Science.gov

Sample records for academic reward system

  1. Academic Rewards in Higher Education.

    ERIC Educational Resources Information Center

    Lewis, Darrel R., Ed.; Becker, William E., Jr., Ed.

    A colloquium series in higher education at the University of Minnesota in the fall and winter of 1977-1978 examined the influence of academic reward systems on faculty behavior and academic productivity. These essays are the collective results of their findings and recommendations. Essays include: "Perspectives from Psychology: Financial…

  2. What Research Says: The Effects of Reward Systems on Academic Performance.

    ERIC Educational Resources Information Center

    Wilson, Lucinda M.; Corpus, Deborah A.

    2001-01-01

    Examines educational research on the effects of rewards and punishments on students' academic performance. Discusses findings on the effects of extrinsic and intrinsic rewards, locus of control with students or teacher, the benefits of celebrations and rewards, and implications for the classroom. (JPB)

  3. The Rewards of Academic Leadership

    ERIC Educational Resources Information Center

    Murphy, Christina

    2003-01-01

    Recent studies of academic leadership confirm what many academic leaders know from personal experience: academic leadership is a complex and demanding role with significant stress and high burnout and turnover rates (Brown, 2002; Brown and Moshavi, 2002). In the light of these issues, an exploration of the nature of academic leadership and its…

  4. Reward Allocation and Academic versus Social Orientation toward School.

    ERIC Educational Resources Information Center

    Peterson, Candida C.; Peterson, James L.

    1978-01-01

    Correlates 138 elementary school children's views about the purposes of school to their styles of reward allocation: academically motivated students allocated rewards equally to two hypothetical performers who had unequally helped a teacher perform a manual chore, while socially motivated children allocated rewards in an equity (performance-based)…

  5. Management compensation. A reward systems approach.

    PubMed

    Flarey, D L

    1991-01-01

    Across the nation, businesses are rethinking the way performance is rewarded. We are witnessing the emergence of newer, more innovative compensation systems. Today's nurse executive is challenged to design systems for management compensation that reward achievement, performance, and contribution. The author describes a reward systems approach to compensation based on contemporary concepts related to pay. PMID:1870005

  6. Management compensation. A reward systems approach.

    PubMed

    Flarey, D L

    1991-01-01

    Across the nation, businesses are rethinking the way performance is rewarded. We are witnessing the emergence of newer, more innovative compensation systems. Today's nurse executive is challenged to design systems for management compensation that reward achievement, performance, and contribution. The author describes a reward systems approach to compensation based on contemporary concepts related to pay.

  7. Adolescent Development of the Reward System

    PubMed Central

    Galvan, Adriana

    2009-01-01

    Adolescence is a developmental period characterized by increased reward-seeking behavior. Investigators have used functional magnetic resonance imaging (fMRI) in conjunction with reward paradigms to test two opposing hypotheses about adolescent developmental changes in the striatum, a region implicated in reward processing. One hypothesis posits that the striatum is relatively hypo-responsive to rewards during adolescence, such that heightened reward-seeking behavior is necessary to achieve the same activation as adults. Another view suggests that during adolescence the striatal reward system is hyper-responsive, which subsequently results in greater reward-seeking. While evidence for both hypotheses has been reported, the field has generally converged on this latter hypothesis based on compelling evidence. In this review, I describe the evidence to support this notion, speculate on the disparate fMRI findings and conclude with future areas of inquiry to this fascinating question. PMID:20179786

  8. Defining and Rewarding Academic Citizenship: The Implications for University Promotions Policy

    ERIC Educational Resources Information Center

    Macfarlane, Bruce

    2007-01-01

    The concept of "academic citizenship" reflects different interpretations of the civic purposes of the university. However, activities associated with this concept are largely under-conceptualised and poorly rewarded in academic life. Based on research with an international group of academics, this paper defines the meanings of "service" and…

  9. Effort-Reward Imbalance and Overcommitment in UK Academics: Implications for Mental Health, Satisfaction and Retention

    ERIC Educational Resources Information Center

    Kinman, Gail

    2016-01-01

    This study utilises the effort-reward imbalance (ERI) model of job stress to predict several indices of well-being in academics in the UK: mental ill health, job satisfaction and leaving intentions. This model posits that (a) employees who believe that their efforts are not counterbalanced by sufficient rewards will experience impaired well-being…

  10. Video game training and the reward system.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training.

  11. Video game training and the reward system.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training. PMID:25698962

  12. Video game training and the reward system

    PubMed Central

    Lorenz, Robert C.; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training. PMID:25698962

  13. Reward Systems in the Brain and Nutrition.

    PubMed

    Rolls, Edmund T

    2016-07-17

    The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described.

  14. Utilizing reward systems to mobilize change.

    PubMed

    Wilson, T B

    1995-01-01

    The pressures for change in health care organizations mean that people need to do things differently. Reward systems offer an opportunity to share in the success of the enterprise if they are designed and managed effectively. This article shows how and why they work. Case studies illustrate the key principles in action.

  15. Rewards.

    PubMed

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today. PMID:21531311

  16. Rewards.

    PubMed

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today.

  17. Food reward system: current perspectives and future research needs.

    PubMed

    Alonso-Alonso, Miguel; Woods, Stephen C; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D; Beauchamp, Gary K

    2015-05-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. PMID:26011903

  18. Food reward system: current perspectives and future research needs.

    PubMed

    Alonso-Alonso, Miguel; Woods, Stephen C; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D; Beauchamp, Gary K

    2015-05-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute.

  19. Food reward system: current perspectives and future research needs

    PubMed Central

    Woods, Stephen C.; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D.; Beauchamp, Gary K.

    2015-01-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. PMID:26011903

  20. The Effect of the Demand Control and Effort Reward Imbalance Models on the Academic Burnout of Korean Adolescents

    ERIC Educational Resources Information Center

    Lee, Jayoung; Puig, Ana; Lee, Sang Min

    2012-01-01

    The purpose of this study was to examine the effects of the Demand Control Model (DCM) and the Effort Reward Imbalance Model (ERIM) on academic burnout for Korean students. Specifically, this study identified the effects of the predictor variables based on DCM and ERIM (i.e., demand, control, effort, reward, Demand Control Ratio, Effort Reward…

  1. Changing reward systems for team-based systems.

    PubMed

    Barksdale, G T

    1998-12-01

    With the rapidly changing pace in health care, hospitals are struggling to keep costs under control and to remain competitive. Leadership is increasingly convinced that old methods of compensation are no longer valid and thus are turning to innovative approaches to pay and reward systems. This article describes some of the new pay methods, with an emphasis on team rewards, showing that compensation can keep pace with the evolving needs of health care.

  2. Reward system dysfunction in autism spectrum disorders

    PubMed Central

    Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R.; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T.; Konrad, Kerstin

    2013-01-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in response to both reward types. In particular, diminished activation in the nucleus accumbens was observed when money, but not when social reward, was at stake, whereas the amygdala and anterior cingulate cortex were hypoactivated within the ASD group in response to both rewards. These data indicate that the reward circuitry is compromised in ASD in social as well as in non-social, i.e. monetary conditions, which likely contributes to atypical motivated behaviour. Taken together, with incentives used in this study sample, there is evidence for a general reward dysfunction in ASD. However, more ecologically valid social reward paradigms are needed to fully understand, whether there is any domain specificity to the reward deficit that appears evident in ASD, which would be most consistent with the ASD social phenotype. PMID:22419119

  3. The roles of the reward system in sleep and dreaming.

    PubMed

    Perogamvros, Lampros; Schwartz, Sophie

    2012-09-01

    The mesolimbic dopaminergic system (ML-DA) allows adapted interactions with the environment and is therefore of critical significance for the individual's survival. The ML-DA system is implicated in reward and emotional functions, and it is perturbed in schizophrenia, addiction, and depression. The ML-DA reward system is not only recruited during wakeful behaviors, it is also active during sleep. Here, we introduce the Reward Activation Model (RAM) for sleep and dreaming, according to which activation of the ML-DA reward system during sleep contributes to memory processes, to the regulation of rapid-eye movement (REM) sleep, and to the generation and motivational content of dreams. In particular, the engagement of ML-DA and associated limbic structures prioritizes information with high emotional or motivational relevance for (re)processing during sleep and dreaming. The RAM provides testable predictions and has clinical implications for our understanding of the pathogenesis of major depression and addiction.

  4. Motivation and timing: clues for modeling the reward system.

    PubMed

    Galtress, Tiffany; Marshall, Andrew T; Kirkpatrick, Kimberly

    2012-05-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field. PMID:22421220

  5. Motivation and timing: clues for modeling the reward system.

    PubMed

    Galtress, Tiffany; Marshall, Andrew T; Kirkpatrick, Kimberly

    2012-05-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field.

  6. ADHD Related Behaviors Are Associated with Brain Activation in the Reward System

    ERIC Educational Resources Information Center

    Stark, R.; Bauer, E.; Merz, C. J.; Zimmermann, M.; Reuter, M.; Plichta, M. M.; Kirsch, P.; Lesch, K. P.; Fallgatter, A. J.; Vaitl, D.; Herrmann, M. J.

    2011-01-01

    Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) suggest dysfunctional reward processing, with hypo-responsiveness during reward anticipation in the reward system including the nucleus accumbens (NAcc). In this study, we investigated the association between ADHD related behaviors and the reward system using functional…

  7. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    PubMed

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but

  8. Reward Contingencies and the Recalibration of Task Monitoring and Reward Systems: A high-density electrical mapping study

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.

    2014-01-01

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast

  9. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    PubMed

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but

  10. Reward and aversion in a heterogeneous midbrain dopamine system.

    PubMed

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C

    2014-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.

  11. Reward and aversion in a heterogeneous midbrain dopamine system

    PubMed Central

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C.

    2013-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. PMID:23578393

  12. An Automated Motion Detection and Reward System for Animal Training

    PubMed Central

    Miller, Brad; Lim, Audrey N; Heidbreder, Arnold F

    2015-01-01

    A variety of approaches has been used to minimize head movement during functional brain imaging studies in awake laboratory animals. Many laboratories expend substantial effort and time training animals to remain essentially motionless during such studies. We could not locate an “off-the-shelf” automated training system that suited our needs.  We developed a time- and labor-saving automated system to train animals to hold still for extended periods of time. The system uses a personal computer and modest external hardware to provide stimulus cues, monitor movement using commercial video surveillance components, and dispense rewards. A custom computer program automatically increases the motionless duration required for rewards based on performance during the training session but allows changes during sessions. This system was used to train cynomolgus monkeys (Macaca fascicularis) for awake neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The automated system saved the trainer substantial time, presented stimuli and rewards in a highly consistent manner, and automatically documented training sessions. We have limited data to prove the training system's success, drawn from the automated records during training sessions, but we believe others may find it useful. The system can be adapted to a range of behavioral training/recording activities for research or commercial applications, and the software is freely available for non-commercial use. PMID:26798573

  13. An Automated Motion Detection and Reward System for Animal Training.

    PubMed

    Miller, Brad; Lim, Audrey N; Heidbreder, Arnold F; Black, Kevin J

    2015-12-04

    A variety of approaches has been used to minimize head movement during functional brain imaging studies in awake laboratory animals. Many laboratories expend substantial effort and time training animals to remain essentially motionless during such studies. We could not locate an "off-the-shelf" automated training system that suited our needs.  We developed a time- and labor-saving automated system to train animals to hold still for extended periods of time. The system uses a personal computer and modest external hardware to provide stimulus cues, monitor movement using commercial video surveillance components, and dispense rewards. A custom computer program automatically increases the motionless duration required for rewards based on performance during the training session but allows changes during sessions. This system was used to train cynomolgus monkeys (Macaca fascicularis) for awake neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The automated system saved the trainer substantial time, presented stimuli and rewards in a highly consistent manner, and automatically documented training sessions. We have limited data to prove the training system's success, drawn from the automated records during training sessions, but we believe others may find it useful. The system can be adapted to a range of behavioral training/recording activities for research or commercial applications, and the software is freely available for non-commercial use.

  14. Academic Research Integration System

    ERIC Educational Resources Information Center

    Surugiu, Iula; Velicano, Manole

    2008-01-01

    This paper comprises results concluding the research activity done so far regarding enhanced web services and system integration. The objective of the paper is to define the software architecture for a coherent framework and methodology for enhancing existing web services into an integrated system. This document presents the research work that has…

  15. Fasting biases brain reward systems towards high-calorie foods.

    PubMed

    Goldstone, Anthony P; Prechtl de Hernandez, Christina G; Beaver, John D; Muhammed, Kinan; Croese, Charlotte; Bell, Gabriel; Durighel, Giuliana; Hughes, Emer; Waldman, Adam D; Frost, Gary; Bell, Jimmy D

    2009-10-01

    Nutritional state (e.g. fasted vs. fed) and different food stimuli (e.g. high-calorie vs. low-calorie, or appetizing vs. bland foods) are both recognized to change activity in brain reward systems. Using functional magnetic resonance imaging, we have studied the interaction between nutritional state and different food stimuli on brain food reward systems. We examined how blood oxygen level-dependent activity within a priori regions of interest varied while viewing pictures of high-calorie and low-calorie foods. Pictures of non-food household objects were included as control stimuli. During scanning, subjects rated the appeal of each picture. Twenty non-obese healthy adults [body mass index 22.1 +/- 0.5 kg/m(2) (mean +/- SEM), age range 19-35 years, 10 male] were scanned on two separate mornings between 11:00 and 12:00 h, once after eating a filling breakfast ('fed': 1.6 +/- 0.1 h since breakfast), and once after an overnight fast but skipping breakfast ('fasted': 15.9 +/- 0.3 h since supper) in a randomized cross-over design. Fasting selectively increased activation to pictures of high-calorie over low-calorie foods in the ventral striatum, amygdala, anterior insula, and medial and lateral orbitofrontal cortex (OFC). Furthermore, fasting enhanced the subjective appeal of high-calorie more than low-calorie foods, and the change in appeal bias towards high-calorie foods was positively correlated with medial and lateral OFC activation. These results demonstrate an interaction between homeostatic and hedonic aspects of feeding behaviour, with fasting biasing brain reward systems towards high-calorie foods.

  16. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    PubMed

    Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5

  17. What's the Point?: A Review of Reward Systems Implemented in Gamification Interventions.

    PubMed

    Lewis, Zakkoyya H; Swartz, Maria C; Lyons, Elizabeth J

    2016-04-01

    Rewards are commonly used in interventions to change behavior, but they can inhibit development of intrinsic motivation, which is associated with long-term behavior maintenance. Gamification is a novel intervention strategy that may target intrinsic motivation through fun and enjoyment. Before the effects of gamified interventions on motivation can be determined, there must be an understanding of how gamified interventions operationalize rewards, such as point systems. The purpose of this review is to determine the prevalence of different reward types, specifically point systems, within gamified interventions. Electronic databases were searched for relevant articles. Data sources included Medline OVID, Medline PubMed, Web of Science, CINAHL, Cochrane Central, and PsycINFO. Out of the 21 articles retrieved, 18 studies described a reward system and were included in this review. Gamified interventions were designed to target a myriad of clinical outcomes across diverse populations. Rewards included points (n = 14), achievements/badges/medals (n = 7), tangible rewards (n = 7), currency (n = 4), other unspecified rewards (n = 3), likes (n = 2), animated feedback (n = 1), and kudos (n = 1). Rewards, and points in particular, appear to be a foundational component of gamified interventions. Despite their prevalence, authors seldom described the use of noncontingent rewards or how the rewards interacted with other game features. The reward systems relying on tangible rewards and currency may have been limited by inhibited intrinsic motivation. As gamification proliferates, future research should explicitly describe how rewards were operationalized in the intervention and evaluate the effects of gamified rewards on motivation across populations and research outcomes. PMID:26812253

  18. Geographic Information Systems Librarianship: Suggestions for Entry-Level Academic Professionals

    ERIC Educational Resources Information Center

    Martindale, Jaime

    2004-01-01

    Future Geographic Information Systems (GIS) librarians face a number of challenges that other Library and Information Studies (LIS) graduates may not when preparing for a career in academic librarianship. This article discusses these challenges and offers suggestions to help entry-level GIS librarians begin successful and rewarding careers.

  19. Reward-related learning via multiple memory systems

    PubMed Central

    Delgado, Mauricio R.; Dickerson, Kathryn C.

    2013-01-01

    The application of a neuroeconomic approach to the study of reward-related processes has provided significant insights in our understanding of human learning and decision-making. Much of this research has primarily focused on the contributions of the cortico-striatal circuitry, involved in trial and error reward learning. As a result, less consideration has been allotted to the potential influence of different neural mechanisms such as the hippocampus, or to more common ways in human society in which information is acquired and utilized to reach a decision, such as through explicit instruction rather than trial and error learning. This review examines the basic and applied value of examining the individual contributions of multiple learning and memory neural systems and their interactions during human decision-making in normal individuals and neuropsychiatric populations. Specifically, the anatomical and functional connectivity across multiple memory systems are highlighted to suggest that probing the role of the hippocampus and its interactions with the cortico-striatal circuitry via the application of model-based neuroeconomic approaches may provide novel insights into several neuropsychiatric populations who suffer from damage to one of these structures, and as a consequence have deficits in learning, memory, or decision-making. PMID:22365667

  20. Encouraging Multiple Forms of Scholarship in Faculty Reward Systems: Does It Make a Difference?

    ERIC Educational Resources Information Center

    O'Meara, Kerry Ann

    2005-01-01

    This article presents findings from a national study of Chief Academic Officers of 4-year institutions on the impact of policy efforts to encourage multiple forms of scholarship in faculty roles and rewards. The extent of reform, kinds of reform and influence of initiating reform is examined in four areas: expectations for faculty evaluation, the…

  1. Inhibition of the reward system by antipsychotic treatment.

    PubMed

    Juckel, Georg

    2016-03-01

    The mesolimbic dopaminergic reward system is responsible for the negative affective symptomatology of schizophrenia, which may be related to a low dopamine tonus within the ventral striatum. The monetary incentive delay (MID) task can be used to study the response of the ventral striatum to incentive stimuli. We show that activation of the ventral striatum is low in patients with schizophrenia, and that this low activation is related to primary and secondary negative symptoms induced by neuroleptics, also known as antipsychotics. Switching from first-(typical) to second-generation (atypical) antipsychotics increased activation of the ventral striatum due to less blocking of dopamine D2 receptors. This and similar studies show that functional magnetic resonance imaging (fMRI) tasks are suitable to investigate important aspects of antipsychotic mechanisms.

  2. Inhibition of the reward system by antipsychotic treatment

    PubMed Central

    Juckel, Georg

    2016-01-01

    The mesolimbic dopaminergic reward system is responsible for the negative affective symptomatology of schizophrenia, which may be related to a low dopamine tonus within the ventral striatum. The monetary incentive delay (MID) task can be used to study the response of the ventral striatum to incentive stimuli. We show that activation of the ventral striatum is low in patients with schizophrenia, and that this low activation is related to primary and secondary negative symptoms induced by neuroleptics, also known as antipsychotics. Switching from first-(typical) to second-generation (atypical) antipsychotics increased activation of the ventral striatum due to less blocking of dopamine D2 receptors. This and similar studies show that functional magnetic resonance imaging (fMRI) tasks are suitable to investigate important aspects of antipsychotic mechanisms. PMID:27069385

  3. Reward Processing by the Opioid System in the Brain

    PubMed Central

    MERRER, JULIE LE; BECKER, JÉRÔME A. J.; BEFORT, KATIA; KIEFFER, BRIGITTE L.

    2015-01-01

    The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder. PMID:19789384

  4. Productivity Improvement in a Purchasing Division: The Impact of a Performance Contingent Reward System.

    ERIC Educational Resources Information Center

    Nebeker, Delbert M.; Newberger, Brian M.

    1985-01-01

    A performance contingent reward system was developed for federal employees in the purchase division of a naval shipyard. Rewards were financial incentives provided to individual civil service employees who performed above standard. A description of the system and an evaluation of its effectiveness in increasing productivity and saving costs are…

  5. The role of the central ghrelin system in reward from food and chemical drugs.

    PubMed

    Dickson, Suzanne L; Egecioglu, Emil; Landgren, Sara; Skibicka, Karolina P; Engel, Jörgen A; Jerlhag, Elisabet

    2011-06-20

    Here we review recent advances that identify a role for the central ghrelin signalling system in reward from both natural rewards (such as food) and artificial rewards (that include alcohol and drugs of abuse). Whereas ghrelin emerged as a stomach-derived hormone involved in energy balance, hunger and meal initiation via hypothalamic circuits, it now seems clear that it also has a role in motivated reward-driven behaviours via activation of the so-called "cholinergic-dopaminergic reward link". This reward link comprises a dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens together with a cholinergic input, arising primarily from the laterodorsal tegmental area. Ghrelin administration into the VTA or LDTg activates the "cholinergic-dopaminergic" reward link, suggesting that ghrelin may increase the incentive value of motivated behaviours such as reward-seeking behaviour ("wanting" or "incentive motivation"). Further, direct injection of ghrelin into the brain ventricles or into the VTA increases the consumption of rewarding foods as well as alcohol in mice and rats. Studies in rodents show beneficial effects of ghrelin receptor (GHS-R1A) antagonists to suppress the intake of palatable food, to reduce preference for caloric foods, to suppress food reward and motivated behaviour for food. They have also been shown to reduce alcohol consumption, suppress reward induced by alcohol, cocaine and amphetamine. Furthermore, variations in the GHS-R1A and pro-ghrelin genes have been associated with high alcohol consumption, smoking and increased weight gain in alcohol dependent individuals as well as with bulimia nervosa and obesity. Thus, the central ghrelin signalling system interfaces neurobiological circuits involved in reward from food as well as chemical drugs; agents that directly or indirectly suppress this system emerge as potential candidate drugs for suppressing problematic over-eating that leads to obesity as well as for the

  6. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally negative practice.…

  7. Rewarding the Resident Teacher

    ERIC Educational Resources Information Center

    McBride, Jennifer M.; Drake, Richard L.

    2011-01-01

    Residents routinely make significant contributions to the education of medical students. However, little attention has been paid to rewarding these individuals for their involvement in these academic activities. This report describes a program that rewards resident teachers with an academic appointment as a Clinical Instructor. The residents…

  8. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    PubMed

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. PMID:26522867

  9. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    ERIC Educational Resources Information Center

    Urosevic, Snezana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity (i.e., sensitivity of the behavioral approach system [BAS]) and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities)…

  10. Different Reward Structures to Motivate Student Interaction with Electronic Response Systems in Astronomy

    ERIC Educational Resources Information Center

    Len, Patrick M.

    2007-01-01

    Electronic response systems ("clickers") are used in introductory astronomy classes as a real-time assessment tool. Different reward structures for student responses to clicker questions are used to motivate individual participation or group collaboration before responding. The impact of two reward structures on student behavior and learning is…

  11. [Anhedonia--a general nosology surmounting correlate of a dysfunctional dopaminergic reward system?].

    PubMed

    Heinz, A

    1999-05-01

    The dopaminergic reward system is activated by primary rewarding factors such as food, sexual activity and parental care. Its activation enhances the occurrence of behaviors which induced the stimulation of dopaminergic neurotransmission. Indications of a dysfunction of the dopaminergic reward system are found in major depression, schizophrenia, and addictive disorders. It has been hypothesized that dysfunction of the dopaminergic reward system is associated with anhedonia, the inability to experience pleasure. However, animal studies indicate that a reduction of central dopaminergic neurotransmission is associated with a decrease in incentive salience of reward-indicating stimuli and not with anhedonia per se. Sensitization of dopaminergic neurotransmission, on the other hand, seems to induce cue-dependent craving in addicted patients. In schizophrenia, phasic, stimulus-dependent dopamine release in the striatum may play a role in the abnormal attribution of salience to previously neutral stimuli.

  12. Reward systems and food intake: role of opioids.

    PubMed

    Gosnell, B A; Levine, A S

    2009-06-01

    Humans eat for many reasons, including the rewarding qualities of foods. A host of neurotransmitters have been shown to influence eating behavior and some of these appear to be involved in reward-induced eating. Endogenous opioid peptides and their receptors were first reported more than 30 years ago, and studies suggesting a role of opioids in the regulation of food intake date back nearly as far. Opioid agonists and antagonists have corresponding stimulatory and inhibitory effects on feeding. In addition to studies aimed at identifying the relevant receptor subtypes and sites of action within the brain, there has been a continuing interest in the role of opioids on diet/taste preferences, food reward, and the overlap of food reward with others types of reward. Data exist that suggest a role for opioids in the control of appetite for specific macronutrients, but there is also evidence for their role in the stimulation of intake based on already-existing diet or taste preferences and in controlling intake motivated by hedonics rather than by energy needs. Finally, various types of studies indicate an overlap between mechanisms mediating drug reward and palatable food reward. Preference or consumption of sweet substances often parallels the self-administration of several drugs of abuse, and under certain conditions, the termination of intermittent access to sweet substances produces symptoms that resemble those observed during opiate withdrawal. The overconsumption of readily available and highly palatable foods likely contributes to the growing rates of obesity worldwide. An understanding of the role of opioids in mediating food reward and promoting the overconsumption of palatable foods may provide insights into new approaches for preventing obesity.

  13. Altered neurotransmission in the mesolimbic reward system of Girk mice.

    PubMed

    Arora, Devinder; Haluk, Desirae M; Kourrich, Saïd; Pravetoni, Marco; Fernández-Alacid, Laura; Nicolau, Joel C; Luján, Rafael; Wickman, Kevin

    2010-09-01

    Mice lacking the Girk2 subunit of G protein-gated inwardly rectifying K+ (Girk) channels exhibit dopamine-dependent hyperactivity and elevated responses to drugs that stimulate dopamine neurotransmission. The dopamine-dependent phenotypes seen in Girk2(-/-) mice could reflect increased intrinsic excitability of or diminished inhibitory feedback to midbrain dopamine neurons, or secondary adaptations triggered by Girk2 ablation. We addressed these possibilities by evaluating Girk(-/-) mice in behavioral, electrophysiological, and cell biological assays centered on the mesolimbic dopamine system. Despite differences in the contribution of Girk1 and Girk2 subunits to Girk signaling in midbrain dopamine neurons, Girk1(-/-) and Girk2(-/-) mice exhibited comparable baseline hyperactivities and enhanced responses to cocaine. Girk ablation also correlated with altered afferent input to dopamine neurons in the ventral tegmental area. Dopamine neurons from Girk1(-/-) and Girk2(-/-) mice exhibited elevated glutamatergic neurotransmission, paralleled by increased synaptic levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptors. In addition, synapse density, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor levels, and glutamatergic neurotransmission were elevated in medium spiny neurons of the nucleus accumbens from Girk1(-/-) and Girk2(-/-) mice. We conclude that dopamine-dependent phenotypes in Girk2(-/-) mice are not solely attributable to a loss of Girk signaling in dopamine neurons, and likely involve secondary adaptations facilitating glutamatergic signaling in the mesolimbic reward system. PMID:20557431

  14. Modulatory role of bivalent cations on reward system.

    PubMed

    Nechifor, M; Chelărescu, D

    2008-01-01

    Bivalent cations (Ca, Mg, Zn, Mn etc.) modulate activity of reward system (RS). At physiologic levels they may influence all components of RS. There are influenced behavioral reactions at physiological stimuli and all essential elements of drug dependence (compulsive intake of substance, craving, reinforcement, withdrawal syndrom, relapse and reinstatement of intake) The fact that some cations (e.g. calcium) enhance some of the aspects of drug dependence and others (e.g. magnesium, zinc) decrease intensity of this process show that ratio between intra- and extracellular in the brain of these cations is important for the function of RS. Among actions of different cations at the level of RS there are important differences. Their mecahanism of action are common in part and specific in other. It is important the fact that modulatory action appear at physiologic cation concentrations (that could be reached at therapeutic doses). Modulatory action is related to ratio between concetrations of different bivalent cations and is exerted both in normal or pathologic conditions.

  15. Affected connectivity organization of the reward system structure in obesity.

    PubMed

    Marqués-Iturria, I; Scholtens, L H; Garolera, M; Pueyo, R; García-García, I; González-Tartiere, P; Segura, B; Junqué, C; Sender-Palacios, M J; Vernet-Vernet, M; Sánchez-Garre, C; de Reus, M A; Jurado, M A; van den Heuvel, M P

    2015-05-01

    With the prevalence of obesity rapidly increasing worldwide, understanding the processes leading to excessive eating behavior becomes increasingly important. Considering the widely recognized crucial role of reward processes in food intake, we examined the white matter wiring and integrity of the anatomical reward network in obesity. Anatomical wiring of the reward network was reconstructed derived from diffusion weighted imaging in 31 obese participants and 32 normal-weight participants. Network wiring was compared in terms of the white matter volume as well as in terms of white matter microstructure, revealing lower number of streamlines and lower fiber integrity within the reward network in obese subjects. Specifically, the orbitofrontal cortex and striatum nuclei including accumbens, caudate and putamen showed lower strength and network clustering in the obesity group as compared to healthy controls. Our results provide evidence for obesity-related disruptions of global and local anatomical connectivity of the reward circuitry in regions that are key in the reinforcing mechanisms of eating-behavior processes. PMID:25687594

  16. Affected connectivity organization of the reward system structure in obesity.

    PubMed

    Marqués-Iturria, I; Scholtens, L H; Garolera, M; Pueyo, R; García-García, I; González-Tartiere, P; Segura, B; Junqué, C; Sender-Palacios, M J; Vernet-Vernet, M; Sánchez-Garre, C; de Reus, M A; Jurado, M A; van den Heuvel, M P

    2015-05-01

    With the prevalence of obesity rapidly increasing worldwide, understanding the processes leading to excessive eating behavior becomes increasingly important. Considering the widely recognized crucial role of reward processes in food intake, we examined the white matter wiring and integrity of the anatomical reward network in obesity. Anatomical wiring of the reward network was reconstructed derived from diffusion weighted imaging in 31 obese participants and 32 normal-weight participants. Network wiring was compared in terms of the white matter volume as well as in terms of white matter microstructure, revealing lower number of streamlines and lower fiber integrity within the reward network in obese subjects. Specifically, the orbitofrontal cortex and striatum nuclei including accumbens, caudate and putamen showed lower strength and network clustering in the obesity group as compared to healthy controls. Our results provide evidence for obesity-related disruptions of global and local anatomical connectivity of the reward circuitry in regions that are key in the reinforcing mechanisms of eating-behavior processes.

  17. Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals.

    PubMed

    Vlachou, S; Panagis, G

    2014-01-01

    The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and heroin, as well as natural rewards, such as food, water and sucrose, although the conditions under which cannabinoids exert their rewarding effects may be more limited. The purpose of the present review is to briefly describe and evaluate the behavioral and pharmacological research concerning the major components of the endocannabinoid system and reward processes. Special emphasis is placed on data received from four procedures used to test the effects of the endocannabinoid system on brain reward in animals; namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the drug-discrimination procedure. The effects of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonists, antagonists and endocannabinoid modulators in these procedures are examined. Further, the involvement of CB1 and CB2 receptors, as well the fatty acid amid hydrolase (FAAH) enzyme in reward processes is investigated through presentation of respective genetic ablation studies in mice. We suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. Further research will provide us with a better understanding of these processes and, thus, could lead to the development of potential therapeutic compounds for the treatment of reward-related disorders. PMID:23829366

  18. Jefferson College Professional Development System Booklet: Promotion System for Rewarding Outstanding Faculty Accomplishment in Diverse Professional Areas. Revised.

    ERIC Educational Resources Information Center

    Jefferson Coll., Hillsboro, MO.

    This booklet explains Jefferson College's Professional Development System (PDS), a promotion system for rewarding outstanding faculty accomplishment, and explains the calculations used in evaluating faculty performance. After explaining that the PDS was created so that the rewarding of faculty would not be arbitrary but in proportion to their…

  19. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems.

    PubMed

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider. PMID:24137146

  20. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems.

    PubMed

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider.

  1. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems

    PubMed Central

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider. PMID:24137146

  2. Automatic Data Processing System and Procedures, Computerized Academic Counseling System.

    ERIC Educational Resources Information Center

    Zagorski, Henry J.; And Others

    The Computerized Academic Counseling System (CACS) designed by the System Development Corporation is reviewed. Aspects of the system, constructed to assist counselors in guiding undergraduates in the selection of academic majors, which are discussed include: problem definition, system analysis, design rationale, methodology, measurement…

  3. Different neural systems mediate morphine reward and its spontaneous withdrawal aversion.

    PubMed

    Vargas-Perez, Hector; Ting-A-Kee, Ryan; van der Kooy, Derek

    2009-05-01

    The opponent-process theory posits that the aversive state of acute opiate withdrawal is a consequence of, and depends on, the previous rewarding state evoked by acute morphine reward. Although the brainstem tegmental pedunculopontine nucleus (TPP) is crucial for the rewarding component of morphine, the source of the later aversive component is not known. It is possible that (i) the second aversive process takes place within the TPP itself or (ii) morphine reward in the TPP activates an unconditioned opponent motivational process in another region of the brain. The effects of reversible inactivation of the TPP on the motivational properties of acute morphine and its spontaneous withdrawal effects in non-drug-dependent rats were examined using a place-conditioning paradigm. Reversible inactivation of the TPP with lidocaine or bupivacaine immediately before the morphine injection blocked the rewarding properties of morphine in non-dependent rats. Blocking the rewarding effects of morphine also blocked the opponent aversive effects of acute morphine withdrawal. In contrast, reversible inactivation of the TPP during the acute morphine withdrawal did not block this opponent aversive process. Our results confirm that the TPP is a critical neural substrate underlying the acute rewarding effects of morphine in non-dependent rats. Furthermore, the opponent aversive process of acute morphine withdrawal is induced by the acute rewarding effects of morphine. However, the TPP does not directly mediate the spontaneous withdrawal aversion (the opponent process), suggesting that a different system, triggered by the changes in the TPP after the primary drug response, produces the aversion itself.

