevenson, W.; Trice, J.

    1985-04-01

    More than 60 percent of the staff on Carbon Dioxide Research Division (CDRD) projects were university affiliated, and over one third of project scientists and engineers also had university teaching responsibilities. Almost 20 percent of project staff were students. CO2 research is unlikely to affect the general labor market for scientists and engineers because it uses such a small portion of the total pool. On the other hand, anticipated tight labor markets in some disciplines important to CO2 research may make it advantageous for CDRD to expand its support of university faculty, students, and staff to ensure that competent, knowledgeable researchers and managers are available for eventual policy decisions on CO2 issues. Options for academic support that lend themselves readily to the diffuse nature of CO2 research, while providing flexibility in the identification and accomplishment of specific programmatic objectives, include modifying procurement procedures for research contracts to enhance academic involvement, sponsoring summer institutes tailored to specific participants and focused on issues of interest to CDRD, and supporting traveling lecture programs designed to bring information of concern to CDRD to technical and nontechnical audiences.

  8. Changing resident test ordering behavior: a multilevel intervention to decrease laboratory utilization at an academic medical center.

    PubMed

    Vidyarthi, Arpana R; Hamill, Timothy; Green, Adrienne L; Rosenbluth, Glenn; Baron, Robert B

    2015-01-01

    Hospital laboratory test volume is increasing, and overutilization contributes to errors and costs. Efforts to reduce laboratory utilization have targeted aspects of ordering behavior, but few have utilized a multilevel collaborative approach. The study team partnered with residents to reduce unnecessary laboratory tests and associated costs through multilevel interventions across the academic medical center. The study team selected laboratory tests for intervention based on cost, volume, and ordering frequency (complete blood count [CBC] and CBC with differential, common electrolytes, blood enzymes, and liver function tests). Interventions were designed collaboratively with residents and targeted components of ordering behavior, including system changes, teaching, social marketing, academic detailing, financial incentives, and audit/feedback. Laboratory ordering was reduced by 8% cumulatively over 3 years, saving $2 019 000. By involving residents at every stage of the intervention and targeting multiple levels simultaneously, laboratory utilization was reduced and cost savings were sustained over 3 years.

  9. Medical laboratory science and nursing students’ perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM)

    PubMed Central

    2016-01-01

    Purpose This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. Methods A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. Results The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains ‘perception of learning’ and ‘perception of teaching.’ Male medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning’ among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning.’ Nursing students identified 7 problem areas, most of which were related to their instructors. Conclusion Medical laboratory science and nursing students viewed their academic learning environment as ‘more positive than negative.’ However, the relationship of the nursing instructors to their students needs improvement. PMID:27649901

  10. The use of numerical programs in research and academic institutions

    NASA Astrophysics Data System (ADS)

    Scupi, A. A.

    2016-08-01

    This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.

  11. Academic Generations and Academic Work: Patterns of Attitudes, Behaviors, and Research Productivity of Polish Academics after 1989

    ERIC Educational Resources Information Center

    Kwiek, Marek

    2015-01-01

    This paper focuses on a generational change taking place in the Polish academic profession: a change in behaviors and attitudes between two groups of academics. One was socialized to academia under the communist regime (1945-1989) and the other entered the profession in the post-1989 transition period. Academics of all age groups are beginning to…

  12. Academic opportunities in radiology education and education research.

    PubMed

    Collins, Jannette

    2002-07-01

    Education can be the focus of a rewarding and successful career in academic radiology. Educational opportunities for academic radiologists include teaching medical students, residents, nursing students, physician assistant students, radiology technologist students, and other allied health profession students. Teaching can occur in large or small groups, or as a one-on-one encounter. Teaching is the very best way to learn a subject well; thus, educators are often considered experts in their fields. Educators can develop innovative teaching materials that are passed on to generations of students. Opportunities in educational administration and personal development are available both locally and nationally. Participation in radiology education research allows a radiologist to contribute to the body of knowledge in radiology education and advance the field of radiology education through science.

  13. [Altruistic public servant or heroic genius? The propagated image of provincial and academic directors of bacteriological laboratories in Belgium (ca. 1900-1940)].

    PubMed

    Onghena, Sofie

    2009-01-01

    At the end of the nineteenth century provincial bacteriological institutes were established in Belgium--in Liège, Mons, Namur and Brussels--in order to combat epidemics, to promote preventive medicine and to pursue the successful research of Louis Pasteur and Robert Koch. Similar laboratories existed at the universities of Ghent, Louvain and Brussels. The image building played an important role for both kinds of institutes, as bacteriology in pioneering phase had to be publicly confirmed as a new, valuable discipline. However, the directors of provincial and academic institutes--with the same academic training though--were awarded with different qualities at their jubilees, fitting with the purposes and the self-image of their respective institutions, either provincial authorities or universities. The image of academic directors was guided by academic decorum: Emile van Ermengem, Edmond Destrée and Joseph Denys were represented as savants, solely devoted to pure science and paternally educating young researchers, notwithstanding the fact that their laboratories had humanitarian merits as well. On the other hand, the discourse on the first provincial directors--Ernest Malvoz, Martin Herman, Achille Haibe--emphasized their altruistic commitment and their solid work for the provincial government. Jules Bordet, a internationally rewarded scientist, professor and provincial director of the Pasteur Institute in Brussels, was celebrated with both sorts of discourses.

  14. Rhetorical Strategies in Engineering Research Articles and Research Theses: Advanced Academic Literacy and Relations of Power

    ERIC Educational Resources Information Center

    Koutsantoni, Dimitra

    2006-01-01

    Research articles and research theses constitute two key genres used by scientific communities for the dissemination and ratification of knowledge. Both genres are produced at advanced stages of individuals' enculturation in disciplinary communities present original research aim to persuade the academic community to accept new knowledge claims,…

  15. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  16. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  17. Laboratory Directed Research and Development FY 2000 Annual Report

    SciTech Connect

    Al-Ayat, R

    2001-05-24

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  18. 8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EXTERIOR DETAIL, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  19. 7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR NORTHWEST VIEW, BUILDING 18 (POWER PLANT RESEARCH LABORATORY) (1991). - Wright-Patterson Air Force Base, Area B, Building 18, Power Plant Laboratory Complex, Northeast corner of C & Fifth Streets, Dayton, Montgomery County, OH

  20. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  1. Beam tomography research at Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Hock, K. M.; Ibison, M. G.; Holder, D. J.; Muratori, B. D.; Wolski, A.; Kourkafas, G.; Shepherd, B. J. A.

    2014-07-01

    Beam tomography research at Daresbury Laboratory has focussed on the development of normalised phase space techniques-starting with the idea of sampling tomographic projections at equal phase advances. This idea has influenced the design and operation of the tomography sections at the Photo Injector Test Facility at Zeuthen (PITZ) and at the Accelerator and Lasers in Combined Experiments (ALICE) at Daresbury. We have studied the feasibility of using normalised phase space to measure the effect of space charge. Quadrupole scan measurements are carried out at two different parts of a beamline. Reconstructions at the same location give results that are clearly rotated with respect to each other in normalised phase space. We are able to show that a significant part of this rotation can be attributed to the effect of space charge. We show how the normalised phase space technique can be used to increase the reliability of the Maximum Entropy Technique (MENT). While MENT is known for its ability to work with just a few projections, the accuracy of its reconstructions has seldom been questioned. We show that for typical phase space distributions, MENT could produce results that look quite different from the original. We demonstrate that a normalised phase space technique could give results that are closer to the actual distribution. We also present simpler ways of deriving the phase space tomography formalism and the Maximum Entropy Technique.

  2. Hyperspectral imager development at Army Research Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2008-04-01

    Development of robust compact optical imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of chemical and biological agents as well as targets and backgrounds. Spectral features arise due to the material properties of objects as a result of the emission, reflection, and absorption of light. Using hyperspectral imaging one can acquire images with narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene in detection of objects. Traditional hyperspectral imaging systems use gratings and prisms that acquire one-dimensional spectral images and require relative motion of sensor and scene in addition to data processing to form a two-dimensional image cube. There is much interest in developing hyperspectral imagers using tunable filters that acquire a two-dimensional spectral image and build up an image cube as a function of time. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers using a number of novel tunable filter technologies. These include acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the UV to the long wave infrared, diffractive optics technology that can provide image cubes either in a single spectral region or simultaneously in different spectral regions using a single moving lens or by using a lenslet array, and micro-electromechanical systems (MEMS)-based Fabry-Perot (FP) tunable etalons to develop miniature sensors that take advantage of the advances in microfabrication and packaging technologies. New materials are being developed to design AOTFs and a full Stokes polarization imager has been developed, diffractive optics lenslet arrays are being explored, and novel FP tunable filters are under fabrication for the development of novel miniature hyperspectral imagers. Here we will brief on all the technologies being developed and present

  3. A Summer Academic Research Experience for Disadvantaged Youth

    PubMed Central

    Kabacoff, Cathryn; Srivastava, Vasudha; Robinson, Douglas N.

    2013-01-01

    Internships are an effective way of connecting high school students in a meaningful manner to the sciences. Disadvantaged minorities have fewer opportunities to participate in internships, and are underrepresented in both science, technology, engineering, and mathematics majors and careers. We have developed a Summer Academic Research Experience (SARE) program that provides an enriching academic internship to underrepresented youth. Our program has shown that to have a successful internship for these disadvantaged youth, several issues need to be addressed in addition to scientific mentoring. We have found that it is necessary to remediate and/or fortify basic academic skills for students to be successful. In addition, students need to be actively coached in the development of professional skills, habits, and attitudes necessary for success in the workplace. With all these factors in place, these youths can become better students, compete on a more level playing field in their internships, and increase their potential of participating actively in the sciences in the future. PMID:24006390

  4. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  5. Seeking Alternative Researcher Identities in Newcomer Academic Institutions in Sweden

    ERIC Educational Resources Information Center

    Hallonsten, Olof

    2012-01-01

    Proliferating excellence gold standards in the global academic system tend to obscure the far-reaching diversification of academic missions, practices, ambitions and identities brought by massification. This article approaches this topic by a review of theory on academic scholarship and how it has changed in the wake of academic massification and…

  6. Annual Progress Report (SEATO Medical Research Laboratory)

    DTIC Science & Technology

    1975-03-01

    Dengue Shock Syndrome ," in Amos, B. (ed): Progress in Immunology, New York, Academic Press, 1971, pp 831 -838. 2. Halstead, S.B. : Observations Related...transmission is primarily genital to oral. The fact that oropharyngeal Infections of N. gonorrhoeae were detected in women visiting a dental clinic on a...causative in 8096 of female genital tract Infections (9). These organisms have also been found in normal vaginal secretiors (10). Therefore, they should

  7. Stirling engine research at national and university laboratories in Japan

    SciTech Connect

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  8. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  9. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  10. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  11. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  12. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  13. Research Challenges and Opportunities for Clinically Oriented Academic Radiology Departments.

    PubMed

    Decker, Summer J; Grajo, Joseph R; Hazelton, Todd R; Hoang, Kimberly N; McDonald, Jennifer S; Otero, Hansel J; Patel, Midhir J; Prober, Allen S; Retrouvey, Michele; Rosenkrantz, Andrew B; Roth, Christopher G; Ward, Robert J

    2016-01-01

    Between 2004 and 2012, US funding for the biomedical sciences decreased to historic lows. Health-related research was crippled by receiving only 1/20th of overall federal scientific funding. Despite the current funding climate, there is increased pressure on academic radiology programs to establish productive research programs. Whereas larger programs have resources that can be utilized at their institutions, small to medium-sized programs often struggle with lack of infrastructure and support. To address these concerns, the Association of University Radiologists' Radiology Research Alliance developed a task force to explore any untapped research productivity potential in these smaller radiology departments. We conducted an online survey of faculty at smaller clinically funded programs and found that while they were interested in doing research and felt it was important to the success of the field, barriers such as lack of resources and time were proving difficult to overcome. One potential solution proposed by this task force is a collaborative structured research model in which multiple participants from multiple institutions come together in well-defined roles that allow for an equitable distribution of research tasks and pooling of resources and expertise. Under this model, smaller programs will have an opportunity to share their unique perspective on how to address research topics and make a measureable impact on the field of radiology as a whole. Through a health services focus, projects are more likely to succeed in the context of limited funding and infrastructure while simultaneously providing value to the field.

  14. Academic Users' Information Searching on Research Topics: Characteristics of Research Tasks and Search Strategies

    ERIC Educational Resources Information Center

    Du, Jia Tina; Evans, Nina

    2011-01-01

    This project investigated how academic users search for information on their real-life research tasks. This article presents the findings of the first of two studies. The study data were collected in the Queensland University of Technology (QUT) in Brisbane, Australia. Eleven PhD students' searching behaviors on personal research topics were…

  15. The Many Faces of Research Profiling: Academic Leaders' Conceptions of Research Steering

    ERIC Educational Resources Information Center

    Pietilä, Maria

    2014-01-01

    The article examines academic leaders' conceptions of research profiling. Global science policies, including the Finnish governmental policy, promote the identification of areas of research excellence and recommend resource concentration on them. However, as active agents, leaders may have competing, even conflicting views on the pros and cons of…

  16. Microbial resource research infrastructure (MIRRI): infrastructure to foster academic research and biotechnological innovation.