  4. Different neural systems mediate morphine reward and its spontaneous withdrawal aversion.

    PubMed

    Vargas-Perez, Hector; Ting-A-Kee, Ryan; van der Kooy, Derek

    2009-05-01

    The opponent-process theory posits that the aversive state of acute opiate withdrawal is a consequence of, and depends on, the previous rewarding state evoked by acute morphine reward. Although the brainstem tegmental pedunculopontine nucleus (TPP) is crucial for the rewarding component of morphine, the source of the later aversive component is not known. It is possible that (i) the second aversive process takes place within the TPP itself or (ii) morphine reward in the TPP activates an unconditioned opponent motivational process in another region of the brain. The effects of reversible inactivation of the TPP on the motivational properties of acute morphine and its spontaneous withdrawal effects in non-drug-dependent rats were examined using a place-conditioning paradigm. Reversible inactivation of the TPP with lidocaine or bupivacaine immediately before the morphine injection blocked the rewarding properties of morphine in non-dependent rats. Blocking the rewarding effects of morphine also blocked the opponent aversive effects of acute morphine withdrawal. In contrast, reversible inactivation of the TPP during the acute morphine withdrawal did not block this opponent aversive process. Our results confirm that the TPP is a critical neural substrate underlying the acute rewarding effects of morphine in non-dependent rats. Furthermore, the opponent aversive process of acute morphine withdrawal is induced by the acute rewarding effects of morphine. However, the TPP does not directly mediate the spontaneous withdrawal aversion (the opponent process), suggesting that a different system, triggered by the changes in the TPP after the primary drug response, produces the aversion itself. PMID:19453632

  5. Reward bias and lateralization in gambling behavior: behavioral activation system and alpha band analysis.

    PubMed

    Balconi, Michela; Finocchiaro, Roberta; Canavesio, Ylenia; Messina, Rossella

    2014-11-30

    The present research explored the main factors that can influence subjects' choices in the case of decisions. In order to elucidate the individual differences that influence the decisional processes, making their strategies more or less advantageous, we tested the effect of a reward sensitivity in the behavioral activation system (BAS-Reward) constructed on the ability to distinguish between high- and low-risk decisions. Secondly, the lateralization effect, related to increased activation of the left (BAS-related) hemisphere, was explored. Thirty-one subjects were tested using the Iowa Gambling Task, and the BAS-Reward measure was applied to distinguish between high-BAS and low-BAS groups. Behavioral responses (gain/loss options) and alpha-band modulation were considered. It was found that high-BAS group increased their tendency to opt in favor of the immediate reward (loss strategy) rather than the long-term option (win strategy). Secondly, high-BAS subjects showed an increased left-hemisphere activation in response to losing (with immediate reward) choices in comparison with low-BAS subjects. A "reward bias" effect was supposed to explain both the bad strategy and the unbalanced hemispheric activation for high-BAS and more risk-taking subjects.

  6. The plasticity of the mirror system: How reward learning modulates cortical motor simulation of others

    PubMed Central

    Trilla Gros, Irene; Panasiti, Maria Serena; Chakrabarti, Bhismadev

    2015-01-01

    Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that (alpha/beta) mu suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between (alpha/beta) mu suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta mu suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy. PMID:25744871

  7. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    PubMed Central

    Urošević, Snežana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity, i.e., sensitivity of the behavioral approach system (BAS), and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities) lead to these phenomena. The present study is the first longitudinal investigation of changes in reward (i.e., BAS) sensitivity in 9 to 23-year-olds across a two-year follow-up. We found support for increased reward sensitivity from early to late adolescence and evidence for decline in the early twenties. This decline is combined with a decrease in left nucleus accumbens (Nacc) volume, a key structure for reward processing, from the late teens into the early twenties. Furthermore, we found longitudinal increases in sensitivity to reward to be predicted by individual differences in the Nacc and medial OFC volumes at baseline in this developmental sample. Similarly, increases in sensitivity to threat (i.e., BIS sensitivity) were qualified by sex, with only females experiencing this increase, and predicted by individual differences in lateral OFC volumes at baseline. PMID:22390662

  8. Age-related changes in midbrain dopaminergic regulation of the human reward system

    PubMed Central

    Dreher, Jean-Claude; Meyer-Lindenberg, Andreas; Kohn, Philip; Berman, Karen Faith

    2008-01-01

    The dopamine system, which plays a crucial role in reward processing, is particularly vulnerable to aging. Significant losses over a normal lifespan have been reported for dopamine receptors and transporters, but very little is known about the neurofunctional consequences of this age-related dopaminergic decline. In animals, a substantial body of data indicates that dopamine activity in the midbrain is tightly associated with reward processing. In humans, although indirect evidence from pharmacological and clinical studies also supports such an association, there has been no direct demonstration of a link between midbrain dopamine and reward-related neural response. Moreover, there are no in vivo data for alterations in this relationship in older humans. Here, by using 6-[18F]FluoroDOPA (FDOPA) positron emission tomography (PET) and event-related 3T functional magnetic resonance imaging (fMRI) in the same subjects, we directly demonstrate a link between midbrain dopamine synthesis and reward-related prefrontal activity in humans, show that healthy aging induces functional alterations in the reward system, and identify an age-related change in the direction of the relationship (from a positive to a negative correlation) between midbrain dopamine synthesis and prefrontal activity. These results indicate an age-dependent dopaminergic tuning mechanism for cortical reward processing and provide system-level information about alteration of a key neural circuit in healthy aging. Taken together, our findings provide an important characterization of the interactions between midbrain dopamine function and the reward system in healthy young humans and older subjects, and identify the changes in this regulatory circuit that accompany aging. PMID:18794529

  9. Bridging the Two Cultures: Disciplinary Divides and Educational Reward Systems

    ERIC Educational Resources Information Center

    Schiferl, E. I.

    2007-01-01

    In 1959 C.P. Snow believed that communication and education could span the cultural gap between the sciences and the humanities. In the twenty-first century, language, research models, and academic structures hinder intellectual communication between art history, cognitive neuroscience and perceptual psychology--three disciplines dedicated to…

  10. Increased frequency of social interaction is associated with enjoyment enhancement and reward system activation.

    PubMed

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro

    2016-04-19

    Positive social interactions contribute to the sense that one's life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants' preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference.

  11. Increased frequency of social interaction is associated with enjoyment enhancement and reward system activation

    PubMed Central

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro

    2016-01-01

    Positive social interactions contribute to the sense that one’s life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants’ preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference. PMID:27090501

  12. Decision Support Systems for Academic Administration.

    ERIC Educational Resources Information Center

    Moore, Laurence J.; Greenwood, Allen G.

    1984-01-01

    The history and features of Decision Support Systems (DSS) and use of the approach by academic administrators are discussed. The objective of DSS is to involve the manager/decision maker in the decision-analysis process while simultaneously relieving that person of the burden of developing and performing detailed analysis. DSS represents a…

  13. Decision Support Systems in Academic Administration.

    ERIC Educational Resources Information Center

    Turban, Efraim; And Others

    1988-01-01

    Presents an overview of a computerized Decision Support System (DSS) for academic administrators. Following a discussion of its capabilities, the various components of a DSS are examined as well as the development tools needed. Examples follow of DSS in two universities, and various development and implementation issues are considered. (TE)

  14. Usage of a Reward System for Dealing with Pediatric Dental Fear

    PubMed Central

    Xia, Yong-Hua; Song, Yi-Ran

    2016-01-01

    Background: Pediatric dental fear, if left unchecked, can persist for a lifetime and adversely impact the physical and psychological health of a patient. In this study, a feasible nonmedical method for relieving pediatric dental fear was investigated. Methods: A randomized, single-blind, controlled trial model was applied. The juvenile patients experiencing dental fear, whose parents or guardian had signed an informed consent form, were randomly divided into two groups. Group A (n = 50) was the control group, while Group B (n = 50) was the reward group. Participants in Group A accepted routine treatment. Participants in Group B were told that they would obtain a gift as a reward for their good behavior if they were compliant during their dental treatments. The Chinese version of the Children's Fear Survey Schedule-Dental Subscale (CFSS-DS) was used to evaluate the level of dental fear of each patient both before and after each treatment. A contrast analysis and a correlation analysis of the results were used to assess the efficacy of the reward mechanism. Results: All participants in Group B, were obedient during the dental treatment, and they also successfully chose the present they wanted at the end of their dental treatment. Children at different ages showed different reward preferences. Significant difference in the fear scores of the participants in Group B before the treatment and after receiving the reward was found (independent samples t-test, t = 14.72, P < 0.001). In Group A, 86% children's fear score did not undergo a noticeable change. Conclusions: A reward system is proved feasible to relieve pediatric dental fear, and the form of reward should meet the demand of patients. PMID:27503018

  15. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    PubMed

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, p<05). Furthermore, with mediation analysis it was found that high cortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but

  16. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    PubMed

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, p<05). Furthermore, with mediation analysis it was found that high cortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but

  17. Two spatiotemporally distinct value systems shape reward-based learning in the human brain

    PubMed Central

    Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G.

    2015-01-01

    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning. PMID:26348160

  18. The Impact of Corporate Culture, the Reward System, and Perceived Moral Intensity on Marketing Students' Ethical Decision Making

    ERIC Educational Resources Information Center

    Nill, Alexander; Schibrowsky, John A.

    2005-01-01

    An experiment was conducted to study how marketing students' ethical decision making was influenced by their perceived moral intensity (PMI), corporate culture, and the reward system. The findings indicate that levels of awareness of the ethical consequences of a decision, the corporate culture, and the reward system all significantly affect…

  19. Reward system and temporal pole contributions to affective evaluation during a first person shooter video game

    PubMed Central

    2011-01-01

    Background Violent content in video games evokes many concerns but there is little research concerning its rewarding aspects. It was demonstrated that playing a video game leads to striatal dopamine release. It is unclear, however, which aspects of the game cause this reward system activation and if violent content contributes to it. We combined functional Magnetic Resonance Imaging (fMRI) with individual affect measures to address the neuronal correlates of violence in a video game. Results Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during fMRI measurement. We defined success as eliminating opponents, and failure as being eliminated themselves. Affect was measured directly before and after game play using the Positive and Negative Affect Schedule (PANAS). Failure and success events evoked increased activity in visual cortex but only failure decreased activity in orbitofrontal cortex and caudate nucleus. A negative correlation between negative affect and responses to failure was evident in the right temporal pole (rTP). Conclusions The deactivation of the caudate nucleus during failure is in accordance with its role in reward-prediction error: it occurred whenever subject missed an expected reward (being eliminated rather than eliminating the opponent). We found no indication that violence events were directly rewarding for the players. We addressed subjective evaluations of affect change due to gameplay to study the reward system. Subjects reporting greater negative affect after playing the game had less rTP activity associated with failure. The rTP may therefore be involved in evaluating the failure events in a social context, to regulate the players' mood. PMID:21749711

  20. Taking the Show on the Road: The Multiple Rewards of Teaching Information Systems Abroad.

    ERIC Educational Resources Information Center

    Chepaitis, Elia

    This paper discusses the multiple rewards of teaching information systems (IS) abroad, drawing on the experience of an IS professor who has been awarded three Fulbright scholarships in the 1990s. The author draws extensively upon personal experiences in Russia to illustrate the challenges and benefits of teaching in foreign institutions. The…

  1. A Computer-Assisted Learning Model Based on the Digital Game Exponential Reward System

    ERIC Educational Resources Information Center

    Moon, Man-Ki; Jahng, Surng-Gahb; Kim, Tae-Yong

    2011-01-01

    The aim of this research was to construct a motivational model which would stimulate voluntary and proactive learning using digital game methods offering players more freedom and control. The theoretical framework of this research lays the foundation for a pedagogical learning model based on digital games. We analyzed the game reward system, which…

  2. Designing a Reward System to Promote the Career Development of Senior Faculty.

    ERIC Educational Resources Information Center

    Farmer, Donald W.

    1993-01-01

    King's College (Pennsylvania) has redesigned its faculty reward system, mixing intrinsic and extrinsic incentives in three interrelated institutional initiatives related to general educational reform, senior faculty performance appraisal, and merit pay. An early result of the effort is a perceptible improvement in faculty motivation and…

  3. Reward, motivation, and emotion systems associated with early-stage intense romantic love.

    PubMed

    Aron, Arthur; Fisher, Helen; Mashek, Debra J; Strong, Greg; Li, Haifang; Brown, Lucy L

    2005-07-01

    Early-stage romantic love can induce euphoria, is a cross-cultural phenomenon, and is possibly a developed form of a mammalian drive to pursue preferred mates. It has an important influence on social behaviors that have reproductive and genetic consequences. To determine which reward and motivation systems may be involved, we used functional magnetic resonance imaging and studied 10 women and 7 men who were intensely "in love" from 1 to 17 mo. Participants alternately viewed a photograph of their beloved and a photograph of a familiar individual, interspersed with a distraction-attention task. Group activation specific to the beloved under the two control conditions occurred in dopamine-rich areas associated with mammalian reward and motivation, namely the right ventral tegmental area and the right postero-dorsal body and medial caudate nucleus. Activation in the left ventral tegmental area was correlated with facial attractiveness scores. Activation in the right anteromedial caudate was correlated with questionnaire scores that quantified intensity of romantic passion. In the left insula-putamen-globus pallidus, activation correlated with trait affect intensity. The results suggest that romantic love uses subcortical reward and motivation systems to focus on a specific individual, that limbic cortical regions process individual emotion factors, and that there is localization heterogeneity for reward functions in the human brain. PMID:15928068

  4. A theory of cerebral learning regulated by the reward system. I. Hypotheses and mathematical description.

    PubMed

    Nakamura, K

    1993-01-01

    Hypothetical mechanisms of the neocorticohippocampal system are presented. Neurophysiological and neuroanatomical findings concerning the system are integrated to demonstrate how animals associate sensory stimuli with rewarding actions: (1) cortical plasticity regulated by cholinergic/noradrenergic inputs from the hypothalamic reward system reinforces association connections between the most activated columns in the cortex; (2) the repetitive reinforcement forms association pathways connecting sensory cortical columns activated by the stimuli with motor cortical columns producing the rewarding actions; (3) after the pathways are formed, the cortex is capable of temporarily memorizing the stimuli by producing long-term potentiation through the cortico-hippocampal circuits; and (4) the memory allows the cortex to extend correct association pathways even in an environment where sensory stimuli rapidly change. A mathematical model of parts of the nervous system is presented to quantitatively examine the mechanisms. Membrane characteristics of single neurons are given by the Hodgkin-Huxley electric circuit. According to anatomical data, neural circuits of the neocortico-hippocampal system are composed by connecting populations of the model neurons. Computer simulation using physiological data concerning ion channels demonstrates how the mechanisms work and how to test the hypotheses presented.

  5. Upregulation of Gene Expression in Reward-Modulatory Striatal Opioid Systems by Sleep Loss

    PubMed Central

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-01-01

    Epidemiological studies have shown a link between sleep loss and the obesity ‘epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food ‘snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding. PMID:23864029

  6. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study.

    PubMed

    da Silva Alves, Fabiana; Schmitz, Nicole; Figee, Martijn; Abeling, Nico; Hasler, Gregor; van der Meer, Johan; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-04-01

    Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.

  7. Markov reward processes

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1991-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.

  8. The Influence of Palatable Diets in Reward System Activation: A Mini Review

    PubMed Central

    de Macedo, Isabel Cristina; de Freitas, Joice Soares; da Silva Torres, Iraci Lucena

    2016-01-01

    The changes in eating patterns that have occurred in recent decades are an important cause of obesity. Food intake and energy expenditure are controlled by a complex neural system involving the hypothalamic centers and peripheral satiety system (gastrointestinal and pancreatic hormones). Highly palatable and caloric food disrupts appetite regulation; however, palatable foods induce pleasure and reward. The cafeteria diet is such a palatable diet and has been shown consistently to increase body weight and induce hyperplasia in animal obesity models. Moreover, palatable high-fat foods (such as those of the cafeteria diet) can induce addiction-like deficits in brain reward function and are considered to be an important source of motivation that might drive overeating and contribute to the development of obesity. The mechanism of neural adaptation triggered by palatable foods is similar to those that have been reported for nondrug addictions and long-term drug use. Thus, this review attempts to describe the potential mechanisms that might lead to highly palatable diets, such as the cafeteria diet, triggering addiction, or compulsion through the reward system. PMID:27087806

  9. Deep brain stimulation of the human reward system for major depression--rationale, outcomes and outlook.

    PubMed

    Schlaepfer, Thomas E; Bewernick, Bettina H; Kayser, Sarah; Hurlemann, Rene; Coenen, Volker A

    2014-05-01

    Deep brain stimulation (DBS) as a putative approach for treatment-resistant depression (TRD) has now been researched for about a decade. Several uncontrolled studies--all in relatively small patient populations and different target regions-have shown clinically relevant antidepressant effects in about half of the patients and very recently, DBS to a key structure of the reward system, the medial forebrain bundle, has yielded promising results within few days of stimulation and at much lower stimulation intensities. On the downside, DBS procedures in regions are associated with surgical risks (eg, hemorrhage) and psychiatric complications (suicidal attenuation, hypomania) as well as high costs. This overview summarizes research on the mechanisms of brain networks with respect to psychiatric diseases and--as a novelty--extrapolates to the role of the reward system in DBS for patients with treatment-resistant depression. It further evaluates relevant methodological aspects of today's research in DBS for TRD. On the scientific side, the reward system has an important yet clearly under-recognized role in both neurobiology and treatment of depression. On the methodological side of DBS research in TRD, better animal models are clearly needed to explain clinical effects of DBS in TRD. Larger sample sizes, long-term follow-up and designs including blinded sham control are required to draw final conclusions on efficacy and side effects. Practical research issues cover study design, patient tracking, and the discussion of meaningful secondary outcome measures. PMID:24513970

  10. Increased Functional Connectivity between Prefrontal Cortex and Reward System in Pathological Gambling

    PubMed Central

    Koehler, Saskia; Ovadia-Caro, Smadar; van der Meer, Elke; Villringer, Arno; Heinz, Andreas

    2013-01-01

    Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder. PMID:24367675

  11. Deep Brain Stimulation of the Human Reward System for Major Depression—Rationale, Outcomes and Outlook

    PubMed Central

    Schlaepfer, Thomas E; Bewernick, Bettina H; Kayser, Sarah; Hurlemann, Rene; Coenen, Volker A

    2014-01-01

    Deep brain stimulation (DBS) as a putative approach for treatment-resistant depression (TRD) has now been researched for about a decade. Several uncontrolled studies—all in relatively small patient populations and different target regions—have shown clinically relevant antidepressant effects in about half of the patients and very recently, DBS to a key structure of the reward system, the medial forebrain bundle, has yielded promising results within few days of stimulation and at much lower stimulation intensities. On the downside, DBS procedures in regions are associated with surgical risks (eg, hemorrhage) and psychiatric complications (suicidal attenuation, hypomania) as well as high costs. This overview summarizes research on the mechanisms of brain networks with respect to psychiatric diseases and—as a novelty—extrapolates to the role of the reward system in DBS for patients with treatment-resistant depression. It further evaluates relevant methodological aspects of today's research in DBS for TRD. On the scientific side, the reward system has an important yet clearly under-recognized role in both neurobiology and treatment of depression. On the methodological side of DBS research in TRD, better animal models are clearly needed to explain clinical effects of DBS in TRD. Larger sample sizes, long-term follow-up and designs including blinded sham control are required to draw final conclusions on efficacy and side effects. Practical research issues cover study design, patient tracking, and the discussion of meaningful secondary outcome measures. PMID:24513970

  12. Altered Resting-State Functional Connectivity of the Frontal-Striatal Reward System in Social Anxiety Disorder

    PubMed Central

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M.; Hofmann, Stefan G.; Pollack, Mark; Gabrieli, John D. E.; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions. PMID:25928647

  13. Endocannabinoid system: Role in depression, reward and pain control (Review)

    PubMed Central

    Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia

    2016-01-01

    Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9-tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined. PMID:27484193

  14. Endocannabinoid system: Role in depression, reward and pain control (Review).

    PubMed

    Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia

    2016-10-01

    Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined. PMID:27484193

  15. Reward, context, and human behaviour.

    PubMed

    Blaukopf, Clare L; DiGirolamo, Gregory J

    2007-01-01

    Animal models of reward processing have revealed an extensive network of brain areas that process different aspects of reward, from expectation and prediction to calculation of relative value. These results have been confirmed and extended in human neuroimaging to encompass secondary rewards more unique to humans, such as money. The majority of the extant literature covers the brain areas associated with rewards whilst neglecting analysis of the actual behaviours that these rewards generate. This review strives to redress this imbalance by illustrating the importance of looking at the behavioural outcome of rewards and the context in which they are produced. Following a brief review of the literature of reward-related activity in the brain, we examine the effect of reward context on actions. These studies reveal how the presence of reward vs. reward and punishment, or being conscious vs. unconscious of reward-related actions, differentially influence behaviour. The latter finding is of particular importance given the extent to which animal models are used in understanding the reward systems of the human mind. It is clear that further studies are needed to learn about the human reaction to reward in its entirety, including any distinctions between conscious and unconscious behaviours. We propose that studies of reward entail a measure of the animal's (human or nonhuman) knowledge of the reward and knowledge of its own behavioural outcome to achieve that reward. PMID:17619748

  16. Oxytocin enhances brain reward system responses in men viewing the face of their female partner.

    PubMed

    Scheele, Dirk; Wille, Andrea; Kendrick, Keith M; Stoffel-Wagner, Birgit; Becker, Benjamin; Güntürkün, Onur; Maier, Wolfgang; Hurlemann, René

    2013-12-10

    The biological mechanisms underlying long-term partner bonds in humans are unclear. The evolutionarily conserved neuropeptide oxytocin (OXT) is associated with the formation of partner bonds in some species via interactions with brain dopamine reward systems. However, whether it plays a similar role in humans has as yet not been established. Here, we report the results of a discovery and a replication study, each involving a double-blind, placebo-controlled, within-subject, pharmaco-functional MRI experiment with 20 heterosexual pair-bonded male volunteers. In both experiments, intranasal OXT treatment (24 IU) made subjects perceive their female partner's face as more attractive compared with unfamiliar women but had no effect on the attractiveness of other familiar women. This enhanced positive partner bias was paralleled by an increased response to partner stimuli compared with unfamiliar women in brain reward regions including the ventral tegmental area and the nucleus accumbens (NAcc). In the left NAcc, OXT even augmented the neural response to the partner compared with a familiar woman, indicating that this finding is partner-bond specific rather than due to familiarity. Taken together, our results suggest that OXT could contribute to romantic bonds in men by enhancing their partner's attractiveness and reward value compared with other women. PMID:24277856

  17. Neuroimaging of the dopamine/reward system in adolescent drug use.

    PubMed

    Ernst, Monique; Luciana, Monica

    2015-08-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine (DA) system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana's interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  18. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    PubMed Central

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  19. Scientists and Self-Doubt across Strata of Academic Science

    ERIC Educational Resources Information Center

    Hermanowicz, Joseph C.

    2005-01-01

    Most institutional studies of science have focused on the functioning of its reward system. Less is known about perspectives scientists develop on their variously rewarded and recognized careers. This study examines people's subjective appraisals of attainment in academic science based on a sample of interviews with physicists who discussed their…

  20. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies.

    PubMed

    Befort, Katia

    2015-01-01

    The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals. PMID:25698968

  1. Systems Analysis Approach to Academic Planning, Part I.

    ERIC Educational Resources Information Center

    Nwagbaraocha, Joel O.

    This paper presents concepts relevant to, and the benefits to be gained from, using a "systems" model in thinking about academic planning in general and curriculum development in particular. An attempt is made to show how the "systems" approach provides key tools for a diagnosis of academic structure in a college or university. In doing so, the…

  2. Measuring Motivation and Reward-Related Decision Making in the Rodent Operant Touchscreen System.

    PubMed

    Heath, Christopher J; Phillips, Benjamin U; Bussey, Timothy J; Saksida, Lisa M

    2016-01-04

    This unit is designed to facilitate implementation of the fixed and progressive ratio paradigms and the effort-related choice task in the rodent touchscreen apparatus to permit direct measurement of motivation and reward-related decision making in this equipment. These protocols have been optimized for use in the mouse and reliably yield stable performance levels that can be enhanced or suppressed by systemic pharmacological manipulation. Instructions are also provided for the adjustment of task parameters to permit use in mouse models of neurodegenerative disease. These tasks expand the utility of the rodent touchscreen apparatus beyond the currently available battery of cognitive assessment paradigms.

  3. Reward, addiction, and emotion regulation systems associated with rejection in love.

    PubMed

    Fisher, Helen E; Brown, Lucy L; Aron, Arthur; Strong, Greg; Mashek, Debra

    2010-07-01

    Romantic rejection causes a profound sense of loss and negative affect. It can induce clinical depression and in extreme cases lead to suicide and/or homicide. To begin to identify the neural systems associated with this natural loss state, we used functional magnetic resonance imaging to study 10 women and 5 men who had recently been rejected by a partner but reported they were still intensely "in love." Participants alternately viewed a photograph of their rejecting beloved and a photograph of a familiar, individual, interspersed with a distraction-attention task. Their responses while looking at their rejecter included love, despair, good, and bad memories, and wondering why this happened. Activation specific to the image of the beloved occurred in areas associated with gains and losses, craving and emotion regulation and included the ventral tegmental area (VTA) bilaterally, ventral striatum, medial and lateral orbitofrontal/prefrontal cortex, and cingulate gyrus. Compared with data from happily-in-love individuals, the regional VTA activation suggests that mesolimbic reward/survival systems are involved in romantic passion regardless of whether one is happily or unhappily in love. Forebrain activations associated with motivational relevance, gain/loss, cocaine craving, addiction, and emotion regulation suggest that higher-order systems subject to experience and learning also may mediate the rejection reaction. The results show activation of reward systems, previously identified by monetary stimuli, in a natural, endogenous, negative emotion state. Activation of areas involved in cocaine addiction may help explain the obsessive behaviors associated with rejection in love.

  4. A new animal model of placebo analgesia: involvement of the dopaminergic system in reward learning

    PubMed Central

    Lee, In-Seon; Lee, Bombi; Park, Hi-Joon; Olausson, Håkan; Enck, Paul; Chae, Younbyoung

    2015-01-01

    We suggest a new placebo analgesia animal model and investigated the role of the dopamine and opioid systems in placebo analgesia. Before and after the conditioning, we conducted a conditioned place preference (CPP) test to measure preferences for the cues (Rooms 1 and 2), and a hot plate test (HPT) to measure the pain responses to high level-pain after the cues. In addition, we quantified the expression of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and c-Fos in the anterior cingulate cortex (ACC) as a response to reward learning and pain response. We found an enhanced preference for the low level-pain paired cue and enhanced TH expression in the VTA of the Placebo and Placebo + Naloxone groups. Haloperidol, a dopamine antagonist, blocked these effects in the Placebo + Haloperidol group. An increased pain threshold to high-heat pain and reduced c-Fos expression in the ACC were observed in the Placebo group only. Haloperidol blocked the place preference effect, and naloxone and haloperidol blocked the placebo analgesia. Cue preference is mediated by reward learning via the dopamine system, whereas the expression of placebo analgesia is mediated by the dopamine and opioid systems. PMID:26602173

  5. Common Priority Map for Selection History, Reward and Emotion in the Oculomotor System.

    PubMed

    Belopolsky, Artem V

    2015-01-01

    In natural scenes, many objects compete for visual selection. However, it is not always clear why certain objects win this competition. I will demonstrate that the eye movement system lives in a constant state of competition among different oculomotor programs. This competition is not limited to the competition between the current goals of the observer and salient objects in the environment but incorporates independent influences from memory, reward, and emotional systems. These involuntary and automatic biases often overcome the goal-directed selection and expose severe limits in goal-driven control. There is also a striking similarity in the way that these very different sources of bias activate the oculomotor system and compete for representation. The inputs from various information sources are integrated in the common map in the oculomotor system for the sole purpose of improving the efficiency of oculomotor selection. PMID:26562909

  6. Characterizing heterogeneity in children with and without ADHD based on reward system connectivity.

    PubMed

    Costa Dias, Taciana G; Iyer, Swathi P; Carpenter, Samuel D; Cary, Robert P; Wilson, Vanessa B; Mitchell, Suzanne H; Nigg, Joel T; Fair, Damien A

    2015-02-01

    One potential obstacle limiting our ability to clarify ADHD etiology is the heterogeneity within the disorder, as well as in typical samples. In this study, we utilized a community detection approach on 106 children with and without ADHD (aged 7-12 years), in order to identify potential subgroups of participants based on the connectivity of the reward system. Children with ADHD were compared to typically developing children within each identified community, aiming to find the community-specific ADHD characteristics. Furthermore, to assess how the organization in subgroups relates to behavior, we evaluated delay-discounting gradient and impulsivity-related temperament traits within each community. We found that discrete subgroups were identified that characterized distinct connectivity profiles in the reward system. Importantly, which connections were atypical in ADHD relative to the control children were specific to the community membership. Our findings showed that children with ADHD and typically developing children could be classified into distinct subgroups according to brain functional connectivity. Results also suggested that the differentiation in "functional" subgroups is related to specific behavioral characteristics, in this case impulsivity. Thus, combining neuroimaging data and community detection might be a valuable approach to elucidate heterogeneity in ADHD etiology and examine ADHD neurobiology.

  7. Academic Literacies and Systemic Functional Linguistics: How Do They Relate?

    ERIC Educational Resources Information Center

    Coffin, Caroline; Donohue, James P.

    2012-01-01

    Two approaches to English for Academic Purposes (EAP) research and teaching which have arisen in recent years are systemic functional linguistics (SFL) approaches in Australia and elsewhere (e.g. Hood, 2006; Lee, 2010; Woodward-Kron, 2009) and Academic Literacies approaches in the UK and elsewhere (e.g. Lillis & Scott, 2008; Thesen & Pletzen,…

  8. Incorporating Academic Standards in Instructional Systems Design Process.

    ERIC Educational Resources Information Center

    Wang, Charles Xiaoxue

    Almost every state is "imposing" academic standards. Helping students to meet those standards is a key task for teachers and school administrators, as well as instructional systems designers. Thus, instructional designers in the K-12 environments are facing the challenge of using appropriately and effectively academic standards in their…

  9. Job Evaluation Systems in Academic Libraries: Current Issues and Trends.

    ERIC Educational Resources Information Center

    Dewey, Barbara J.

    1986-01-01

    Discusses the increasing managerial importance of job evaluation to libraries, compares typical job evaluation systems in academic libraries with innovative ones in selected academic settings and notes that job evaluation development has resulted in libraries focusing on specific personnel issues and developing new directions in the job evaluation…

  10. Different Reward Structures to Motivate Student Interaction with Electronic Response Systems in Astronomy

    NASA Astrophysics Data System (ADS)

    Len, Patrick M.

    Electronic response systems ("clickers") are used in introductory astronomy classes as a real-time assessment tool. Different reward structures for student responses to clicker questions are used to motivate individual participation or group collaboration before responding. The impact of two reward structures on student behavior and learning is investigated. This study finds that a success-bonus incentive (in which individual participation points are doubled when the class attains a threshold success rate) strongly motivated students to collaborate, whereas a participation-only credit (no success-bonus) incentive resulted in one-third of the students answering individually without collaboration. With a participation-only incentive, students who answered individually ("self-testers") were found to have more positive attitudes toward astronomy and science, and higher self-confidence in their learning than students who interacted before answering without a success-bonus incentive ("collaborators"). These collaborators experienced downward shifts in attitudes and self-confidence, in contrast to the static attitudes and self-confidence of self-testers. The implication is that students with little or no background in science prefer to answer collaboratively rather than independently and that these students are also negatively impacted by a one-semester introductory astronomy course.