    PubMed

    Schüngel, Manuela; Stackebrandt, Erko

    2015-01-01

    The coordinated collaboration between public culture collections within the MIRRI infrastructure will support research and development in the field of academic as well as industrial biotechnology. Researchers working with microorganisms using the envisioned MIRRI portal will have facilitated access to microbial resources, associated data and expertise. By addressing the users' specific needs MIRRI will provide the basis for biotechnological innovation in Europe.

  17. NSF's Experimental Program to Stimulate Competitive Research (EPSCoR): Subsidizing Academic Research or State Budgets?

    ERIC Educational Resources Information Center

    Wu, Yonghong

    2009-01-01

    This cross-state empirical study focuses on the National Science Foundation's (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR) and examines its impact on the academic research and development (R&D) expenditures financed by state governments. Based on a panel of 50 states during 1979-2006, the empirical results indicate that…

  18. Demographic and Academic Factors Affecting Research Productivity at the University of KwaZulu-Natal

    ERIC Educational Resources Information Center

    North, D.; Zewotir, T.; Murray, M.

    2011-01-01

    Research output affects both the strength and funding of universities. Accordingly university academic staff members are under pressure to be active and productive in research. Though all academics have research interest, all are not producing research output which is accredited by the Department of Education (DOE). We analyzed the demographic and…

  19. Sandia, California Tritium Research Laboratory transition and reutilization project

    SciTech Connect

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  20. Biomedical Research and Corporate Interests: A Question of Academic Freedom

    PubMed Central

    McHenry, Leemon

    2008-01-01

    The current situation in medicine has been described as a crisis of credibility, as the profit motive of industry has taken control of clinical trials and the dissemination of data. Pharmaceutical companies maintain a stranglehold over the content of medical journals in three ways: (1) by ghostwriting articles that bias the results of clinical trials, (2) by the sheer economic power they exert on journals due to the purchase of drug advertisements and journal reprints, and (3) by the threat of legal action against those researchers who seek to correct the misrepresentation of study results. This paper argues that Karl Popper's critical rationalism provides a corrective to the failure of academic freedom in biomedical research. PMID:22013356

  1. Maritime security laboratory for maritime security research

    NASA Astrophysics Data System (ADS)

    Bunin, Barry J.; Sutin, Alexander; Bruno, Michael S.

    2007-04-01

    Stevens Institute of Technology has established a new Maritime Security Laboratory (MSL) to facilitate advances in methods and technologies relevant to maritime security. MSL is designed to enable system-level experiments and data-driven modeling in the complex environment of an urban tidal estuary. The initial focus of the laboratory is on the threats posed by divers and small craft with hostile intent. The laboratory is, however, evolvable to future threats as yet unidentified. Initially, the laboratory utilizes acoustic, environmental, and video sensors deployed in and around the Hudson River estuary. Experimental data associated with boats and SCUBA divers are collected on a computer deployed on board a boat specifically designed and equipped for these experiments and are remotely transferred to a Visualization Center on campus. Early experiments utilizing this laboratory have gathered data to characterize the relevant parameters of the estuary, acoustic signals produced by divers, and water and air traffic. Hydrophones were deployed to collect data to enable the development of passive acoustic methodologies for maximizing SCUBA diver detection distance. Initial results involving characteristics of the estuary, acoustic signatures of divers, ambient acoustic noise in an urban estuary, and transmission loss of acoustic signals in a wide frequency band are presented. These results can also be used for the characterization of abnormal traffic and improvement of underwater communication in a shallow water estuary.

  2. Public Presentations of Professional Change in Academic Research Library Strategic Plans

    ERIC Educational Resources Information Center

    Bracke, Paul J.

    2012-01-01

    Academic librarianship is a profession in the midst of change. Embedded within multiple social spheres, academic librarians are adapting to changes in higher education, the sociotechnical environment of information, and the system of professions. This research investigates the ways in which academic librarians publicly present the ways in which…

  3. Institutionalizing China's Research University through Academic Mobility: The Case of PKU

    ERIC Educational Resources Information Center

    Xiaoguang, Shi

    2015-01-01

    Academic mobility is becoming a tread in academic life and a professional development globally, regionally and nationally. This article makes use of a case university--Peking University (PKU)--as an analytical approach to explore how and why academic mobility can happen in China's research universities. The author first presents an overview of the…

  4. Academic Perspectives and Experiences of Knowledge Translation: A Qualitative Study of Public Health Researchers

    ERIC Educational Resources Information Center

    Collie, Alex; Zardo, Pauline; McKenzie, Donna Margaret; Ellis, Niki

    2016-01-01

    This study explores the views and experiences of knowledge translation of 14 Australian public health academics. Capacity to engage in knowledge translation is influenced by factors within the academic context and the interaction of the academic and policy environments. Early and mid-career researchers reported a different set of experiences and…

  5. Laboratory Directed Research and Development FY-15 Annual Report

    SciTech Connect

    Pillai, Rekha Sukamar

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  6. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  7. USAF Summer Research Program - 1994 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force

  8. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    NASA Astrophysics Data System (ADS)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  9. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  10. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  11. Towards a Holistic Framework for Driving Performance in Externally-Funded Academic Research

    ERIC Educational Resources Information Center

    Hagermann, Axel

    2009-01-01

    A gradual shift in United Kingdom research funding from blanket financing by government agencies towards more diversified income streams through activities funded by various customers is prompting academic research institutions to orient their research portfolios accordingly. Academic organisations such as university institutes are increasingly…

  12. From Laboratory Research to a Clinical Trial

    PubMed Central

    Keevil, C. William; Salgado, Cassandra D.; Schmidt, Michael G.

    2015-01-01

    Objective: This is a translational science article that discusses copper alloys as antimicrobial environmental surfaces. Bacteria die when they come in contact with copper alloys in laboratory tests. Components made of copper alloys were also found to be efficacious in a clinical trial. Background: There are indications that bacteria found on frequently touched environmental surfaces play a role in infection transmission. Methods: In laboratory testing, copper alloy samples were inoculated with bacteria. In clinical trials, the amount of live bacteria on the surfaces of hospital components made of copper alloys, as well as those made from standard materials, was measured. Finally, infection rates were tracked in the hospital rooms with the copper components and compared to those found in the rooms containing the standard components. Results: Greater than a 99.9% reduction in live bacteria was realized in laboratory tests. In the clinical trials, an 83% reduction in bacteria was seen on the copper alloy components, when compared to the surfaces made from standard materials in the control rooms. Finally, the infection rates were found to be reduced by 58% in patient rooms with components made of copper, when compared to patients' rooms with components made of standard materials. Conclusions: Bacteria die on copper alloy surfaces in both the laboratory and the hospital rooms. Infection rates were lowered in those hospital rooms containing copper components. Thus, based on the presented information, the placement of copper alloy components, in the built environment, may have the potential to reduce not only hospital-acquired infections but also patient treatment costs. PMID:26163568

  13. Academic and Research Programs in Exercise Science, South Korea

    PubMed Central

    PARK, KYUNG-SHIN; SONG, WOOK

    2009-01-01

    We appreciate the opportunity to review academic curriculum and current research focus of Exercise Science programs in South Korea. The information of this paper was collected by several different methods, including e-mail and phone interviews, and a discussion with Korean professors who attended the 2009 ACSM annual conference. It was agreed that exercise science programming in South Korea has improved over the last 60 years since being implemented. One of distinguishable achievement is that exercise science programs after the 1980’s has been expanded to several different directions. It does not only produce physical education teachers but also attributes more to research, sports medicine, sports, leisure and recreation. Therefore, it has produced various jobs in exercise-related fields. Some of exercise science departments do not require teacher preparation course work in their curriculum which allows students to focus more on their specialty. Secondly, we believe we South Korea has caught up with advanced countries in terms of research quality. Many Korean researchers have recently published and presented their investigations in international journals and conferences. The quality and quantity of these studies introduced to international societies indicate that Exercise Science programs in South Korea is continuing to develop and plays an important part in the world. PMID:27182314

  14. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    SciTech Connect

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  15. Engaging Students in Aging Research through the Academic Research Enhancement Award Program

    ERIC Educational Resources Information Center

    Butler, Sandra S.

    2014-01-01

    This article describes the R15, Academic Research Enhancement Award (AREA) mechanism available through the National Institutes of Health (NIH) for institutions that do not typically receive substantial NIH funding. Equipped with training received at the St. Scholastica National Institute on Social Work and Aging, I was able to secure AREA funding…

  16. Early career academic researchers and community-based participatory research: wrestling match or dancing partners?

    PubMed

    Lowry, Kelly Walker; Ford-Paz, Rebecca

    2013-12-01

    Early career faculty members at academic medical centers face unique obstacles when engaging in community-based participatory research (CBPR). Challenges and opportunities for solutions pertaining to mentorship, time demands, unfamiliarity of colleagues with CBPR approaches, ethical review regulations, funding, and publication and promotion are discussed.

  17. Laboratory Directed Research and Development FY2001 Annual Report

    SciTech Connect

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  18. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  19. The hidden face of academic researches on classified highly pathogenic microorganisms.

    PubMed

    Devaux, Christian A

    2015-01-01

    Highly pathogenic microorganisms and toxins are manipulated in academic laboratories for fundamental research purposes, diagnostics, drugs and vaccines development. Obviously, these infectious pathogens represent a potential risk for human and/or animal health and their accidental or intentional release (biosafety and biosecurity, respectively) is a major concern of governments. In the past decade, several incidents have occurred in laboratories and reported by media causing fear and raising a sense of suspicion against biologists. Some scientists have been ordered by US government to leave their laboratory for long periods of time following the occurrence of an incident involving infectious pathogens; in other cases laboratories have been shut down and universities have been forced to pay fines and incur a long-term ban on funding after gross negligence of biosafety/biosecurity procedures. Measures of criminal sanctions have also been taken to minimize the risk that such incidents can reoccur. As United States and many other countries, France has recently strengthened its legal measures for laboratories' protection. During the past two decades, France has adopted a series of specific restriction measures to better protect scientific discoveries with a potential economic/social impact and prevent their misuse by ill-intentioned people without affecting the progress of science through fundamental research. French legal regulations concerning scientific discoveries have progressively strengthened since 2001, until the publication in November 2011 of a decree concerning the "PPST" (for "Protection du Potentiel Scientifique et Technique de la nation", the protection of sensitive scientific data). Following the same logic of protection of sensitive scientific researches, regulations were also adopted in an order published in April 2012 concerning the biology and health field. The aim was to define the legal framework that precise the conditions for authorizing

  20. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  1. Summer Research Program (1992). Graduate Student Research Program (GSRP) Reports. Volume 8. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Research Program Starfire Optical Range, Phillips Laboratory /LITE Kirtland Air Force Base, Albuquerque, NM 87117 Sponsored by: Air ... Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico September, 1992 18-1 PROGRESS...Report for: Summer Research Program Phillips Laboratory Sponsored by: Air

  2. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  3. Developing Research-Ready Skills: Preparing Early Academic Students for Participation in Research Experiences

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Morris, A. R.

    2015-12-01

    Engaging lower-division undergraduates in research experiences is a key but challenging aspect of guiding talented students into the geoscience research pipeline. UNAVCO conducted a summer internship program to prepare first and second year college students for participation in authentic, scientific research. Many students in their first two years of academic studies do not have the science content knowledge or sufficient math skills to conduct independent research. Students from groups historically underrepresented in the geosciences may face additional challenges in that they often have a less robust support structure to help them navigate the university environment and may be less aware of professional opportunities in the geosciences.UNAVCO, manager of NSF's geodetic facility, hosted four students during summer 2015 internship experience aimed to help them develop skills that will prepare them for research internships and skills that will help them advance professionally. Students spent eight weeks working with UNAVCO technical staff learning how to use equipment, prepare instrumentation for field campaigns, among other technical skills. Interns also participated in a suite of professional development activities including communications workshops, skills seminars, career circles, geology-focused field trips, and informal interactions with research interns and graduate student interns at UNAVCO. This presentation will outline the successes and challenges of engaging students early in their academic careers and outline the unique role such experiences can have in students' academic careers.

  4. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  5. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    SciTech Connect

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  6. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  7. Laboratory directed research and development program, FY 1996

    SciTech Connect

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  8. Dental Laboratory Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Smith, Debra S.

    This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…

  9. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit.... Clinical Research Program June 9, 2010 *VA Central Office. Oncology June 10-11, 2010....... L'Enfant...

  10. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  11. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  12. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  13. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... science research. The panel meetings will be open to the public for approximately one-half hour at...

  14. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  15. USAF Summer Research Program - 1994 Summer Faculty Research Program Final Reports, Volume 5B, Wright Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Laboratory Technical Directorates and Air Force Air Logistics Centers. Each participant provided a report of their research , and these...reports are consolidated into this annual report. 14. SUBJECT TERMS AIR FORCE RESEARCH , AIR FORCE , ENGINEERING, LABORATORIES , REPORTS, SUMMER...216-6940 UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM - 1994 SUMMER FACULTY RESEARCH PROGRAM FINAL REPORTS

  16. USAF Summer Research Program - 1993 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8

  17. Theory Development and Application in Higher Education Research: The Case of Academic Drift

    ERIC Educational Resources Information Center

    Tight, Malcolm

    2015-01-01

    This article examines the case of academic drift, as an example of a theory developed and applied within higher education research. It traces the origins and meaning of the term, reviews its application by higher education researchers, and discusses the issues it raises and the critiques it has attracted. It concludes that academic drift is at the…

  18. Academic/Research Librarians with Subject Doctorates: Data and Trends 1965-2006

    ERIC Educational Resources Information Center

    Lindquist, Thea; Gilman, Todd

    2008-01-01

    The topic of academic/research librarians with subject doctorates is largely unexplored in the literature, despite recent efforts to recruit them. Based on survey data gathered from non-LIS doctorate holders currently working in U.S. and Canadian academic/research libraries, this article highlights data and trends relating to these librarians,…

  19. Academic/Research Librarians with Subject Doctorates: Experiences and Perceptions, 1965-2006

    ERIC Educational Resources Information Center

    Gilman, Todd; Lindquist, Thea

    2010-01-01

    The topic of academic/research librarians with subject doctorates remains largely unexplored. Based on survey data gathered from subject-doctorate holders (excluding those with doctorates in LIS) currently working in U.S. and Canadian academic/research libraries, this article extends the analysis published by the authors in the January 2008 issue…

  20. The Effects of University-Industry Relationships and Academic Research on Scientific Performance: Synergy or Substitution?

    ERIC Educational Resources Information Center

    Manjarres-Henriquez, Liney; Gutierrez-Gracia, Antonio; Carrion-Garcia, Andres; Vega-Jurado, Jaider

    2009-01-01

    This paper evaluates whether university-industry relationships (UIR) and academic research activities have complementary effects on the scientific production of university lecturers. The analysis is based on a case study of two Spanish universities. We find that the effects of R&D contracts with industry, and academic research activity on…

  1. Constituting the Significance and Value of Research: Views from Information Technology Academics and Industry Professionals

    ERIC Educational Resources Information Center

    Bruce, Christine; Pham, Binh; Stoodley, Ian

    2004-01-01

    The information technology research community, comprising both academic and industry stakeholders, is responding to national and international imperatives that challenge disparate groups to work together. In this article it is shown how, within both academic and industrial contexts, researchers interpret, or constitute, the significance and value…

  2. Understanding the Varying Investments in Researcher and Teacher Development and Enhancement: Implications for Academic Developers

    ERIC Educational Resources Information Center

    Petrova, Petia; Hadjianastasis, Marios

    2015-01-01

    The increasing disparity between the research and teaching aspects of academic careers has been an area of concern in different national contexts over a number of decades. Anyone working with educational enhancement will have encountered the binary choice between research development and educational enhancement that academics are forced to make,…

  3. Homework and Academic Achievement: A Meta-Analytic Review of Research

    ERIC Educational Resources Information Center

    Bas, Gökhan; Sentürk, Cihad; Cigerci, Fatih Mehmet

    2017-01-01

    The main purpose of this study was to determine the effect of homework assignments on students' academic achievement. This meta-analysis sought an answer to the research question: "What kind of effect does homework assignment have on students' academic achievement levels?" In this research, meta-analysis was adopted to determine the…

  4. Publishing and Perishing: An Academic Literacies Framework for Investigating Research Productivity

    ERIC Educational Resources Information Center

    Nygaard, Lynn P.

    2017-01-01

    The current discourse on research productivity (how much peer-reviewed academic output is published by faculty) is dominated by quantitative research on individual and institutional traits; implicit assumptions are that academic writing is a predominately cognitive activity, and that lack of productivity represents some kind of deficiency.…

  5. Implications of Academic Literacies Research for Knowledge Making and Curriculum Design

    ERIC Educational Resources Information Center

    Paxton, Moragh; Frith, Vera

    2014-01-01

    This article explores the issue of what academic literacies research can bring to the study of knowledge and curriculum in higher education from a theoretical perspective and by means of illustrations from a work in progress academic literacies research project in the natural sciences. It argues that reading and writing are central to the process…

  6. Academic Administrator Influence on Institutional Commitment to Open Access of Scholarly Research

    ERIC Educational Resources Information Center

    Reinsfelder, Thomas L.

    2012-01-01

    This quantitative study investigated the interrelationships among faculty researchers, publishers, librarians, and academic administrators when dealing with the open access of scholarly research. This study sought to identify the nature of any relationship between the perceived attitudes and actions of academic administrators and an…

  7. Imagine! On the Future of Teaching and Learning and the Academic Research Library

    ERIC Educational Resources Information Center

    Miller, Kelly E.

    2014-01-01

    In the future, what role will the academic research library play in achieving the mission of higher education? This essay describes seven strategies that academic research libraries can adopt to become future-present libraries--libraries that foster what Douglas Thomas and John Seely Brown have called "a new culture of learning." Written…

  8. A New Investigative Sophomore Organic Laboratory Involving Individual Research Projects

    NASA Astrophysics Data System (ADS)

    Kharas, Gregory B.

    1997-07-01

    The problem-solving approach calls for a laboratory curriculum that provides a greater intellectual challenge and the resemblance to a research experience. A curriculum was designed which involves individual research projects for the nine laboratories of the spring quarter of a three-quarter introductory organic chemistry course. These projects integrate the instructor's research and learning experiences for the students via interdisciplinary approaches of classical organic chemistry and polymer chemistry. The foundations for the individual research projects are laid out during the first and second quarters of laboratory instruction when students are introduced to classic synthetic, separation and purification techniques. In the third quarter of lab sequence, in carrying out the individual research projects, the emphasis is shifted towards obtaining and interpreting data for compounds that are not described in the laboratory manual rather than making representative compounds. The research is an open end laboratory project that includes an on-line and printed Chemical Abstracts literature search, molecular computer modeling, a microscale monomer synthesis and characterization, scale-up synthesis, polymer synthesis and characterization. By changing functional groups on the vinyl monomer molecule, the class can explore reactivity of one "family" of compounds and consequently polymers. This approach is based on the integration of genuine research experience with laboratory instruction in accessible but non-trivial manner.

  9. Research Review: Laboratory Student Magazine Programs.

    ERIC Educational Resources Information Center

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  10. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  11. QUALITY ASSURANCE IN RESEARCH LABORATORIES: RULES AND REASON

    EPA Science Inventory

    Quality Assurance in Research Laboratories: Rules and Reason

    Ron Rogers, Quality Assurance and Records Manager, Environmental Carcinogenesis Division, NHEERL/ORD/US EPA, Research Triangle Park, NC, 27709

    To anyone who has actively participated in research, as I have...

  12. Consultation and Decision Processes in a Research and Development Laboratory

    ERIC Educational Resources Information Center

    Smith, Clagett G.

    1970-01-01

    Study of relationship between consultation and decision processes in an industrial research laboratory showed the efficacy of multidirectional consultation coupled with a pattern of shared, decentralized decision making. (Author/KJ)

  13. Laboratory directed research and development 2006 annual report.

    SciTech Connect

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  14. Xerox' Canadian Research Facility: The Multinational and the "Offshore" Laboratory.

    ERIC Educational Resources Information Center

    Marchessault, R. H.; Myers, M. B.

    1986-01-01

    The history, logistics, and strategy behind the Xerox Corporation's Canadian research laboratory, a subsidiary firm located outside the United States for reasons of manpower, tax incentives, and quality of life, are described. (MSE)

  15. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  16. Practice Led Research: Creative Activity, Academic Debate, and Intellectual Rigour

    ERIC Educational Resources Information Center

    Arnold, Josie

    2012-01-01

    By focussing on PhD supervision as well as creativity, this paper explores how the artefact and exegesis PhD offers an opportunity to bring creative activity together with academic debate and intellectual rigour. In this context, the latter does not justify the former nor interpret it in an academic and theoretical way. Rather, acting together,…

  17. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  18. Army Research Laboratory. 1999 Annual Review

    DTIC Science & Technology

    1999-01-01

    and by 1990 they had developed new methods to synthesis nanoparticles. The surface areas of aerogel MgO particles are 350 to 500 m2; those...deformation. Researchers have obtained detailed information on the frag- mentation process by analytical and computational methods and by experi...coordinated through the American Society for Testing and Materials (ASTM) and VAMAS, to study and compare various testing methods . The round robin results

  19. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    optical fiber fusion splicers, annealing facilities for magnetic materials, and facilities for degassing adhesives for potting purposes. The...characterizing the surface emissive and reflective properties of IR paints and materials. Measurements are made on transmittance, specular reflectance...systematic studies of material treatments and paint pigment, for example. This lab has been essential for NRL’s efforts, including in-house research and

  20. Argonne National Laboratory Research Highlights 1988

    SciTech Connect

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  1. NASA/WVU Software Research Laboratory, 1995

    NASA Technical Reports Server (NTRS)

    Sabolish, George J.; Callahan, John R.

    1995-01-01

    In our second year, the NASA/WVU Software Research Lab has made significant strides toward analysis and solution of major software problems related to V&V activities. We have established working relationships with many ongoing efforts within NASA and continue to provide valuable input into policy and decision-making processes. Through our publications, technical reports, lecture series, newsletters, and resources on the World-Wide-Web, we provide information to many NASA and external parties daily. This report is a summary and overview of some of our activities for the past year. This report is divided into 6 chapters: Introduction, People, Support Activities, Process, Metrics, and Testing. The Introduction chapter (this chapter) gives an overview of our project beginnings and targets. The People chapter focuses on new people who have joined the Lab this year. The Support chapter briefly lists activities like our WWW pages, Technical Report Series, Technical Lecture Series, and Research Quarterly newsletter. Finally, the remaining four chapters discuss the major research areas that we have made significant progress towards producing meaningful task reports. These chapters can be regarded as portions of drafts of our task reports.

  2. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  3. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  4. Adaptive optics research at Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Greenwood, Darryl P.; Primmerman, Charles A.

    A development history is presented for adaptive-optics methods of optical aberration measurement and correction in real time, which are applicable to the thermal blooming of high-energy laser beams, the compensation of a laser beam propagating from ground to space, and compensation by means of a synthetic beacon. Attention is given to schematics of the various adaptive optics system types, which cover the cases of cooperative and uncooperative targets. Representative research projects encompassed by the high-energy propagation range in West Palm Beach are the 'Everlaser' instrumented target vehicle, the OCULAR multidither system installation, and the Atmospheric Compensation Experiment Adaptive Optics System.

  5. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  6. Summer Research Program (1992). Summer Faculty Research Program (SFRP) Reports. Volume 3. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Phillips Laboratory Kirtland Air Force Base NM 87117-6008 Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base...Zindel, D.: 1963, Z. Astrophys. 57, 82. 29-13 FINAL REPORT SUMMER FACULTY RESEARCH PROGRAM AT PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific

  7. Culturally Diverse Undergraduate Researchers' Academic Outcomes and Perceptions of Their Research Mentoring Relationships

    NASA Astrophysics Data System (ADS)

    Byars-Winston, Angela M.; Branchaw, Janet; Pfund, Christine; Leverett, Patrice; Newton, Joseph

    2015-10-01

    Few studies have empirically investigated the specific factors in mentoring relationships between undergraduate researchers (mentees) and their mentors in the biological and life sciences that account for mentees' positive academic and career outcomes. Using archival evaluation data from more than 400 mentees gathered over a multi-year period (2005-2011) from several undergraduate biology research programs at a large, Midwestern research university, we validated existing evaluation measures of the mentored research experience and the mentor-mentee relationship. We used a subset of data from mentees (77% underrepresented racial/ethnic minorities) to test a hypothesized social cognitive career theory model of associations between mentees' academic outcomes and perceptions of their research mentoring relationships. Results from path analysis indicate that perceived mentor effectiveness indirectly predicted post-baccalaureate outcomes via research self-efficacy beliefs. Findings are discussed with implications for developing new and refining existing tools to measure this impact, programmatic interventions to increase the success of culturally diverse research mentees and future directions for research.

  8. Life extension research at Sandia National Laboratories

    SciTech Connect

    Bustard, L.D.; DuCharme, A.R. Jr.; DeBey, T.M.

    1986-01-01

    As part of the Department of Energy (DOE) plant life extension (PLEX) effort, the DOE Technology Management Center at Sandia is actively participating in life extension research efforts. In the areas of reliability and surveillance, systems modelling techniques are being explored to identify those components which, if their reliability changes, could most impact safety. Results of an application of these techniques to the Surry nuclear plant were compared to an industry life extension categorization also performed at Surry. For selected types of components identified during this study, the degradation and failure mechanisms are being explored and state-of-the-art monitoring techniques are being evaluated. Initial results are presented. In the area of cable life extension, a definition study is under way to define utility-specific as well as collective industry actions that would facilitate extending cable life. Some recommendations of this study are also provided.