  11. Perceiving active listening activates the reward system and improves the impression of relevant experiences.

    PubMed

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sasaki, Akihiro T; Sugawara, Sho K; Tanabe, Hiroki C; Shinohara, Ryoji; Sugisawa, Yuka; Tokutake, Kentaro; Mochizuki, Yukiko; Anme, Tokie; Sadato, Norihiro

    2015-01-01

    Although active listening is an influential behavior, which can affect the social responses of others, the neural correlates underlying its perception have remained unclear. Sensing active listening in social interactions is accompanied by an improvement in the recollected impressions of relevant experiences and is thought to arouse positive feelings. We therefore hypothesized that the recognition of active listening activates the reward system, and that the emotional appraisal of experiences that had been subject to active listening would be improved. To test these hypotheses, we conducted functional magnetic resonance imaging (fMRI) on participants viewing assessments of their own personal experiences made by evaluators with or without active listening attitude. Subjects rated evaluators who showed active listening more positively. Furthermore, they rated episodes more positively when they were evaluated by individuals showing active listening. Neural activation in the ventral striatum was enhanced by perceiving active listening, suggesting that this was processed as rewarding. It also activated the right anterior insula, representing positive emotional reappraisal processes. Furthermore, the mentalizing network was activated when participants were being evaluated, irrespective of active listening behavior. Therefore, perceiving active listening appeared to result in positive emotional appraisal and to invoke mental state attribution to the active listener. PMID:25188354

  12. Perceiving active listening activates the reward system and improves the impression of relevant experiences

    PubMed Central

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sasaki, Akihiro T.; Sugawara, Sho K.; Tanabe, Hiroki C.; Shinohara, Ryoji; Sugisawa, Yuka; Tokutake, Kentaro; Mochizuki, Yukiko; Anme, Tokie; Sadato, Norihiro

    2015-01-01

    Although active listening is an influential behavior, which can affect the social responses of others, the neural correlates underlying its perception have remained unclear. Sensing active listening in social interactions is accompanied by an improvement in the recollected impressions of relevant experiences and is thought to arouse positive feelings. We therefore hypothesized that the recognition of active listening activates the reward system, and that the emotional appraisal of experiences that had been subject to active listening would be improved. To test these hypotheses, we conducted functional magnetic resonance imaging (fMRI) on participants viewing assessments of their own personal experiences made by evaluators with or without active listening attitude. Subjects rated evaluators who showed active listening more positively. Furthermore, they rated episodes more positively when they were evaluated by individuals showing active listening. Neural activation in the ventral striatum was enhanced by perceiving active listening, suggesting that this was processed as rewarding. It also activated the right anterior insula, representing positive emotional reappraisal processes. Furthermore, the mentalizing network was activated when participants were being evaluated, irrespective of active listening behavior. Therefore, perceiving active listening appeared to result in positive emotional appraisal and to invoke mental state attribution to the active listener. PMID:25188354

  13. Maximal voluntary force strengthened by the enhancement of motor system state through barely visible priming words with reward.

    PubMed

    Takarada, Yudai; Nozaki, Daichi

    2014-01-01

    The topic of unconscious influences on behaviour has long been explored as a means of understanding human performance and the neurobiological correlates of intention, motivation, and action. However, what is relatively unknown is whether subconsciously delivered priming stimuli, with or without rewards, can affect individuals' maximum level of force produced with their best effort. We demonstrated using transcranial magnetic stimulation that barely visible priming of an action concept, when combined with a reward in the form of a consciously visible positive stimulus, could alter the state of the motor system. In accordance with this neurophysiological alteration, the prime-plus-reward stimuli significantly increased the hand-grip force level of maximum voluntary contraction with little conscious awareness. This is the first objective evidence that the barely conscious presence of a behavioral goal can influence the state of the motor system and arouse latent ability for human force exertion. PMID:25275612

  14. Brain mechanisms of social comparison and their influence on the reward system

    PubMed Central

    Mussweiler, Thomas; Linden, David E.J.

    2014-01-01

    Whenever we interact with others, we judge them and whenever we make such judgments, we compare them with ourselves, other people, or internalized standards. Countless social psychological experiments have shown that comparative thinking plays a ubiquitous role in person perception and social cognition as a whole. The topic of social comparison has recently aroused the interest of social neuroscientists, who have begun to investigate its neural underpinnings. The present article provides an overview of these neuroimaging and electrophysiological studies. We discuss recent findings on the consequences of social comparison on the brain processing of outcomes and highlight the role of the brain’s reward system. Moreover, we analyze the relationship between the brain networks involved in social comparisons and those active during other forms of cognitive and perceptual comparison. Finally, we discuss potential future questions that research on the neural correlates of social comparison could address. PMID:25191923

  15. Case Study of Ecstatic Meditation: fMRI and EEG Evidence of Self-Stimulating a Reward System

    PubMed Central

    Hagerty, Michael R.; Isaacs, Julian; Brasington, Leigh; Fetz, Eberhard E.; Cramer, Steven C.

    2013-01-01

    We report the first neural recording during ecstatic meditations called jhanas and test whether a brain reward system plays a role in the joy reported. Jhanas are Altered States of Consciousness (ASC) that imply major brain changes based on subjective reports: (1) external awareness dims, (2) internal verbalizations fade, (3) the sense of personal boundaries is altered, (4) attention is highly focused on the object of meditation, and (5) joy increases to high levels. The fMRI and EEG results from an experienced meditator show changes in brain activity in 11 regions shown to be associated with the subjective reports, and these changes occur promptly after jhana is entered. In particular, the extreme joy is associated not only with activation of cortical processes but also with activation of the nucleus accumbens (NAc) in the dopamine/opioid reward system. We test three mechanisms by which the subject might stimulate his own reward system by external means and reject all three. Taken together, these results demonstrate an apparently novel method of self-stimulating a brain reward system using only internal mental processes in a highly trained subject. PMID:23738149

  16. Academic Counselling in ODL: Information System for Capacity Building of Academic Counselors' in IGNOU

    ERIC Educational Resources Information Center

    Kishore, S.

    2014-01-01

    Indira Gandhi national Open University (IGNOU) is an apex body for open and distance learning (ODL) system in India. The university has nation-wide operation and pioneer in distance education. IGNOU has an hqrs, 67 Regional Centres and about 3400 Study Centres throughout India. The study centres are the academic contact point for distance learners…

  17. Careers in Academe: The Academic Labour Market as an Eco-System

    ERIC Educational Resources Information Center

    Baruch, Yehuda

    2013-01-01

    Purpose: This paper aims to explore the contrast between stable and dynamic labour markets in academe in light of career theories that were originally developed for business environments. Design/methodology/approach: A conceptual design, offering the eco-system as a framework. Findings: It evaluates their relevance and applicability to dynamic and…

  18. A Comprehensive Availability Modeling and Analysis of a Virtualized Servers System Using Stochastic Reward Nets

    PubMed Central

    Kim, Dong Seong; Park, Jong Sou

    2014-01-01

    It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732

  19. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  20. Drug-seeking behavior in an invertebrate system: evidence of morphine-induced reward, extinction and reinstatement in crayfish.

    PubMed

    Nathaniel, Thomas I; Panksepp, Jaak; Huber, Robert

    2009-02-11

    Several lines of evidence suggest that exploring the neurochemical basis of reward in invertebrate species may provide clues for the fundamental behavioral and neurobiology underpinnings of drug addiction. How the presence of drug-sensitive reward relates to a decrease in drug-seeking behavior and reinstatement of drug-seeking behavior in invertebrate systems is not known. The present study of a conditioned place preference (CPP) paradigm in crayfish (Orconectes rusticus) explores morphine-induced reward, extinction and reinstatement. Repeated intra-circulatory infusions of 2.5 microg/g, 5.0 microg/g and 10.0 microg/g doses of morphine over 5 days serve as a reward when paired with a distinct visual or tactile environment. Morphine-induced CPP was extinguished after repeated saline injections for 5 days in the previously morphine-paired compartment. After the previously established CPP had been eliminated during the extinction phase, morphine-experienced crayfish were challenged with 2.5 microg/g, 5.0 microg/g and 10.0 microg/g, respectively. The priming injections of morphine reinstated CPP in all training doses, suggesting that morphine-induced CPP is unrelenting, and that with time, it can be reinstated by morphine following extinction in an invertebrate model just like in mammals. Together with other recent studies, this work demonstrates the advantage of using crayfish as an invertebrate animal model to investigate the basic biological processes that underline exposure to mammalian drugs of abuse.

  1. Intelligent Counseling System: A 24 x 7 Academic Advisor

    ERIC Educational Resources Information Center

    Leung, Chun Ming; Tsang, Eva Y. M.; Lam, S. S.; Pang, Dominic C. W.

    2010-01-01

    Universities are increasingly looking into self-service systems with intelligent digital agents to supplement or replace labor-intensive services, such as academic counseling. The Open University of Hong Kong has developed an intelligent online system that instantly responds to enquiries about career development, learning modes, program/course…

  2. Perspectives on Integrated Academic Information Management Systems (IAIMS).

    ERIC Educational Resources Information Center

    Lunin, Lois F. (Ed.); Ball, Marion J. (Ed.)

    1988-01-01

    Various aspects of the Integrated Academic Information Management System (IAIMS) initiative sponsored by the National Library of Medicine are explored in 10 articles. An overview of the program, the technologies involved, examples of implementation, approaches to integrated information systems, and the future of the program are discussed. (CLB)

  3. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  4. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex

    PubMed Central

    Ikemoto, Satoshi

    2007-01-01

    Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that: (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive, and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization. PMID:17574681

  5. Perceptions of moral character modulate the neural systems of reward during the trust game.

    PubMed

    Delgado, M R; Frank, R H; Phelps, E A

    2005-11-01

    Studies of reward learning have implicated the striatum as part of a neural circuit that guides and adjusts future behavior on the basis of reward feedback. Here we investigate whether prior social and moral information about potential trading partners affects this neural circuitry. Participants made risky choices about whether to trust hypothetical trading partners after having read vivid descriptions of life events indicating praiseworthy, neutral or suspect moral character. Despite equivalent reinforcement rates for all partners, participants were persistently more likely to make risky choices with the 'good' partner. As expected from previous studies, activation of the caudate nucleus differentiated between positive and negative feedback, but only for the 'neutral' partner. Notably, it did not do so for the 'good' partner and did so only weakly for the 'bad' partner, suggesting that prior social and moral perceptions can diminish reliance on feedback mechanisms in the neural circuitry of trial-and-error reward learning. PMID:16222226

  6. Perceptions of moral character modulate the neural systems of reward during the trust game.

    PubMed

    Delgado, M R; Frank, R H; Phelps, E A

    2005-11-01

    Studies of reward learning have implicated the striatum as part of a neural circuit that guides and adjusts future behavior on the basis of reward feedback. Here we investigate whether prior social and moral information about potential trading partners affects this neural circuitry. Participants made risky choices about whether to trust hypothetical trading partners after having read vivid descriptions of life events indicating praiseworthy, neutral or suspect moral character. Despite equivalent reinforcement rates for all partners, participants were persistently more likely to make risky choices with the 'good' partner. As expected from previous studies, activation of the caudate nucleus differentiated between positive and negative feedback, but only for the 'neutral' partner. Notably, it did not do so for the 'good' partner and did so only weakly for the 'bad' partner, suggesting that prior social and moral perceptions can diminish reliance on feedback mechanisms in the neural circuitry of trial-and-error reward learning.

  7. Rewards and Supports

    ERIC Educational Resources Information Center

    Hershberg, Theodore; Robertson-Kraft, Claire

    2010-01-01

    Pay-for-performance systems in public schools have long been burdened with controversy. Critics of performance pay systems contend that because teachers' impact cannot be measured without error, it is impossible to create fair and accurate systems for evaluating and rewarding performance. By this standard, however, current practice fails on both…

  8. Online System Adoption and K-12 Academic Outcomes

    ERIC Educational Resources Information Center

    Kimmons, R.

    2015-01-01

    This study seeks to understand the relationship between K-12 online system adoption (e.g., Blackboard, Edmodo, WordPress) and school-level academic achievement ratings. Utilizing a novel approach to data collection via website data extraction and indexing of all school websites in a target state in the United States (n?=?732) and merging these…

  9. Motivational Systems Theory and the Academic Performance of College Students

    ERIC Educational Resources Information Center

    Campbell, Michael M.

    2007-01-01

    This study explored the validity of the Motivational Systems Theory (MST) as a measure of performance of college students pursuing business degrees and the level of academic performance attained across gender and race lines. This goal is achieved by investigating the relationships between motivational strategies, biological factors, responsive…

  10. Writing by Academics: A Transactional and Systems Approach to Academic Writing Behaviours

    ERIC Educational Resources Information Center

    Kempenaar, Larissa Elisabeth; Murray, Rowena

    2016-01-01

    The literature on academic writing in higher education contains a wealth of research and theory on students' writing, but much less on academics' writing. In performative higher education cultures, discussions of academics' writing mainly concern outputs, rather than the process of producing them. This key component of academic work remains…

  11. Rewarding Peer Reviewers: Maintaining the Integrity of Science Communication

    PubMed Central

    2015-01-01

    This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and assigning publication credits to the best reviews is one of the latest achievements of digitization. Reviews, posted on academic networking platforms, such as Publons, add to the transparency of the whole system of peer review. Reviewer credits, properly counted and displayed on individual digital profiles, help distinguish the best contributors, invite them to review and offer responsible editorial posts. PMID:25829801

  12. Rewarding peer reviewers: maintaining the integrity of science communication.

    PubMed

    Gasparyan, Armen Yuri; Gerasimov, Alexey N; Voronov, Alexander A; Kitas, George D

    2015-04-01

    This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and assigning publication credits to the best reviews is one of the latest achievements of digitization. Reviews, posted on academic networking platforms, such as Publons, add to the transparency of the whole system of peer review. Reviewer credits, properly counted and displayed on individual digital profiles, help distinguish the best contributors, invite them to review and offer responsible editorial posts.

  13. Rewarding peer reviewers: maintaining the integrity of science communication.

    PubMed

    Gasparyan, Armen Yuri; Gerasimov, Alexey N; Voronov, Alexander A; Kitas, George D

    2015-04-01

    This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and assigning publication credits to the best reviews is one of the latest achievements of digitization. Reviews, posted on academic networking platforms, such as Publons, add to the transparency of the whole system of peer review. Reviewer credits, properly counted and displayed on individual digital profiles, help distinguish the best contributors, invite them to review and offer responsible editorial posts. PMID:25829801

  14. The Academic System in American Society.

    ERIC Educational Resources Information Center

    Touraine, Alain

    Although the American system of higher education has been concerned with developing its own unity as a social institution, this book demonstrates that the system has always remained sensitive to three societal factors. There are the changing needs of society; the struggles for control over the sources of culture, knowledge and power within…

  15. Is MBO Appropriate in the Academic Setting?

    ERIC Educational Resources Information Center

    Lasher, Harry J.

    1978-01-01

    A model for implementing a Management by Objectives (MBO) system in the academic environment is presented and potential problems are explored. Some of the pitfalls discussed include: organizational climate, clarity of objectives, assumption that MBO concepts are readily understood, instant success syndrome, and economic reward myopia. (JMD)

  16. Loss in connectivity among regions of the brain reward system in alcohol dependence.

    PubMed

    Kuceyeski, Amy; Meyerhoff, Dieter J; Durazzo, Timothy C; Raj, Ashish

    2013-12-01

    A recently developed measure of structural brain connectivity disruption, the loss in connectivity (LoCo), is adapted for studies in alcohol dependence. LoCo uses independent tractography information from young healthy controls to project the location of white matter (WM) microstructure abnormalities in alcohol-dependent versus nondependent individuals onto connected gray matter (GM) regions. LoCo scores are computed from WM abnormality masks derived at two levels: (1) groupwise differences of alcohol-dependent individuals (ALC) versus light-drinking (LD) controls and (2) differences of each ALC individual versus the LD control group. LoCo scores based on groupwise WM differences show that GM regions belonging to the extended brain reward system (BRS) network have significantly higher LoCo (i.e., disconnectivity) than those not in this network (t = 2.18, P = 0.016). LoCo scores based on individuals' WM differences are also higher in BRS versus non-BRS (t = 5.26, P = 3.92 × 10(-6) ) of ALC. These results suggest that WM alterations in alcohol dependence, although subtle and spatially heterogeneous across the population, are nonetheless preferentially localized to the BRS. LoCo is shown to provide a more sensitive estimate of GM involvement than conventional volumetric GM measures by better differentiating between brains of ALC and LD controls (rates of 89.3% vs. 69.6%). However, just as volumetric measures, LoCo is not significantly correlated with standard metrics of drinking severity. LoCo is a sensitive WM measure of regional cortical disconnectivity that uniquely characterizes anatomical network disruptions in alcohol dependence.

  17. YUCSA: A CLIPS expert database system to monitor academic performance

    NASA Technical Reports Server (NTRS)

    Toptsis, Anestis A.; Ho, Frankie; Leindekar, Milton; Foon, Debra Low; Carbonaro, Mike

    1991-01-01

    The York University CLIPS Student Administrator (YUCSA), an expert database system implemented in C Language Integrated Processing System (CLIPS), for monitoring the academic performance of undergraduate students at York University, is discussed. The expert system component in the system has already been implemented for two major departments, and it is under testing and enhancement for more departments. Also, more elaborate user interfaces are under development. We describe the design and implementation of the system, problems encountered, and immediate future plans. The system has excellent maintainability and it is very efficient, taking less than one minute to complete an assessment of one student.

  18. Development of a medical academic degree system in China

    PubMed Central

    Wu, Lijuan; Wang, Youxin; Peng, Xiaoxia; Song, Manshu; Guo, Xiuhua; Nelson, Hugh; Wang, Wei

    2014-01-01

    Context The Chinese government launched a comprehensive healthcare reform to tackle challenges to health equities. Medical education will become the key for successful healthcare reform. Purpose We describe the current status of the Chinese medical degree system and its evolution over the last 80 years. Content Progress has been uneven, historically punctuated most dramatically by the Cultural Revolution. There is a great regional disparity. Doctors with limited tertiary education may be licensed to practice, whereas medical graduates with advanced doctorates may have limited clinical skills. There are undefined relationships between competing tertiary training streams, the academic professional degree, and the clinical residency training programme (RTP). The perceived quality of training in both streams varies widely across China. As the degrees of master or doctor of academic medicine is seen as instrumental in career advancement, including employability in urban hospitals, attainment of this degree is sought after, yet is often unrelated to a role in health care, or is seen as superior to clinical experience. Meanwhile, the practical experience gained in some prestigious academic institutions is deprecated by the RTP and must be repeated before accreditation for clinical practice. This complexity is confusing both for students seeking the most appropriate training, and also for clinics, hospitals and universities seeking to recruit the most appropriate applicants. Conclusion The future education reforms might include: 1) a domestic system of ‘credits’ that gives weight to quality clinical experience vs. academic publications in career advancement, enhanced harmonisation between the competing streams of the professional degree and the RTP, and promotion of mobility of staff between areas of excellence and areas of need; 2) International – a mutual professional and academic recognition between China and other countries by reference to the Bologna Accord

  19. A specialized bird pollination system with a bellows mechanism for pollen transfer and staminal food body rewards.

    PubMed

    Dellinger, Agnes S; Penneys, Darin S; Staedler, Yannick M; Fragner, Lena; Weckwerth, Wolfram; Schönenberger, Jürg

    2014-07-21

    Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae). We studied the pollination process by combining pollination experiments, video monitoring, and detailed analyses of stamen structure and metabolomic composition. We show that the bulbous stamen appendages, which are consumed by various species of passerines (Thraupidae, Fringillidae), are bifunctional during the pollination process. First, the appendages work as bellows organs in a unique pollen expulsion mechanism activated by the passerines. As the birds seize an appendage with their beaks in order to remove it from the flower for consumption, air contained in the appendage's aerenchymatous tissue is pressed into the hollow anther. The resulting air flow causes the expulsion of a pollen jet and the deposition of pollen on the bird's head and beak. Second, the stamen appendages provide a hexose-rich, highly nutritious (15,100 J/g) food body reward for the pollinating passerines. This discovery expands our knowledge of flowering plant pollination systems and provides the first report of highly specialized bellows organs for active pollen transfer in flowering plants. In addition, this is the only known case of a food body reward associated with reproductive structures in the eudicot clade of flowering plants.

  20. A specialized bird pollination system with a bellows mechanism for pollen transfer and staminal food body rewards.

    PubMed

    Dellinger, Agnes S; Penneys, Darin S; Staedler, Yannick M; Fragner, Lena; Weckwerth, Wolfram; Schönenberger, Jürg

    2014-07-21

    Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae). We studied the pollination process by combining pollination experiments, video monitoring, and detailed analyses of stamen structure and metabolomic composition. We show that the bulbous stamen appendages, which are consumed by various species of passerines (Thraupidae, Fringillidae), are bifunctional during the pollination process. First, the appendages work as bellows organs in a unique pollen expulsion mechanism activated by the passerines. As the birds seize an appendage with their beaks in order to remove it from the flower for consumption, air contained in the appendage's aerenchymatous tissue is pressed into the hollow anther. The resulting air flow causes the expulsion of a pollen jet and the deposition of pollen on the bird's head and beak. Second, the stamen appendages provide a hexose-rich, highly nutritious (15,100 J/g) food body reward for the pollinating passerines. This discovery expands our knowledge of flowering plant pollination systems and provides the first report of highly specialized bellows organs for active pollen transfer in flowering plants. In addition, this is the only known case of a food body reward associated with reproductive structures in the eudicot clade of flowering plants. PMID:24998529

  1. Action learning for health system governance: the reward and challenge of co-production.

    PubMed

    Lehmann, Uta; Gilson, Lucy

    2015-10-01

    Health policy and systems research (HPSR) is centrally concerned with people, their relationships and the actions and practices they can implement towards better health systems. These concerns suggest that HPS researchers must work in direct engagement with the practitioners and practice central to the inquiry, acknowledging their tacit knowledge and drawing it into generating new insights into health system functioning. Social science perspectives are of particular importance in this field because health policies and health systems are themselves social and political constructs. However, how can social science methodologies such as action research and narrative and appreciative enquiry enable such research, and how can methodologies from different disciplines be woven together to construct and make meaning of evidence for 'this' field? This article seeks to present 'methodological musings' on these points, to prompt wider discussion on the practice of HPSR. It draws on one long-term collaborative action learning research project being undertaken in Cape Town, South Africa. The District Innovation and Action Learning for Health System Development project is an action research partnership between two South African academic institutions and two health authorities focused, ultimately, on strengthening governance in primary health care.Drawing on this experience, the article considers three interrelated issues: The diversity and complexities of practitioner and research actors involved in co-producing HPSR; The nature of co-production and the importance of providing space to grapple across different systems of meaning;The character of evidence and data in co-production. There is much to be learnt from research traditions outside the health sector, but HPSR must work out its own practices--through collaboration and innovation among researchers and practitioners. In this article, we provide one set of experiences to prompt wider reflection and stimulate engagement on the

  2. Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The Role of Reward System.

    PubMed

    Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin

    2015-01-01

    Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of aspecific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms. PMID:26630955

  3. Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia: The role of Reward System

    PubMed Central

    Lee, Jung Suk; Jung, Suwon; Park, Il Ho; Kim, Jae-Jin

    2015-01-01

    Anhedonia, the inability to feel pleasure, and amotivation, the lack of motivation, are two prominent negative symptoms of schizophrenia, which contribute to the poor social and occupational behaviors in the patients. Recently growing evidence shows that anhedonia and amotivation are tied together, but have distinct neural correlates. It is important to note that both of these symptoms may derive from deficient functioning of the reward network. A further analysis into the neuroimaging findings of schizophrenia shows that the neural correlates overlap in the reward network including the ventral striatum, anterior cingulate cortex and orbitofrontal cortex. Other neuroimaging studies have demonstrated the involvement of the default mode network in anhedonia. The identification of a specific deficit in hedonic and motivational capacity may help to elucidate the mechanisms behind social functioning deficits in schizophrenia, and may also lead to more targeted treatment of negative symptoms. PMID:26630955

  4. Performance Rewards in Athletics.

    ERIC Educational Resources Information Center

    Jones, Dianne; Mungai, Diana

    2001-01-01

    Discusses ways that college athletic coaches can motivate student athletes to improve performance, describing a model that recognizes the multiple factors that contribute to success. The model draws from experiences in corporate America, which uses performance reward systems to supplement base compensation. The model illustrates how one…

  5. Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System.

    PubMed

    Trost, Sarah; Diekhof, Esther K; Mohr, Holger; Vieker, Henning; Krämer, Bernd; Wolf, Claudia; Keil, Maria; Dechent, Peter; Binder, Elisabeth B; Gruber, Oliver

    2016-10-01

    Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1. PMID:27184339

  6. Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System.

    PubMed

    Trost, Sarah; Diekhof, Esther K; Mohr, Holger; Vieker, Henning; Krämer, Bernd; Wolf, Claudia; Keil, Maria; Dechent, Peter; Binder, Elisabeth B; Gruber, Oliver

    2016-10-01

    Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1.

  7. Predictive reward signal of dopamine neurons.

    PubMed

    Schultz, W

    1998-07-01

    The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli. They show biphasic, activation-depression responses after stimuli that resemble reward-predicting stimuli or are novel or particularly salient. However, only few phasic activations follow aversive stimuli. Thus dopamine neurons label environmental stimuli with appetitive value, predict and detect rewards and signal alerting and motivating events. By failing to discriminate between different rewards, dopamine neurons appear to emit an alerting message about the surprising presence or absence of rewards. All responses to rewards and reward-predicting stimuli depend on event predictability. Dopamine neurons are activated by rewarding events that are better than predicted, remain uninfluenced by events that are as good as predicted, and are depressed by events that are worse than predicted. By signaling rewards according to a prediction error, dopamine responses have the formal characteristics of a teaching signal postulated by reinforcement learning theories. Dopamine responses transfer during learning from primary rewards to reward-predicting stimuli. This may contribute to neuronal mechanisms underlying the retrograde action of rewards, one of the main puzzles in reinforcement learning. The impulse response releases a short pulse of dopamine onto many dendrites, thus broadcasting a rather global reinforcement signal to postsynaptic neurons. This signal may improve approach behavior by providing advance reward information before the behavior occurs, and may contribute to learning by modifying synaptic transmission. The dopamine reward signal is supplemented by activity in neurons in striatum, frontal cortex, and

  8. Deviancy from the Norms of Science: The Effects of Anomie and Alienation in the Academic Profession.

    ERIC Educational Resources Information Center

    Braxton, John M.

    1993-01-01

    A study applying anomie theory to behavior of college faculty, especially as alienation from the academic reward system results in deviation from professional norms of communality, disinterestedness, universalism, and organized skepticism, is reported. Implications for use of norms as interpretive devices, ambivalence of academics toward norms,…

  9. Changing Incentives and Time Allocations for Academic Economists: Results from 1995 and 2000 National Surveys

    ERIC Educational Resources Information Center

    Harter, Cynthia L.; Becker, William E.; Watts, Michael

    2004-01-01

    How much time do academic economists allocate to teaching, research, and service, and how much time do their departments want them to allocate to these pursuits? As a result of the decline in economics majors in the early 1990s, was there a change in the reward system and time allocation of academic economists toward teaching? In this study, the…

  10. To eat or not to eat: Effects of food availability on reward system activity during food picture viewing.

    PubMed

    Blechert, Jens; Klackl, Johannes; Miedl, Stephan F; Wilhelm, Frank H

    2016-04-01

    Neuroimaging studies have started to explore the role of food characteristics (e.g., calorie-content) and psychological factors (e.g., restrained eating, craving) for the human appetitive system, motivated by the significant health implications of food-choice, overeating and overweight/obesity. However, one key aspect of modern food environments, food availability, especially of high energy foods, has not been adequately modeled in experimental research. Food that is immediately available for consumption could elicit stronger reward system activity and associated cognitive control than food that is not currently available for consumption and this could vary as a function of energy density. To examine this question, 32 healthy participants (16 women) underwent functional magnetic resonance imaging while passively viewing available foods - i.e. foods that could be eaten during and after the experiment - and unavailable foods of either high or low-caloric density in a 2 × 2 design. Available compared to unavailable foods elicited higher palatability ratings as well as stronger neural activation in the orbitofrontal cortex (OFC), amygdala, and left caudate nucleus as well as in the anterior cingulate cortex (ACC) - and thus structures implicated in reward and appetitive motivation as well as cognitive control, respectively. Availability effects in the caudate were mainly attributable to the high calorie condition (availability × calorie density interaction). These neuroimaging results support the contention that foods are particularly rewarding when immediately available and particularly so when high in caloric density. Thus, our results are consistent with health promoting interventions utilizing a nudging approach, i.e. aiming at decreasing accessibility of high calorie and increasing accessibility of low calorie foods in daily life. Results also imply that controlling/manipulating food availability may be an important methodological aspect in neuroscientific

  11. Combining a clinical ladder and performance appraisal system as a reward strategy: the EXCEL clinical ladder program.

    PubMed

    Moe, J K; Lonowski, L R; Yancer, D A

    1994-09-01

    In response to the dramatic changes occurring in health care today and a desire to reward professional nurses for clinical behaviors that would be valued in the future, Bergan Mercy Medical Center (BMMC) has developed an innovative clinical ladder/performance appraisal system. The BMMC EXCEL Clinical Ladder program, which is based on the developmental model of Patricia Benner, is a competency-based system that uniquely combines a clinical ladder and performance appraisal system. The program is clinically focused and contains optional components in which registered nurses (RNs) can receive additional credit for participation in professional growth and leadership activities. Nurses document examples of their practice through nursing narratives that describe actual clinical situations. The development and implementation processes, challenges encountered, and recommendations for alternative approaches to the implementation of such a unique system are discussed.

  12. Academic Delay of Gratification and Academic Achievement

    ERIC Educational Resources Information Center

    Bembenutty, Hefer

    2011-01-01

    The ability to delay gratification is the cornerstone of all academic achievement and education. It is by delaying gratification that learners can pursue long-term academic and career goals. In general, "delay of gratification" refers to an individual's ability to forgo immediate rewards for the sake of more valuable ones later (Mischel, 1996).…

  13. Reward deficiency and anti-reward in pain chronification.

    PubMed

    Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I

    2016-09-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). PMID:27246519

  14. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    PubMed

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area.

  15. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory

    PubMed Central

    Ikemoto, Satoshi

    2010-01-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures–the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. PMID:20149820

  16. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  17. Activation of the GLP-1 Receptors in the Nucleus of the Solitary Tract Reduces Food Reward Behavior and Targets the Mesolimbic System

    PubMed Central

    Richard, Jennifer E.; Anderberg, Rozita H.; Göteson, Andreas; Gribble, Fiona M.; Reimann, Frank; Skibicka, Karolina P.

    2015-01-01

    The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS. PMID:25793511

  18. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system.

    PubMed

    Richard, Jennifer E; Anderberg, Rozita H; Göteson, Andreas; Gribble, Fiona M; Reimann, Frank; Skibicka, Karolina P

    2015-01-01

    The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.

  19. [ZHU Lian's New Acupuncture Academic System and acupuncture science initialization].

    PubMed

    Zhang, Shujian; Zhang, Lijian

    2015-11-01

    Acupuncture scientization was a consensus of most of acupuncture scholars who had long-term perspectives in the 20th century, among them Ms. ZHULian was the important one. Ms. ZHU Lian built a systemic new acupuncture" academic structure in practice and theory aspects. At the same time, as the main architect of Institute of Acupuncture-moxibustion of China Academy of Traditional Chinese Medicine, Ms. ZHU Lian was the first one who began to carry out the acupuncture clinical trail and laboratory experiment in modern way, which meant "acupuncture therapy" was transformed into "acupuncture science" by Ms. ZHULian's endeavor.

  20. Encouraging Multiple Forms of Scholarship in Faculty Reward Systems: Influence on Faculty Work Life

    ERIC Educational Resources Information Center

    O'Meara, KerryAnn

    2006-01-01

    This article presents findings from a national study of Chief Academic Officers (CAOs) of four-year institutions on the effect of policy efforts that encourage multiple forms of scholarship on faculty involvement and satisfaction. Findings show that institutions that initiated reforms were significantly more likely than their counterparts to have…

  1. Prenatal Exposure to Methylphenidate Affects the Dopamine System and the Reactivity to Natural Reward in Adulthood in Rats

    PubMed Central

    Lepelletier, François-Xavier; Tauber, Clovis; Nicolas, Céline; Solinas, Marcello; Castelnau, Pierre; Belzung, Catherine; Emond, Patrick; Cortese, Samuele; Faraone, Stephen V.; Chalon, Sylvie

    2015-01-01

    Background: Methylphenidate (MPH) is a commonly-used medication for the treatment of children with Attention-Deficit/Hyperactivity Disorders (ADHD). However, its prescription to adults with ADHD and narcolepsy raises the question of how the brain is impacted by MPH exposure during pregnancy. The goal of this study was to elucidate the long-term neurobiological consequences of prenatal exposure to MPH using a rat model. Methods: We focused on the effects of such treatment on the adult dopamine (DA) system and on the reactivity of animals to natural rewards. Results: This study shows that adult male rats prenatally exposed to MPH display elevated expression of presynaptic DA markers in the DA cell bodies and the striatum. Our results also suggest that MPH-treated animals could exhibit increased tonic DA activity in the mesolimbic pathway, altered signal-to-noise ratio after a pharmacological stimulation, and decreased reactivity to the locomotor effects of cocaine. Finally, we demonstrated that MPH rats display a decreased preference and motivation for sucrose. Conclusions: This is the first preclinical study reporting long-lasting neurobiological alterations of DA networks as well as alterations in motivational behaviors for natural rewards after a prenatal exposure to MPH. These results raise concerns about the possible neurobiological consequences of MPH treatment during pregnancy. PMID:25522388

  2. What changed during the axial age: Cognitive styles or reward systems?

    PubMed Central

    Baumard, Nicolas; Hyafil, Alexandre; Boyer, Pascal

    2015-01-01

    The ‘Axial Age’ (500–300 BCE) refers to the period during which most of the main religious and spiritual traditions emerged in Eurasian societies. Although the Axial Age has recently been the focus of increasing interest,1-5 its existence is still very much in dispute. The main reason for questioning the existence of the Axial Age is that its nature, as well as its spatial and temporal boundaries, remain very much unclear. The standard approach to the Axial Age defines it as a change of cognitive style, from a narrative and analogical style to a more analytical and reflective style, probably due to the increasing use of external memory tools. Our recent research suggests an alternative hypothesis, namely a change in reward orientation, from a short-term materialistic orientation to a long-term spiritual one.6 Here, we briefly discuss these 2 alternative definitions of the Axial Age. PMID:27066164

  3. What changed during the axial age: Cognitive styles or reward systems?

    PubMed

    Baumard, Nicolas; Hyafil, Alexandre; Boyer, Pascal

    2015-01-01

    The 'Axial Age' (500-300 BCE) refers to the period during which most of the main religious and spiritual traditions emerged in Eurasian societies. Although the Axial Age has recently been the focus of increasing interest,(1-5) its existence is still very much in dispute. The main reason for questioning the existence of the Axial Age is that its nature, as well as its spatial and temporal boundaries, remain very much unclear. The standard approach to the Axial Age defines it as a change of cognitive style, from a narrative and analogical style to a more analytical and reflective style, probably due to the increasing use of external memory tools. Our recent research suggests an alternative hypothesis, namely a change in reward orientation, from a short-term materialistic orientation to a long-term spiritual one.(6) Here, we briefly discuss these 2 alternative definitions of the Axial Age. PMID:27066164

  4. What changed during the axial age: Cognitive styles or reward systems?

    PubMed

    Baumard, Nicolas; Hyafil, Alexandre; Boyer, Pascal

    2015-01-01

    The 'Axial Age' (500-300 BCE) refers to the period during which most of the main religious and spiritual traditions emerged in Eurasian societies. Although the Axial Age has recently been the focus of increasing interest,(1-5) its existence is still very much in dispute. The main reason for questioning the existence of the Axial Age is that its nature, as well as its spatial and temporal boundaries, remain very much unclear. The standard approach to the Axial Age defines it as a change of cognitive style, from a narrative and analogical style to a more analytical and reflective style, probably due to the increasing use of external memory tools. Our recent research suggests an alternative hypothesis, namely a change in reward orientation, from a short-term materialistic orientation to a long-term spiritual one.(6) Here, we briefly discuss these 2 alternative definitions of the Axial Age.