  9. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  10. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 2, Phillips Laboratory

    DTIC Science & Technology

    1994-11-01

    Research Extension Program Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C. and Arkansas Tech University...Summer Research Extension Program (SREP) Phillips

  11. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  12. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  13. Do Quantitative Measures of Research Productivity Correlate with Academic Rank in Oral and Maxillofacial Surgery?

    PubMed

    Susarla, Srinivas M; Dodson, Thomas B; Lopez, Joseph; Swanson, Edward W; Calotta, Nicholas; Peacock, Zachary S

    2015-08-01

    Academic promotion is linked to research productivity. The purpose of this study was to assess the correlation between quantitative measures of academic productivity and academic rank among academic oral and maxillofacial surgeons. This was a cross-sectional study of full-time academic oral and maxillofacial surgeons in the United States. The predictor variables were categorized as demographic (gender, medical degree, research doctorate, other advanced degree) and quantitative measures of academic productivity (total number of publications, total number of citations, maximum number of citations for a single article, I-10 index [number of publications with ≥ 10 citations], and h-index [number of publications h with ≥ h citations each]). The outcome variable was current academic rank (instructor, assistant professor, associate professor, professor, or endowed professor). Descriptive, bivariate, and multiple regression statistics were computed to evaluate associations between the predictors and academic rank. Receiver-operator characteristic curves were computed to identify thresholds for academic promotion. The sample consisted of 324 academic oral and maxillofacial surgeons, of whom 11.7% were female, 40% had medical degrees, and 8% had research doctorates. The h-index was the most strongly correlated with academic rank (ρ = 0.62, p < 0.001). H-indexes of ≥ 4, ≥ 8, and ≥ 13 were identified as thresholds for promotion to associate professor, professor, and endowed professor, respectively (p < 0.001). This study found that the h-index was strongly correlated with academic rank among oral and maxillofacial surgery faculty members and thus suggests that promotions committees should consider using the h-index as an additional method to assess research activity.

  14. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  15. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  16. Research Collaborations Between Universities and Department of Defense Laboratories

    DTIC Science & Technology

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,5 the Naval Research Sabbatical Leave Program6 for faculty, and the College Qualified...http://www.onr.navy.mil/Education-Outreach/Summer-Faculty- Research-Sabbatical.aspx. 7 See U. S. Army website, “CQL Program – College Qualified... tuition assistance for researchers who are completing advanced degrees and opportunities for graduate students to work temporarily in a laboratory. These

  17. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  18. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  19. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and

  1. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  2. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  3. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  4. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  5. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  6. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  7. The Development of Research as a Role in Laboratory Schools.

    ERIC Educational Resources Information Center

    Page, Fred M., Jr.; Page, Jane A.

    A 20-item questionnaire was mailed to 123 laboratory schools to investigate their involvement with educational research. The findings on the 57 schools that responded were organized into two categories: (1) background information on all respondents; and (2) information on research activities based on responses of the 39 schools identified as…

  8. Naval Aerospace Medical Research Laboratory Bibliography, 1981-1986.

    DTIC Science & Technology

    1987-06-01

    n Ltd.. 6 pp., 1981. Olsen, R.G., Microwave-induced Developmental Defects in the Common Mealworm Tenerio mlit-ýr_--A Decade o’ Re-seaFch-, NAMRL-1283...Tri-service Aeromedical Research Panel Fall Technical Meeting , NAMRL Monograph 33, Naval Aerospace A Medical Research Laboratory, Pensacola, FL

  9. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  10. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  11. Radiology trainees in the UK and Ireland: academic background, publication rates and research plans.

    PubMed

    McWeeney, D M; Walker, T W M; Gilbert, F J; McCarthy, P A

    2009-12-01

    To assess the level of achievement of current trainees, we investigated the academic qualifications, publication rates and future research plans of 240 radiology trainees in the UK and Ireland. All radiology trainees in the UK and Ireland were surveyed by a questionnaire enquiring about academic record and career ambitions. Our study shows that the level of academic achievement of radiology trainees is high, and provides interesting information concerning the current group of radiology trainees in these regions. It will be of interest both to radiology trainers and to doctors hoping to pursue a career in radiology. It also demonstrates that a potential recruitment crisis in academic radiology exists.

  12. Academic Staff Research Productivity: A Study of Universities in South-South Zone of Nigeria

    ERIC Educational Resources Information Center

    Usang, Bassey; Basil, Akuegwu; Lucy, Udida; Udey, Franca U.

    2007-01-01

    This study examined academic staff research productivity in Universities in South-South zone of Nigeria. Ex post facto design was adopted for this study. Three hypotheses were formulated to guide this study. The sample size comprised of 480 academic staff drawn from a population of 3120. Data collection was carried out using a…

  13. Temperament, School Adjustment, and Academic Achievement: Existing Research and Future Directions

    ERIC Educational Resources Information Center

    Al-Hendawi, Maha

    2013-01-01

    Since the 1980s, research has been examining the role of temperament in education. In particular, academic achievement and school adjustment were among the first variables to be examined. Subsequently, several studies have documented associations between temperament and either academic achievement or school adjustment. However, no review of this…

  14. A Quantitative Study of the Internationalization of the Academics and Research Productivity: Case Study of China

    ERIC Educational Resources Information Center

    Xian, Wu

    2015-01-01

    With the significant rise in China's economic strength, more students and scholars have returned to China recently. But there is limited literature examining academics with foreign degrees and their research productivity. Using the data of the Changing Academic Profession in Asia (APA) survey, which was exercised in 2012, this study expands the…

  15. The Changing Academic Profession in the UK and beyond. Research Report

    ERIC Educational Resources Information Center

    Locke, William; Bennion, Alice

    2010-01-01

    This research report provides a summary of the UK part of the international study of the changing academic profession, which has been supported by Universities UK and other national higher education bodies. The international study aims to examine the nature and extent of the changes experienced by academics, the reasons for these changes and their…

  16. Addressing Research at the Intersection of Academic Literacies and New Technology

    ERIC Educational Resources Information Center

    Crook, Charles

    2005-01-01

    Academic literacies research has significantly informed educational practice across a range of disciplines. But this influence has largely been through a focus on genres of written language. The growth of new information and communication technologies demands a broader view of academic literacy and how it now informs situations of learning. This…

  17. Academic Listening in the 21st Century: Reviewing a Decade of Research

    ERIC Educational Resources Information Center

    Lynch, Tony

    2011-01-01

    This review article extends the conventional notion of academic listening to include reciprocal (two-way) listening events in academic settings, as well as (one-way) listening to lectures. The introductory section highlights the comparatively low profile of listening in EAP research, due in part to the inherent complexity of listening and its…

  18. Future of Academic/Research Librarians: A Period of Transition--To What?

    ERIC Educational Resources Information Center

    Hardesty, Larry L.

    2002-01-01

    Analyzes available data to determine the validity of explanations offered for the shortage of qualified academic librarians. Highlights include recruiting academic/ research librarians; library school enrollment trends; placement data; future possibilities; salary and working conditions; and professional issues. (Contains 50 references.)…

  19. The Council of Research and Academic Libraries: An Example of Interlibrary Cooperation.

    ERIC Educational Resources Information Center

    Cain, Mark E.

    This paper examines the history, organization, and activities of the Council of Research and Academic Libraries, a multitype library cooperative composed of academic, public and special libraries and located in San Antonio, Texas. The consortium's history is traced from the events preceding and leading to its founding in 1966 to the present time,…

  20. How Are UK Academics Engaging the Public with Their Research? A Cross-Disciplinary Perspective

    ERIC Educational Resources Information Center

    Chikoore, Lesley; Probets, Steve; Fry, Jenny; Creaser, Claire

    2016-01-01

    This paper takes a cross-disciplinary perspective in examining the views and practices of public engagement with research by UK academics. Using a mixed method approach consisting of a survey questionnaire and interviews, the paper identifies the range of audience groups that can potentially be engaged with by academics, and shows that some…

  1. The Academic Word List 10 Years on: Research and Teaching Implications

    ERIC Educational Resources Information Center

    Coxhead, Averil

    2011-01-01

    The Academic Word List (AWL) is now widely used in English for academic purposes (EAP) classrooms in many countries, in a wide range of materials, in vocabulary tests, and as a major resource for researchers. In this article the author reflects on the impact of the AWL by looking at commonly asked questions about the list: What is the AWL? Is the…

  2. Perceptions of Chinese Biomedical Researchers Towards Academic Misconduct: A Comparison Between 2015 and 2010.

    PubMed

    Liao, Qing-Jiao; Zhang, Yuan-Yuan; Fan, Yu-Chen; Zheng, Ming-Hua; Bai, Yu; Eslick, Guy D; He, Xing-Xiang; Zhang, Shi-Bing; Xia, Harry Hua-Xiang; He, Hua

    2017-04-10

    Publications by Chinese researchers in scientific journals have dramatically increased over the past decade; however, academic misconduct also becomes more prevalent in the country. The aim of this prospective study was to understand the perceptions of Chinese biomedical researchers towards academic misconduct and the trend from 2010 to 2015. A questionnaire comprising 10 questions was designed and then validated by ten biomedical researchers in China. In the years 2010 and 2015, respectively, the questionnaire was sent as a survey to biomedical researchers at teaching hospitals, universities, and medical institutes in mainland China. Data were analyzed by the Chi squared test, one-way analysis of variance with the Tukey post hoc test, or Spearman's rank correlation method, where appropriate. The overall response rates in 2010 and 2015 were 4.5% (446/9986) and 5.5% (832/15,127), respectively. Data from 15 participants in 2010 were invalid, and analysis was thus performed for 1263 participants. Among the participants, 54.7% thought that academic misconduct was serious-to-extremely serious, and 71.2% believed that the Chinese authorities paid no or little attention to the academic misconduct. Moreover, 70.2 and 65.2% of participants considered that the punishment for academic misconduct at the authority and institution levels, respectively, was not appropriate or severe enough. Inappropriate authorship and plagiarism were the most common forms of academic misconduct. The most important factor underlying academic misconduct was the academic assessment system, as judged by 50.7% of the participants. Participants estimated that 40.1% (39.8 ± 23.5% in 2010; 40.2 ± 24.5% in 2015) of published scientific articles were associated with some form of academic misconduct. Their perceptions towards academic misconduct had not significantly changed over the 5 years. Reform of the academic assessment system should be the fundamental approach to tackling this problem in

  3. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  4. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  5. The Contemporary Academic: Orientation towards Research Work and Researcher Identity of Higher Education Lecturers in the Health Professions

    ERIC Educational Resources Information Center

    Boyd, Pete; Smith, Caroline

    2016-01-01

    Internationally, the increasing emphasis in universities on the quality of teaching, on student employability and on a corporate approach to entrepreneurial income generation has created a tension around the primacy afforded to published research outputs as a focus for academic work and status. In this study, a framework for academic socialisation…

  6. Perceptions of community-based participatory research in the delta nutrition intervention research initiative:an academic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lower Mississippi Delta Nutrition Intervention Research Initiative (Delta NIRI) is an academic-community partnership between seven academic institutions and three communities in Mississippi, Arkansas, and Louisiana. A range of community-based participatory methods have been employed to develop susta...

  7. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  8. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    ERIC Educational Resources Information Center

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  9. Selected Aspects of Assessment/Improvement of Academic Research Quality, Also of Industrial Management

    NASA Astrophysics Data System (ADS)

    Jemala, Marek

    2016-06-01

    In terms of publishing and commercialisation of academic research results, there may be more preferred qualitative research in the long term. But, not every research can be focused only on the quality of its outputs, but each output of the research, however, should have an adequate quality and added value. The main research question of this article may be determined as follows - How can the quality of academic research be better evaluated and thus improved, also in the area of Industrial management? It is not the intention of this article to perform statistical research in the field yet, but this study is based on empirical data and results.

  10. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  11. Research project on nanospace laboratory and related topics

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    1996-04-01

    The research project on Nano-Space Laboratory and related topics are reviewed. This project has been funded by the Special Coordination Funds for Promoting Science and Technology since 1994. The project is classified into three major topics: (1) materials development by atom lab, (2) materials development by molecular lab and (3) development of theory and basic technology for nano-space research. The paper describes progress of the research with emphasis placed especially on new process technologies.

  12. Tomorrow's Professor, Preparing for an Academic/Research Career

    NASA Astrophysics Data System (ADS)

    Reis, R. M.

    1998-12-01

    Richard M. Reis, author of Tomorrow's Professor: Preparing for Academic Careers in Science and Engineering, and a former executive officer of the Astronomical Society of the Pacific, will discuss the essential elements in preparing for, finding, and succeeding at academic careers in today's higher education environment. He will begin with a no-hold-barred look at the academic enterprise and the important ways it differs for all other institutions in society. The unique nature engineering and science - with a particular emphasis on astronomy and astrophysics - in higher education and the special problems facing new professors in these fields will be looked at next. Dr. Reis will then describe a powerful preparation strategy to make graduate students and postdocs competitive for academic positions while maintaining their options for worthwhile careers in government and industry. He will then explain how to get the offer you want and the start-up package you need to ensure success in your first critical years on the job. Finally, Dr. Reis will summarize essential insights from experienced faculty in all areas of science and engineering on how to develop a rewarding academic career and a quality of life that is both balanced and fulfilling. Plenty of time will be set aside for active interaction and discussion.