  5. System Integration and Network Planning in the Academic Health Center

    PubMed Central

    Testa, Marcia A.; Spackman, Thomas J.

    1985-01-01

    The transfer of information within the academic health center is complicated by the complex nature of the institution's multi-dimensional role. The diverse functions of patient care, administration, education and research result in a complex web of information exchange which requires an integrated approach to system management. System integration involves a thorough assessment of “end user” needs in terms of hardware and software as well as specification of the communications network architecture. The network will consist of a series of end user nodes which capture, process, archive and display information. This paper will consider some requirements of these nodes, also called intelligent workstations, relating to their management and integration into a total health care network.

  6. The Rewards of Learning.

    ERIC Educational Resources Information Center

    Chance, Paul

    1992-01-01

    Although intrinsic rewards are important, they (along with punishment and encouragement) are insufficient for efficient learning. Teachers must supplement intrinsic rewards with extrinsic rewards, such as praising, complimenting, applauding, and providing other forms of recognition for good work. Teachers should use the weakest reward required to…

  7. Cortical Thickness, Surface Area and Volume of the Brain Reward System in Alcohol Dependence: Relationships to Relapse and Extended Abstinence

    PubMed Central

    Durazzo, Timothy C.; Tosun, Duygu; Buckley, Shannon; Gazdzinski, Stefan; Mon, Anderson; Fryer, Susanna L.; Meyerhoff, Dieter J.

    2011-01-01

    BACKGROUND At least 60% of those treated for an alcohol use disorder will relapse. Empirical study of the integrity of the brain reward system (BRS) is critical to understanding the mechanisms of relapse as this collection of circuits is implicated in the development and maintenance of all forms of addictive disorders. This study compared thickness, surface area and volume in neocortical components of the BRS among non-smoking light drinking controls (Controls), individuals who remained abstinent and those who relapsed after treatment. METHODS Seventy-five treatment-seeking alcohol dependent individuals (abstinent for 7 ± 3 days) and 43 Controls completed 1.5T proton magnetic resonance imaging studies. Parcellated morphological data was obtained for following bilateral components of the BRS: rostral and caudal anterior cingulate cortex, insula, medial and lateral orbitofrontal cortex, rostral and caudal middle and superior frontal gyri, amygdala and hippocampus as well as for 26 other bilateral neocortical regions. Alcohol dependent participants were followed over 12-months after baseline study and were classified as Abstainers (no alcohol consumption; n=24) and Relapsers (any alcohol consumption; n=51) at follow-up. RESULTS Relapsers and Abstainers demonstrated lower cortical thickness in the vast majority of BRS regions as well as lower global thickness compared to Controls. Relapsers had lower total BRS surface area than both Controls and Abstainers, but Abstainers were not significantly different from Controls on any surface area measure. Relapsers demonstrated lower volumes than Controls in the majority of regions, while Abstainers showed lower volumes than Controls in the superior frontal gyrus, insula, amygdala and hippocampus, bilaterally. Relapsers exhibited smaller volumes than Abstainers in the right rostral middle and caudal middle frontal gyri and the lateral orbitofrontal cortex, bilaterally. In Relapsers, lower baseline volumes and surface areas in

  8. Effects of an early experience of reward through maternal contact or its denial on the dopaminergic system of the rat brain.

    PubMed

    Raftogianni, A; Stamatakis, A; Diamantopoulou, A; Kollia, A-M; Stylianopoulou, F

    2014-06-01

    The mesolimbic/mesocortical dopaminergic pathway plays a pivotal role in the reward system. During the neonatal period the mother is the main source of rewarding stimuli. We have developed an experimental model in which rat pups learn a T-maze during the neonatal period (postnatal day (PND) 10-13) using contact with the mother as the reward. One group of animals is allowed contact with the mother (receipt of expected reward, RER) while the other was denied (denial of expected reward, DER). We determined the effects of these two early experiences in the prefrontal cortex (PFC) and the nucleus accumbens (nAc), the levels of dopamine (DA) and its metabolites [3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)] by high-performance liquid chromatography and those of D1 and D2 receptors by autoradiographic in vitro binding both on PND 13 and in adulthood. On PND13, 2h after the end of training, the RER experience resulted in higher DA, HVA and D1 receptor levels in the nAc, while the DER in lower DA and its metabolites (DOPAC and HVA) in the PFC. These results could be related to the reward the RER pups received through the contact with their mother. The RER and DER early experience had long-term sex-dependent effects: The RER-induced activation of the dopaminergic system in the nAc was also evident in adult female rats. In contrast, adult DER males, similar to PND13 animals, had reduced dopamine in the PFC. Our results document that early experiences, a key determinant of adult brain function, affect the dopaminergic system which is disturbed in many psychiatric diseases. PMID:24680882

  9. Dopamine dysregulation syndrome. Hypothetical application of reward system stimulation for the treatment of anhedonia in Parkinson's disease patients.

    PubMed

    Kondo, Tomoyoshi

    2008-08-01

    The management of motor symptoms in Parkinson's disease (PD), although imperfect, has already been standardized. However, patients often spend their time idly despite improvement in the elemental motor symptoms. The main cause of this may be anhedonia. Dopamine dysregulation syndrome (DDS) is a troublesome condition that can occur as a complication of dopamine replacement therapy in PD. As anhedonia and DDS may be converse syndromes in PD patients, it is very important to overcome anhedonia to improve patients' quality of life. In this article, the author proposes the possibility of stimulating patients' desire to participate in physical activity via the incentive of a reward system. Understanding the mechanism of DDS may help in the development of this type of approach.

  10. Neuroimaging Risk Markers for Substance Abuse: Recent Findings on Inhibitory Control and Reward System Functioning

    PubMed Central

    Cope, Lora M.; Martz, Meghan E.; Hardee, Jillian E.

    2015-01-01

    Rates of alcohol and other drug use rise sharply throughout adolescence and peak in the early 20s. Likewise, prevalence of first-time substance use disorder (SUD) and past-year SUD both peak between ages 18–23. SUD is associated with a host of negative outcomes and is a serious health concern. Understanding the mechanisms that precede the onset and escalation of substance use is crucial in order to develop more effective prevention and intervention strategies for children and adolescents at risk for SUD. In this review, we discuss recent findings from functional neuroimaging studies in children, adolescents, and emerging adults that focus on uncovering the neural underpinnings of SUD risk. The focus is on inhibitory control and reward circuitry due to their involvement in risk-taking behaviors, which are heightened in adolescence and may facilitate substance use. We discuss convergences in the literature and highlight findings suggesting that the association between SUD risk and neurofunctioning may be moderated by age, gender, and history of substance use. Recommendations for future directions are also discussed. PMID:26236575

  11. Development of Effective Academic Affairs Administration System in Thai Primary Schools

    ERIC Educational Resources Information Center

    Thongnoi, Niratchakorn; Srisa-ard, Boonchom; Sri-ampai, Anan

    2013-01-01

    This research aimed to: 1) study current situations and problems of academic affairs administration system in Primary Schools. 2) develop an effective academic affairs administration system, and 3) evaluate the implementation of the developed system in the primary school, Thailand. Research and Development (R&D) was employed which consisted of…

  12. Interaction of Reward Seeking and Self-Regulation in the Prediction of Risk Taking: A Cross-National Test of the Dual Systems Model

    ERIC Educational Resources Information Center

    Duell, Natasha; Steinberg, Laurence; Chein, Jason; Al-Hassan, Suha M.; Bacchini, Dario; Lei, Chang; Chaudhary, Nandita; Di Giunta, Laura; Dodge, Kenneth A.; Fanti, Kostas A.; Lansford, Jennifer E.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Alampay, Liane Peña

    2016-01-01

    In the present analysis, we test the dual systems model of adolescent risk taking in a cross-national sample of over 5,200 individuals aged 10 through 30 (M = 17.05 years, SD = 5.91) from 11 countries. We examine whether reward seeking and self-regulation make independent, additive, or interactive contributions to risk taking, and ask whether…

  13. Subjective neuronal coding of reward: temporal value discounting and risk.

    PubMed

    Schultz, Wolfram

    2010-06-01

    A key question in the neurobiology of reward relates to the nature of coding. Rewards are objects that are advantageous or necessary for the survival of individuals in a variety of environmental situations. Thus reward appears to depend on the individual and its environment. The question arises whether neuronal systems in humans and monkeys code reward in subjective terms, objective terms or both. The present review addresses this issue by dealing with two important reward processes, namely the individual discounting of reward value across temporal delays, and the processing of information about risky rewards that depends on individual risk attitudes. The subjective value of rewards decreases with the temporal distance to the reward. In experiments using neurophysiology and brain imaging, dopamine neurons and striatal systems discount reward value across temporal delays of a few seconds, despite unchanged objective reward value, suggesting subjective value coding. The subjective values of risky outcomes depend on the risk attitude of individual decision makers; these values decrease for risk-avoiders and increase for risk-seekers. The signal for risk and the signal for the value of risky reward covary with individual risk attitudes in regions of the human prefrontal cortex, suggesting subjective rather than objective coding of risk and risky value. These data demonstrate that important parameters of reward are coded in a subjective manner in key reward structures of the brain. However, these data do not rule out that other neurons or brain structures may code reward according to its objective value and risk. PMID:20497474

  14. Behavioral theories and the neurophysiology of reward.

    PubMed

    Schultz, Wolfram

    2006-01-01

    The functions of rewards are based primarily on their effects on behavior and are less directly governed by the physics and chemistry of input events as in sensory systems. Therefore, the investigation of neural mechanisms underlying reward functions requires behavioral theories that can conceptualize the different effects of rewards on behavior. The scientific investigation of behavioral processes by animal learning theory and economic utility theory has produced a theoretical framework that can help to elucidate the neural correlates for reward functions in learning, goal-directed approach behavior, and decision making under uncertainty. Individual neurons can be studied in the reward systems of the brain, including dopamine neurons, orbitofrontal cortex, and striatum. The neural activity can be related to basic theoretical terms of reward and uncertainty, such as contiguity, contingency, prediction error, magnitude, probability, expected value, and variance.

  15. 34 CFR 200.3 - Designing State Academic Assessment Systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 200.1(b); (ii) Be valid, reliable, and of high technical quality; (iii) Express student results in terms of the State's student academic achievement standards; and (iv) Be designed to provide a coherent... accurately the depth and breadth of the State's academic content standards; and (B) Express student...

  16. 34 CFR 200.3 - Designing State Academic Assessment Systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 200.1(b); (ii) Be valid, reliable, and of high technical quality; (iii) Express student results in terms of the State's student academic achievement standards; and (iv) Be designed to provide a coherent... accurately the depth and breadth of the State's academic content standards; and (B) Express student...

  17. 34 CFR 200.3 - Designing State Academic Assessment Systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 200.1(b); (ii) Be valid, reliable, and of high technical quality; (iii) Express student results in terms of the State's student academic achievement standards; and (iv) Be designed to provide a coherent... accurately the depth and breadth of the State's academic content standards; and (B) Express student...

  18. 34 CFR 200.3 - Designing State Academic Assessment Systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 200.1(b); (ii) Be valid, reliable, and of high technical quality; (iii) Express student results in terms of the State's student academic achievement standards; and (iv) Be designed to provide a coherent... accurately the depth and breadth of the State's academic content standards; and (B) Express student...

  19. 34 CFR 200.3 - Designing State Academic Assessment Systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 200.1(b); (ii) Be valid, reliable, and of high technical quality; (iii) Express student results in terms of the State's student academic achievement standards; and (iv) Be designed to provide a coherent... accurately the depth and breadth of the State's academic content standards; and (B) Express student...

  20. Impacts of Personal Characteristics on Computer Attitude and Academic Users Information System Satisfaction.

    ERIC Educational Resources Information Center

    Lim, Kee-Sook

    2002-01-01

    Describes a study that evaluated the effects of computer experience, gender, and academic performance on computer attitude and user information system satisfaction in a university setting. Results of an analysis of variance showed that the personal characteristics made a difference in computer attitudes but not in academic computer system user…

  1. Tradition meets innovation: transforming academic medical culture at the University of Pennsylvania's Perelman School of Medicine.

    PubMed

    Pati, Susmita; Reum, Josef; Conant, Emily; Tuton, Lucy Wolf; Scott, Patricia; Abbuhl, Stephanie; Grisso, Jeane Ann

    2013-04-01

    Traditional performance expectations and career advancement paths for academic physicians persist despite dramatic transformations in the academic workflow, workload, and workforce over the past 20 years. Although the academic physician's triple role as clinician, researcher, and educator has been lauded as the ideal by academic health centers, current standards of excellence for promotion and tenure are based on outdated models. These models fail to reward collaboration and center around rigid career advancement plans that do little to accommodate the changing needs of individuals and organizations. The authors describe an innovative, comprehensive, multipronged initiative at the Perelman School of Medicine at the University of Pennsylvania to initiate change in the culture of academic medicine and improve academic productivity, job satisfaction, and overall quality of life for junior faculty. As a key part of this intervention, task forces from each of the 13 participating departments/divisions met five times between September 2010 and January 2011 to produce recommendations for institutional change. The authors discuss how this initiative, using principles adopted from business transformation, generated themes and techniques that can potentially guide workforce environment innovation in academic health centers across the United States. Recommendations include embracing a promotion/tenure/evaluation system that supports and rewards tailored individual academic career plans; ensuring leadership, decision-making roles, and recognition for junior faculty; deepening administrative and team supports for junior faculty; and solidifying and rewarding mentorship for junior faculty. By doing so, academic health centers can ensure the retention and commitment of faculty throughout all stages of their careers.

  2. Social Axioms and Achievement across Cultures: The Influence of Reward for Application and Fate Control

    ERIC Educational Resources Information Center

    Zhou, Fan; Leung, Kwok; Bond, Michael Harris

    2009-01-01

    The present research examined the relationships between two social axiom dimensions, reward for application and fate control, with various achievement-related indexes across a wide range of cultures. Results showed that there was no relationship between reward for application and academic achievement or economic competitiveness, but reward for…

  3. Academic-community partnerships for sustainable preparedness and response systems.

    PubMed

    Isakov, Alexander; O'Neal, Patrick; Prescott, John; Stanley, Joan; Herrmann, Jack; Dunlop, Anne

    2014-01-01

    Academic institutions possess tremendous resources that could be important for community disaster response and preparedness activities. In-depth exploration of the role of academic institutions in community disaster response has elicited information about particular academic resources leveraged for and essential to community preparedness and response; factors that contribute to the decision-making process for partner engagement; and facilitators of and barriers to sustainable collaborations from the perspectives of academic institutions, public health and emergency management agencies, and national association and agency leaders. The Academic-Community Partnership Project of the Emory University Preparedness and Emergency Response Research Center in collaboration with the Association of Schools of Public Health convened an invitational summit which included leadership from the National Association of County and City Health Officials, Association of State and Territorial Health Officials, Directors of Public Health Preparedness, Department of Health and Human Services Office of the Assistant Secretary for Preparedness and Response, CDC Office of Public Health Preparedness and Response, Association of Schools of Public Health, Association of American Medical Colleges, Association of Academic Health Centers, American Association of Colleges of Nursing, Council of State and Territorial Epidemiologists, and American Association of Poison Control Centers. From this convention, emerged recommendations for building and sustaining academic-public health-community collaborations for preparedness locally and regionally. PMID:25068939

  4. Performance-Based Rewards and Work Stress

    ERIC Educational Resources Information Center

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  5. Punished by Rewards?

    ERIC Educational Resources Information Center

    Brandt, Ron

    1995-01-01

    The author of "Punished by Rewards" (1993), claims that rewards and punishments serve to manipulate behavior and destroy the potential for real learning. Praise is especially tricky, since intangible rewards can also foster compliance, not motivation. An engaging curriculum and a caring atmosphere encourage kids to exercise their natural…

  6. Introduction of Sap ERP System Into a Heterogeneous Academic Community

    NASA Astrophysics Data System (ADS)

    Mornar, Vedran; Fertalj, Krešimir; Kalpić, Damir

    2010-06-01

    Introduction of a complex ERP system like SAP into a heterogeneous academic environment like the University of Zagreb is far from being a trivial task. The University comprises more than 30 constituents, called faculties or academies, geographically dispersed, with long and specific traditions. Financing according to the lump sum principle, enforced in Croatia as a side effect of the in Europe obligatory and omnipresent Bologna process, requires a unified view on the educational institutions in order to provide a more just and appropriate financing scheme than the current one. After the experience with own development to support educational tasks and student administration, for standard financial and administration tasks SAP has been chosen as the most appropriate platform. The developer was selected after public bidding and the authors' institution was chosen for the pilot project. The authors were playing principal roles in the process of successful deployment and still expect to offer their expertise for implementation in the rest of the University. However, serious risks stemming from lack of motivation by some constituents are present.

  7. Reward-Dependent Modulation of Movement Variability

    PubMed Central

    Izawa, Jun; Shadmehr, Reza

    2015-01-01

    Movement variability is often considered an unwanted byproduct of a noisy nervous system. However, variability can signal a form of implicit exploration, indicating that the nervous system is intentionally varying the motor commands in search of actions that yield the greatest success. Here, we investigated the role of the human basal ganglia in controlling reward-dependent motor variability as measured by trial-to-trial changes in performance during a reaching task. We designed an experiment in which the only performance feedback was success or failure and quantified how reach variability was modulated as a function of the probability of reward. In healthy controls, reach variability increased as the probability of reward decreased. Control of variability depended on the history of past rewards, with the largest trial-to-trial changes occurring immediately after an unrewarded trial. In contrast, in participants with Parkinson's disease, a known example of basal ganglia dysfunction, reward was a poor modulator of variability; that is, the patients showed an impaired ability to increase variability in response to decreases in the probability of reward. This was despite the fact that, after rewarded trials, reach variability in the patients was comparable to healthy controls. In summary, we found that movement variability is partially a form of exploration driven by the recent history of rewards. When the function of the human basal ganglia is compromised, the reward-dependent control of movement variability is impaired, particularly affecting the ability to increase variability after unsuccessful outcomes. PMID:25740529

  8. The Utilization of a Computer Assisted Guidance System in Academic Advising

    ERIC Educational Resources Information Center

    Pfautz, Charles Van Vleck

    2010-01-01

    Computer assisted guidance systems may adapt well to various models of academic advising, and they have the ability to address the challenge of meeting the diverse advising needs of community college students without sacrificing the integrity of academic advising (Fowkes & McWhirter, 2007). The purpose of this qualitative case study was to assess…

  9. Web-Based Adaptive Testing System (WATS) for Classifying Students Academic Ability

    ERIC Educational Resources Information Center

    Lee, Jaemu; Park, Sanghoon; Kim, Kwangho

    2012-01-01

    Computer Adaptive Testing (CAT) has been highlighted as a promising assessment method to fulfill two testing purposes: estimating student academic ability and classifying student academic level. In this paper, assessment for we introduced the Web-based Adaptive Testing System (WATS) developed to support a cost effective assessment for classifying…

  10. The Construction of the Chinese Academic System: Its History and Present Challenges

    ERIC Educational Resources Information Center

    Yan, Guangcai

    2009-01-01

    The rise and development of China's academic system is a process that started from "passively accepting Western Learning" to today's "catching up with Western Learning and even exceeding it". In the last century, China experienced a turbulent and unstable social environment in which academics and politics have always been intertwined. As a result,…

  11. Academic Building Systems. A Technique to Maximize Control of Construction Costs.

    ERIC Educational Resources Information Center

    Clark, Donald H.

    1972-01-01

    Academic Building Systems (ABS) is an architectural planning and design method which allows the construction owner to respond to the need for less expensive structures, economically adaptable to the changing conditions of the academic world, by providing the owner with the maximum controls over the variable cost factors in educational facility…

  12. Performance Appraisal System Impact on University Academic Staff Job Satisfaction and Productivity

    ERIC Educational Resources Information Center

    Ndambakuwa, Yustina; Mufunda, Jacob

    2006-01-01

    The University of Zimbabwe (UZ) introduced a performance appraisal system (PAS) designed to improve performance indicators across the board in Public Service including academic/faculty staff at the University of Zimbabwe as part of a nation wide strategy. The Public service is a body responsible for all civil workers including academic staff,…

  13. The Rhetoric of "Job Market" and the Reality of the Academic Labor System

    ERIC Educational Resources Information Center

    Bousquet, Marc

    2003-01-01

    One way of describing the recent movement of thought about the academic labor system is as a series of waves. A "first wave" of labor consciousness emerged before 1970, propelling the self-organization of the academic work force, especially in public institutions, where more than half the faculty are unionized. This labor awareness was contested…

  14. Maltreatment, Academic Difficulty, and Systems-Involved Youth: Current Evidence and Opportunities

    ERIC Educational Resources Information Center

    Stone, Susan; Zibulsky, Jamie

    2015-01-01

    Youth involved in child-serving systems of care (e.g., child welfare and juvenile justice) often exhibit specific academic performance problems. The magnitude of academic risk among these students is a serious concern given that school attachment, performance, and attainment closely relate to indicators of well-being across the lifespan. It is…

  15. High vitamin A intake during pregnancy modifies dopaminergic reward system and decreases preference for sucrose in Wistar rat offspring.

    PubMed

    Sánchez-Hernández, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Reza-López, Sandra A; Pausova, Zdenka; Bazinet, Richard P; Anderson, G Harvey

    2016-01-01

    High multivitamin (HV) content in gestational diets has long-term metabolic effects in rat offspring. These changes are associated with in utero modifications of gene expression in hypothalamic food intake regulation. However, the role of fat-soluble vitamins in mediating these effects has not been explored. Vitamin A is a plausible candidate due to its role in gene methylation. Vitamin A intake above requirements during pregnancy affects the development of neurocircuitries involved in food intake and reward regulation. Pregnant Wistar rats were fed AIN-93G diets with the following content: recommended multivitamins (1-fold multivitamins: RV), high vitamin A (10-fold vitamin A: HA) or HV with only recommended vitamin A (10-fold multivitamins, 1-fold vitamin A: HVRA). Body weight, food intake and preference, mRNA expression and DNA methylation of hippocampal dopamine-related genes were assessed in male offspring brains at different developmental windows: birth, weaning and 14weeks postweaning. HA offspring had changes in dopamine-related gene expression at all developmental windows and DNA hypermethylation in the dopamine receptor 2 promoter region compared to RV offspring. Furthermore, HA diet lowered sucrose preference but had no effect on body weight and expression of hypothalamic genes. In contrast, HVRA offspring showed only at adulthood changes in expression of hippocampal genes and a modest effect on hypothalamic genes. High vitamin A intake alone in gestational diets has long-lasting programming effects on the dopaminergic system that are further translated into decreased sucrose preference but not food intake.

  16. Distinct Reward Properties are Encoded via Corticostriatal Interactions

    PubMed Central

    Smith, David V.; Rigney, Anastasia E.; Delgado, Mauricio R.

    2016-01-01

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior. PMID:26831208

  17. Either main or accessory olfactory system signaling can mediate the rewarding effects of estrous female chemosignals in sexually naive male mice.

    PubMed

    Korzan, Wayne J; Freamat, Mihael; Johnson, Adam G; Cherry, James A; Baum, Michael J

    2013-10-01

    A long-held view has been that interest of male mice in female body odors reflects an activation of reward circuits in the male brain following their detection by the vomeronasal organ (VNO) and processing via the accessory olfactory system. We found that adult, sexually naive male mice acquired a conditioned place preference (CPP) after repeatedly receiving estrous female urine on the nose and being placed in an initially nonpreferred chamber with soiled estrous bedding on the floor. CPP was not acquired in control mice that received saline on the nose before being placed in a nonpreferred chamber with clean bedding. Robust acquisition of a CPP using estrous female odors as the reward persisted in separate groups of mice in which VNO-accessory olfactory function was disrupted by bilateral lesioning of the accessory olfactory bulb (AOB) or in which main olfactory function was disrupted by zinc sulfate lesions of the main olfactory epithelium (MOE). By contrast, no CPP was acquired for estrous odors in males that received combined AOB and MOE lesions. Either the main or the accessory olfactory system suffices to mediate the rewarding effects of estrous female odors in the male mouse, even in the absence of prior mating experience. The main olfactory system is part of the circuitry that responds to chemosignals involved in motivated behavior, a role that may be particularly important for humans who lack a functional accessory olfactory system.

  18. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  19. System identification to characterize human use of ethanol based on generative point-process models of video games with ethanol rewards.

    PubMed

    Ozil, Ipek; Plawecki, Martin H; Doerschuk, Peter C; O'Connor, Sean J

    2011-01-01

    The influence of family history and genetics on the risk for the development of abuse or dependence is a major theme in alcoholism research. Recent research have used endophenotypes and behavioral paradigms to help detect further genetic contributions to this disease. Electronic tasks, essentially video games, which provide alcohol as a reward in controlled environments and with specified exposures have been developed to explore some of the behavioral and subjective characteristics of individuals with or at risk for alcohol substance use disorders. A generative model (containing parameters with unknown values) of a simple game involving a progressive work paradigm is described along with the associated point process signal processing that allows system identification of the model. The system is demonstrated on human subject data. The same human subject completing the task under different circumstances, e.g., with larger and smaller alcohol reward values, is assigned different parameter values. Potential meanings of the different parameter values are described. PMID:22254898

  20. System identification to characterize human use of ethanol based on generative point-process models of video games with ethanol rewards.

    PubMed

    Ozil, Ipek; Plawecki, Martin H; Doerschuk, Peter C; O'Connor, Sean J

    2011-01-01

    The influence of family history and genetics on the risk for the development of abuse or dependence is a major theme in alcoholism research. Recent research have used endophenotypes and behavioral paradigms to help detect further genetic contributions to this disease. Electronic tasks, essentially video games, which provide alcohol as a reward in controlled environments and with specified exposures have been developed to explore some of the behavioral and subjective characteristics of individuals with or at risk for alcohol substance use disorders. A generative model (containing parameters with unknown values) of a simple game involving a progressive work paradigm is described along with the associated point process signal processing that allows system identification of the model. The system is demonstrated on human subject data. The same human subject completing the task under different circumstances, e.g., with larger and smaller alcohol reward values, is assigned different parameter values. Potential meanings of the different parameter values are described.

  1. Forebrain substrates of reward and motivation

    PubMed Central

    Wise, Roy A.

    2008-01-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The sub-systems involved in these behaviors are only partially characterized, but they appear to trans-synaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs. PMID:16254990

  2. Adding Eyes: The Rise, Rewards, and Risks of Multi-Rater Teacher Observation Systems. Issue Brief

    ERIC Educational Resources Information Center

    White, Taylor

    2014-01-01

    New teacher evaluation systems have emerged as the cornerstone of the recent movement to improve public school teaching. Fueled by incentives from the federal government, state and local policymakers have sought to replace the often-cursory evaluation models of the past with more comprehensive ones. In contrast to past evaluations, which often…

  3. Effect of Early Overfeeding on Palatable Food Preference and Brain Dopaminergic Reward System at Adulthood: Role of Calcium Supplementation.

    PubMed

    Conceição, E P S; Carvalho, J C; Manhães, A C; Guarda, D S; Figueiredo, M S; Quitete, F T; Oliveira, E; Moura, E G; Lisboa, P C

    2016-05-01

    Rats raised in small litters (SL) are obese and hyperphagic. In the present study, we evaluated whether obesity is associated with changes in the mesocorticolimbic dopaminergic reward system in these animals at adulthood. We also assessed the anti-obesity effects of dietary calcium supplementation. To induce early overfeeding, litters were adjusted to three pups on postnatal day (PN)3 (SL group). Control litters were kept with 10 pups each until weaning (NL group). On PN120, SL animals were subdivided into two groups: SL (standard diet) and SL-Ca [SL with calcium supplementation (10 g calcium carbonate/kg rat chow) for 60 days]. On PN175, animals were subjected to a food challenge: animals could choose between a high-fat (HFD) or a high-sugar diet (HSD). Food intake was recorded after 30 min and 12 h. Euthanasia occurred on PN180. SL rats had higher food intake, body mass and central adiposity. Sixty days of dietary calcium supplementation (SL-Ca) prevented these changes. Only SL animals preferred the HFD at 12 h. Both SL groups had lower tyrosine hydroxylase content in the ventral tegmental area, lower dopaminergic transporter content in the nucleus accumbens, and higher type 2 dopamine receptor (D2R) content in the hypothalamic arcuate nucleus (ARC). They also had higher neuropeptide Y (NPY) and lower pro-opiomelanocortin contents in the ARC. Calcium treatment normalised only D2R and NPY contents. Precocious obesity induces long-term effects in the brain dopaminergic system, which can be associated with an increased preference for fat at adulthood. Calcium treatment prevents this last alteration, partially through its actions on ARC D2R and NPY proteins.

  4. Does academic assessment system type affect levels of academic stress in medical students? A cross-sectional study from Pakistan

    PubMed Central

    Ali, Madiha; Asim, Hamna; Edhi, Ahmed Iqbal; Hashmi, Muhammad Daniyal; Khan, Muhammad Shahjahan; Naz, Farah; Qaiser, Kanza Noor; Qureshi, Sidra Masud; Zahid, Mohammad Faizan; Jehan, Imtiaz

    2015-01-01

    Introduction Stress among medical students induced by academic pressures is on the rise among the student population in Pakistan and other parts of the world. Our study examined the relationship between two different systems employed to assess academic performance and the levels of stress among students at two different medical schools in Karachi, Pakistan. Methods A sample consisting of 387 medical students enrolled in pre-clinical years was taken from two universities, one employing the semester examination system with grade point average (GPA) scores (a tiered system) and the other employing an annual examination system with only pass/fail grading. A pre-designed, self-administered questionnaire was distributed. Test anxiety levels were assessed by The Westside Test Anxiety Scale (WTAS). Overall stress was evaluated using the Perceived Stress Scale (PSS). Results There were 82 males and 301 females while four did not respond to the gender question. The mean age of the entire cohort was 19.7±1.0 years. A total of 98 participants were from the pass/fail assessment system while 289 were from the GPA system. There was a higher proportion of females in the GPA system (85% vs. 59%; p<0.01). Students in the pass/fail assessment system had a lower score on the WTAS (2.4±0.8 vs. 2.8±0.7; p=0.01) and the PSS (17.0±6.7 vs. 20.3±6.8; p<0.01), indicating lower levels of test anxiety and overall stress than in students enrolled in the GPA assessment system. More students in the pass/fail system were satisfied with their performance than those in the GPA system. Conclusion Based on the present study, we suggest governing bodies to revise and employ a uniform assessment system for all the medical colleges to improve student academic performance and at the same time reduce stress levels. Our results indicate that the pass/fail assessment system accomplishes these objectives. PMID:26112353

  5. Forebrain substrates of reward and motivation.

    PubMed

    Wise, Roy A

    2005-12-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.

  6. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  7. Academic Management and Administration System Reform in Higher Education Institutions

    ERIC Educational Resources Information Center

    Xianming, Xiang

    2006-01-01

    Reforms in colleges and universities should promote the humanistic character of higher education--rather than simply serve for pure economic production--but also observe the sacred mission of transmitting and creating culture and knowledge, with these two possessing momentous differences. These then demand rationality in academic management to…

  8. Differential expression of Arc in the mesocorticolimbic system is involved in drug and natural rewarding behavior in rats

    PubMed Central

    Li, Mu; Liu, Wen-jie; Lu, Bin; Wang, Yu-hua; Liu, Jing-gen

    2013-01-01

    Aim: To investigate the different effects of heroin and milk in activating the corticostriatal system that plays a critical role in reward reinforcement learning. Methods: Male SD rats were trained daily for 15 d to self-administer heroin or milk tablets in a classic runway drug self-administration model. Immunohistochemical assay was used to quantify Arc protein expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc), the dorsomedial striatum (DMS) and the ventrolateral striatum (VLS) in response to chronic self-administration of heroin or milk tablets. NMDA receptor antagonist MK801 (0.1 mg/kg) or dopamine D1 receptor antagonist SCH23390 (0.03 mg/kg) were intravenously injected at the same time as heroin was infused intravenously. Results: Runway training with heroin resulted in robust enhancement of Arc expression in the mPFC, the NAc and the DMS on d 1, 7, and 15, and in the VLS on d 1 and d 7. However, runway training with milk led to increased Arc expression in the mPFC, the NAc and the DMS only on d 7 and/or d 15 but not on d 1. Moreover, runway training with milk failed to induce increased Arc protein in the VLS. Both heroin-seeking behavior and Arc protein expression were blocked by MK801 or SCH23390 administration. Conclusion: The VLS is likely to be critically involved in drug-seeking behavior. The NMDA- and D1 receptor-dependent Arc expression is important in drug-seeking behavior. PMID:23708554

  9. Effects of early and late neonatal bromocriptine treatment on hypothalamic neuropeptides, dopaminergic reward system and behavior of adult rats.

    PubMed

    Carvalho, Janaine C; Lisboa, Patricia C; de Oliveira, Elaine; Peixoto-Silva, Nayara; Pinheiro, Cintia R; Fraga, Mabel C; Claudio-Neto, Sylvio; Franci, Celso R; Manhães, Alex C; Moura, Egberto G

    2016-06-14

    In humans, bromocriptine (BRO) is used as a treatment for many disorders, such as prolactinomas, even during pregnancy and lactation. Previously we demonstrated that maternal BRO treatment at the end of lactation programs offspring for obesity and several endocrine dysfunctions. Here, we studied the long-term effects of direct BRO injection in neonatal Wistar rats on their dopaminergic pathway, anxiety-like behavior and locomotor activity at adulthood. Male pups were either s.c. injected with BRO (0.1μg/once daily) from postnatal day (PN) 1 to 10 or from PN11 to 20. Controls were injected with methanol-saline. Body mass, food intake, neuropeptides, dopamine pathway parameters, anxiety-like behavior and locomotor activity were analyzed. The dopamine pathway was analyzed in the ventral tegmental area (VTA), nucleus accumbens (NAc) and dorsal striatum (DS) at PN180. PN1-10 BRO-treated animals had normal body mass and adiposity but lower food intake and plasma prolactin (PRL). This group had higher POMC in the arcuate nucleus (ARC), higher tyrosine hydroxylase (TH) in the VTA, higher dopa decarboxylase (DDc), higher D2R and μu-opioid receptor in the NAc. Concerning behavior in elevated plus maze (EPM), BRO-treated animals displayed more anxiety-like behaviors. PN11-20 BRO-treated showed normal body mass and adiposity but higher food intake and plasma PRL. This group had lower POMC in the ARC, lower TH in the VTA and lower DAT in the NAc. BRO-treated animals showed less anxiety-like behaviors in the EPM. Thus, neonatal BRO injection, depending on the time of treatment, leads to different long-term dysfunctions in the dopaminergic reward system, food intake behavior and anxiety levels, findings that could be partially due to PRL and POMC changes. PMID:27038750

  10. The Changing Functions of Citation: From Knowledge Networking to Academic Cash-Value

    ERIC Educational Resources Information Center

    Burbules, Nicholas C.

    2015-01-01

    This essay reviews the changing functions, and effects, of citation systems in scholarly research as they move from a range of uses primarily oriented around knowledge networking and epistemic validation, to their use as a set of metrics oriented around evaluating and rewarding certain kinds of academic performance (e.g. "impact…

  11. Identifying nurses' rewards: a qualitative categorization study in Belgium

    PubMed Central

    De Gieter, Sara; De Cooman, Rein; Pepermans, Roland; Caers, Ralf; Du Bois, Cindy; Jegers, Marc

    2006-01-01

    Background Rewards are important in attracting, motivating and retaining the most qualified employees, and nurses are no exception to this rule. This makes the establishment of an efficient reward system for nurses a true challenge for every hospital manager. A reward does not necessarily have a financial connotation: non-financial rewards may matter too, or may even be more important. Therefore, the present study examines nurses' reward perceptions, in order to identify potential reward options. Methods To answer the research question "What do nurses consider a reward and how can these rewards be categorized?", 20 in-depth semi-structured interviews with nurses were conducted and analysed using discourse and content analyses. In addition, the respondents received a list of 34 rewards (derived from the literature) and were asked to indicate the extent to which they perceived each of them to be rewarding. Results Discourse analysis revealed three major reward categories: financial, non-financial and psychological, each containing different subcategories. In general, nurses more often mentioned financial rewards spontaneously in the interview, compared to non-financial and psychological rewards. The questionnaire results did not, however, indicate a significant difference in the rewarding potential of these three categories. Both the qualitative and quantitative data revealed that a number of psychological and non-financial rewards were important for nurses in addition to their monthly pay and other remunerations. In particular, appreciation for their work by others, compliments from others, presents from others and contact with patients were highly valued. Moreover, some demographical variables influenced the reward perceptions. Younger and less experienced nurses considered promotion possibilities as more rewarding than the older and more senior ones. The latter valued job security and working for a hospital with a good reputation higher than their younger and more

  12. Perspective: Recognizing and rewarding clinical scholarship.

    PubMed

    Grigsby, R Kevin; Thorndyke, Luanne

    2011-01-01

    Faculty members in medical schools and academic medical centers are in a constant process of generating new knowledge. The cornerstone of academia--and academic medicine--is scholarship. Traditionally, tenure and/or academic promotion in the professorial ranks is awarded to those who meet institutional criteria in the missions of research, teaching, and service, including patient care. In the academic review process, priority is often placed on a record of demonstrated, consistent success in traditional laboratory research, also known as the scholarship of discovery. More recently, there has been greater recognition of other forms of scholarship: education, application, and integration. These forms of scholarship, although less recognized, also result in the generation of new knowledge. In an attempt to understand the breadth and scope of clinical scholarship, the authors searched the extant literature in academic medicine for a definition of clinical scholarship and expanded the search to disciplines outside of medicine. They found that succinct, discrete definitions of clinical scholarship have been published in other disciplines, but not in academic medicine. After reviewing definitions of clinical scholarship from other disciplines, adapting definitions of educational scholarship in academic medicine, and including qualities unique to clinical scholarship, the authors developed a framework for understanding clinical scholarship in academic medicine as a means for opening a dialogue within the academic medical community. This dialogue hopefully will lead to formulating a succinct, discrete definition of clinical scholarship that will allow greater recognition and reward for clinical scholars in the promotion and tenure process.

  13. Perspective: Recognizing and rewarding clinical scholarship.

    PubMed

    Grigsby, R Kevin; Thorndyke, Luanne

    2011-01-01

    Faculty members in medical schools and academic medical centers are in a constant process of generating new knowledge. The cornerstone of academia--and academic medicine--is scholarship. Traditionally, tenure and/or academic promotion in the professorial ranks is awarded to those who meet institutional criteria in the missions of research, teaching, and service, including patient care. In the academic review process, priority is often placed on a record of demonstrated, consistent success in traditional laboratory research, also known as the scholarship of discovery. More recently, there has been greater recognition of other forms of scholarship: education, application, and integration. These forms of scholarship, although less recognized, also result in the generation of new knowledge. In an attempt to understand the breadth and scope of clinical scholarship, the authors searched the extant literature in academic medicine for a definition of clinical scholarship and expanded the search to disciplines outside of medicine. They found that succinct, discrete definitions of clinical scholarship have been published in other disciplines, but not in academic medicine. After reviewing definitions of clinical scholarship from other disciplines, adapting definitions of educational scholarship in academic medicine, and including qualities unique to clinical scholarship, the authors developed a framework for understanding clinical scholarship in academic medicine as a means for opening a dialogue within the academic medical community. This dialogue hopefully will lead to formulating a succinct, discrete definition of clinical scholarship that will allow greater recognition and reward for clinical scholars in the promotion and tenure process. PMID:21099387

  14. Orquestic regulation of neurotransmitters on reward-seeking behavior.

    PubMed

    Arias-Carrión, Oscar; Caraza-Santiago, Xanic; Salgado-Licona, Sergio; Salama, Mohamed; Machado, Sergio; Nardi, Antonio Egidio; Menéndez-González, Manuel; Murillo-Rodríguez, Eric

    2014-01-01

    The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction. PMID:25061480

  15. Orquestic regulation of neurotransmitters on reward-seeking behavior.

    PubMed

    Arias-Carrión, Oscar; Caraza-Santiago, Xanic; Salgado-Licona, Sergio; Salama, Mohamed; Machado, Sergio; Nardi, Antonio Egidio; Menéndez-González, Manuel; Murillo-Rodríguez, Eric

    2014-01-01

    The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction.

  16. Orquestic regulation of neurotransmitters on reward-seeking behavior

    PubMed Central

    2014-01-01

    The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction. PMID:25061480

  17. Neural response to reward anticipation is modulated by Gray's impulsivity.

    PubMed

    Hahn, Tim; Dresler, Thomas; Ehlis, Ann-Christine; Plichta, Michael M; Heinzel, Sebastian; Polak, Thomas; Lesch, Klaus-Peter; Breuer, Felix; Jakob, Peter M; Fallgatter, Andreas J

    2009-07-15

    According to the Reinforcement Sensitivity Theory (RST), Gray's dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Gray's impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Gray's impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Gray's dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health.

  18. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  19. Sticking Up for Rewards.

    ERIC Educational Resources Information Center

    Chance, Paul

    1993-01-01

    Argues, in response to Kohn's article in the same "Kappan" issue, that honest feedback on student performance (informational rewards) are usually necessary for initial learning to occur successfully. Some rewards do work and have long-term benefits. The current philosophy of assigning teachers a facilitative role renders them impotent and blames…

  20. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  1. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.

    PubMed

    Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden

    2016-05-01

    The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.

  2. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.

    PubMed

    Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden

    2016-05-01

    The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2. PMID:26914457

  3. Strategic Planning for Information Systems: The Evidence from a Successful Implementation in an Academic Setting.

    ERIC Educational Resources Information Center

    Carter, Richard B.; And Others

    1991-01-01

    Demonstrates how an information systems plan can be successfully developed and implemented within an academic setting. Six guidelines for information systems planning are provided; problems are identified and recommendations to address the problems are suggested; and information systems objectives are discussed, including business communications,…

  4. Measuring Academic Progress: The Course-Credit System in American Higher Education.

    ERIC Educational Resources Information Center

    Altbach, Philip G.

    2001-01-01

    Describes the course-credit system in the United States, the standard means of measuring academic work. Discusses how the system is a means of measuring the time spent on study and not the quality of work; since the 19th century, the course-credit system has been the major "currency" in American higher education and has proven quite successful.…

  5. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  6. Academic Teamwork among Members of the National Researchers System in Tamaulipas

    ERIC Educational Resources Information Center

    Guzman-Acuña, Teresa; Guzman-Acuña, Josefina; Sánchez-Rodriguez, Ivan

    2016-01-01

    The objective of this article is to examine the participation of Mexican researchers in the state of Tamaulipas who are members of Mexico's National Researchers System (SNI) and are working in academic groups. The paper also seeks to understand their perceptions in relation to the usefulness of this structured System to their individual research…

  7. Effectiveness of a Local Inter-Loan System for Five Academic Libraries: An Operational Research Approach.

    ERIC Educational Resources Information Center

    MacDougall, A. F.; And Others

    1990-01-01

    Discussion of operational effectiveness in libraries focuses on a modeling approach that was used to compare the effectiveness of a local interlibrary loan system with using a national system, the British Library Document Supply Centre (BLDSC). Cost figures and surveys of five academic libraries are described. (six references) (LRW)

  8. The Impact of Merit-Pay Systems on the Work and Attitudes of Mexican Academics

    ERIC Educational Resources Information Center

    Galaz-Fontes, Jesús Francisco; Gil-Antón, Manuel

    2013-01-01

    The central purpose of this work is to present data that evaluates the impact and perspectives of various merit-pay systems directed at Mexican academics. To this end a brief description is provided of recent Mexican higher education evolution, including that of merit-pay programs. It is proposed that faculty merit-pay systems, in the context of…

  9. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    ERIC Educational Resources Information Center

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  10. Tenure Track Career System as a Strategic Instrument for Academic Leaders

    ERIC Educational Resources Information Center

    Pietilä, Maria

    2015-01-01

    This study examines the purposes for which leaders in universities use academic career systems. It focuses on the tenure track system which is new to Finland. Tenure track represents a newly established internal career path in a situation in which Finnish universities' organizational autonomy increased via new legislation from 2010. Drawing…

  11. Dopamine signaling in reward-related behaviors.

    PubMed

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  12. Commentary: A call to leadership: the role of the academic medical center in driving sustainable health system improvement through performance measurement.

    PubMed

    Nedza, Susan M

    2009-12-01

    As the government attempts to address the high cost of health care in the United States, the issues being confronted include variations in the quality of care administered and the inconsistent application of scientifically proven treatments. To improve quality, methods of measurement and reporting with rewards or, eventually, penalties based on performance, must be developed. To date, well-intentioned national policy initiatives, such as value-based purchasing, have focused primarily on the measurement of discrete events and on attempts to construct incentives. While important, the current approach alone cannot improve quality, ensure equitability, decrease variability, and optimize value. Additional thought-leadership is required, both theoretical and applied. Academic medical centers' (AMCs') scholarly and practical participation is needed. Although quality cannot be sustainably improved without measurement, the existing measures alone do not ensure quality. There is not enough evidence to support strong measure development and, further, not enough insight regarding whether the existing measures have their intended effect of enhancing health care delivery that results in quality outcomes for patients. Perhaps the only way that the United States health care system will achieve a standard of quality care is through the strong embrace, effective engagement, intellectual insights, educational contributions, and practical applications in AMCs. Quality will never be achieved through public policies or national initiatives alone but instead through the commitment of the academic community to forward the science of performance measurement and to ensure that measurement leads to better health outcomes for our nation.

  13. Neuropsychological Behavioral Inhibition System (BIS) and Behavioral Approach System (BAS) assessment: a shortened Sensitivity to Punishment and Sensitivity to Reward Questionnaire version (SPSRQ-20).

    PubMed

    Aluja, Anton; Blanch, Angel

    2011-11-01

    This research was designed to investigate the items and factor structure of the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) proposed by Torrubia, Avila, Moltó, and Caseras ( 2001 ), as a measure of the behavioral inhibition system and behavioral activation system in Gray's reinforcement sensitivity theory. Recent studies that analyzed this instrument by exploratory and confirmatory factor analysis suggest the need for structural refinement. The Spanish version of the SPSRQ was analyzed by exploratory and confirmatory procedures in calibration (n = 2,102) and validation (n = 746) independent samples. In addition, convergent and discriminant validity was evaluated with the Zuckerman-Kuhlman Personality Questionnaire (Zuckerman, Kuhlman, Teta, Joireman, & Kraft, 1993 ), the Impulsiveness, Venturesomeness and Empathy Inventory (S. B. G. Eysenck, Pearson, Easting, & Allsopp, 1985 ) the Neuroticism, Extraversion and Openness Five Factor Inventory (Costa & McCrae, 1992 ), and the Barratt Impulsiveness Scales (Barratt, 1985 ). Results showed the robustness of a 20-item structure of the SPSRQ, with satisfactory fit adjustment, validity, and reliability. The findings are discussed in terms of the better functioning and sound psychometric properties of the SPSRQ 20-item version for Gray's personality theory.

  14. Reward feedback accelerates motor learning.

    PubMed

    Nikooyan, Ali A; Ahmed, Alaa A

    2015-01-15

    Recent findings have demonstrated that reward feedback alone can drive motor learning. However, it is not yet clear whether reward feedback alone can lead to learning when a perturbation is introduced abruptly, or how a reward gradient can modulate learning. In this study, we provide reward feedback that decays continuously with increasing error. We asked whether it is possible to learn an abrupt visuomotor rotation by reward alone, and if the learning process could be modulated by combining reward and sensory feedback and/or by using different reward landscapes. We designed a novel visuomotor learning protocol during which subjects experienced an abruptly introduced rotational perturbation. Subjects received either visual feedback or reward feedback, or a combination of the two. Two different reward landscapes, where the reward decayed either linearly or cubically with distance from the target, were tested. Results demonstrate that it is possible to learn from reward feedback alone and that the combination of reward and sensory feedback accelerates learning. An analysis of the underlying mechanisms reveals that although reward feedback alone does not allow for sensorimotor remapping, it can nonetheless lead to broad generalization, highlighting a dissociation between remapping and generalization. Also, the combination of reward and sensory feedback accelerates learning without compromising sensorimotor remapping. These findings suggest that the use of reward feedback is a promising approach to either supplement or substitute sensory feedback in the development of improved neurorehabilitation techniques. More generally, they point to an important role played by reward in the motor learning process.

  15. Associations among smoking, anhedonia, and reward learning in depression.

    PubMed

    Liverant, Gabrielle I; Sloan, Denise M; Pizzagalli, Diego A; Harte, Christopher B; Kamholz, Barbara W; Rosebrock, Laina E; Cohen, Andrew L; Fava, Maurizio; Kaplan, Gary B

    2014-09-01

    Depression and cigarette smoking co-occur at high rates. However, the etiological mechanisms that contribute to this relationship remain unclear. Anhedonia and associated impairments in reward learning are key features of depression, which also have been linked to the onset and maintenance of cigarette smoking. However, few studies have investigated differences in anhedonia and reward learning among depressed smokers and depressed nonsmokers. The goal of this study was to examine putative differences in anhedonia and reward learning in depressed smokers (n=36) and depressed nonsmokers (n=44). To this end, participants completed self-report measures of anhedonia and behavioral activation (BAS reward responsiveness scores) and as well as a probabilistic reward task rooted in signal detection theory, which measures reward learning (Pizzagalli, Jahn, & O'Shea, 2005). When considering self-report measures, depressed smokers reported higher trait anhedonia and reduced BAS reward responsiveness scores compared to depressed nonsmokers. In contrast to self-report measures, nicotine-satiated depressed smokers demonstrated greater acquisition of reward-based learning compared to depressed nonsmokers as indexed by the probabilistic reward task. Findings may point to a potential mechanism underlying the frequent co-occurrence of smoking and depression. These results highlight the importance of continued investigation of the role of anhedonia and reward system functioning in the co-occurrence of depression and nicotine abuse. Results also may support the use of treatments targeting reward learning (e.g., behavioral activation) to enhance smoking cessation among individuals with depression.

  16. Musical pleasure and reward: mechanisms and dysfunction.

    PubMed

    Zatorre, Robert J

    2015-03-01

    Most people derive pleasure from music. Neuroimaging studies show that the reward system of the human brain is central to this experience. Specifically, the dorsal and ventral striatum release dopamine when listening to pleasurable music, and activity in these structures also codes the reward value of musical excerpts. Moreover, the striatum interacts with cortical mechanisms involved in perception and valuation of musical stimuli. Recent studies have begun to explore individual differences in the way that this complex system functions. Development of a questionnaire for music reward experiences has allowed the identification of separable factors associated with musical pleasure, described as music-seeking, emotion-evocation, mood regulation, sensorimotor, and social factors. Applying this questionnaire to a large sample uncovered approximately 5% of the population with low sensitivity to musical reward in the absence of generalized anhedonia or depression. Further study of this group revealed that there are individuals who respond normally both behaviorally and psychophysiologically to rewards other than music (e.g., monetary value) but do not experience pleasure from music despite normal music perception ability and preserved ability to identify intended emotions in musical passages. This specific music anhedonia bears further study, as it may shed light on the function and dysfunction of the reward system. PMID:25773636

  17. Rewards modulate saccade latency but not exogenous spatial attention

    PubMed Central

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T.

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems. PMID:26284004

  18. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    PubMed Central

    Viveros, Maria-Paz; Bermúdez-Silva, Francisco-Javier; Lopez-Rodriguez, Ana-Belén; Wagner, Edward J.

    2011-01-01

    The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug

  19. Academic Deans: Keep the Heart Pumping.

    ERIC Educational Resources Information Center

    Sbaratta, Philip

    1983-01-01

    Examines the responses of 15 academic deans in Massachusetts community colleges to questions on recognizing, nurturing, encouraging, and rewarding teaching excellence. Concludes that mediocrity and doing the minimum prevail unless the recognition of special talent, encouragement of effort, and direct rewards are coordinated. (DMM)

  20. Anabolic-androgenic steroids and brain reward.

    PubMed

    Clark, A S; Lindenfeld, R C; Gibbons, C H

    1996-03-01

    Anabolic-androgenic steroid (AAS) effects on brain reward were investigated in male rats with electrodes implanted in the lateral hypothalamus using the rate-frequency curve shift paradigm of brain stimulation reward. In the first experiment, treatment for 2 weeks with the AAS methandrostenolone had no effect on either the reward or performance components of intracranial self-stimulation. In the second experiment, treatment for 15 weeks with an AAS "cocktail" consisting of testosterone cypionate, nandrolone decanoate, and boldenone undecylenate did not alter brain reward but did produce a slight but significant change in bar press rate. In addition to the AAS treatment, animals in the second study were administered a single injection of d-amphetamine before and after 15 weeks of AAS exposure. The rate-frequency curve shift observed in response to a systemic injection of amphetamine was significantly greater in animals after 15 weeks of treatment with the AAS cocktail. Although AAS do not appear to alter the rewarding properties of brain stimulation, AAS may influence the sensitivity of brain reward systems. PMID:8866980

  1. Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa.

    PubMed

    Avena, Nicole M; Bocarsly, Miriam E

    2012-07-01

    Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained through animal models of binge eating, bulimia nervosa, or anorexia nervosa. The findings suggest that alterations in dopamine (DA), acetylcholine (ACh) and opioid systems in reward-related brain areas occur in response to binge eating of palatable foods. Moreover, animal models of bulimia nervosa suggest that while bingeing on palatable food releases DA, purging attenuates the release of ACh that might otherwise signal satiety. Animal models of anorexia nervosa suggest that restricted access to food enhances the reinforcing effects of DA when the animal does eat. The activity-based anorexia model suggests alterations in mesolimbic DA and serotonin occur as a result of restricted eating coupled with excessive wheel running. These findings with animal models complement data obtained through neuroimaging and pharmacotherapy studies of clinical populations. Information on the neurochemical consequences of the behaviors associated with these eating disorders will be useful in understanding these complex disorders and may inform future therapeutic approaches, as discussed here. This article is part of a Special Issue entitled 'Central Control of Food Intake'.

  2. The Effects of a Virtual Tutee System on Academic Reading Engagement in a College Classroom

    ERIC Educational Resources Information Center

    Park, Seung Won; Kim, ChanMin

    2016-01-01

    Poor student engagement with academic readings has been frequently reported in college classrooms. As an effort to improve college students' reading engagement, researchers have developed a virtual environment in which students take on the role of tutor and teach a virtual tutee, the virtual tutee system (VTS). This research examined the…

  3. Academic Staff Views of Quality Systems for Teaching and Learning: A Hong Kong Case Study

    ERIC Educational Resources Information Center

    Jones, John; Saram, Don Darshi De

    2005-01-01

    The "Teaching and Learning Quality Process Review" (TLQPR) recently completed in Hong Kong had an emphasis on education quality work. This paper analyses how, from the perspective of academic staff in one university in Hong Kong, the good intentions embedded in that idea are enhanced or subverted by the broader ?quality system setting in which…

  4. Computerized Assessment System for Academic Satisfaction (ASAS) for First-Year University Student

    ERIC Educational Resources Information Center

    Medrano, Leonardo Adrian; Liporace, Mercedes Fernandez; Perez, Edgardo

    2014-01-01

    Introduction: Computerized tests have become one of the most widely used and efficient educational assessment methods. Increasing efforts to generate computerized assessment systems to identify students at risk for drop out have been recently noted. An important variable influencing student retention is academic satisfaction. Accordingly, the…

  5. An Internet-based Expert System for Selecting an Academic Major: www.MyMajors.com.

    ERIC Educational Resources Information Center

    Grupe, Fritz H.

    2002-01-01

    Describes an Internet-based expert system found at http://www.MyMajors.com which provides advice to high school students or college freshmen who are seeking assistance in selecting a potential major by emulating a professional academic advisor. Highlights include computer-assisted advisement programs; knowledge acquisition; evaluating expert…

  6. Measure for Measure: How Proficiency-Based Accountability Systems Affect Inequality in Academic Achievement

    ERIC Educational Resources Information Center

    Jennings, Jennifer; Sohn, Heeju

    2014-01-01

    How do proficiency-based accountability systems affect inequality in academic achievement? This article reconciles mixed findings in the literature by demonstrating that three factors jointly determine accountability's impact. First, by analyzing student-level data from a large urban school district, we find that when educators face…

  7. Using Systemic Functional Linguistics in Academic Writing Development: An Example from Film Studies

    ERIC Educational Resources Information Center

    Donohue, James P.

    2012-01-01

    On film studies courses, students are asked to treat as objects of study the same films which they may more commonly experience as entertainment. To explore the role of academic writing in this, an action research project was carried out on a university film studies course using a systemic functional linguistics approach. This paper presents a key…

  8. A Complex Systems Framework for Research on Leadership and Organizational Dynamics in Academic Libraries

    ERIC Educational Resources Information Center

    Gilstrap, Donald L.

    2009-01-01

    This article provides a historiographical analysis of major leadership and organizational development theories that have shaped our thinking about how we lead and administrate academic libraries. Drawing from behavioral, cognitive, systems, and complexity theories, this article discusses major theorists and research studies appearing over the past…

  9. A Systemic Functional Contribution to Planning Academic Genre Teaching in a Bilingual Education Context

    ERIC Educational Resources Information Center

    Walker, Elizabeth

    2010-01-01

    Commencing study through a foreign language in senior secondary school brings huge challenges because of the cognitive-linguistic demands of academic subjects. This paper argues for the need to blend sociocultural and systemic functional linguistic (SFL) perspectives to address this enormous task. Firstly, readers' attention is drawn to the less…

  10. After the Fall: The Use of Surplus Capacity in an Academic Library Automation System.

    ERIC Educational Resources Information Center

    Wright, A. J.

    The possible uses of excess central processing unit capacity in an integrated academic library automation system discussed in this draft proposal include (1) in-house services such as word processing, electronic mail, management decision support using PERT/CPM techniques, and control of physical plant operation; (2) public services such as the…

  11. Facilitating Metacognitive Processes of Academic Genre-Based Writing Using an Online Writing System

    ERIC Educational Resources Information Center

    Yeh, Hui-Chin

    2015-01-01

    Few studies have investigated how metacognitive processes foster the application of genre knowledge to students' academic writing. This is largely due to its internal and unobservable characteristics. To bridge this gap, an online writing system based on metacognition, involving the stages of planning, monitoring, evaluating, and revising, was…

  12. The Genealogy Project: Tracing Academic Roots in the History and Systems Course.

    ERIC Educational Resources Information Center

    Goodwin, C. James; Dingus, Michelle; Petterson, Stephanie

    2002-01-01

    Describes an assignment in a history and systems of psychology course where students traced the genealogy of psychologists in terms of their academic roots. Explains that the students learned about bibliographic resources during the project. Discusses assignment outcomes as discovered through a student survey. (CMK)

  13. Virtual Tutee System: A Potential Tool for Enhancing Academic Reading Engagement

    ERIC Educational Resources Information Center

    Park, SeungWon; Kim, ChanMin

    2014-01-01

    This article reports on evaluation studies of the Virtual Tutee System (VTS) designed to enhance students' engagement in academic reading. The VTS is a web-based peer-tutoring environment in which students teach a virtual tutee about the content in course readings that students have been assigned to learn. With the VTS, students interact with…

  14. Pain and suicidality: insights from reward and addiction neuroscience.

    PubMed

    Elman, Igor; Borsook, David; Volkow, Nora D

    2013-10-01

    Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.

  15. Pain and suicidality: insights from reward and addiction neuroscience.

    PubMed

    Elman, Igor; Borsook, David; Volkow, Nora D

    2013-10-01

    Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk. PMID:23827972

  16. Per Pupil Expenditures and Academic Achievement in Georgia School Systems

    ERIC Educational Resources Information Center

    van Beurden, Krista

    2011-01-01

    Student achievement and public school funding are national concerns. Federal, state, and local funding vary across the nation and within systems in each state. In the past several years, Georgia school systems have faced austerity cuts by the state legislature and governor, and function with less money while trying to improve student achievement…

  17. The shared reward dilemma.

    PubMed

    Cuesta, J A; Jiménez, R; Lugo, H; Sánchez, A

    2008-03-21

    One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma, namely the prisoner's dilemma (PD). Specifically, for a group of players that collect payoffs by playing a pairwise PD game with their partners, we consider an external entity that distributes a fixed reward equally among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including the traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the n-player game as well as of its evolutionary dynamics.

  18. Explicit neural signals reflecting reward uncertainty.

    PubMed

    Schultz, Wolfram; Preuschoff, Kerstin; Camerer, Colin; Hsu, Ming; Fiorillo, Christopher D; Tobler, Philippe N; Bossaerts, Peter

    2008-12-12

    The acknowledged importance of uncertainty in economic decision making has stimulated the search for neural signals that could influence learning and inform decision mechanisms. Current views distinguish two forms of uncertainty, namely risk and ambiguity, depending on whether the probability distributions of outcomes are known or unknown. Behavioural neurophysiological studies on dopamine neurons revealed a risk signal, which covaried with the standard deviation or variance of the magnitude of juice rewards and occurred separately from reward value coding. Human imaging studies identified similarly distinct risk signals for monetary rewards in the striatum and orbitofrontal cortex (OFC), thus fulfilling a requirement for the mean variance approach of economic decision theory. The orbitofrontal risk signal covaried with individual risk attitudes, possibly explaining individual differences in risk perception and risky decision making. Ambiguous gambles with incomplete probabilistic information induced stronger brain signals than risky gambles in OFC and amygdala, suggesting that the brain's reward system signals the partial lack of information. The brain can use the uncertainty signals to assess the uncertainty of rewards, influence learning, modulate the value of uncertain rewards and make appropriate behavioural choices between only partly known options.

  19. Tradition meets innovation: transforming academic medical culture at the University of Pennsylvania's Perelman School of Medicine.

    PubMed

    Pati, Susmita; Reum, Josef; Conant, Emily; Tuton, Lucy Wolf; Scott, Patricia; Abbuhl, Stephanie; Grisso, Jeane Ann

    2013-04-01

    Traditional performance expectations and career advancement paths for academic physicians persist despite dramatic transformations in the academic workflow, workload, and workforce over the past 20 years. Although the academic physician's triple role as clinician, researcher, and educator has been lauded as the ideal by academic health centers, current standards of excellence for promotion and tenure are based on outdated models. These models fail to reward collaboration and center around rigid career advancement plans that do little to accommodate the changing needs of individuals and organizations. The authors describe an innovative, comprehensive, multipronged initiative at the Perelman School of Medicine at the University of Pennsylvania to initiate change in the culture of academic medicine and improve academic productivity, job satisfaction, and overall quality of life for junior faculty. As a key part of this intervention, task forces from each of the 13 participating departments/divisions met five times between September 2010 and January 2011 to produce recommendations for institutional change. The authors discuss how this initiative, using principles adopted from business transformation, generated themes and techniques that can potentially guide workforce environment innovation in academic health centers across the United States. Recommendations include embracing a promotion/tenure/evaluation system that supports and rewards tailored individual academic career plans; ensuring leadership, decision-making roles, and recognition for junior faculty; deepening administrative and team supports for junior faculty; and solidifying and rewarding mentorship for junior faculty. By doing so, academic health centers can ensure the retention and commitment of faculty throughout all stages of their careers. PMID:23425986

  20. Pain and suicidality: Insights from reward and addiction neuroscience

    PubMed Central

    Elman, Igor; Borsook, David; Volkow, Nora D.