  13. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  14. Proceedings: EPRI Cancer Workshop II on laboratory research

    SciTech Connect

    Kavet, R.

    1993-09-01

    A workshop on Electric and Magnetic Fields (EMF) and Cancer was held in Washington, DC, on September 6, 1991, organized by the Electric Power Research Institute (EPRI) EMF Health Studies Program. The primary objective of the EPRI Cancer Research Workshop II was to review the status and future of the Institute`s laboratory research program on EMF and cancer; program direction had been determined based on recommendations from EPRI`s first cancer workshop in July 1988. Research that addressed these recommendations in the intervening three years, either within the EPRI program or in other programs around the world, was reviewed. To identify laboratory research that would be responsive to current needs, workshop participants discussed four experimental systems, key results, and areas for further research. These systems include the mouse skin tumor model, use of C3H/l0T1/2 cells and their derivatives, the nude mouse model, and pineal research. In the final phase of the workshop participants developed recommendations for future research that could help resolve what role, if any, EMF exposure plays in carcinogenesis. EPRI`s EMF Health Studies Program is considering these recommendations within the process of evaluating existing projects and developing new laboratory research.

  15. Nano-G research laboratory for a spacecraft

    NASA Technical Reports Server (NTRS)

    Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)

    1991-01-01

    An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.

  16. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  17. Laboratory Research: A Question of When, Not If.

    DTIC Science & Technology

    1985-03-01

    RD-A±53 298 LABORATORY RESEARCH: A QUESTION OF WHEN NOT IF(U) 1/1 MICHIGAN STATE UNIV EAST LANSING DEPT OF PSYCHOLOGY D R ILGEN MAR 85 TR-85-i N68814...Daniel R. Ilgen Michigan State University To Appear in E. A. Locke (Ed.) (1985) Generalizing from laboratory to field settings: Research findings from...D T IC NR170-961 ELECTE Technical Report 85-1 MAY 3 Department of Psychology and Department of Management Michigan State University B UNCLASSIFIED

  18. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  19. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  20. Academic--practice partnerships in practice research: A cultural shift for health social workers.

    PubMed

    Joubert, Lynette

    2006-01-01

    Academic practice partnerships in practice research support health social workers in engaging in research that is embedded within their practice. This shift in culture enables social workers to join in a health service discourse that is increasingly data -driven and focused on effective practice and demonstrated quality of care for patients. The mentoring model is described as enabling practitioners to superimpose research skills onto existing practice skills. An academic practice research collaboration can reduce the distance between research and practice, contribute to a body of knowledge for health social work and promote health social workers as 'research focused practitioners'.

  1. Public-academic partnerships: a rapid small-grant program for policy-relevant research: motivating public-academic partnerships.

    PubMed

    Rodriguez, Carolyn I; Arbuckle, Melissa R; Simpson, Helen B; Herman, Daniel B; Stroup, T Scott; Skrobala, Anne M; Sederer, Lloyd I; Appel, Anita; Essock, Susan M

    2013-02-01

    To help grow a cadre of researchers with the knowledge and skills to pursue topics of great utility to public mental health systems, the director of the Division of Mental Health Services and Policy Research at Columbia University used funding from the New York State Office of Mental Health (OMH) to create a rapid small-grant program called the OMH Policy Scholars Program. This column uses two case examples to describe how this public-academic partnership exposes early-career researchers to the needs and complexities of large public mental health systems while providing them with senior research and policy mentors to help ensure the success of the scholars' projects and oversee their introduction to and work within the public mental health system. This type of collaboration is one model of encouraging early-career psychiatric researchers to pursue policy-relevant research.

  2. Academics and Advocates: The Role of Consumer Researchers in Public Policy-Making.

    ERIC Educational Resources Information Center

    Brobeck, Stephen

    1988-01-01

    As the marketplace becomes increasingly complex, the need for consumer research involvement in public policy making grows. The most effective way for academics to affect policy is to participate in advocacy groups. (SK)

  3. Chinese Teaching English as a Foreign Language (TEFL) Academics' Perceptions about Research in a Transitional Culture

    ERIC Educational Resources Information Center

    Bai, Li; Millwater, Jan; Hudson, Peter

    2012-01-01

    Research capacity building has become a prominent theme in higher education institutions in China and across the world. However, Chinese Teaching English as a Foreign Language academics' research output has been quite limited. In order to build their research capacity, it is necessary to understand their perceptions about research. This case study…

  4. The changing role of the National Laboratories in materials research

    SciTech Connect

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  5. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    SciTech Connect

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.; Biedermann, Laura; Brady, Patrick Vane.; Kuzio, Stephanie P.; Nenoff, Tina M.; Rempe, Susan

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  6. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  7. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    PubMed

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  8. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    PubMed Central

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service. PMID:21460443

  9. Smart Electronic Laboratory Notebooks for the NIST Research Environment

    PubMed Central

    Gates, Richard S.; McLean, Mark J.; Osborn, William A.

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447

  10. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    SciTech Connect

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  11. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    PubMed

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  12. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  13. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  14. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  15. Laboratory directed research and development FY98 annual report

    SciTech Connect

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.

  16. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  17. The Academic Ethics of Open Access to Research and Scholarship

    ERIC Educational Resources Information Center

    Willinsky, John; Alperin, Juan Pablo

    2011-01-01

    In this article, we present the case for regarding the principles by which scholarly publications are disseminated and shared as a matter of academic ethics. The ethics of access have to do with recognizing people's right to know what is known, as well as the value to humanity of having one of its best forms of arriving at knowledge as widely…

  18. Research Publication as a Strategy to Improve International Academic Ranking

    ERIC Educational Resources Information Center

    Tie, Fatt Hee

    2012-01-01

    Many universities in Asia are now focused on enhancing their global academic competitiveness. Various strategies are implemented to restructure, reform and transform universities aimed at improving ranking in the global university league. One significant strategy is to encourage academicians to place priority on publishing in high-impact…

  19. On Commodification and the Governance of Academic Research

    ERIC Educational Resources Information Center

    Jacob, Merle

    2009-01-01

    The new prominence given to science for economic growth and industry comes with an increased policy focus on the promotion of commodification and commercialization of academic science. This paper posits that this increased interest in commodification is a new steering mechanism for governing science. This is achieved by first outlining what is…

  20. Academic Boot Camp for the Writing of Psychology Research Reports

    ERIC Educational Resources Information Center

    Skues, Jason L.; Wise, Lisa

    2014-01-01

    Herein, we describe the implementation of, and responses to, a structured writing workshop in the form of an academic boot camp. Participants were 42 undergraduate psychology students from a medium-sized Australian university who were completing their major assignment for the semester. A majority of the students expressed satisfaction with the…

  1. Academic Research Record-Keeping: Best Practices for Individuals, Group Leaders, and Institutions

    PubMed Central

    Schreier, Alan A.; Wilson, Kenneth; Resnik, David

    2014-01-01

    During the last half of the 20th century, social and technological changes in academic research groups have challenged traditional research record-keeping practices, making them either insufficient or obsolete. New practices have developed but standards (best practices) are still evolving. Based on the authors’ review and analysis of a number of sources, they present a set of systematically compiled best practices for research record-keeping for academic research groups. These best practices were developed as an adjunct to a research project on research ethics aimed at examining the actual research record-keeping practices of active academic scientists and their impact on research misconduct inquiries. The best practices differentiate and provide separate standards for three different levels within the university: the individual researcher, the research group leader, and the department/institution. They were developed using a combination of literature reviews, surveys of university integrity officials, focus groups of active researchers, and inspection of university policies on research record-keeping. The authors believe these best practices constitute a “snapshot” of the current normative standards for research records within the academic research community. They are offered as ethical and practical guidelines subject to continuing evolution and not as absolute rules. They may be especially useful in training the next generation of researchers. PMID:16377817

  2. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  3. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. Integrating teaching and research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.

    2015-12-01

    Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.

  6. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    SciTech Connect

    Bradbury, Norris E.; Meade, Roger Allen

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  7. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  8. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  9. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  10. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  11. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  12. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  13. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  14. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  15. Telling Tales: A Narrative Research Study of the Experiences of New International Academic Staff at an Australian University

    ERIC Educational Resources Information Center

    Green, Wendy; Myatt, Paula

    2011-01-01

    As the transnational movement of academics continues to increase, some are arguing it is time to look more closely at the challenges faced by new international academic staff. This article reports on a narrative research study exploring the experiences and perceptions of eight international academic staff at a large, research-intensive university…

  16. First international conference on laboratory research for planetary atmospheres

    SciTech Connect

    Fox, K.; Allen, J.E. Jr.; Stief, L.J.; Quillen, D.T.

    1990-05-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  17. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  18. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  19. Laboratory directed research and development program FY 1997

    SciTech Connect

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  20. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  1. EPA Research and Development: National Exposure Research Laboratory

    EPA Science Inventory

    This course is for Biology majors, primarily those in the completed Freshman Biology. Students enrolled in the course are expected to have completed Freshman Biology. With some background in biology as a strt, students begin to think about doing some research as part of their u...

  2. The role of academic research and teaching in addressing health in situations of conflict and instability.

    PubMed

    Collinson, Lucie

    2014-01-01

    The key roles of academic research and teaching in addressing health in situations of conflict and instability are to better inform and better equip actors with the knowledge and skills to address health problems. The four key contributions of research are: quantifying the health problem, examining the contextual circumstances, investigating the epidemiology of health problems and evaluation of health care and humanitarian interventions. The role of teaching can complement research by distributing its' findings in addition to teaching skill sets to apply this knowledge and conduct further research. Academic research and teaching both play imperative roles in enabling more successful approaches in addressing health in situations of conflict and instability.

  3. Integrating Community Expertise into the Academy: South Los Angeles’ Community-Academic Model for Partnered Research

    PubMed Central

    del Pino, Homero E.; Jones, Loretta; Forge, Nell; Martins, David; Morris, D’Ann; Wolf, Kenneth; Baker, Richard; Lucas-Wright, Anna Aziza; Jones, Andrea; Richlin, Laurie; Norris, Keith C.

    2016-01-01

    The Problem Charles R. Drew University (CDU) and community partners wanted to create a structure to transcend traditional community–academic partnerships. They wanted community leaders integrated into CDU’s research goals and education of medical professionals. Purpose of Article To explain the establishment of the Community Faculty Program, a new model of community–academic partnership that integrates community and academic knowledge. Key Points Using CBPR principles, CDU and community partners re-conceptualized the faculty appointment process and established the Division of Community Engagement (DCE). CDU initially offered academic appointments to nine community leaders. Community Faculty contributes to CDU’s governance, education, research, and publication goals. This model engaged communities in translational research and transformed the education of future healthcare professionals. Conclusion The Community Faculty Program is a new vision of partnership. Using a CBPR approach with committed partners, a Community Faculty Program can be created that embodies the values of both the community and the academy. PMID:27346780

  4. Radiological characterization plan for the Tritium Research Laboratory, Sandia National Laboratories/California

    SciTech Connect

    Garcia, T.

    1995-05-01

    In this Radiological Characterization Plan (RCP), the Health Protection Department, 8641 of Sandia National Laboratories/California provides specific information for an assessment of the radiological conditions of Building 968, the Tritium Research Laboratory (TRL), and the TRL Complex area. This RCP provides historical background information on each laboratory within the TRL Complex as related to both radiological conditions and hazardous materials. Since this plan chronicles past and present activities and outlines future actions, a final complex status report will follow the completion of this document. The Health Protection Department, 8641 anticipates that the TRL Complex will ultimately undergo a termination survey; however, this RCP does not include environmental surveys such as soil, vegetation, or ground water. The RCP does provide the basis for a final termination survey plan, when appropriate.

  5. Increasing the ranks of academic researchers in mental health: a multisite approach to postdoctoral fellowship training.

    PubMed

    O'Hara, Ruth; Cassidy-Eagle, Erin L; Beaudreau, Sherry A; Eyler, Lisa T; Gray, Heather L; Giese-Davis, Janine; Hubbard, Jeffrey; Yesavage, Jerome A

    2010-01-01

    This report highlights the use of multisite training for psychiatry and psychology postdoctoral fellows developing careers in academic clinical research in the field of mental health. The objective is to describe a model of training for young investigators to establish independent academic clinical research careers, including (1) program structure and eligibility, (2) program goals and development of a multisite curriculum, (3) use of technology for implementing the program across multiple sites, and (4) advantages and challenges of this multisite approach. In 2000, in collaboration with the Veterans Affairs (VA) Mental Illness Research, Education and Clinical Centers (MIRECCs), the VA Office of Academic Affiliations launched the Special Fellowship Program in Advanced Psychiatry and Psychology. Each of the 10 currently participating VA sites across the United States is affiliated with a MIRECC and an academic medical institution. In the first five years of this fellowship program, 83 fellows (34 psychiatrists and 49 psychologists) have participated. The success of this multisite approach is evidenced by the 58 fellows who have already graduated from the program: 70% have entered academic clinical research positions, and over 25 have obtained independent extramural grant support from the VA or the National Institutes of Health. Multisite training results in a greater transfer of knowledge and capitalizes on the nationwide availability of experts, creating unique networking and learning opportunities for trainees. The VA's multisite fellowship program plays a valuable role in preparing substantial numbers of psychiatry and psychology trainees for a range of academic clinical research and leadership positions in the field of mental health.

  6. Using publication metrics to highlight academic productivity and research impact.

    PubMed

    Carpenter, Christopher R; Cone, David C; Sarli, Cathy C

    2014-10-01

    This article provides a broad overview of widely available measures of academic productivity and impact using publication data and highlights uses of these metrics for various purposes. Metrics based on publication data include measures such as number of publications, number of citations, the journal impact factor score, and the h-index, as well as emerging metrics based on document-level metrics. Publication metrics can be used for a variety of purposes for tenure and promotion, grant applications and renewal reports, benchmarking, recruiting efforts, and administrative purposes for departmental or university performance reports. The authors also highlight practical applications of measuring and reporting academic productivity and impact to emphasize and promote individual investigators, grant applications, or department output.

  7. Using Publication Metrics to Highlight Academic Productivity and Research Impact

    PubMed Central

    Carpenter, Christopher R.; Cone, David C.; Sarli, Cathy C.

    2016-01-01

    This article provides a broad overview of widely available measures of academic productivity and impact using publication data and highlights uses of these metrics for various purposes. Metrics based on publication data include measures such as number of publications, number of citations, the journal impact factor score, and the h-index, as well as emerging metrics based on document-level metrics. Publication metrics can be used for a variety of purposes for tenure and promotion, grant applications and renewal reports, benchmarking, recruiting efforts, and administrative purposes for departmental or university performance reports. The authors also highlight practical applications of measuring and reporting academic productivity and impact to emphasize and promote individual investigators, grant applications, or department output. PMID:25308141

  8. Team-based learning in the gross anatomy laboratory improves academic performance and students' attitudes toward teamwork.

    PubMed

    Huitt, Tiffany W; Killins, Anita; Brooks, William S

    2015-01-01

    As the healthcare climate shifts toward increased interdisciplinary patient care, it is essential that students become accomplished at group problem solving and develop positive attitudes toward teamwork. Team-based learning (TBL) has become a popular approach to medical education because of its ability to promote active learning, problem-solving skills, communication, and teamwork. However, its documented use in the laboratory setting and physical therapy education is limited. We used TBL as a substitute for one-third of cadaveric dissections in the gross anatomy laboratories at two Doctor of Physical Therapy programs to study its effect on both students' perceptions and academic performance. We surveyed students at the beginning and completion of their anatomy course as well as students who had previously completed a traditional anatomy course to measure the impact of TBL on students' perceptions of teamwork. We found that the inclusion of TBL in the anatomy laboratory improves students' attitudes toward working with peers (P < 0.01). Non-TBL students had significantly lower attitudes toward teamwork (P < 0.01). Comparison of academic performance between TBL and non-TBL students revealed that students who participated in TBL scored significantly higher on their first anatomy practical examination and on their head/neck written examination (P < 0.001). When asked to rate their role in a team, a 10.5% increase in the mean rank score for Problem Solver resulted after the completion of the TBL-based anatomy course. Our data indicate that TBL is an effective supplement to cadaveric dissection in the laboratory portion of gross anatomy, improving both students' grades and perceptions of teamwork.

  9. Laboratory directed research and development fy1999 annual report

    SciTech Connect

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD Program also

  10. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  11. Laboratory Directed Research and Development Program FY98

    SciTech Connect

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  12. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  13. Situated learning in translation research training: academic research as a reflection of practice

    PubMed Central

    Risku, Hanna

    2016-01-01

    ABSTRACT Situated learning has become a dominant goal in the translation classroom: translation didactics is being developed in a learner-, situation- and experience-based direction, following constructivist and participatory teaching philosophies. However, the explicit use of situated approaches has, so far, not been the centre of attention in translation theory teaching and research training. As a consequence, translation theory often remains unconnected to the skills learned and topics tackled in language-specific translation teaching and the challenges experienced in real-life translation practice. This article reports on the results of an exploratory action research project into the teaching of academic research skills in translation studies at Master’s level. The goal of the project is to develop and test possibilities for employing situated learning in translation research training. The situatedness perspective has a double relevance for the teaching project: the students are involved in an authentic, ongoing research project, and the object of the research project itself deals with authentic translation processes at the workplace. Thus, the project has the potential to improve the expertise of the students as both researchers and reflective practitioners. PMID:27499805

  14. Situated learning in translation research training: academic research as a reflection of practice.

    PubMed

    Risku, Hanna

    2016-01-02

    Situated learning has become a dominant goal in the translation classroom: translation didactics is being developed in a learner-, situation- and experience-based direction, following constructivist and participatory teaching philosophies. However, the explicit use of situated approaches has, so far, not been the centre of attention in translation theory teaching and research training. As a consequence, translation theory often remains unconnected to the skills learned and topics tackled in language-specific translation teaching and the challenges experienced in real-life translation practice. This article reports on the results of an exploratory action research project into the teaching of academic research skills in translation studies at Master's level. The goal of the project is to develop and test possibilities for employing situated learning in translation research training. The situatedness perspective has a double relevance for the teaching project: the students are involved in an authentic, ongoing research project, and the object of the research project itself deals with authentic translation processes at the workplace. Thus, the project has the potential to improve the expertise of the students as both researchers and reflective practitioners.

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  16. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  17. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  18. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  19. Writing Groups, Change and Academic Identity: Research Development as Local Practice.

    ERIC Educational Resources Information Center

    Lee, Alison; Boud, David

    2003-01-01

    Examines the use of writing groups as a strategy for research development, asserting that writing is best considered a starting point of the research process and that fostering academic writing is a useful place to do research development work. The article describes the use of various writing groups over 3 years, exploring the responses of leaders…

  20. Socio-Cultural Adaptation, Academic Adaptation and Satisfaction of International Higher Degree Research Students in Australia

    ERIC Educational Resources Information Center

    Yu, Baohua; Wright, Ewan

    2016-01-01

    The number of international higher degree research students has grown at a significant rate in recent years, with Australia becoming a hub for attracting such students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in…

  1. Connecting Higher Education Research in Japan with the International Academic Community

    ERIC Educational Resources Information Center

    Yonezawa, Akiyoshi

    2015-01-01

    This study examines the historical, current, and future challenges of higher education research in Japan within a global context. Japanese higher education research has been strongly influenced by the international academic community. At the same time, higher education researchers in Japan have participated in international projects, and Japan has…

  2. Stakeholder Perspectives on Creating and Maintaining Trust in Community--Academic Research Partnerships

    ERIC Educational Resources Information Center

    Frerichs, Leah; Kim, Mimi; Dave, Gaurav; Cheney, Ann; Hassmiller Lich, Kristen; Jones, Jennifer; Young, Tiffany L.; Cene, Crystal W.; Varma, Deepthi S.; Schaal, Jennifer; Black, Adina; Striley, Catherine W.; Vassar, Stefanie; Sullivan, Greer; Cottler, Linda B.; Brown, Arleen; Burke, Jessica G.; Corbie-Smith, Giselle

    2017-01-01

    Community-academic research partnerships aim to build stakeholder trust in order to improve the reach and translation of health research, but there is limited empirical research regarding effective ways to build trust. This multisite study was launched to identify similarities and differences among stakeholders' perspectives of antecedents to…

  3. Buying-Out Teaching for Research: The Views of Academics and Their Managers

    ERIC Educational Resources Information Center

    Smith, Erica; Smith, Andrew

    2012-01-01

    This paper reports on the practice of buying-out teaching to create time for research. A study was carried out, at a regional university in Australia, with academics in receipt of research grant funds (and therefore with the means to buy out teaching), Heads of School, and the Deputy Vice Chancellors responsible respectively for research and for…

  4. How Europe Shapes Academic Research: Insights from Participation in European Union Framework Programmes

    ERIC Educational Resources Information Center

    Primeri, Emilia; Reale, Emanuela

    2012-01-01

    This article describes the effects of participating in European Union Framework Programmes (EUFPs) at the level of research units and researchers. We consider EUFPs as policy instruments that contribute to the Europeanisation of academic research and study the changes they produce with respect to: 1) the organisation and activities of Departments,…

  5. Breaking down Barriers: Academic Obstacles of First-Generation Students at Research Universities

    ERIC Educational Resources Information Center

    Stebleton, Michael J.; Soria, Krista M.

    2012-01-01

    The purpose of this study was to examine the perceived academic obstacles of first-generation students in comparison to non-first-generation students. Using the Student Experience in the Research University (SERU) completed by approximately 58,000 students from six research universities, the researchers used nonparametric bootstrapping to analyze…

  6. Improving Minority Student Success: Crossing Boundaries and Making Connections between Theory, Research, and Academic Planning.

    ERIC Educational Resources Information Center

    Keeton, Morris; Clagett, Craig A.; Engleberg, Isa N.

    In an effort to cross boundaries and make connections between theory, research, and academic planning, Prince George's Community College in Maryland (PGCC) and the University of Maryland University College's Institute for Research on Adults in Higher Education (IRAHE) developed a partnership using national and institutional research to link theory…

  7. Sources of Research Confidence for Early Career Academics: A Qualitative Study

    ERIC Educational Resources Information Center

    Hemmings, Brian

    2012-01-01

    There is a paucity of studies investigating how early career academics (ECAs) form attitudes towards aspects of their work and gain skills in research, teaching and service. This is especially the case with respect to research. A review of the pertinent literature revealed the prominence of a notion of research self-efficacy (or confidence) and…

  8. Quality Criteria of Research Perceived by Academics in Social Sciences at Higher Education

    ERIC Educational Resources Information Center

    Bakioglu, Aysen; Kurnaz, Ozlem

    2009-01-01

    The purpose of this study is to examine the problem of research quality in social sciences at higher education. Quality of research produced at higher education started to be questioned more often as research became the major factor determining academics' promotion and fund allocation to universities. In the study, we aimed to reveal how academics…

  9. Enhancing Quality Learning through Experiences of Research-Based Learning: Implications for Academic Development

    ERIC Educational Resources Information Center

    Brew, Angela; Jewell, Evan

    2012-01-01

    Research into undergraduate research and inquiry in Australian universities was conducted during an Australian Learning and Teaching Council National Teaching Fellowship. In this paper we share experiences of this project as a student and an academic, reflecting on key challenges, including undergraduate research as an immersion experience for…

  10. Academic Research at a South African Higher Education Institution: Quality Issues

    ERIC Educational Resources Information Center

    Schulze, S.

    2008-01-01

    The aim of the research was to critically analyse how a university context influences the quality of academics' research output. Wenger's social theory of learning was used as theoretical framework. The investigation involved an ethnographic case study of the research culture at one college at the institution. Data collection was mainly by means…

  11. Conceptualising Higher Education Research and/or Academic Development as "Fields": A Critical Analysis

    ERIC Educational Resources Information Center

    Clegg, Sue

    2012-01-01

    This paper calls into question the idea that we can simply think about higher education as a research field and explores different meanings of the term field. It asks whether there are related fields: research into higher education, academic development and disciplinary teaching research, rather than one. The approach of the paper is conceptual,…

  12. Facilitating Democratic Professional Development: Exploring the Double Role of Being an Academic Action Researcher

    ERIC Educational Resources Information Center

    Olin, Anette; Karlberg-Granlund, Gunilla; Furu, Eli Moksnes

    2016-01-01

    This article focuses on the double role of the academic action researcher working as facilitator and researcher in democratic professional development projects. The inquiry is based on three partnership projects: "research circles" in Sweden, "dialogue conferences" in Norway and "tailored professional development" in…

  13. Rise of the Science and Engineering Postdoctorate and the Restructuring of Academic Research

    ERIC Educational Resources Information Center

    Cantwell, Brendan; Taylor, Barrett J.

    2015-01-01

    Since the 1980s the number of postdocs employed at U.S. research universities has increased dramatically as has the importance of postdocs to academic research. Growth in postdoc employment has coincided with increased dependence on external research funds. Using panel regression analysis, this article explores the organizational characteristics…

  14. Safety Tips: Academic Laboratory Waste Disposal: Yes, You Can Get Rid of that Stuff Legally!

    ERIC Educational Resources Information Center

    Young, Jay A.