    2016-01-01

    Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system’s role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain-and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other “reward deficiency syndromes” and a new proposal for “enhanced anti-reward syndromes”. We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk. PMID:23827972

  1. An Academic Multihealth System PGY2 Pediatric Pharmacy Residency Program.

    PubMed

    Klosterman, Theresa; Meyers, Rachel; Siu, Anita; Shah, Pooja; Kimler, Katelin; Sturgill, Marc; Robinson, Christine

    2015-01-01

    We describe a novel multihealth system pediatric pharmacy residency program through the Ernest Mario School of Pharmacy at Rutgers University. Pediatric clinical pharmacy is a growing field that has seen an increase in demand for practitioners. Practice sites include freestanding children's hospitals, children's hospitals within adult hospitals, and pediatric units within adult hospitals. To accommodate a residency program in a region with no freestanding children's hospital, the pediatric faculty members at the Ernest Mario School of Pharmacy at Rutgers University developed a multihealth system postgraduate year 2 (PGY2) pediatric pharmacy residency program with 6 pediatric faculty members functioning as preceptors at their 5 respective practice sites. The multihealth system setup of the program provides the resident exposure to a multitude of patient populations, pediatric specialties, and pediatric pharmacy practices. In addition, the affiliation with Rutgers University allows an emphasis on academia with opportunities for the resident to lecture in small and large classrooms, facilitate discussion periods, assist with clinical laboratory classes, and precept pharmacy students. The resident has the unique opportunity to develop a research project with a large and diverse patient population owing to the multihealth system rotation sites. A multihealth system PGY2 residency in pediatric pharmacy provides the resident a well-rounded experience in pediatric clinical practice, research, and academia that will enhance the resident's ability to build his or her own pediatric pharmacy practice. PMID:26766936

  2. Updating dopamine reward signals.

    PubMed

    Schultz, Wolfram

    2013-04-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.

  3. Governance of Academic Planning in Public Higher Education Systems

    ERIC Educational Resources Information Center

    Harmening, Todd R.

    2013-01-01

    The recent interest in harnessing the collective capacity of public institutions of higher education is challenging long-held beliefs about system coordination. Constricted state resources, globalization, market forces, and new technologies suggest that new governance structures are not only a necessity but an opportunity to better connect system…

  4. Systems and Cascades in Cognitive Development and Academic Achievement

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Wolke, Dieter

    2013-01-01

    A large-scale ("N" = 552) controlled multivariate prospective 14-year longitudinal study of a developmental cascade embedded in a developmental system showed that information-processing efficiency in infancy (4 months), general mental development in toddlerhood (18 months), behavior difficulties in early childhood (36 months), psychometric…

  5. Recruiting and Rewarding Faculty for Medical Student Teaching

    ERIC Educational Resources Information Center

    Pessar, Linda F.; Levine, Ruth E.; Bernstein, Carol A.; Cabaniss, Deborah S.; Dickstein, Leah J.; Graff, Sarah V.; Hales, Deborah J.; Nadelson, Carol; Robinowitz, Carolyn B.; Scheiber, Stephen C.; Jones, Paul M.; Silberman, Edward K.

    2006-01-01

    Objective: Finding time to teach psychiatry has become increasingly difficult. Concurrently, changes in medical student education are elevating demands for teaching. Academic psychiatry is challenged by these pressures to find innovative ways to recruit, retain, and reward faculty for teaching efforts. To address this challenge, the authors…

  6. Creating the Exceptional Patient Experience in One Academic Health System.

    PubMed

    Lee, Vivian S; Miller, Thomas; Daniels, Chrissy; Paine, Marilynn; Gresh, Brian; Betz, A Lorris

    2016-03-01

    Whether patient satisfaction scores can act as a catalyst for improving health care is highly debated. Some argue that pursuing patient satisfaction is overemphasized and potentially at odds with providing good care because it leads providers to overtest and overtreat patients and to bend to unreasonable patient demands, all to improve their ratings. Others cite studies showing that high patient satisfaction scores correlate with improved health outcomes. Ideally, assessing patient satisfaction metrics will encourage empathy, communication, trust, and shared decision making in the health care delivery process. From the patient's perspective, sharing such metrics motivates physicians to provide patient-centered care and meets their need for easily accessible information about their providers. In this article, the authors describe a seven-year initiative, which began in 2008, to change the culture of the University of Utah Health Care system to deliver a consistently exceptional patient experience. Five factors affected the health system's ability to provide such care: (1) a lack of good decision-making processes, (2) a lack of accountability, (3) the wrong attitude, (4) a lack of patient focus, and (5) mission conflict. Working groups designed initiatives at all levels of the health system to address these issues. What began as a patient satisfaction initiative evolved into a model for physician engagement, values-based employment practices, enhanced professionalism and communication, reduced variability in performance, and improved alignment of the mission and vision across hospital and faculty group practice teams. PMID:26606723

  7. Creating the Exceptional Patient Experience in One Academic Health System.

    PubMed

    Lee, Vivian S; Miller, Thomas; Daniels, Chrissy; Paine, Marilynn; Gresh, Brian; Betz, A Lorris

    2016-03-01

    Whether patient satisfaction scores can act as a catalyst for improving health care is highly debated. Some argue that pursuing patient satisfaction is overemphasized and potentially at odds with providing good care because it leads providers to overtest and overtreat patients and to bend to unreasonable patient demands, all to improve their ratings. Others cite studies showing that high patient satisfaction scores correlate with improved health outcomes. Ideally, assessing patient satisfaction metrics will encourage empathy, communication, trust, and shared decision making in the health care delivery process. From the patient's perspective, sharing such metrics motivates physicians to provide patient-centered care and meets their need for easily accessible information about their providers. In this article, the authors describe a seven-year initiative, which began in 2008, to change the culture of the University of Utah Health Care system to deliver a consistently exceptional patient experience. Five factors affected the health system's ability to provide such care: (1) a lack of good decision-making processes, (2) a lack of accountability, (3) the wrong attitude, (4) a lack of patient focus, and (5) mission conflict. Working groups designed initiatives at all levels of the health system to address these issues. What began as a patient satisfaction initiative evolved into a model for physician engagement, values-based employment practices, enhanced professionalism and communication, reduced variability in performance, and improved alignment of the mission and vision across hospital and faculty group practice teams.

  8. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners.

    PubMed

    Murray, Susan; Tulloch, Alastair; Criscitelli, Kristen; Avena, Nicole M

    2016-10-01

    The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories. In this review, we present an overview of the animal literature produced in the last 5years highlighting the effects of sugar consumption on neural pathways involved in energy balance regulation and reward processing. We also examine the latest evidence that is beginning to elucidate the effects of low calorie sweeteners on these neural pathways, as well as how homeostatic and hedonic systems interact in response to, or to influence, sugar consumption.

  9. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners.

    PubMed

    Murray, Susan; Tulloch, Alastair; Criscitelli, Kristen; Avena, Nicole M

    2016-10-01

    The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories. In this review, we present an overview of the animal literature produced in the last 5years highlighting the effects of sugar consumption on neural pathways involved in energy balance regulation and reward processing. We also examine the latest evidence that is beginning to elucidate the effects of low calorie sweeteners on these neural pathways, as well as how homeostatic and hedonic systems interact in response to, or to influence, sugar consumption. PMID:27068180

  10. The Lifelong Learning Iceberg of Information Systems Academics--A Study of On-Going Formal and Informal Learning by Academics

    ERIC Educational Resources Information Center

    Davey, Bill; Tatnall, Arthur

    2007-01-01

    This article describes a study that examined the lifelong learning of information systems academics in relation to their normal work. It begins by considering the concept of lifelong learning, its relationship to real-life learning and that lifelong learning should encompass the whole spectrum of formal, non-formal and informal learning. Most…

  11. The Roles of Dopamine and Related Compounds in Reward-Seeking Behavior Across Animal Phyla

    PubMed Central

    Barron, Andrew B.; Søvik, Eirik; Cornish, Jennifer L.

    2010-01-01

    Motile animals actively seek out and gather resources they find rewarding, and this is an extremely powerful organizer and motivator of animal behavior. Mammalian studies have revealed interconnected neurobiological systems for reward learning, reward assessment, reinforcement and reward-seeking; all involving the biogenic amine dopamine. The neurobiology of reward-seeking behavioral systems is less well understood in invertebrates, but in many diverse invertebrate groups, reward learning and responses to food rewards also involve dopamine. The obvious exceptions are the arthropods in which the chemically related biogenic amine octopamine has a greater effect on reward learning and reinforcement than dopamine. Here we review the functions of these biogenic amines in behavioral responses to rewards in different animal groups, and discuss these findings in an evolutionary context. PMID:21048897

  12. Concurrent maternal and pup postnatal tobacco smoke exposure in Wistar rats changes food preference and dopaminergic reward system parameters in the adult male offspring.

    PubMed

    Pinheiro, C R; Moura, E G; Manhães, A C; Fraga, M C; Claudio-Neto, S; Abreu-Villaça, Y; Oliveira, E; Lisboa, P C

    2015-08-20

    Children from pregnant smokers are more susceptible to become obese adults and to become drug or food addicts. Drugs and food activate the mesolimbic reward pathway, causing a sense of pleasure that induces further consumption. Here, we studied the relationship between tobacco smoke exposure during lactation with feeding, behavior and brain dopaminergic reward system parameters at adulthood. Nursing Wistar rats and their pups were divided into two groups: tobacco smoke-exposed (S: 4times/day, from the 3rd to the 21th day of lactation), and ambient air-exposed (C). On PN175, both offspring groups were subdivided for a food challenge: S and C that received standard chow (SC) or that chose between high-fat (HFD) and high-sucrose diets (HSDs). Food intake was recorded after 30min and 12h. Offspring were tested in the elevated plus maze and open field on PN178-179; they were euthanized for dopaminergic analysis on PN180. SSD (self-selected diet) animals presented a higher food intake compared to SC ones. S-SSD animals ate more than C-SSD ones at 30min and 12h. Both groups preferred the HFD. However, S-SSD animals consumed relatively more HFD than C-SSD at 30min. No behavioral differences were observed between groups. S animals presented lower tyrosine hydroxylase (TH) content in the ventral tegmental area, lower TH, dopaminergic receptor 2, higher dopaminergic receptor 1 contents in the nucleus accumbens and lower OBRb in hypothalamic arcuate nucleus. Tobacco-smoke exposure during lactation increases preference for fat in the adult progeny possibly due to alterations in the dopaminergic system.

  13. Corticotropin-releasing factor 1 receptor mediates the activity of the reward system evoked by morphine-induced conditioned place preference.

    PubMed

    Lasheras, M Carmen; Laorden, M Luisa; Milanés, M Victoria; Núñez, Cristina

    2015-08-01

    Different neurotransmitter systems are involved in behavioural and molecular responses to morphine. The brain stress system is activated by acute administration of drugs of abuse, being CRF the main neuropeptide of this circuitry. In this study we have studied the role of CRF1R in the rewarding effects of morphine using the CPP paradigm. For that, animals were treated with a CRF1R antagonist (CP-154,526) or vehicle during 6 days. Thirty min after receiving the antagonist, mice were injected with morphine on the same days that CP-154,526 was administered; another group received saline on the same days that vehicle was administered, and both groups were immediately conditioned. Control animals received vehicle and saline every day. On day 7, animals were tested for morphine-induced CPP. c-Fos, TH and OXA immunohistochemistry, NA turnover (HPLC), and corticosterone plasma concentration (RIA) were evaluated. Administration of a CRF1R antagonist CP-154,526 blocked the morphine-induced CPP and the increased NA turnover in the NAc in morphine-paired mice. CP-154-526 antagonised the enhancement in c-Fos expression evoked by morphine-induced CPP in the VTA and NAc, and the activation of the orexinergic neurons in the LLH. Present work demonstrates that morphine-induced CPP activates different brain areas involved in reward, and points out a critical role of CRF1R in molecular changes involved in morphine-conducted behaviours. Thus, our study supports a therapeutic potential of CRF1R antagonists in addictive disorders. PMID:25556110

  14. Corticotropin-releasing factor 1 receptor mediates the activity of the reward system evoked by morphine-induced conditioned place preference.

    PubMed

    Lasheras, M Carmen; Laorden, M Luisa; Milanés, M Victoria; Núñez, Cristina

    2015-08-01

    Different neurotransmitter systems are involved in behavioural and molecular responses to morphine. The brain stress system is activated by acute administration of drugs of abuse, being CRF the main neuropeptide of this circuitry. In this study we have studied the role of CRF1R in the rewarding effects of morphine using the CPP paradigm. For that, animals were treated with a CRF1R antagonist (CP-154,526) or vehicle during 6 days. Thirty min after receiving the antagonist, mice were injected with morphine on the same days that CP-154,526 was administered; another group received saline on the same days that vehicle was administered, and both groups were immediately conditioned. Control animals received vehicle and saline every day. On day 7, animals were tested for morphine-induced CPP. c-Fos, TH and OXA immunohistochemistry, NA turnover (HPLC), and corticosterone plasma concentration (RIA) were evaluated. Administration of a CRF1R antagonist CP-154,526 blocked the morphine-induced CPP and the increased NA turnover in the NAc in morphine-paired mice. CP-154-526 antagonised the enhancement in c-Fos expression evoked by morphine-induced CPP in the VTA and NAc, and the activation of the orexinergic neurons in the LLH. Present work demonstrates that morphine-induced CPP activates different brain areas involved in reward, and points out a critical role of CRF1R in molecular changes involved in morphine-conducted behaviours. Thus, our study supports a therapeutic potential of CRF1R antagonists in addictive disorders.

  15. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system.

    PubMed

    Ong, Zhi Yi; Wanasuria, Ayumi F; Lin, Mark Z P; Hiscock, Jennifer; Muhlhausler, Beverly S

    2013-06-01

    Studies examining the impact of chronic palatable food intake on the mesolimbic reward system have been conducted almost exclusively in males. This study aimed to determine the effects of chronic intake of a palatable cafeteria diet and subsequent abstinence on fat mass, food intake and key gene expression of the mesolimbic reward system in both males and females. Albino Wistar rats were fed for 8 weeks on standard chow (Control, n=5 males, 5 females) or cafeteria diet (CD; n=16 males, 16 females). The cafeteria diet was then removed from a subset of CD rats for 72 h (CD-Withdrawal group, CD-W). The nucleus accumbens (NAc) was isolated and mRNA expression of tyrosine hydroxylase (TH), dopamine active transporter (DAT), D1 and D2 dopamine receptors, and μ-opioid receptor determined by qRT-PCR. Chronic cafeteria diet intake increased fat mass in all CD rats but body weight and chow intake were reduced during the period of cafeteria diet abstinence. TH mRNA was reduced in male CD and CD-W rats, but increased in female CD and CD-W rats. D1 mRNA was reduced in CD and CD-W females, but increased in CD males, compared to Controls. μ-opioid receptor expression was reduced in CD and CD-W males but not females. These data highlight the importance of investigating sex differences in the neurobiological response to palatable food intake and the need for future studies in this area to include both sexes.

  16. Creating the Exceptional Patient Experience in One Academic Health System

    PubMed Central

    Miller, Thomas; Daniels, Chrissy; Paine, Marilynn; Gresh, Brian; Betz, A. Lorris

    2016-01-01

    Whether patient satisfaction scores can act as a catalyst for improving health care is highly debated. Some argue that pursuing patient satisfaction is overemphasized and potentially at odds with providing good care because it leads providers to overtest and overtreat patients and to bend to unreasonable patient demands, all to improve their ratings. Others cite studies showing that high patient satisfaction scores correlate with improved health outcomes. Ideally, assessing patient satisfaction metrics will encourage empathy, communication, trust, and shared decision making in the health care delivery process. From the patient’s perspective, sharing such metrics motivates physicians to provide patient-centered care and meets their need for easily accessible information about their providers. In this article, the authors describe a seven-year initiative, which began in 2008, to change the culture of the University of Utah Health Care system to deliver a consistently exceptional patient experience. Five factors affected the health system’s ability to provide such care: (1) a lack of good decision-making processes, (2) a lack of accountability, (3) the wrong attitude, (4) a lack of patient focus, and (5) mission conflict. Working groups designed initiatives at all levels of the health system to address these issues. What began as a patient satisfaction initiative evolved into a model for physician engagement, values-based employment practices, enhanced professionalism and communication, reduced variability in performance, and improved alignment of the mission and vision across hospital and faculty group practice teams. PMID:26606723

  17. Integrated Library System (ILS) Challenges and Opportunities: A Survey of U.S. Academic Libraries with Migration Projects

    ERIC Educational Resources Information Center

    Wang, Zhonghong

    2009-01-01

    An online survey was sent to academic libraries and consortia with an integrated library system (ILS) migration project, based on review of press releases from major U.S. ILS vendors. This study takes a systematic approach to provide a snapshot of the academic ILS market and key factors affecting the outcome of an ILS migration project. It reveals…

  18. Access to Academic Curriculum in Australian Secondary Schools: A Case Study of a Highly Marketised Education System

    ERIC Educational Resources Information Center

    Perry, Laura B.; Southwell, Leonie

    2014-01-01

    This study examines how access to academic curriculum differs between secondary schools in Australia, a country whose education system is marked by high levels of choice, privatisation and competition. Equitable access to academic curriculum is important for both individual students and their families as well as the larger society. Previous…

  19. A Positive Affective Neuroendocrinology Approach to Reward and Behavioral Dysregulation

    PubMed Central

    Welker, Keith M.; Gruber, June; Mehta, Pranjal H.

    2015-01-01

    Emerging lines of research suggest that both testosterone and maladaptive reward processing can modulate behavioral dysregulation. Yet, to date, no integrative account has been provided that systematically explains neuroendocrine function, dysregulation of reward, and behavioral dysregulation in a unified perspective. This is particularly important given specific neuroendocrine systems are potential mechanisms underlying and giving rise to reward-relevant behaviors. In this review, we propose a forward-thinking approach to study the mechanisms of reward and behavioral dysregulation from a positive affective neuroendocrinology (PANE) perspective. This approach holds that testosterone increases reward processing and motivation, which increase the likelihood of behavioral dysregulation. Additionally, the PANE framework holds that reward processing mediates the effects of testosterone on behavioral dysregulation. We also explore sources of potential sex differences and the roles of age, cortisol, and individual differences within the PANE framework. Finally, we discuss future prospects for research questions and methodology in the emerging field of affective neuroendocrinology. PMID:26191007

  20. The Rewards of Mentoring

    ERIC Educational Resources Information Center

    Green-Powell, Patricia

    2012-01-01

    A growing body of knowledge exists which describes the rewards and importance of mentors in the professional development of young men and women, particularly with relation to their interactions in professional and organizational settings. Research in both educational settings and the workplace indicates that students and employees alike are more…

  1. Do Economic Rewards Work?

    ERIC Educational Resources Information Center

    Wallace, Brian D.

    2009-01-01

    The love of learning--that intrinsic desire to gain knowledge and insight into new subjects--was once its own reward. That was altered decades ago when parents started using the proverbial "stick and carrot" to motivate their children to do well in school, or even just show up. Today, educators across the country have taken hold of this approach…

  2. A Rewarding Partnership

    ERIC Educational Resources Information Center

    Abbott, Cheryl; Swanson, Marc

    2006-01-01

    A collaborating scientist--a rewarding addition to any high school science program--can help students collect and analyze data that either replicates or parallels the work of the partnering scientist. This type of partnership is beneficial for both students and scientists, and perhaps there has never been a better time to consider such a…

  3. Ventral Striatum Connectivity During Reward Anticipation in Adolescent Smokers.

    PubMed

    Jollans, Lee; Zhipeng, Cao; Icke, Ilknur; Greene, Ciara; Kelly, Clare; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Artiges, Eric; Nees, Frauke; Papadopoulos Orfanos, Dimitri; Paus, Tomáš; Smolka, Michael N; Walter, Henrik; Schumann, Gunter; Whelan, Robert

    2016-01-01

    Substance misusers, including adolescent smokers, often have reduced reward system activity during processing of non-drug rewards. Using a psychophysiological interaction approach, we examined functional connectivity with the ventral striatum during reward anticipation in a large (N = 206) sample of adolescent smokers. Increased smoking frequency was associated with (1) increased connectivity with regions involved in saliency and valuation, including the orbitofrontal cortex and (2) reduced connectivity between the ventral striatum and regions associated with inhibition and risk aversion, including the right inferior frontal gyrus. These results demonstrate that functional connectivity during reward processing is relevant to adolescent addiction. PMID:27074029

  4. A Typology Framework of Loyalty Reward Programs

    NASA Astrophysics Data System (ADS)

    Cao, Yuheng; Nsakanda, Aaron Luntala; Mann, Inder Jit Singh

    Loyalty reward programs (LRPs), initially developed as marketing programs to enhance customer retention, have now become an important part of customer-focused business strategy. With the proliferation and increasing economy impact of the programs, the management complexity in the programs has also increased. However, despite widespread adoption of LRPs in business, academic research in the field seems to lag behind its practical application. Even the fundamental questions such as what LRPs are and how to classify them have not yet been fully addressed. In this paper, a comprehensive framework for LRP classification is proposed, which provides a foundation for further study of LRP design and planning issues.

  5. Requirements on Clinical Trial Management Systems for Academic Site Management Organizations.

    PubMed

    Schöbel, Martin; Stäubert, Sebastian; Löbe, Matthias; Meinel, Kirsti; Winter, Alfred

    2016-01-01

    As a part of the introduction of a Clinical Trial Management System (CTMS) for an Academic Site Management Organization (SMO) we had to determine the requirements such a system has to meet. By performing extensive Requirements Engineering, we aimed at raising the success of the future system and the user satisfaction. Investigations revealed the existence of TORE (Task and Object-oriented Requirements Engineering), a task-driven approach for determining requirements on user interface- and information-intensive systems. In this paper, we present an adoption of this method for our purposes, resulting in a reasonable list of requirements for CTMS acquisition.

  6. Requirements on Clinical Trial Management Systems for Academic Site Management Organizations.

    PubMed

    Schöbel, Martin; Stäubert, Sebastian; Löbe, Matthias; Meinel, Kirsti; Winter, Alfred

    2016-01-01

    As a part of the introduction of a Clinical Trial Management System (CTMS) for an Academic Site Management Organization (SMO) we had to determine the requirements such a system has to meet. By performing extensive Requirements Engineering, we aimed at raising the success of the future system and the user satisfaction. Investigations revealed the existence of TORE (Task and Object-oriented Requirements Engineering), a task-driven approach for determining requirements on user interface- and information-intensive systems. In this paper, we present an adoption of this method for our purposes, resulting in a reasonable list of requirements for CTMS acquisition. PMID:27577390

  7. Academic Health Systems Management: The Rationale Behind Capitated Contracts

    PubMed Central

    Taheri, Paul A.; Butz, David A.; Greenfield, Lazar J.

    2000-01-01

    Objective To determine why hospitals enter into “capitated” contracts, which often generate accounting losses. The authors’ hypothesis is that hospitals coordinate contracts to keep beds full and that in principal, capitated contracts reflect sound capacity management. Summary Background Data In high-overhead industries, different consumers pay different prices for similar services (e.g., full-fare vs. advanced-purchase plane tickets, full tuition vs. financial aid). Some consumers gain access by paying less than total cost. Hospitals, like other high-overhead business enterprises, must optimize the use of their capacity, amortizing overhead over as many patients as possible. This necessity for enhanced throughput forces hospitals and health systems to discount empty beds, sometimes to the point where they incur accounting losses serving some payors. Methods The authors analyzed the cost accounting system at their university teaching hospital to compare hospital and intensive care unit (ICU) lengths of stay (LOS), variable direct costs (VDC), overhead of capitated patients, and reimbursement versus other payors for all hospital discharges (n = 29,036) in fiscal year 1998. The data were analyzed by diagnosis-related groups (DRGs), length of stay (LOS), insurance carrier, proximity to hospital, and discharge disposition. Patients were then distinguished across payor categories based on their resource utilization, proximity to the hospital, DRG, LOS, and discharge status. Results The mean cost for capitated patients was $4,887, less than half of the mean cost of $10,394 for the entire hospitalized population. The mean capitated reimbursement was $928/day, exceeding the mean daily VDC of $616 but not the total cost of $1,445/day. Moreover, the mean total cost per patient day of treating a capitated patient was $400 less than the mean total cost per day for noncapitated patients. The hospital’s capitated health maintenance organization (HMO) patients made up 16

  8. High Behavioral Approach System (BAS) Sensitivity, Reward Responsiveness, and Goal-Striving Predict First Onset of Bipolar Spectrum Disorders: A Prospective Behavioral High-Risk Design

    PubMed Central

    Alloy, Lauren B.; Bender, Rachel E.; Whitehouse, Wayne G.; Wagner, Clara A.; Liu, Richard T.; Grant, David A.; Jager-Hyman, Shari; Molz, Ashleigh; Choi, James Y.; Harmon-Jones, Eddie; Abramson, Lyn Y.

    2012-01-01

    A prospective, behavioral high-risk design provided a theoretically guided examination of vulnerability to first onset of bipolar spectrum disorder based on the Behavioral Approach System (BAS) model. Adolescents (ages 14–19) at an “age of risk” for bipolar disorder onset were screened on BAS sensitivity by interviewers blind to current symptoms, lifetime history, and family history of psychopathology. Participants were selected with high versus moderate levels of BAS sensitivity and administered a lifetime diagnostic interview. Those with a bipolar spectrum disorder, psychosis, or hypomanic episode with onset prior to the BAS sensitivity assessment were excluded. High BAS (n = 171) and Moderate BAS (n = 119) sensitivity participants in the final sample completed baseline measures of symptoms, goal-setting, and reward responsiveness and were followed prospectively with semistructured diagnostic interviews every 6 months. Consistent with the vulnerability hypothesis of the BAS model of bipolar disorder, high BAS participants had a greater likelihood, and shorter time to onset, of bipolar spectrum disorder than moderate BAS participants across an average of 12.8 months of follow-up (12.9% vs. 4.2%), controlling for baseline depressive and hypomanic symptoms, and family history of bipolar disorder. High reward responsiveness on a behavioral task and ambitious goal-striving for popular fame and financial success (but not impulsivity) also predicted first onset of bipolar spectrum disorder controlling for the covariates and BAS risk group, and ambitious goal-striving partially mediated the BAS risk group effect. We discuss implications of the findings for the BAS model of bipolar disorder and early intervention efforts. PMID:22004113

  9. ARPOP: an appetitive reward-based pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia.

    PubMed

    Cheu, Eng Yeow; Quek, Chai; Ng, See Kiong

    2012-02-01

    Appetitive operant conditioning in Aplysia for feeding behavior via the electrical stimulation of the esophageal nerve contingently reinforces each spontaneous bite during the feeding process. This results in the acquisition of operant memory by the contingently reinforced animals. Analysis of the cellular and molecular mechanisms of the feeding motor circuitry revealed that activity-dependent neuronal modulation occurs at the interneurons that mediate feeding behaviors. This provides evidence that interneurons are possible loci of plasticity and constitute another mechanism for memory storage in addition to memory storage attributed to activity-dependent synaptic plasticity. In this paper, an associative ambiguity correction-based neuro-fuzzy network, called appetitive reward-based pseudo-outer-product-compositional rule of inference [ARPOP-CRI(S)], is trained based on an appetitive reward-based learning algorithm which is biologically inspired by the appetitive operant conditioning of the feeding behavior in Aplysia. A variant of the Hebbian learning rule called Hebbian concomitant learning is proposed as the building block in the neuro-fuzzy network learning algorithm. The proposed algorithm possesses the distinguishing features of the sequential learning algorithm. In addition, the proposed ARPOP-CRI(S) neuro-fuzzy system encodes fuzzy knowledge in the form of linguistic rules that satisfies the semantic criteria for low-level fuzzy model interpretability. ARPOP-CRI(S) is evaluated and compared against other modeling techniques using benchmark time-series datasets. Experimental results are encouraging and show that ARPOP-CRI(S) is a viable modeling technique for time-variant problem domains.

  10. Deficits in context-dependent adaptive coding of reward in schizophrenia.

    PubMed

    Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2016-01-01

    Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism's ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009

  11. Deficits in context-dependent adaptive coding of reward in schizophrenia

    PubMed Central

    Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2016-01-01

    Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism’s ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009

  12. Reward positivity: Reward prediction error or salience prediction error?

    PubMed

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. PMID:27184070

  13. Reward positivity: Reward prediction error or salience prediction error?

    PubMed

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis.

  14. Neural differentiation of expected reward and risk in human subcortical structures.

    PubMed

    Preuschoff, Kerstin; Bossaerts, Peter; Quartz, Steven R

    2006-08-01

    In decision-making under uncertainty, economic studies emphasize the importance of risk in addition to expected reward. Studies in neuroscience focus on expected reward and learning rather than risk. We combined functional imaging with a simple gambling task to vary expected reward and risk simultaneously and in an uncorrelated manner. Drawing on financial decision theory, we modeled expected reward as mathematical expectation of reward, and risk as reward variance. Activations in dopaminoceptive structures correlated with both mathematical parameters. These activations differentiated spatially and temporally. Temporally, the activation related to expected reward was immediate, while the activation related to risk was delayed. Analyses confirmed that our paradigm minimized confounds from learning, motivation, and salience. These results suggest that the primary task of the dopaminergic system is to convey signals of upcoming stochastic rewards, such as expected reward and risk, beyond its role in learning, motivation, and salience.

  15. An academic radiology information system (RIS): a review of the commercial RIS systems, and how an individualized academic RIS can be created and utilized.

    PubMed

    Tamm, E P; Kawashima, A; Silverman, P

    2001-06-01

    Current commercial radiology information systems (RIS) are designed for scheduling, billing, charge collection, and report dissemination. Academic institutions have additional requirements for their missions for teaching, research and clinical care. The newest versions of commercial RIS offer greater flexibility than prior systems. We sent questionnaires to Cerner Corporation, ADAC Health Care Information Systems, IDX Systems, Per-Se' Technologies, and Siemens Health Services regarding features of their products. All of the products we surveyed offer user customizable fields. However, most products did not allow the user to expand their product's data table. The search capabilities of the products varied. All of the products supported the Health Level 7 (HL-7) interface and the use of structured query language (SQL). All of the products were offered with an SQL editor for creating customized queries and custom reports. All products included capabilities for collecting data for quality assurance and included capabilities for tracking "interesting cases," though they varied in the functionality offered. No product offered dedicated functions for research. Alternatively, radiology departments can create their own client-server Windows-based database systems to supplement the capabilities of commercial systems. Such systems can be developed with "web-enabled" database products like Microsoft Access or Apple Filemaker Pro.

  16. Developmental Continuity in Reward-Related Enhancement of Cognitive Control

    PubMed Central

    Strang, Nicole M.; Pollak, Seth D.

    2015-01-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. PMID:25160678

  17. Developmental continuity in reward-related enhancement of cognitive control.

    PubMed

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development.

  18. Developmental continuity in reward-related enhancement of cognitive control.

    PubMed

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. PMID:25160678

  19. Selecting a commercial clinical information system: an academic medical center's experience.

    PubMed

    Wong, E T; Abendroth, T W

    1994-01-01

    Choosing a commercial clinical information system to meet the information needs of patient care, research, education, administration, finance, and ongoing changes of the healthcare system of an academic medical center is a challenging task. For the past six months, The Milton S. Hershey Medical Center undertook this task through (i) establishing a task force, (ii) assessing end-user information needs, (iii) understanding future institutional development and strategies, (iv) conceptualizing the ideal system, (v) identifying a short list of vendors, (vi) sending RFIs to vendors, (vii) visiting vendors' headquarters, (viii) technical review, (ix) reference calls, (x) using consultation services, (xi) on-site demonstration, and (xii) visiting the vendor's clients. PMID:7950008

  20. Selecting a commercial clinical information system: an academic medical center's experience.

    PubMed

    Wong, E T; Abendroth, T W

    1994-01-01

    Choosing a commercial clinical information system to meet the information needs of patient care, research, education, administration, finance, and ongoing changes of the healthcare system of an academic medical center is a challenging task. For the past six months, The Milton S. Hershey Medical Center undertook this task through (i) establishing a task force, (ii) assessing end-user information needs, (iii) understanding future institutional development and strategies, (iv) conceptualizing the ideal system, (v) identifying a short list of vendors, (vi) sending RFIs to vendors, (vii) visiting vendors' headquarters, (viii) technical review, (ix) reference calls, (x) using consultation services, (xi) on-site demonstration, and (xii) visiting the vendor's clients.

  1. When performance and risk taking are related: Working for rewards is related to risk taking when the value of rewards is presented briefly.

    PubMed

    Veling, Harm; Bijleveld, Erik

    2015-12-01

    Valuable monetary rewards can boost human performance on various effortful tasks even when the value of the rewards is presented too briefly to allow for strategic decision making. However, the mechanism by which briefly-presented reward information influences performance has remained unclear. One possibility is that performance after briefly-presented reward information is primarily boosted via activation of the dopamine reward system, whereas performance after very visible reward information is driven more by strategic processes. To examine this hypothesis, we first presented participants with a task in which they could earn rewards of relatively low (1 cent) or high (10 cents) value, and the value information was presented either briefly (17 ms) or for an extended duration (300 ms). Furthermore, responsiveness of the dopamine system was indirectly estimated with a measure of risk taking, the Balloon Analogue Risk Task (BART). Results showed that performance after high- compared to low-value rewards was indeed related to the BART scores only when reward information was presented briefly. These results are suggestive of the possibility that brief presentation of reward information boosts performance directly via activating the dopamine system, whereas extended presentation of reward information leads to more strategic reward-driven behavior. PMID:26575108

  2. Biological auctions with multiple rewards.

    PubMed

    Reiter, Johannes G; Kanodia, Ayush; Gupta, Raghav; Nowak, Martin A; Chatterjee, Krishnendu

    2015-08-01

    The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards. PMID:26180069

  3. Biological auctions with multiple rewards.

    PubMed

    Reiter, Johannes G; Kanodia, Ayush; Gupta, Raghav; Nowak, Martin A; Chatterjee, Krishnendu

    2015-08-01

    The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards.