    1983-01-01

    Discusses three methods for removing wastes from educational laboratories. These include paying someone with Environmental Protection Agency (EPA) permits, doing part of the work before an EPA contractor carries out final steps, or reducing magnitude of future disposal problems by changing present laboratory procedures. Includes comments on…

  15. Affordances, Barriers, and Motivations: Engagement in Research Activity by Academics at the Research-Oriented University in Vietnam

    ERIC Educational Resources Information Center

    Nguyen, Quy; Klopper, Christopher; Smith, Calvin

    2016-01-01

    The importance of academics undertaking research and publishing their research results is emphasised by universities. Engagement in research is recognised as an effective means to increase a university's profile. This study applied a qualitative approach to explore affordances, barriers, and motivations towards the engagement in research…

  16. Strengthening Institutional Research Administration in Uganda: A Case Study on Developing Collaborations among Academic and Research Institutions

    ERIC Educational Resources Information Center

    Kakande, Nelson; Namirembe, Regina; Kaye, Dan K.; Mugyenyi, Peter N.

    2012-01-01

    Despite the presence of several funded research projects at academic and research institutions in sub-Saharan Africa, the quality of the pre/post grant award process in these institutions is inadequate. There is a need to strengthen research administration through infrastructural, organizational, and human resource development to match the dynamic…

  17. A Community-Academic Partnered Grant Writing Series to Build Infrastructure for Partnered Research

    PubMed Central

    King, Keyonna M.; Pardo, Yvette-Janine; Norris, Keith C.; Diaz-Romero, Maria; Morris, D’Ann; Vassar, Stefanie D.; Brown, Arleen F.

    2016-01-01

    Grant writing is an essential skill necessary to secure financial support for community programs and research projects. Increasingly, funding opportunities for translational biomedical research require studies to engage community partners, patients, or other stakeholders in the research process to address their concerns. However, there is little evidence on strategies to prepare teams of academic and community partners to collaborate on grants. This paper presents the description and formative evaluation of a two-part community-academic partnered grant writing series designed to help community organizations and academic institutions build infrastructure for collaborative research projects using a partnered approach. The first phase of the series was a half-day workshop on grant readiness, which was open to all interested community partners. The second phase, open only to community-academic teams that met eligibility criteria, was a 12-week session that covered partnered grant writing for foundation grants and National Institutes of Health grants. Participants in both phases reported an increase in knowledge and self-efficacy for writing partnered proposals. At one year follow-up, participants in phase two had secured approximately $1.87 million in funding. This community-academic partnered grant writing series helped participants obtain proposal development skills and helped community-academic teams successfully compete for funding. PMID:26365589

  18. A Community-Academic Partnered Grant Writing Series to Build Infrastructure for Partnered Research.

    PubMed

    King, Keyonna M; Pardo, Yvette-Janine; Norris, Keith C; Diaz-Romero, Maria; Morris, D'Ann; Vassar, Stefanie D; Brown, Arleen F

    2015-10-01

    Grant writing is an essential skill necessary to secure financial support for community programs and research projects. Increasingly, funding opportunities for translational biomedical research require studies to engage community partners, patients, or other stakeholders in the research process to address their concerns. However, there is little evidence on strategies to prepare teams of academic and community partners to collaborate on grants. This paper presents the description and formative evaluation of a two-part community-academic partnered grant writing series designed to help community organizations and academic institutions build infrastructure for collaborative research projects using a partnered approach. The first phase of the series was a half-day workshop on grant readiness, which was open to all interested community partners. The second phase, open only to community-academic teams that met eligibility criteria, was a 12-week session that covered partnered grant writing for foundation grants and National Institutes of Health grants. Participants in both phases reported an increase in knowledge and self-efficacy for writing partnered proposals. At 1-year follow-up, participants in Phase 2 had secured approximately $1.87 million in funding. This community-academic partnered grant writing series helped participants obtain proposal development skills and helped community-academic teams successfully compete for funding.

  19. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  20. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  1. Manned earth orbital laboratories to perform communications/navigation research.

    NASA Technical Reports Server (NTRS)

    Waltz, D. M.; Quantock, C. W.

    1972-01-01

    Review of the feasibility of manned earth orbiting laboratories in the 1980s for solving problems identified with operational communication and navigation systems. A program of experiments recommended for implementation in the 1980 to 1990 period is presented. Equipment for conducting experiments is listed. Conceptual designs of laboratories which could be carried to orbit by the forthcoming NASA Space Shuttle Orbiter and then operated on orbit by an experimenter crew are discussed. Studies of the expected benefits, together with investigations of the configurations, mission considerations, and equipment selection result in the conclusion that manned communication/navigation research laboratories in earth orbit would be practical and effective, and that the experiments performed could derive meaningful information having application to future unmanned operational systems.

  2. Laboratory Directed Research and Development Program FY2004

    SciTech Connect

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions

  3. Opportunity for academic research in a low-gravity environment - Crystal growth

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Wargo, M. J.; Witt, A. F.

    1986-01-01

    The history of basic and applied research on crystal growth (CG), especially of semiconductor materials, is reviewed, stressing the dominance (at least in the U.S.) of industrial R&D projects over academic programs and the need for more extensive fundamental investigations. The NASA microgravity research program and the recommendations of the University Space Research Association are examined as they affect the availability of space facilities for academic CG research. Also included is a report on ground experiments on the effectiveness of magnetic fields in controlling vertical Bridgman CG and melt stability, using the apparatus employed in the Apollo-Soyuz experiments (Witt et al., 1978); the results are presented in graphs and briefly characterized. The role of NASA's microgravity CG program in stimulating academic work on CG, the importance of convection effects, CG work on materials other than semiconductors, and NSF support of CG research are discussed in a comment by R. F. Sekerka.

  4. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... science research. The panel meetings will be open to the public for approximately one-half hour at...

  5. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  6. Laboratory directed research and development program FY 1999

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  8. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  9. Integrating responsible conduct of research education into undergraduate biochemistry and molecular biology laboratory curricula.

    PubMed

    Hendrickson, Tamara L

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these agencies offer useful templates for the introduction of RCR materials into courses worldwide. Many academic programs already offer courses or workshops in RCR for their graduate students and for undergraduate science majors and/or researchers. Introducing RCR into undergraduate biochemistry and molecular biology laboratory curricula is another, highly practical way that students can be exposed to these important topics. In fact, a strong argument can be made for integrating RCR into laboratory courses because these classes often introduce students to a scientific environment like that they might encounter in their careers after graduation. This article focuses on general strategies for incorporating explicit RCR education into biochemistry and molecular biology laboratory coursework using the topics suggested by NIH as a starting point.

  10. Research in the Mont Terri Rock laboratory: Quo vadis?

    NASA Astrophysics Data System (ADS)

    Bossart, Paul; Thury, Marc

    During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through

  11. Research activities on robotics at the Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Kakikura, M.

    Various robotics research activities carried out at the Electrotechnical Laboratory in Japan are discussed. The history of robotics research, which has been going on since the late 1960s as a part of artificial-intelligence research is described. Consideration is given to the full-scale robot system called ETL-ROBOT Mk. 1, to the carpenter robot, to the intelligent locomotive-handling robot, to the flexible finger, and to the hand-eye robot. The present aspect of the research in relation to past results is examined and includes the development of new robot systems such as a vision system based on a three-dimensional model, an interactive modeling system, a direct-drive manipulator, a robot vision language, and a language-aided robotic teleoperation system. Research themes planned for the near future include manipulation techniques, sensor techniques, autonomous robot control techniques, advanced teleoperation techniques, and system totalizing techniques.

  12. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  13. Internal-control weaknesses at Department of Energy research laboratories

    SciTech Connect

    Not Available

    1982-12-15

    Two requests were made by Chairman, Permanent Subcommittee on Investigations, Senate Committee on Governmental Affairs, that GAO review the vulnerability of selected Department of Energy (DOE) research facilities to fraud, waste, and abuse. The review examined internal controls over payroll, procurement, and property management at six government-owned, contractor-operated (GOCO) research laboratories (Sandia, Hanford, Argonne, Oak Ridge, Fermi, and Brookhaven) and four government-owned, government-operated energy technology centers (Bartlesville, Laramie, Morgantown, and Pittsburgh). In fiscal 1982, DOE budgeted over $3 billion for its GOCO facilities and over $230 million for its energy technology centers. GAO noted specific problems at a number of the laboratories in each of the areas covered. In many instances, DOE has acknowledged the problems and corrective action is underway or is planned.

  14. US Naval Research Laboratory's Current Space Photovoltaic Experiemtns

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael

    2008-09-01

    The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.

  15. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  16. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    W. Wester

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  17. Executive summary of the CAEP 2014 Academic Symposium: How to make research succeed in your department.

    PubMed

    Stiell, Ian G; Artz, Jennifer D; Perry, Jeffrey; Vaillancourt, Christian; Calder, Lisa

    2015-05-01

    The vision of the recently created Canadian Association of Emergency Physicians (CAEP) Academic Section is to promote high-quality emergency patient care by conducting world-leading education and research in emergency medicine. The Academic Section plans to achieve this goal by enhancing academic emergency medicine primarily at Canadian medical schools and teaching hospitals. It seeks to foster and develop education, research, and academic leadership amongst Canadian emergency physicians, residents, and students. In this light, the Academic Section began in 2013 to hold the annual Academic Symposia to highlight best practices and recommendations for the three core domains of governance and leadership, education scholarship, and research. Each year, members of three panels are asked to review the literature, survey and interview experts, achieve consensus, and present their recommendations at the Symposium (2013, Education Scholarship; 2014, Research; and 2015, Governance and Funding). Research is essential to medical advancement. As a relatively young specialty, emergency medicine is rapidly evolving to adapt to new diagnostic tools, the challenges of crowding in emergency departments, and the growing needs of emergency patients. There is significant variability in the infrastructure, support, and productivity of emergency medicine research programs across Canada. All Canadians benefit from an investigation of the means to improve research infrastructure, training programs, and funding opportunities. Such an analysis is essential to identify areas for improvement, which will support the expansion of emergency medicine research. To this end, physician-scientist leaders were gathered from across Canada to develop pragmatic recommendations on the improvement of emergency medicine research through a comprehensive analysis of current best practices, systematic literature reviews, stakeholder surveys, and expert interviews.

  18. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  19. US Army Research Laboratory Directed Energy Internship Program 2014

    DTIC Science & Technology

    2015-11-01

    titanium sapphire (Ti:sapph) laser was used that was pumped with a frequency doubled Spectra-Physics neodymium -doped yttrium vanadate laser. The 8...efficiency of several neodymium (Nd):yttrium aluminum garnet (YAG) samples of different concentrations and therefore, the technique will continue to be...Nd neodymium NPs nanoparticles NRL US Naval Research Laboratory O oxygen PMT photomultiplier tube SBS stimulated Brillouin scattering SD

  20. Laser simulation at the Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grosek, Jacob; Naderi, Shadi; Oliker, Benjamin; Lane, Ryan; Dajani, Iyad; Madden, Timothy

    2017-01-01

    The physics of high brightness, high-power lasers present a variety of challenges with respect to simulation. The Air Force Research Laboratory is developing high-fidelity models for Yb-doped, Tm-doped, and Raman fiber amplifiers, hollow-core optical fiber gas lasers, and diode pumped alkali lasers. The approach to simulation and the physics specific to each laser technology are described, along with highlights of results, and relevant modeling considerations and limitations.

  1. Inertial Confinement Fusion Research at LOS Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Albright, B. J.; Alexander, D. J.; Barnes, Cris W.; Bradley, P. A.; Cobble, J. A.; Cooley, J. C.; Cooley, J. H.; Day, R. D.; DeFriend, K. A.; Delamater, N. D.; Dodd, E. S.; Fatherley, V. E.; Fernandez, J. C.; Flippo, K. A.; Grim, G. P.; Goldman, S. R.; Greenfield, S. R.; Herrmann, H. W.; Hoffman, N. M.; Holmes, R. L.; Johnson, R. P.; Keiter, P. A.; Kline, J. L.; Kyrala, G. A.; Lanier, N. E.; Loomis, E.; Lopez, F. E.; Luo, S.; Mack, J. M.; Magelssen, G. R.; Montgomery, D. S.; Nobile, A.; Oertel, J. A.; Reardon, P.; Rose, H. A.; Schmidt, D.; Schmitt, M. J.; Seifter, A.; Shimada, T.; Swift, D. C.; Tierney, T. E.; Welser-Sherrill, L.; Wilke, M. D.; Wilson, D. C.; Workman, J.; Yin, L.

    2009-07-01

    Inertial confinement fusion research at Los Alamos National Laboratory is focused on high-leverage areas of thermonuclear ignition to which LANL can apply its historic strengths and that are complementary to high-energy-density-physics topics. Using the Trident and Omega laser facilities, experiments are pursued in laser-plasma instabilities, symmetry, Be technologies, neutron and fusion-product diagnostics, and defect hydrodynamics.

  2. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  4. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  5. Globalisation of Researcher Mobility within the UK Higher Education: Explaining the Presence of Overseas Academics in the UK Academia

    ERIC Educational Resources Information Center

    Khattab, Nabil; Fenton, Steve

    2016-01-01

    In this paper, we argue that the power structure that lies within the UK elite universities dictates a division of labour through which the inflows of overseas academics into the UK academic labour markets are skewed towards these elite academic institutions where they are employed primarily in research-only posts. These posts, are less valued and…

  6. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  7. 1996 Laboratory directed research and development annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  8. Reservoir technology research at the Idaho National Engineering Laboratory

    SciTech Connect

    Stiger, S.G.; Renner, J.L.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

  9. Environmental Research Laboratories annual report for 1979 and 1980

    SciTech Connect

    Not Available

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included.

  10. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  11. Women Academics and Research Productivity: An International Comparison

    ERIC Educational Resources Information Center

    Aiston, Sarah Jane; Jung, Jisun

    2015-01-01

    In the prestige economy of higher education, research productivity is highly prized. Previous research indicates, however, a gender gap with respect to research output. This gap is often explained by reference to familial status and responsibilities. In this article, we examine the research productivity gender gap from an international perspective…

  12. Remote sensing research activities related to academic institutions

    NASA Technical Reports Server (NTRS)

    Myers, V. I.

    1980-01-01

    The role of research in the educational setting is discussed. Curriculum developments for integrating teaching and research are described. Remote sensing technology is used as an example of bridging the gap between research and application. Recommendations are presented for strengthing research groups.

  13. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    SciTech Connect

    W. Wester

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  14. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  15. Enhancing research in academic radiology departments: recommendations of the 2003 Consensus Conference.

    PubMed

    Alderson, Philip O; Bresolin, Linda B; Becker, Gary J; Thrall, James H; Dunnick, N Reed; Hillman, Bruce J; Lee, Joseph K T; Nagy, Edward C

    2004-08-01

    Opportunities for funded radiologic research are greater than ever, and the amount of federal funding coming to academic radiology departments is increasing. Even so, many medical school-based radiology departments have little or no research funding. Accordingly, a consensus panel was convened to discuss ways to enhance research productivity and broaden the base of research strength in as many academic radiology departments as possible. The consensus panel included radiologists who have leadership roles in some of the best-funded research departments, radiologists who direct other funded research programs, and radiologists with related expertise. The goals of the consensus panel were to identify the attributes associated with successful research programs and to develop an action plan for radiology research based on these characteristics.

  16. The Emergence of Research in the South African Academic Development Movement

    ERIC Educational Resources Information Center

    Boughey, Chrissie; Niven, Penny

    2012-01-01

    This paper uses an analytical framework developed from the work of philosopher Roy Bhaskar and sociologist Margaret Archer to explore the emergence of a body of research on teaching and learning in South African higher education. This research, generated in a field known as "Academic Development" in South Africa and as "Educational…

  17. The Unacknowledged Value of Female Academic Labour Power for Male Research Careers

    ERIC Educational Resources Information Center

    Angervall, Petra; Beach, Dennis; Gustafsson, Jan

    2015-01-01

    Academic work in Sweden's higher education system is changing character. Distinctly different career pathways are emerging, as facilities for developing research careers and capital have become both more restricted and more dependent on external funding. These developments are in focus in the present article. Based on ethnographic research and a…

  18. The Continuing Behavioural Modification of Academics since the 1992 Research Assessment Exercise.

    ERIC Educational Resources Information Center

    Talib, Ameen Ali

    2001-01-01

    Surveyed academics for the impact of Britain's Research Assessment Exercise (RAE), an assessment and funding mechanism, on their research behavior. Compared results to an earlier study (McNay, 1997) for significant differences. Found that the RAE time scale and the perceived preferences of RAE panel members are increasingly influencing choice of…

  19. The University-Academic Connection in Research: Corporate Purposes and Social Responsibilities.

    ERIC Educational Resources Information Center

    David, E. E., Jr.

    An increase in industry-supported academic research is economically and socially desirable. This refers not to industrial philanthropy but to research consistent with a commercial "mission." This increased coupling is advocated because there is fine science and technique created in academia which is not effectively coupled to the nation's…

  20. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    ERIC Educational Resources Information Center

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…

  1. Institutional Strategies for Capturing Socio-Economic Impact of Academic Research

    ERIC Educational Resources Information Center

    Scoble, Rosa; Dickson, Keith; Hanney, Steve; Rodgers, G. J.

    2010-01-01

    Evaluation of socio-economic impact is an emerging theme for publicly-funded academic research. Within this context, the paper suggests that the concept of institutional research capital be expanded to include the capture and evaluation of socio-economic impact. Furthermore, it argues that understanding the typology of impacts and the tracking…

  2. Developing a Sustainable Research Culture in an Independent Academic Medical Center

    ERIC Educational Resources Information Center

    Joyce, Jeffrey N.

    2013-01-01

    Independent academic medical centers (IAMC) are challenged to develop and support a research enterprise and maintain primary goals of healthcare delivery and financial solvency. Strategies for promoting translational research have been shown to be effective at institutions in the top level of federal funding, but not for smaller IAMCs. The…

  3. Bridging the Gap between Academic Research and Regional Development in the Basque Country

    ERIC Educational Resources Information Center

    Karlsen, James; Larrea, Miren; Wilson, James R.; Aranguren, Mari Jose

    2012-01-01

    The discussion in this article focuses on how the gap between academic knowledge and regional development can be bridged, creating conditions for change processes between researchers and regional agents. Institutional entrepreneurs can create regional development organisations and research organisations, but in order to fulfil regional needs it is…

  4. Creative Research Ethics in the Enterprise University: What Price Academic Freedom?

    ERIC Educational Resources Information Center

    O'Neill, John

    2013-01-01

    Between 1990 and 2010, the New Zealand university adopted an enterprise form. The nature of academic work changed commensurate with changes in the external regulatory and funding environment, the internal performative research culture, the proliferation of trans-national researcher networks, and the growing managerial codification of acceptable…

  5. Industrial and Academic Collaboration: Hybrid Models for Research and Innovation Diffusion

    ERIC Educational Resources Information Center

    de Freitas, Sara; Mayer, Igor; Arnab, Sylvester; Marshall, Ian

    2014-01-01

    This paper explores how, in the light of global economic downturn and rising student populations, new academic-industrial models for research collaboration based upon specific technological expertise and knowledge can be developed as potential mechanisms for preserving and extending central university research infrastructure. The paper explores…

  6. Technology to Support Writing by Students with Learning and Academic Disabilities: Recent Research Trends and Findings

    ERIC Educational Resources Information Center

    Peterson-Karlan, George R.

    2011-01-01

    The trends and findings from a descriptive analysis of 25 years of research studies examining the effectiveness of technology to support the compositional writing of students with learning and academic disabilities are presented. A corpus of 85 applied research studies of writing technology effectiveness was identified from among 249 items in the…

  7. The Role of Research in Academic Psychiatric Departments: A Case Study

    ERIC Educational Resources Information Center

    Pato, Carlos; Abulseoud, Osama; Pato, Michelle

    2011-01-01

    Objective: The authors demonstrate the role that research can play in the development of an academic department of psychiatry. Method: The authors explore the challenges and achievements in the transition of one department from a strong clinically- and educationally-centered department to one with an equally strong research focus. Results: The…

  8. Academic Teamwork among Members of the National Researchers System in Tamaulipas

    ERIC Educational Resources Information Center

    Guzman-Acuña, Teresa; Guzman-Acuña, Josefina; Sánchez-Rodriguez, Ivan

    2016-01-01

    The objective of this article is to examine the participation of Mexican researchers in the state of Tamaulipas who are members of Mexico's National Researchers System (SNI) and are working in academic groups. The paper also seeks to understand their perceptions in relation to the usefulness of this structured System to their individual research…

  9. Government Research Evaluations and Academic Freedom: A UK and Australian Comparison

    ERIC Educational Resources Information Center

    Martin-Sardesai, Ann; Irvine, Helen; Tooley, Stuart; Guthrie, James

    2017-01-01

    Performance management systems have been an inevitable consequence of the development of government research evaluations (GREs) of university research, and have also inevitably affected the working life of academics. The aim of this paper is to track the development of GREs over the past 25 years, by critically evaluating their adoption in the UK…

  10. Inside the Triple Helix: An Integrative Conceptual Framework of the Academic Researcher's Activities, a Systematic Review

    ERIC Educational Resources Information Center

    Halilem, Norrin

    2010-01-01

    In the Triple Helix of University-Industry-Government relations, the academic researcher plays a predominant role as he participates in research, which provides opportunities for innovation; in teaching, which develops highly qualified personnel; and in entrepreneurialism, which represents the transformation of knowledge in a more usable form, and…

  11. Building Sustainable Academic Research in a "Teaching and Learning" Intensive Environment

    ERIC Educational Resources Information Center

    Jerrams, Steve; Betts, Tony; Carton, Janet

    2008-01-01

    Academic research is increasingly interdisciplinary, inter-institutional and international. In this context, creating and maintaining the balance in the nexus between research, teaching and learning and industry interaction is central to the operation and reputation of a university-level institute. In seeking sustainability, the perennial…

  12. Stepping out of the Academic Brew: Using Critical Research to Break Down Hierarchies of Knowledge Production

    ERIC Educational Resources Information Center

    Kress, Tricia M.

    2011-01-01

    Critical theory and critical research are undeniably useful for revealing oppressive social structures and challenging the status quo in the realm of grand theory; yet, they are also useful for creating knowledge structures when academics deploy them on the ground. This article explores how critical theory and critical research can be used to…

  13. Research Cultures in English and Scottish University Education Departments: An Exploratory Study of Academic Staff Perceptions

    ERIC Educational Resources Information Center

    Holligan, Chris; Wilson, Michael; Humes, Walter

    2011-01-01

    The paper reports the findings of a small-scale qualitative investigation into academic staff perceptions of research cultures across 10 English and Scottish university education departments. The study sheds light on four interrelated issues: the nature of research cultures, perceived facilitators, perceived constraints and the emotional landscape…

  14. The need for econometric research in laboratory animal operations.

    PubMed

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  15. Economics and Health Reform: Academic Research and Public Policy.

    PubMed

    Glied, Sherry A; Miller, Erin A

    2015-08-01

    Two prior studies, conducted in 1966 and in 1979, examined the role of economic research in health policy development. Both concluded that health economics had not been an important contributor to policy. Passage of the Affordable Care Act offers an opportunity to reassess this question. We find that the evolution of health economics research has given it an increasingly important role in policy. Research in the field has followed three related paths over the past century-institutionalist research that described problems; theoretical research, which proposed relationships that might extend beyond existing institutions; and empirical assessments of structural parameters identified in the theoretical research. These three strands operating in concert allowed economic research to be used to predict the fiscal and coverage consequences of alternative policy paths. This ability made economic research a powerful policy force. Key conclusions of health economics research are clearly evident in the Affordable Care Act.

  16. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  17. Residency evaluation and adherence design study: Young ophthalmologists’ perception of their residency programs II: Academics and Research dissertation

    PubMed Central

    Gogate, Parikshit Madhav; Biswas, Partha; Natarajan, Sundaram; Nayak, Barun Kumar; Gopal, Santhan; Shah, Yogesh; Basak, Samar K

    2017-01-01

    Purpose: To know the perception of young ophthalmologists about their dissertation and academics during residency training in order to improve the research output during present residency programs in India. Methods: A survey was conducted by Academic and Research Committee of the All India Ophthalmological Society, the world's second largest ophthalmic professional's organization, in 2014–2016 of young ophthalmologists (those who completed residency between 2005 and 2012) to gauge usefulness of dissertation or thesis during postgraduate residency. Results: There were 1005 respondents, of whom 531 fulfilled inclusion criteria. On a scale of 0–10, residents rated level of supervision of their dissertation as adequate (mean 5.9/10, standard deviation [SD] = 3.1, median = 6). The level of infrastructure available was for dissertation rated as 5.9/10 (median = 7, SD = 3.1), and 6.2/10 was the score that residents said about value added by the dissertation (median = 7). The dissertation was presented at local (33.5%), state (28.1%), national (15.4%), and international (4%) levels. Students, not supervisors, did most of the local and state level presentations. It was published in some forms at local 210 (39.5%), state (140, 26.4%), national (94, 17.7%), and international (39, 7.3%) levels. On a scale of 0–4, seminars (3/4) and case presentations were (3/4) rated higher than didactic lectures (2.2/4), journal clubs (2.2/4), and wet laboratory (1.1/4). Conclusion: Peer-reviewed publications from Indian residency training dissertations were few. Residents felt dissertation added value to their training, but there was a huge range among the responses. Journal clubs and wet laboratories were not graded high in academic programs, unlike seminars and case presentations. PMID:28300734

  18. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    PubMed

    Guerrero, Santiago; Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-Y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  19. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute

    PubMed Central

    Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development. PMID:27479083

  20. Analytic model for academic research productivity having factors, interactions and implications

    PubMed Central

    2011-01-01

    Financial support is dear in academia and will tighten further. How can the research mission be accomplished within new restraints? A model is presented for evaluating source components of academic research productivity. It comprises six factors: funding; investigator quality; efficiency of the research institution; the research mix of novelty, incremental advancement, and confirmatory studies; analytic accuracy; and passion. Their interactions produce output and patterned influences between factors. Strategies for optimizing output are enabled. PMID:22130145