  4. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... performance. Such policies must comply with 5 U.S.C. chapter 35 and 5 CFR 351.504. ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Rating and rewarding performance....

  5. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... performance. Such policies must comply with 5 U.S.C. chapter 35 and 5 CFR 351.504. ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Rating and rewarding performance....

  6. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... performance. Such policies must comply with 5 U.S.C. chapter 35 and 5 CFR 351.504. ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Rating and rewarding performance....

  7. When Rewards Go Wrong: A Tale of Five Motivational Misdirects

    ERIC Educational Resources Information Center

    Steel, Piers; MacDonnell, Rhiannon

    2012-01-01

    At the heart of most performance management systems is a reward program. However, even when we are doing everything else right, rewards can go wrong. Here, we explore five ways that external incentives can damage performance, from destroying altruistic behavior to distracting people from the task. Fortunately, most of these downfalls are…

  8. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces

    PubMed Central

    Neufeld, Janina; Johnstone, Tom; Chakrabarti, Bhismadev

    2014-01-01

    Deficits in facial mimicry have been widely reported in autism. Some studies have suggested that these deficits are restricted to spontaneous mimicry and do not extend to volitional mimicry. We bridge these apparently inconsistent observations by testing the impact of reward value on neural indices of mimicry and how autistic traits modulate this impact. Neutral faces were conditioned with high and low reward. Subsequently, functional connectivity between the ventral striatum (VS) and inferior frontal gyrus (IFG) was measured while neurotypical adults (n = 30) watched happy expressions made by these conditioned faces. We found greater VS–IFG connectivity in response to high reward vs low reward happy faces. This difference was negatively proportional to autistic traits, suggesting that reduced spontaneous mimicry of social stimuli seen in autism, may be related to a failure in the modulation of the mirror system by the reward system rather than a circumscribed deficit in the mirror system. PMID:24493838

  9. Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism.

    PubMed

    Baskin-Sommers, Arielle R; Foti, Dan

    2015-11-01

    A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. In the current review, we (a) describe the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotypes and improve the prediction of onset and recovery of these disorders.

  10. Instrumental vigour in punishment and reward.

    PubMed

    Dayan, Peter

    2012-04-01

    Recent notions about the vigour of responding in operant conditioning suggest that the long-run average rate of reward should control the alacrity of action in cases in which the actual cost of speed is balanced against the opportunity cost of sloth. The average reward rate is suggested as being reported by tonic activity in the dopamine system and thereby influencing all actions, including ones that do not themselves lead directly to the rewards. This idea is syntactically problematical for the case of punishment. Here, we broaden the scope of the original suggestion, providing a two-factor analysis of obviated punishment in a variety of operant circumstances. We also consider the effects of stochastically successful actions, which turn out to differ rather markedly between appetitive and aversive cases. Finally, we study how to fit these ideas into nascent treatments that extend concepts of opponency between dopamine and serotonin from valence to invigoration.

  11. Tradition Meets Innovation: Transforming Academic Medical Culture at the University of Pennsylvania’s Perelman School of Medicine

    PubMed Central

    Pati, Susmita; Reum, Josef; Conant, Emily; Tuton, Lucy Wolf; Scott, Patricia; Abbuhl, Stephanie; Grisso, Jeane Ann

    2013-01-01

    Traditional performance expectations and career advancement paths for academic physicians persist despite dramatic transformations in the academic workflow, workload, and workforce over the past twenty years. While the academic physician’s triple role as clinician, researcher, and educator has been lauded as the ideal by academic medical centers, current standards of excellence for promotion and tenure are based on outdated models. These models fail to reward collaboration and center around rigid career advancement plans that do little to accommodate the changing needs of individuals and organizations. Here, the authors describe an innovative, comprehensive, multi-pronged initiative at the Perelman School of Medicine at the University of Pennsylvania to initiate change in the culture of academic medicine and improve academic productivity, job satisfaction, and overall quality of life for junior faculty. As a key part of this intervention, task forces from each of the 13 participating departments/divisions met 5 times between September 2010 and January 2011 to produce recommendations for institutional change. The authors discuss how this initiative, using principles adopted from business transformation, generated themes and techniques that can potentially guide workforce environment innovation in academic health centers across the United States. Recommendations include embracing a promotion/tenure/evaluation system that supports and rewards tailored individual academic career plans; ensuring leadership, decision-making roles and recognition for junior faculty; deepening administrative and team supports for junior faculty; and solidifying and rewarding mentorship for junior faculty. By doing so, academic health centers can ensure the retention and commitment of faculty throughout all stages of their careers. PMID:23425986

  12. The role of academic health centers and their partners in reconfiguring and retooling the existing workforce to practice in a transformed health system.

    PubMed

    Fraher, Erin P; Ricketts, Thomas C; Lefebvre, Ann; Newton, Warren P

    2013-12-01

    Inspired by the Affordable Care Act and health care payment models that reward value over volume, health care delivery systems are redefining the work of the health professionals they employ. Existing workers are taking on new roles, new types of health professionals are emerging, and the health workforce is shifting from practicing in higher-cost acute settings to lower-cost community settings, including patients' homes. The authors believe that although the pace of health system transformation has accelerated, a shortage of workers trained to function in the new models of care is hampering progress. In this Perspective, they argue that urgent attention must be paid to retraining the 18 million workers already employed in the system who will actually implement system change.Their view is shaped by work they have conducted in helping practices transform care, by extensive consultations with stakeholders attempting to understand the workforce implications of health system redesign, and by a thorough review of the peer-reviewed and gray literature. Through this work, the authors have become increasingly convinced that academic health centers (AHCs)-organizations at the forefront of innovations in health care delivery and health workforce training-are uniquely situated to proactively lead efforts to retrain the existing workforce. They recommend a set of specific actions (i.e., discovering and disseminating best practices; developing new partnerships; focusing on systems engineering approaches; planning for sustainability; and revising credentialing, accreditation, and continuing education) that AHC leaders can undertake to develop a more coherent workforce development strategy that supports practice transformation. PMID:24128624

  13. Marginal Worth: Teaching and the Academic Labor Market.

    ERIC Educational Resources Information Center

    Lewis, Lionel S.

    The contemporary academic labor market is examined using concepts from labor market economics and sociology to elucidate why teaching, universally acknowledged to be at the center of American academic life, is not at the center of the academic labor market and is only modestly rewarded. First, tenets of the neoclassical labor market model are…

  14. Autistic traits modulate mimicry of social but not nonsocial rewards.

    PubMed

    Haffey, Anthony; Press, Clare; O'Connell, Garret; Chakrabarti, Bhismadev

    2013-12-01

    Autism Spectrum Conditions (ASC) are associated with diminished responsiveness to social stimuli, and especially to social rewards such as smiles. Atypical responsiveness to social rewards, which reinforce socially appropriate behavior in children, can potentially lead to a cascade of deficits in social behavior. Individuals with ASC often show diminished spontaneous mimicry of social stimuli in a natural setting. In the general population, mimicry is modulated both by the reward value and the sociality of the stimulus (i.e., whether the stimulus is perceived to belong to a conspecific or an inanimate object). Since empathy and autistic traits are distributed continuously in the general population, this study aimed to test if and how these traits modulated automatic mimicry of rewarded social and nonsocial stimuli. High and low rewards were associated with human and robot hands using a conditioned learning paradigm. Thirty-six participants from the general population then completed a mimicry task involving performing a prespecified hand movement which was either compatible or incompatible with a hand movement presented to the participant. High autistic traits (measured using the Autism Spectrum Quotient, AQ) predicted lesser mimicry of high-reward than low-reward conditioned human hands, whereas trait empathy showed an opposite pattern of correlations. No such relations were observed for high-reward vs. low-reward conditioned robot hands. These results demonstrate how autistic traits and empathy modulate the effects of reward on mimicry of social compared to nonsocial stimuli. This evidence suggests a potential role for the reward system in underlying the atypical social behavior in individuals with ASC, who constitute the extreme end of the spectrum of autistic traits.

  15. Social reward shapes attentional biases.

    PubMed

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us. PMID:25941868

  16. Nutritional controls of food reward.

    PubMed

    Fernandes, Maria F; Sharma, Sandeep; Hryhorczuk, Cecile; Auguste, Stephanie; Fulton, Stephanie

    2013-08-01

    The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food. PMID:24070891

  17. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction.

    PubMed

    Koob, George F; Le Moal, Michel

    2005-11-01

    Drug seeking is associated with activation of reward neural circuitry. Here we argue that drug addiction also involves a 'dark side'--a decrease in the function of normal reward-related neurocircuitry and persistent recruitment of anti-reward systems. Understanding the neuroplasticity of the dark side of this circuitry is the key to understanding vulnerability to addiction.

  18. Reward-Related Decision-Making in Pediatric Major Depressive Disorder: An fMRI Study

    ERIC Educational Resources Information Center

    Forbes, Erika E.; Christopher May, J.; Siegle, Greg J.; Ladouceur, Cecile D.; Ryan, Neal D.; Carter, Cameron S.; Birmaher, Boris; Axelson, David A.; Dahl, Ronald E.

    2006-01-01

    Background: Although reward processing is considered an important part of affective functioning, few studies have investigated reward-related decisions or responses in young people with affective disorders. Depression is postulated to involve decreased activity in reward-related affective systems. Methods: Using functional magnetic resonance…

  19. Pupil and Staff Perceptions of Rewards at a Pupil Referral Unit

    ERIC Educational Resources Information Center

    Capstick, Joanna

    2005-01-01

    The present study investigated the perceptions of both pupils and staff at a pupil referral unit (PRU) towards the reward system currently in use. The main aims were to establish whether teachers and pupils perceived the same rewards as effective, to determine whether staff and pupils perceived that rewards changed behaviour, and finally whether…

  20. Health Systems Innovation at Academic Health Centers: Leading in a New Era of Health Care Delivery.

    PubMed

    Ellner, Andrew L; Stout, Somava; Sullivan, Erin E; Griffiths, Elizabeth P; Mountjoy, Ashlin; Phillips, Russell S

    2015-07-01

    Challenged by demands to reduce costs and improve service delivery, the U.S. health care system requires transformational change. Health systems innovation is defined broadly as novel ideas, products, services, and processes-including new ways to promote healthy behaviors and better integrate health services with public health and other social services-which achieve better health outcomes and/or patient experience at equal or lower cost. Academic health centers (AHCs) have an opportunity to focus their considerable influence and expertise on health systems innovation to create new approaches to service delivery and to nurture leaders of transformation. AHCs have traditionally used their promotions criteria to signal their values; creating a health systems innovator promotion track could be a critical step towards creating opportunities for innovators in academic medicine. In this Perspective, the authors review publicly available promotions materials at top-ranked medical schools and find that while criteria for advancement increasingly recognize systems innovation, there is a lack of specificity on metrics beyond the traditional yardstick of peer-reviewed publications. In addition to new promotions pathways and alternative evidence for the impact of scholarship, other approaches to fostering health systems innovation at AHCs include more robust funding for career development in health systems innovation, new curricula to enable trainees to develop skills in health systems innovation, and new ways for innovators to disseminate their work. AHCs that foster health systems innovation could meet a critical need to contribute both to the sustainability of our health care system and to AHCs' continued leadership role within it.

  1. Health Systems Innovation at Academic Health Centers: Leading in a New Era of Health Care Delivery.

    PubMed

    Ellner, Andrew L; Stout, Somava; Sullivan, Erin E; Griffiths, Elizabeth P; Mountjoy, Ashlin; Phillips, Russell S

    2015-07-01

    Challenged by demands to reduce costs and improve service delivery, the U.S. health care system requires transformational change. Health systems innovation is defined broadly as novel ideas, products, services, and processes-including new ways to promote healthy behaviors and better integrate health services with public health and other social services-which achieve better health outcomes and/or patient experience at equal or lower cost. Academic health centers (AHCs) have an opportunity to focus their considerable influence and expertise on health systems innovation to create new approaches to service delivery and to nurture leaders of transformation. AHCs have traditionally used their promotions criteria to signal their values; creating a health systems innovator promotion track could be a critical step towards creating opportunities for innovators in academic medicine. In this Perspective, the authors review publicly available promotions materials at top-ranked medical schools and find that while criteria for advancement increasingly recognize systems innovation, there is a lack of specificity on metrics beyond the traditional yardstick of peer-reviewed publications. In addition to new promotions pathways and alternative evidence for the impact of scholarship, other approaches to fostering health systems innovation at AHCs include more robust funding for career development in health systems innovation, new curricula to enable trainees to develop skills in health systems innovation, and new ways for innovators to disseminate their work. AHCs that foster health systems innovation could meet a critical need to contribute both to the sustainability of our health care system and to AHCs' continued leadership role within it. PMID:25738387

  2. Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation and reward delivery

    PubMed Central

    Bjork, James M.; Smith, Ashley R.; Chen, Gang; Hommer, Daniel W.

    2011-01-01

    Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: 1) cues to respond for monetary rewards, 2) post-response anticipation of rewards, or 3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction. PMID:22281932

  3. Translational science and the hidden research system in universities and academic hospitals: a case study.

    PubMed

    Lander, Bryn; Atkinson-Grosjean, Janet

    2011-02-01

    Innovation systems (IS) and science policy scholarship predominantly focus on linkages between universities and industry, and the commercial translation of academic discoveries. Overlooked in such analyses are important connections between universities and academic hospitals, and the non-commercial aspects of translational science. The two types of institutions tend to be collapsed into a single entity-'the university'-and relational flows are lost. Yet the distinctions and flows between the two are crucial elements of translational science and the biomedical innovation system. This paper explores what has been called the 'hidden research system' that connects hospitals, universities, and their resources, with the clinical and scientific actors who make the linkages possible. Then, using a novel conceptual model of translational science, we examine the individual interactions and dynamics involved in a particular example of the biomedical innovation system at work: the diagnosis of IRAK-4 deficiency, a rare immunological disorder, and the translational flows that result. Contra to conventional IS analyses, we are able to point to the strong role of public-sector institutions, and the weak role of the private-sector, in the translational processes described here. Our research was conducted within a Canadian network of scientists and clinician-scientists studying the pathogenomics of immunological disorders and innate immunity.

  4. Agent Reward Shaping for Alleviating Traffic Congestion

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  5. Developmental changes in the reward positivity: an electrophysiological trajectory of reward processing.

    PubMed

    Lukie, Carmen N; Montazer-Hojat, Somayyeh; Holroyd, Clay B

    2014-07-01

    Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8-13 years), adolescents (14-17 years) and young adults (18-23 years) while they navigated a "virtual maze" in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex.

  6. Reward processing in adolescent rodents

    PubMed Central

    Simon, Nicholas W; Moghaddam, Bita

    2015-01-01

    Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents. PMID:25524828

  7. Rewarding with dignity.

    PubMed

    Davidhizar, R; Shearer, R

    1998-11-01

    Job satisfaction affects employee morale, which in turn affects employee productivity. Therefore, managers need to learn about contributing factors and use the factors within their power to improve job satisfaction. Extrinsic rewards, such as a high salary and good work benefits, are important, but studies show that how a job makes an employee feel is the greatest determinant of job satisfaction. Managers can influence the emotional effect of work on an employee through, among other strategies, recognizing the employee's efforts, providing opportunities for the employee to participate in decision making, and allowing the employee to grow professionally.

  8. Reward-seeking behavior and addiction: cause or cog?

    PubMed

    Arias-Carrión, Oscar; Salama, Mohamed

    2012-09-01

    Although dopaminergic system represents the cornerstone in rewarding, other neurotransmitters can modulate both the reward system and the psychomotor effects of addictive drugs. Many hypotheses have been proposed for a better understanding of the reward system and its role in drug addiction. However, after many years of investigation, no single theory can completely explain the neural basis of drug addiction. Recent reports introduce novel neurotransmitters into the game e.g. dynorphins, orexins, histamine, gheralin and galanin. The interacting functions of these neurotransmitters have shown that the reward system and its role in drug dependence, is far more complicated than was thought before. Individual variations exist regarding response to drug exposure, vulnerability for addiction and the effects of different cues on reward systems. Consequently, genetic variations of neurotransmission are thought to influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. However, the individual variations can not be based mainly on genetics; environmental factors seem to play a role too. Here we discuss the current knowledge about the orquestic regulation of different neurotransmitters on reward-seeking behavior and their potential effect on drug addiction.

  9. Brain region specific modulation of ethanol-induced depression of GABAergic neurons in the brain reward system by the nicotine receptor antagonist mecamylamine.

    PubMed

    Adermark, Louise; Söderpalm, Bo; Burkhardt, John M

    2014-08-01

    The mechanisms underlying ethanol-induced activation of the mesolimbic dopamine system are not fully understood, but increased extracellular dopamine in the nucleus accumbens (nAc) has been shown to involve nicotinic acetylcholine receptors (nAChRs). Basal activity of dopaminergic neurons in the ventral tegmental area (VTA) is under the influence of GABAergic neurotransmission, and the aim of this study was to characterize the involvement of nAChRs in mediating acute ethanol effects on GABAergic activity in subregions of the brain reward system. Multi-electrode in vivo recordings were made in the VTA and nAc of awake and behaving C57BL6/J mice receiving intraperitoneal injections of saline or ethanol (2.0 g/kg), combined with, or without, pre-injection of the non-competitive nAChR antagonist mecamylamine (1.0 mg/kg). Ethanol significantly decreased the activity of quinpirole-insensitive slow-spiking and fast-spiking units in both the VTA and the nAc as compared to saline injection. Pre-treatment with mecamylamine inhibited the rate-inhibiting properties of ethanol in the VTA, but not in the nAc. The data presented here show that ethanol depresses the activity of quinpirole-insensitive, putative GABAergic neurons, in the mesolimbic dopamine system of mice, and that nAChRs contribute to this modulation. This finding, taken together with previous microdialysis studies, supports an involvement of GABAergic neurons and nAChRs in ethanol's interaction with the mesolimbic dopamine system.

  10. Optogenetics in Freely Moving Mammals: Dopamine and Reward.

    PubMed

    Zhang, Feng; Tsai, Hsing-Chen; Airan, Raag D; Stuber, Garret D; Adamantidis, Antoine R; de Lecea, Luis; Bonci, Antonello; Deisseroth, Karl

    2015-08-03

    Brain reward systems play a central role in the cognitive and hedonic behaviors of mammals. Multiple neuron types and brain regions are involved in reward processing, posing fascinating scientific questions, and major experimental challenges. Using diverse approaches including genetics, electrophysiology, imaging, and behavioral analysis, a large body of research has focused on both normal functioning of the reward circuitry and on its potential significance in neuropsychiatric diseases. In this introduction, we illustrate a real-world application of optogenetics to mammalian behavior and physiology, delineating procedures and technologies for optogenetic control of individual components of the reward circuitry. We describe the experimental setup and protocol for integrating optogenetic modulation of dopamine neurons with fast-scan cyclic voltammetry, conditioned place preference, and operant conditioning to assess the causal role of well-defined electrical and biochemical signals in reward-related behavior.

  11. Neural Reward and Punishment Sensitivity in Cigarette Smokers

    PubMed Central

    Potts, Geoffrey F.; Bloom, Erika; Evans, David E.; Drobes, David J.

    2014-01-01

    Background Nicotine addiction remains a major public health problem but the neural substrates of addictive behavior remain unknown. One characteristic of smoking behavior is impulsive choice, selecting the immediate reward of smoking despite the potential long-term negative consequences. This suggests that drug users, including cigarette smokers, may be more sensitive to rewards and less sensitive to punishment. Methods We used event-related potentials (ERPs) to test the hypothesis that smokers are more responsive to reward signals and less responsive to punishment, potentially predisposing them to risky behavior. We conducted two experiments, one using a reward prediction design to elicit a Medial Frontal Negativity (MFN) and one using a reward- and punishment-motivated flanker task to elicit an Error Related Negativity (ERN), ERP components thought to index activity in the cortical projection of the dopaminergic reward system. Results and Conclusions The smokers had a greater MFN response to unpredicted rewards, and non-smokers, but not smokers, had a larger ERN on punishment motivated trials indicating that smokers are more reward sensitive and less punishment sensitive than nonsmokers, overestimating the appetitive value and underestimating aversive outcomes of stimuli and actions. PMID:25292454

  12. Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women.

    PubMed

    Spreckelmeyer, Katja N; Krach, Sören; Kohls, Gregor; Rademacher, Lena; Irmak, Arda; Konrad, Kerstin; Kircher, Tilo; Gründer, Gerhard

    2009-06-01

    Motivation for goal-directed behaviour largely depends on the expected value of the anticipated reward. The aim of the present study was to examine how different levels of reward value are coded in the brain for two common forms of human reward: money and social approval. To account for gender differences 16 male and 16 female participants performed an incentive delay task expecting to win either money or positive social feedback. fMRI recording during the anticipation phase revealed proportional activation of neural structures constituting the human reward system for increasing levels of reward, independent of incentive type. However, in men activation in the prospect of monetary rewards encompassed a wide network of mesolimbic brain regions compared to only limited activation for social rewards. In contrast, in women, anticipation of either incentive type activated identical brain regions. Our findings represent an important step towards a better understanding of motivated behaviour by taking into account individual differences in reward valuation. PMID:19174537

  13. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    PubMed Central

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  14. Systems of Career Influences: A Conceptual Model for Evaluating the Professional Development of Women in Academic Medicine

    PubMed Central

    Helitzer, Deborah; Morahan, Page; Chang, Shine; Gleason, Katharine; Cardinali, Gina; Wu, Chih-Chieh

    2012-01-01

    Abstract Background Surprisingly little research is available to explain the well-documented organizational and societal influences on persistent inequities in advancement of women faculty. Methods The Systems of Career Influences Model is a framework for exploring factors influencing women's progression to advanced academic rank, executive positions, and informal leadership roles in academic medicine. The model situates faculty as agents within a complex adaptive system consisting of a trajectory of career advancement with opportunities for formal professional development programming; a dynamic system of influences of organizational policies, practices, and culture; and a dynamic system of individual choices and decisions. These systems of influence may promote or inhibit career advancement. Within this system, women weigh competing influences to make career advancement decisions, and leaders of academic health centers prioritize limited resources to support the school's mission. Results and Conclusions The Systems of Career Influences Model proved useful to identify key research questions. We used the model to probe how research in academic career development might be applied to content and methods of formal professional development programs. We generated a series of questions and hypotheses about how professional development programs might influence professional development of health science faculty members. Using the model as a guide, we developed a study using a quantitative and qualitative design. These analyses should provide insight into what works in recruiting and supporting productive men and women faculty in academic medical centers. PMID:23101486

  15. Academic Culture.

    ERIC Educational Resources Information Center

    Clark, Burton R.

    With fragmentation the dominant trend in academic settings around the world, the larger wholes of profession, enterprise, and system are less held together by integrative ideology. Strong ideological bonding is characteristic of the parts, primarily the disciplines. The larger aggregations are made whole mainly by formal superstructure, many…

  16. Designing a Decision Support System (DSS) for Academic Library Managers Using Preprogrammed Application Software on a Microcomputer.

    ERIC Educational Resources Information Center

    McDonald, Joseph

    1986-01-01

    Focusing on management decisions in academic libraries, this article compares management information systems (MIS) with decision support systems (DSS) and discusses the decision-making process, information needs of library managers, sources of data, reasons for choosing microcomputer, preprogrammed application software, prototyping a system, and…

  17. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement.

    PubMed

    Haist, Frank; Wazny, Jarnet H; Toomarian, Elizabeth; Adamo, Maha

    2015-02-01

    A central question in cognitive and educational neuroscience is whether brain operations supporting nonlinguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or "formal" math knowledge. Here, we conducted a developmental functional magnetic resonance imaging (MRI) study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6-12 years old), 14 adolescents (13-17 years old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development.

  18. Factors and Conditions Promoting Academic Resilience: A TIMSS-Based Analysis of Five Asian Education Systems

    ERIC Educational Resources Information Center

    Sandoval-Hernández, Andrés; Bialowolski, Piotr

    2016-01-01

    It is well documented that academic achievement of students from families of low socioeconomic status (SES) tends to be below their more socially advantaged peers. Several studies have identified factors and conditions that facilitate academic success for disadvantaged students (i.e., promote academic resilience). However, one of the main…

  19. Challenges and Rewards on the Road to Translational Systems Biology in Acute Illness: Four Case Reports from Interdisciplinary Teams

    PubMed Central

    An, Gary; Hunt, C. Anthony; Clermont, Gilles; Neugebauer, Edmund; Vodovotz, Yoram

    2007-01-01

    Introduction Translational systems biology approaches can be distinguished from mainstream systems biology in that their goal is to drive novel therapies and streamline clinical trials in critical illness. One systems biology approach, dynamic mathematical modeling (DMM), is increasingly used in dealing with the complexity of the inflammatory response and organ dysfunction. The use of DMM often requires a broadening of research methods and a multidisciplinary team approach that includes bioscientists, mathematicians, engineers, and computer scientists. However, the development of these groups must overcome domain-specific barriers to communication and understanding. Methods We present four case studies of successful translational, interdisciplinary systems biology efforts, which differ by organizational level from an individual to an entire research community. Results Case 1 is a single investigator involved in DMM of the acute inflammatory response at Cook County Hospital, in which extensive translational progress was made using agent-based models of inflammation and organ damage. Case 2 is a community-level effort from the University of Witten-Herdecke in Cologne, whose efforts have led to the formation of the Society for Complexity in Acute Illness. Case 3 is an institution-based group, the Biosystems Group at the University of California, San Francisco, whose work has included a focus on a common lexicon for DMM. Case 4 is an institution-based, trans-disciplinary research group (the Center for Inflammation and Regenerative Modeling at the University of Pittsburgh, whose modeling work has led to internal education efforts, grant support, and commercialization. Conclusion A transdisciplinary approach, which involves team interaction in an iterative fashion to address ambiguity and is supported by educational initiatives, is likely to be necessary for DMM in acute illness. Community-wide organizations such as the Society of Complexity in Acute Illness (SCAI) must

  20. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    PubMed

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management.

  1. Reward Modulates Adaptations to Conflict

    ERIC Educational Resources Information Center

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-01-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…

  2. Rewards Are a Rat Trap.

    ERIC Educational Resources Information Center

    Maydosz, Ann S.

    1998-01-01

    Argues against the use of rewards for students. Discusses their origin in Skinner's behaviorism and their application in behavior modification in the classroom. Describes the problems with using rewards, as noted by Alfie Kohn and others, including the erosion of intrinsic motivation and the distortion of the focus of learning. Presents…

  3. Recognition without Rewards: Building Connections.

    ERIC Educational Resources Information Center

    Cameron, Caren; Tate, Betty; MacNaughton, Daphne; Politano, Colleen

    Noting that the use of rewards in the form of stickers, trophies, prizes, points, tokens, and grades is commonplace in elementary education today, this book explores the differences between rewards and recognition and shows how teachers can build student confidence, motivate learning, and develop skills for lifelong learning through recognition.…

  4. Motivating forces of human actions. Neuroimaging reward and social interaction.

    PubMed

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour.

  5. Motivating forces of human actions. Neuroimaging reward and social interaction.

    PubMed

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour. PMID:16216683

  6. Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects

    PubMed Central

    Wanigasekera, Vishvarani; Lee, Michael C.; Rogers, Richard; Kong, Yazhuo; Leknes, Siri; Andersson, Jesper; Tracey, Irene

    2012-01-01

    Variability in opioid analgesia has been attributed to many factors. For example, genetic variability of the μ-opioid receptor (MOR)-encoding gene introduces variability in MOR function and endogenous opioid neurotransmission. Emerging evidence suggests that personality trait related to the experience of reward is linked to endogenous opioid neurotransmission. We hypothesized that opioid-induced behavioral analgesia would be predicted by the trait reward responsiveness (RWR) and the response of the brain reward circuitry to noxious stimuli at baseline before opioid administration. In healthy volunteers using functional magnetic resonance imaging and the μ-opioid agonist remifentanil, we found that the magnitude of behavioral opioid analgesia is positively correlated with the trait RWR and predicted by the neuronal response to painful noxious stimuli before infusion in key structures of the reward circuitry, such as the orbitofrontal cortex, nucleus accumbens, and the ventral tegmental area. These findings highlight the role of the brain reward circuitry in the expression of behavioral opioid analgesia. We also show a positive correlation between behavioral opioid analgesia and opioid-induced suppression of neuronal responses to noxious stimuli in key structures of the descending pain modulatory system (amygdala, periaqueductal gray, and rostral–ventromedial medulla), as well as the hippocampus. Further, these activity changes were predicted by the preinfusion period neuronal response to noxious stimuli within the ventral tegmentum. These results support the notion of future imaging-based subject-stratification paradigms that can guide therapeutic decisions. PMID:23045652

  7. Immaturities in Reward Processing and Its Influence on Inhibitory Control in Adolescence

    PubMed Central

    Terwilliger, R.; Teslovich, T.; Velanova, K.; Luna, B.

    2010-01-01

    The nature of immature reward processing and the influence of rewards on basic elements of cognitive control during adolescence are currently not well understood. Here, during functional magnetic resonance imaging, healthy adolescents and adults performed a modified antisaccade task in which trial-by-trial reward contingencies were manipulated. The use of a novel fast, event-related design enabled developmental differences in brain function underlying temporally distinct stages of reward processing and response inhibition to be assessed. Reward trials compared with neutral trials resulted in faster correct inhibitory responses across ages and in fewer inhibitory errors in adolescents. During reward trials, the blood oxygen level–dependent signal was attenuated in the ventral striatum in adolescents during cue assessment, then overactive during response preparation, suggesting limitations during adolescence in reward assessment and heightened reactivity in anticipation of reward compared with adults. Importantly, heightened activity in the frontal cortex along the precentral sulcus was also observed in adolescents during reward-trial response preparation, suggesting reward modulation of oculomotor control regions supporting correct inhibitory responding. Collectively, this work characterizes specific immaturities in adolescent brain systems that support reward processing and describes the influence of reward on inhibitory control. In sum, our findings suggest mechanisms that may underlie adolescents’ vulnerability to poor decision-making and risk-taking behavior. PMID:19875675

  8. Immaturities in reward processing and its influence on inhibitory control in adolescence.

    PubMed

    Geier, C F; Terwilliger, R; Teslovich, T; Velanova, K; Luna, B

    2010-07-01

    The nature of immature reward processing and the influence of rewards on basic elements of cognitive control during adolescence are currently not well understood. Here, during functional magnetic resonance imaging, healthy adolescents and adults performed a modified antisaccade task in which trial-by-trial reward contingencies were manipulated. The use of a novel fast, event-related design enabled developmental differences in brain function underlying temporally distinct stages of reward processing and response inhibition to be assessed. Reward trials compared with neutral trials resulted in faster correct inhibitory responses across ages and in fewer inhibitory errors in adolescents. During reward trials, the blood oxygen level-dependent signal was attenuated in the ventral striatum in adolescents during cue assessment, then overactive during response preparation, suggesting limitations during adolescence in reward assessment and heightened reactivity in anticipation of reward compared with adults. Importantly, heightened activity in the frontal cortex along the precentral sulcus was also observed in adolescents during reward-trial response preparation, suggesting reward modulation of oculomotor control regions supporting correct inhibitory responding. Collectively, this work characterizes specific immaturities in adolescent brain systems that support reward processing and describes the influence of reward on inhibitory control. In sum, our findings suggest mechanisms that may underlie adolescents' vulnerability to poor decision-making and risk-taking behavior. PMID:19875675

  9. Reward-Related Decision-Making in Pediatric Major Depressive Disorder: An fMRI Study

    PubMed Central

    Forbes, Erika E.; May, J. Christopher; Siegle, Greg J.; Ladouceur, Cecile D.; Ryan, Neal D.; Carter, Cameron S.; Birmaher, Boris; Axelson, David A.; Dahl, Ronald E.

    2007-01-01

    Background Although reward processing is considered an important part of affective functioning, few studies have investigated reward-related decisions or responses in young people with affective disorders. Depression is postulated to involve decreased activity in reward-related affective systems. Methods Using functional MRI, we examined behavioral and neural responses to reward in young people with depressive disorders using a reward decision-making task. The task involved choices about possible rewards involving varying magnitude and probability of reward. The study design allowed the separation of decision/anticipation and outcome phases of reward processing. Participants were 9–17 years old and had diagnoses of Major Depressive Disorder (MDD), anxiety disorders, or no history of psychiatric disorder. Results Participants with MDD exhibited less neural response than control participants in reward-related brain areas during both phases of the task. Group differences did not appear to be a function of anxiety. Depressive and anxiety symptoms were associated with activation in reward-related brain areas. Conclusions Results suggest that depression involves altered reward processing and underscore the need for further investigation of relations among development, affective disorders, and reward processing. PMID:17073982

  10. Chronic cigarette smoking in alcohol dependence: associations with cortical thickness and N-acetylaspartate levels in the extended brain reward system.

    PubMed

    Durazzo, Timothy C; Mon, Anderson; Gazdzinski, Stefan; Meyerhoff, Dieter J

    2013-03-01

    Chronic smoking in alcohol dependence is associated with abnormalities in brain morphology and metabolite levels in large lobar regions (e.g. frontal lobe). Here, we evaluated if these abnormalities are specifically apparent in several cortical and select subcortical components of the extended brain reward system (BRS), a network that is critically involved in the development and maintenance of all forms of addictive disorders. We studied 33 non-smoking and 43 smoking alcohol-dependent individuals (ALC) with 1 week of abstinence and 42 non-smoking Controls. At 1.5 Tesla, we obtained regional measures of cortical thickness and N-acetylaspartate (NAA; a surrogate marker of neuronal integrity) concentration in major components of the BRS as well as the corresponding measures throughout the cortex. Smoking ALC and non-smoking ALC demonstrated decreased thickness compared with Controls in the dorsolateral prefrontal cortex (DLPFC), insula, orbitofrontal cortex (OFC), the total BRS, total frontal cortex and global cortex. Smoking ALC had significantly decreased thickness compared to non-smoking ALC in the ACC, insula, the total BRS and total frontal cortex. Smoking ALC had also lower NAA concentrations than both non-smoking ALC and Controls in the DLPFC, insula, superior corona radiata and the total BRS. Alcohol consumption and common medical and psychiatric co-morbidities did not mediate differences between smoking and non-smoking ALC. This dual modality magnetic resonance (MR) study indicated that chronic smoking in ALC was associated with significant cortical thinning and NAA abnormalities in anterior brain regions that are implicated in the development and maintenance of addictive disorders.

  11. Adaptive Reward Pursuit: How Effort Requirements Affect Unconscious Reward Responses and Conscious Reward Decisions

    ERIC Educational Resources Information Center

    Bijleveld, Erik; Custers, Ruud; Aarts, Henk

    2012-01-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms--operating without conscious intervention--play an important role as…

  12. Self-affirmation activates brain systems associated with self-related processing and reward and is reinforced by future orientation.

    PubMed

    Cascio, Christopher N; O'Donnell, Matthew Brook; Tinney, Francis J; Lieberman, Matthew D; Taylor, Shelley E; Strecher, Victor J; Falk, Emily B

    2016-04-01

    Self-affirmation theory posits that people are motivated to maintain a positive self-view and that threats to perceived self-competence are met with resistance. When threatened, self-affirmations can restore self-competence by allowing individuals to reflect on sources of self-worth, such as core values. Many questions exist, however, about the underlying mechanisms associated with self-affirmation. We examined the neural mechanisms of self-affirmation with a task developed for use in a functional magnetic resonance imaging environment. Results of a region of interest analysis demonstrated that participants who were affirmed (compared with unaffirmed participants) showed increased activity in key regions of the brain's self-processing (medial prefrontal cortex + posterior cingulate cortex) and valuation (ventral striatum + ventral medial prefrontal cortex) systems when reflecting on future-oriented core values (compared with everyday activities). Furthermore, this neural activity went on to predict changes in sedentary behavior consistent with successful affirmation in response to a separate physical activity intervention. These results highlight neural processes associated with successful self-affirmation, and further suggest that key pathways may be amplified in conjunction with prospection.

  13. Selected highlights of a half-century of academic and industry studies of turbidite systems

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.

    2012-04-01

    From more than 50 years of research on modern turbidite systems and considering this bias (e.g. experimental and modeling research not included in this summary), the following are my suggested landmarks for interplay between academic and industry research on turbidite systems: 1.In the 1960´s, the outcrop research of the Bouma sequence showed immediate relevance for the characterization of proximal to distal depositional environments of modern Astoria Fan (e.g. a&b structures in proximal channels, c-e in levees, a-e in lobes, d&e in basin plains), and for identification of turbidites in industry boreholes. 2.In the 1970´s, Mutti and Ricchi Lucchís facies assemblages from outcrops correlated well with Nelson and Nilseńs comparison of modern and ancient turbidite systems. The emerging models from this and other outcrop and modern system studies of Walker and Normark provided early guidelines for industry exploration. 3.In the 1980´s, the new high-resolution sidescan sonar studies on modern systems revealed the complex morphology of channel and lobe systems. These new details interplayed with the major contribution of seismic sequence stratigraphy from industry, which had important implications for outcrop studies, modern system research, and an emerging variety of improved fan models that considered the depositional elements defined by Mutti and Normark. The maturity of studies at this point outlined the key tectonic, sediment supply and climate/sea level factors controlling the development of a wide variety of turbidite system depositional patterns. 4.In the 1990´s, the 3D seismic studies of industry and high-resolution seismic and coring studies on modern systems provided detailed new insight into a complex variety of turbidite systems, particularly for slope environments. The close comparison of these data confirmed the relevance of present-day turbidite systems as a key to past outcrop and subsurface systems. 5.In the new millennium, seismic geomorphology

  14. Providing Individually Tailored Academic and Behavioral Support Services for Youth in the Juvenile Justice and Child Welfare Systems. Practice Guide

    ERIC Educational Resources Information Center

    Gonsoulin, S.; Darwin, M. J.; Read, N. W.

    2012-01-01

    Youth who are involved with the juvenile justice and child welfare systems face many challenges and barriers to academic and vocational success. Regardless of the reasons for their involvement, youth in these systems are "disproportionately children and youth of color who currently have, or have experienced, a host of risk factors that are…

  15. Rewarding safe behavior: strategies for change.

    PubMed

    Fell-Carlson, Deborah

    2004-12-01

    Effective, sustainable safety incentives are integrated into a performance management system designed to encourage long term behavior change. Effective incentive program design integrates the fundamental considerations of compensation (i.e., valence, instrumentality, expectancy, equity) with behavior change theory in the context of a strong merit based performance management system. Clear expectations are established and communicated from the time applicants apply for the position. Feedback and social recognition are leveraged and used as rewards, in addition to financial incentives built into the compensation system and offered periodically as short term incentives. Rewards are tied to specific objectives intended to influence specific behaviors. Objectives are designed to challenge employees, providing opportunities to grow and enhance their sense of belonging. Safety contests and other awareness activities are most effective when used to focus safety improvement efforts on specific behaviors or processes, for a predetermined period of time, in the context of a comprehensive safety system. Safety incentive programs designed around injury outcomes can result in unintended, and undesirable, consequences. Safety performance can be leveraged by integrating safety into corporate cultural indicators. Symbols of safety remind employees of corporate safety goals and objectives (e.g., posted safety goals and integrating safety into corporate mission and vision). Rites and ceremonies provide opportunities for social recognition and feedback and demonstrate safety is a corporate value. Feedback opportunities, rewards, and social recognition all provide content for corporate legends, those stories embellished over time, that punctuate the overall system of organizational norms, and provide examples of the organizational safety culture in action.

  16. Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning.

    PubMed

    Li, Chia-Tzu; Lai, Wen-Sung; Liu, Chih-Min; Hsu, Yung-Fong

    2014-01-01

    Abnormalities in the dopamine system have long been implicated in explanations of reinforcement learning and psychosis. The updated reward prediction error (RPE)-a discrepancy between the predicted and actual rewards-is thought to be encoded by dopaminergic neurons. Dysregulation of dopamine systems could alter the appraisal of stimuli and eventually lead to schizophrenia. Accordingly, the measurement of RPE provides a potential behavioral index for the evaluation of brain dopamine activity and psychotic symptoms. Here, we assess two features potentially crucial to the RPE process, namely belief formation and belief perseveration, via a probability learning task and reinforcement-learning modeling. Forty-five patients with schizophrenia [26 high-psychosis and 19 low-psychosis, based on their p1 and p3 scores in the positive-symptom subscales of the Positive and Negative Syndrome Scale (PANSS)] and 24 controls were tested in a feedback-based dynamic reward task for their RPE-related decision making. While task scores across the three groups were similar, matching law analysis revealed that the reward sensitivities of both psychosis groups were lower than that of controls. Trial-by-trial data were further fit with a reinforcement learning model using the Bayesian estimation approach. Model fitting results indicated that both psychosis groups tend to update their reward values more rapidly than controls. Moreover, among the three groups, high-psychosis patients had the lowest degree of choice perseveration. Lumping patients' data together, we also found that patients' perseveration appears to be negatively correlated (p = 0.09, trending toward significance) with their PANSS p1 + p3 scores. Our method provides an alternative for investigating reward-related learning and decision making in basic and clinical settings.

  17. Nurse-academics' scholarly productivity: perceived frames and facilitators.

    PubMed

    Roberts, Kay Kathryn L; Turnbull, Beverley J

    2004-10-01

    The reward system within Universities remains focused on research, with a benchmark of scholarly productivity, especially in relation to promotion. Despite their relative newness to the tertiary system, nurse academics are judged by the same standards as other disciplines. This study sought to examine factors that constrained and/or facilitated scholarly productivity. The study used a questionnaire survey technique to establish current productivity levels, and frame and facilitating factor theory and analysis to identify major constraints and facilitators. Findings from the study were that the unremitting nature of teaching, course coordination and university service workloads interact to the detriment of research and writing. Facilitating factors included a departmental culture that values and supports research, in conjunction with tangible support from University management. Mentorship was viewed as desirable, but often not available. An environment that more actively prioritises, fosters and supports academic scholarly productivity is needed.

  18. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum

    PubMed Central

    Kaag, Anne Marije; Schluter, Renée S.; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; van Wingen, Guido A.

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional magnetic resonance imaging (fMRI). In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signaling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signaling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula. PMID:27594829

  19. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum

    PubMed Central

    Kaag, Anne Marije; Schluter, Renée S.; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; van Wingen, Guido A.

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional magnetic resonance imaging (fMRI). In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signaling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signaling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  20. Cortisol alters reward processing in the human brain.

    PubMed

    Kinner, Valerie L; Wolf, Oliver T; Merz, Christian J

    2016-08-01

    Dysfunctional reward processing is known to play a central role for the development of psychiatric disorders. Glucocorticoids that are secreted in response to stress have been shown to attenuate reward sensitivity and thereby might promote the onset of psychopathology. However, the underlying neurobiological mechanisms mediating stress hormone effects on reward processing as well as potential sex differences remain elusive. In this neuroimaging study, we administered 30mg cortisol or a placebo to 30 men and 30 women and subsequently tested them in the Monetary Incentive Delay Task. Cortisol attenuated anticipatory neural responses to a verbal and a monetary reward in the left pallidum and the right anterior parahippocampal gyrus. Furthermore, in men, activation in the amygdala, the precuneus, the anterior cingulate, and in hippocampal regions was reduced under cortisol, whereas in cortisol-treated women a signal increase was observed in these regions. Behavioral performance also indicated that reward learning in men is impaired under high cortisol concentrations, while it is augmented in women. These findings illustrate that the stress hormone cortisol substantially diminishes reward anticipation and provide first evidence that cortisol effects on the neural reward system are sensitive to sex differences, which might translate into different vulnerabilities for psychiatric disorders.

  1. Early Effects of Reward Anticipation Are Modulated by Dopaminergic Stimulation

    PubMed Central

    Apitz, Thore; Bunzeck, Nico

    2014-01-01

    The abilities to predict future rewards and assess the value of reward delivery are crucial aspects of adaptive behavior. While the mesolimbic system, including dopaminergic midbrain, ventral striatum and prefrontal cortex have long been associated with reward processing, recent studies also indicate a prominent role of early visual brain regions. However, the precise underlying neural mechanisms still remain unclear. To address this issue, we presented participants with visual cues predicting rewards of high and low magnitudes and probability (2×2 factorial design), while neural activity was scanned using magnetoencephalography. Importantly, one group of participants received 150 mg of the dopamine precursor levodopa prior to the experiment, while another group received a placebo. For the placebo group, neural signals of reward probability (but not magnitude) emerged at ∼100 ms after cue presentation at occipital sensors in the event-related magnetic fields. Importantly, these probability signals were absent in the levodopa group indicating a close link. Moreover, levodopa administration reduced oscillatory power in the high (20–30 Hz) and low (13–20 Hz) beta band during both reward anticipation and delivery. Taken together, our findings indicate that visual brain regions are involved in coding prospective reward probability but not magnitude and that these effects are modulated by dopamine. PMID:25285436

  2. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum.

    PubMed

    Kaag, Anne Marije; Schluter, Renée S; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; van Wingen, Guido A

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional magnetic resonance imaging (fMRI). In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signaling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signaling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula. PMID:27594829

  3. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum.

    PubMed

    Kaag, Anne Marije; Schluter, Renée S; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; van Wingen, Guido A

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional magnetic resonance imaging (fMRI). In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signaling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signaling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  4. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    PubMed

    Mensen, Armand; Poryazova, Rositsa; Huegli, Gordana; Baumann, Christian R; Schwartz, Sophie; Khatami, Ramin

    2015-01-01

    The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP), which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN) potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions. PMID:26599765

  5. A universal role of the ventral striatum in reward-based learning: Evidence from human studies

    PubMed Central

    Daniel, Reka; Pollmann, Stefan

    2014-01-01

    Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks. PMID:24825620

  6. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement

    PubMed Central

    Haist, Frank; Wazny, Jarnet H.; Toomarian, Elizabeth; Adamo, Maha

    2015-01-01

    A central question in cognitive and educational neuroscience is whether brain operations supporting non-linguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or “formal” math knowledge. Here, we conducted a developmental functional MRI study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6–12 years-old), 14 adolescents (13–17 years-old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus (IPS) specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. PMID:25327879

  7. Managing Academic Staff in Changing University Systems: International Trends and Comparisons.

    ERIC Educational Resources Information Center

    Farnham, David, Ed.

    This collection of 17 essays focuses on how faculty are employed, rewarded, and managed at universities in developed and developing nations. The essays, which include an introduction, 10 essays discussing European practices, two that focus on Canada and the United States, three which focus on Australia, Japan, and Malaysia, and a concluding…

  8. Reward functions of the basal ganglia.

    PubMed

    Schultz, Wolfram

    2016-07-01

    Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior. PMID:26838982

  9. PERCEPTION OF ACADEMIC PHARMACISTS TOWARDS THEIR ROLE IN HEALTHCARE SYSTEM OF A DEVELOPING COUNTRY, PAKISTAN: A QUANTITATIVE SIGHT.

    PubMed

    Li, Sheng; Azhar, Saira; Murtaza, Ghulam; Bin Asad, Muhammad Hassham Hassan; Shah, Syed Haider; Karim, Sabiha; Shi, Chenghe

    2015-01-01

    To investigate perception of academic pharmacists towards their role in healthcare system of a developing country, Pakistan, was the aim of this study. The study participants consisted of academic pharmacists from the government and private universities of Pakistan. Study was conducted for a period of three months, from January to March 2011, in Pakistan. Academic pharmacists were informed regarding the aim, objective and nature of the study. Verbal consent was given and execution of the study took place. Main sections of the questionnaire were comprised of series of statements pertaining to pharmacist perception and experience with the pharmacists. During the period, of January to April, the total number of questionnaires received from different government and private universities was 113. The response rate based on the 205 academic pharmacists working in universities during the study period was 63.9%. A majority (93.9%) of the respondents were satisfied working as academic pharmacist, 68.7% expressed that their interest in research is the reason to embark carrier as an academic pharmacist. Only half (55.7%) of the respondents agreed about pharmacy curriculum standard in Pakistan, and their satisfaction towards curriculum is less, as after the implementation of Pharm. D. (Doctor of Pharmacy). In the country, the curriculum is still focusing more towards theoretical knowledge rather than practical. In this case significant difference was noted with respect to university (p = 0.012). Academic pharmacists do have concern about the pharmacy profession in Pakistan. They ascertain the key issues facing the profession and its educators. Recommendations have been made to improve the current pharmacy curricula in order that future pharmacists in Pakistan practice effectively with the collaboration of other healthcare professionals. PMID:26642689

  10. Creating a Longitudinal Integrated Clerkship with Mutual Benefits for an Academic Medical Center and a Community Health System

    PubMed Central

    Poncelet, Ann Noelle; Mazotti, Lindsay A; Blumberg, Bruce; Wamsley, Maria A; Grennan, Tim; Shore, William B

    2014-01-01

    The longitudinal integrated clerkship is a model of clinical education driven by tenets of social cognitive theory, situated learning, and workplace learning theories, and built on a foundation of continuity between students, patients, clinicians, and a system of care. Principles and goals of this type of clerkship are aligned with primary care principles, including patient-centered care and systems-based practice. Academic medical centers can partner with community health systems around a longitudinal integrated clerkship to provide mutual benefits for both organizations, creating a sustainable model of clinical training that addresses medical education and community health needs. A successful one-year longitudinal integrated clerkship was created in partnership between an academic medical center and an integrated community health system. Compared with traditional clerkship students, students in this clerkship had better scores on Clinical Performance Examinations, internal medicine examinations, and high perceptions of direct observation of clinical skills. Advantages for the academic medical center include mitigating the resources required to run a longitudinal integrated clerkship while providing primary care training and addressing core competencies such as systems-based practice, practice-based learning, and interprofessional care. Advantages for the community health system include faculty development, academic appointments, professional satisfaction, and recruitment. Success factors include continued support and investment from both organizations’ leadership, high-quality faculty development, incentives for community-based physician educators, and emphasis on the mutually beneficial relationship for both organizations. Development of a longitudinal integrated clerkship in a community health system can serve as a model for developing and expanding these clerkship options for academic medical centers. PMID:24867551

  11. Creating a longitudinal integrated clerkship with mutual benefits for an academic medical center and a community health system.

    PubMed

    Poncelet, Ann Noelle; Mazotti, Lindsay A; Blumberg, Bruce; Wamsley, Maria A; Grennan, Tim; Shore, William B

    2014-01-01

    The longitudinal integrated clerkship is a model of clinical education driven by tenets of social cognitive theory, situated learning, and workplace learning theories, and built on a foundation of continuity between students, patients, clinicians, and a system of care. Principles and goals of this type of clerkship are aligned with primary care principles, including patient-centered care and systems-based practice. Academic medical centers can partner with community health systems around a longitudinal integrated clerkship to provide mutual benefits for both organizations, creating a sustainable model of clinical training that addresses medical education and community health needs. A successful one-year longitudinal integrated clerkship was created in partnership between an academic medical center and an integrated community health system. Compared with traditional clerkship students, students in this clerkship had better scores on Clinical Performance Examinations, internal medicine examinations, and high perceptions of direct observation of clinical skills.Advantages for the academic medical center include mitigating the resources required to run a longitudinal integrated clerkship while providing primary care training and addressing core competencies such as systems-based practice, practice-based learning, and interprofessional care. Advantages for the community health system include faculty development, academic appointments, professional satisfaction, and recruitment.Success factors include continued support and investment from both organizations' leadership, high-quality faculty development, incentives for community-based physician educators, and emphasis on the mutually beneficial relationship for both organizations. Development of a longitudinal integrated clerkship in a community health system can serve as a model for developing and expanding these clerkship options for academic medical centers.

  12. Advantages and Challenges of Working as a Clinician in an Academic Department of Medicine: Academic Clinicians' Perspectives

    PubMed Central

    Christmas, Colleen; Durso, Samuel C.; Kravet, Steven J.; Wright, Scott M.

    2010-01-01

    Background The provision of high-quality clinical care is critical to the mission of academic and nonacademic clinical settings and is of foremost importance to academic and nonacademic physicians. Concern has been increasingly raised that the rewards systems at most academic institutions may discourage those with a passion for clinical care over research or teaching from staying in academia. In addition to the advantages afforded by academic institutions, academic physicians may perceive important challenges, disincentives, and limitations to providing excellent clinical care. To better understand these views, we conducted a qualitative study to explore the perspectives of clinical faculty in prominent departments of medicine. Methods Between March and May 2007, 2 investigators conducted in-depth, semistructured interviews with 24 clinically excellent internal medicine physicians at 8 academic institutions across the nation. Transcripts were independently coded by 2 investigators and compared for agreement. Content analysis was performed to identify emerging themes. Results Twenty interviewees (83%) were associate professors or professors, 33% were women, and participants represented a wide range of internal medicine subspecialties. Mean time currently spent in clinical care by the physicians was 48%. Domains that emerged related to faculty's perception of clinical care in the academic setting included competing obligations, teamwork and collaboration, types of patients and productivity expectations, resources for clinical services, emphasis on discovery, and bureaucratic challenges. Conclusions Expert clinicians at academic medical centers perceive barriers to providing excellent patient care related to competing demands on their time, competing academic missions, and bureaucratic challenges. They also believe there are differences in the types of patients seen in academic settings compared with those in the private sector, that there is a “public” nature in

  13. Premotor and Motor Cortices Encode Reward.

    PubMed

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  14. Premotor and Motor Cortices Encode Reward

    PubMed Central

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one’s actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  15. The effect of pre- vs. post-reward attainment on EEG asymmetry in melancholic depression.

    PubMed

    Shankman, Stewart A; Sarapas, Casey; Klein, Daniel N

    2011-02-01

    Clinical investigators have long theorized about the role of reward processing and positive affect in depression. One theory posits that compared to nonmelancholic depressives, melancholic depressives experience less consummatory (i.e., post-reward), but comparably low anticipatory (prior to reward), positive affect. We tested whether frontal EEG asymmetry, a putative marker of the anticipatory reward system, is present only before an individual receives a reward or also after receiving a reward (i.e., during consummatory reward processing). We also examined whether melancholic depression, a condition characterized by a deficit in consummatory reward processing, is associated with abnormal EEG asymmetries in alpha band power. Effects in other frequency bands (delta, theta, or beta) were also explored. EEG was recorded in 34 controls, 48 nonmelancholic depressives, and 17 melancholic depressives during a slot machine task designed to elicit anticipatory and consummatory reward processing. Results indicated that, for alpha, the frontal EEG asymmetry of greater relative left activity was specific to anticipatory reward processing. During the consummatory phase, individuals with melancholic depression exhibited different posterior EEG asymmetries than individuals with nonmelancholic depression (and controls at a trend level). This second finding was largely due to melancholics exhibiting relatively lower right posterior activity and nonmelancholics exhibiting relatively lower left activity. These results suggest that a posterior asymmetry may be a marker for melancholic depression and aberrant consummatory reward processing.

  16. Temporal discounting of reward and the cost of time in motor control.

    PubMed

    Shadmehr, Reza; Orban de Xivry, Jean Jacques; Xu-Wilson, Minnan; Shih, Ting-Yu

    2010-08-01

    Why do movements take a characteristic amount of time, and why do diseases that affect the reward system alter control of movements? Suppose that the purpose of any movement is to position our body in a more rewarding state. People and other animals discount future reward as a hyperbolic function of time. Here, we show that across populations of people and monkeys there is a correlation between discounting of reward and control of movements. We consider saccadic eye movements and hypothesize that duration of a movement is equivalent to a delay of reward. The hyperbolic cost of this delay not only accounts for kinematics of saccades in adults, it also accounts for the faster saccades of children, who temporally discount reward more steeply. Our theory explains why saccade velocities increase when reward is elevated, and why disorders in the encoding of reward, for example in Parkinson's disease and schizophrenia, produce changes in saccade. We show that delay of reward elevates the cost of saccades, reducing velocities. Finally, we consider coordinated movements that include motion of eyes and head and find that their kinematics is also consistent with a hyperbolic, reward-dependent cost of time. Therefore, each voluntary movement carries a cost because its duration delays acquisition of reward. The cost depends on the value that the brain assigns to stimuli, and the rate at which it discounts this value in time. The motor commands that move our eyes reflect this cost of time.

  17. Using the Computer-Based Academic Assessment System (CASS) To Identify Reading Disability in College Students: A Replication.

    ERIC Educational Resources Information Center

    Cisero, Cheryl A.; And Others

    This research investigates whether the Computer-Based Academic Assessment System (CAAS), a battery of tests examining speed and accuracy at performing component reading skills, would be useful for identifying reading disability in college students. One important question was whether CAAS could distinguish reading disability from non-disability or…

  18. The Academic Bilingual and Career Upgrading System (Project ABACUS). Final Evaluation Report, 1992-93. OER Report.

    ERIC Educational Resources Information Center

    Law, Tim

    The Academic Bilingual and Career Upgrading System (Project ABACUS) was a federally-funded program in its fourth year at two Brooklyn and one Queens (New York) high schools. The program served 475 limited-English-speaking students who were native speakers of Chinese, Korean, and Spanish. Students received instruction in English as a second…

  19. Industrial & Engineering Systems Career Cluster ITAC for Career-Focused Education: Manufacturing Sub-Cluster. Integrated Technical & Academic Competencies.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Designed for Ohio educators responsible for planning programs to prepare high school students for careers in the manufacturing industry, this document presents an overview of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education and specific information about the manufacturing subcluster of the industrial…

  20. Industrial & Engineering Systems Career Cluster ITAC for Career-Focused Education: Construction Sub-Cluster. Integrated Technical & Academic Competencies.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Designed for Ohio educators responsible for planning programs to prepare high school students for careers in construction, this document presents an overview of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education and specific information about the construction subcluster of the industrial and engineering…

  1. Affordances for Academics: Using Learning Management Systems to Effectively Manage Large-Enrolment Units in Higher Education

    ERIC Educational Resources Information Center

    Griffin, Timothy; Rankine, Lynnae

    2010-01-01

    Learning Management Systems (LMS) can be used to deliver learning designs that meet students' learning needs. There is a raft of teaching and learning tools that can be enabled in LMS to engage and support learners. The design and ongoing management of these environments rest largely on the knowledge and skills of academic staff. While increasing…

  2. ISAAC: An Introduction to IBM's Information System for Advanced Academic Computing at the University of Washington-Seattle.

    ERIC Educational Resources Information Center

    Hernandez, Nicolas, Jr.

    1988-01-01

    Traces the origin of ISAAC (Information System for Advanced Academic Computing) and the development of a languages and linguistics "room" at the University of Washington-Seattle. ISAAC, a free, valuable resource, consists of two databases and an electronic bulletin board spanning broad areas of pedagogical and research fields. (Author/CB)

  3. Dimensional reduction for reward-based learning.

    PubMed

    Swinehart, Christian D; Abbott, L F

    2006-09-01

    Reward-based learning in neural systems is challenging because a large number of parameters that affect network function must be optimized solely on the basis of a reward signal that indicates improved performance. Searching the parameter space for an optimal solution is particularly difficult if the network is large. We show that Hebbian forms of synaptic plasticity applied to synapses between a supervisor circuit and the network it is controlling can effectively reduce the dimension of the space of parameters being searched to support efficient reinforcement-based learning in large networks. The critical element is that the connections between the supervisor units and the network must be reciprocal. Once the appropriate connections have been set up by Hebbian plasticity, a reinforcement-based learning procedure leads to rapid learning in a function approximation task. Hebbian plasticity within the network being supervised ultimately allows the network to perform the task without input from the supervisor.

  4. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  5. Development and Testing of a M-Learning System for the Professional Development of Academics through Design-Based Action Research

    ERIC Educational Resources Information Center

    Keskin, Nilgun Ozdamar; Kuzu, Abdullah

    2015-01-01

    In the present study, a mobile learning system for the professional development of academics was developed by design based action research, and the perceptions and experiences of the academics using this system were examined. In the first phase of this design-based action research, the research question was defined. In the second phase, a…

  6. Homeostatic reinforcement learning for integrating reward collection and physiological stability.

    PubMed

    Keramati, Mehdi; Gutkin, Boris

    2014-12-02

    Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system.

  7. Homeostatic reinforcement learning for integrating reward collection and physiological stability.

    PubMed

    Keramati, Mehdi; Gutkin, Boris

    2014-01-01

    Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system. PMID:25457346

  8. Effects of fictive reward on rat's choice behavior.

    PubMed

    Kim, Ko-Un; Huh, Namjung; Jang, Yunsil; Lee, Daeyeol; Jung, Min Whan

    2015-01-27

    Choices of humans and non-human primates are influenced by both actually experienced and fictive outcomes. To test whether this is also the case in rodents, we examined rat's choice behavior in a binary choice task in which variable magnitudes of actual and fictive rewards were delivered. We found that the animal's choice was significantly influenced by the magnitudes of both actual and fictive rewards in the previous trial. A model-based analysis revealed, however, that the effect of fictive reward was more transient and influenced mostly the choice in the next trial, whereas the effect of actual reward was more sustained, consistent with incremental learning of action values. Our results suggest that the capacity to modify future choices based on fictive outcomes might be shared by many different animal species, but fictive outcomes are less effective than actual outcomes in the incremental value learning system.

  9. The Reward Circuit: Linking Primate Anatomy and Human Imaging

    PubMed Central

    Haber, Suzanne N; Knutson, Brian

    2010-01-01

    Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy. PMID:19812543

  10. Effects of fictive reward on rat's choice behavior

    PubMed Central

    Kim, Ko-Un; Huh, Namjung; Jang, Yunsil; Lee, Daeyeol; Jung, Min Whan

    2015-01-01

    Choices of humans and non-human primates are influenced by both actually experienced and fictive outcomes. To test whether this is also the case in rodents, we examined rat's choice behavior in a binary choice task in which variable magnitudes of actual and fictive rewards were delivered. We found that the animal's choice was significantly influenced by the magnitudes of both actual and fictive rewards in the previous trial. A model-based analysis revealed, however, that the effect of fictive reward was more transient and influenced mostly the choice in the next trial, whereas the effect of actual reward was more sustained, consistent with incremental learning of action values. Our results suggest that the capacity to modify future choices based on fictive outcomes might be shared by many different animal species, but fictive outcomes are less effective than actual outcomes in the incremental value learning system. PMID:25623929

  11. Reward sensitivity and anger in euthymic bipolar disorder.

    PubMed

    Duek, Or; Osher, Yamima; Belmaker, Robert H; Bersudsky, Yuly; Kofman, Ora

    2014-01-30

    According to the hypersensitive behavioral approach system (BAS) model of bipolar disorder (BP), hypersensitivity of the BAS is a trait that should be present even in the euthymic state. This would be expected to result in increased anger and reward sensitivity, both of which are related to the approach system. This study examined these predictions through the use of tasks that assess different aspects of the BAS: reward sensitivity, anger and impulsivity. These characteristics were assessed using the probabilistic classification task (PCT), ultimatum game (UG) and single key impulsivity paradigm (SKIP), respectively. Participants were euthymic adult bipolar disorder patients (BP; N=40) and healthy controls (HC; N=41). In the UG, all participants showed the standard pattern of rejecting overtly unfair offers and accepting clearly fair offers; however, BPs rejected more of the moderately unfair offers than did HCs. BP and HC participants did not differ on their ability to learn, but did show different patterns of learning from reward and punishment. Learning for reward and punishment were negatively correlated in the BP group, suggesting that individuals could learn well either from reward or punishment, but not both. No correlation was found between these forms of learning in the HC group. BP patients show signs of their disorder even in the euthymic state, as seen by the dysbalance between reward and punishment learning and their residual anger in the UG.

  12. Reward sensitivity and anger in euthymic bipolar disorder.

    PubMed

    Duek, Or; Osher, Yamima; Belmaker, Robert H; Bersudsky, Yuly; Kofman, Ora

    2014-01-30

    According to the hypersensitive behavioral approach system (BAS) model of bipolar disorder (BP), hypersensitivity of the BAS is a trait that should be present even in the euthymic state. This would be expected to result in increased anger and reward sensitivity, both of which are related to the approach system. This study examined these predictions through the use of tasks that assess different aspects of the BAS: reward sensitivity, anger and impulsivity. These characteristics were assessed using the probabilistic classification task (PCT), ultimatum game (UG) and single key impulsivity paradigm (SKIP), respectively. Participants were euthymic adult bipolar disorder patients (BP; N=40) and healthy controls (HC; N=41). In the UG, all participants showed the standard pattern of rejecting overtly unfair offers and accepting clearly fair offers; however, BPs rejected more of the moderately unfair offers than did HCs. BP and HC participants did not differ on their ability to learn, but did show different patterns of learning from reward and punishment. Learning for reward and punishment were negatively correlated in the BP group, suggesting that individuals could learn well either from reward or punishment, but not both. No correlation was found between these forms of learning in the HC group. BP patients show signs of their disorder even in the euthymic state, as seen by the dysbalance between reward and punishment learning and their residual anger in the UG. PMID:24230992

  13. Academic Blogging: Academic Practice and Academic Identity

    ERIC Educational Resources Information Center

    Kirkup, Gill

    2010-01-01

    This paper describes a small-scale study which investigates the role of blogging in professional academic practice in higher education. It draws on interviews with a sample of academics (scholars, researchers and teachers) who have blogs and on the author's own reflections on blogging to investigate the function of blogging in academic practice…

  14. An Efficiency Comparison of Document Preparation Systems Used in Academic Research and Development

    PubMed Central

    Knauff, Markus; Nejasmic, Jelica

    2014-01-01

    The choice of an efficient document preparation system is an important decision for any academic researcher. To assist the research community, we report a software usability study in which 40 researchers across different disciplines prepared scholarly texts with either Microsoft Word or LaTeX. The probe texts included simple continuous text, text with tables and subheadings, and complex text with several mathematical equations. We show that LaTeX users were slower than Word users, wrote less text in the same amount of time, and produced more typesetting, orthographical, grammatical, and formatting errors. On most measures, expert LaTeX users performed even worse than novice Word users. LaTeX users, however, more often report enjoying using their respective software. We conclude that even experienced LaTeX users may suffer a loss in productivity when LaTeX is used, relative to other document preparation systems. Individuals, institutions, and journals should carefully consider the ramifications of this finding when choosing document preparation strategies, or requiring them of authors. PMID:25526083

  15. An efficiency comparison of document preparation systems used in academic research and development.

    PubMed

    Knauff, Markus; Nejasmic, Jelica

    2014-01-01

    The choice of an efficient document preparation system is an important decision for any academic researcher. To assist the research community, we report a software usability study in which 40 researchers across different disciplines prepared scholarly texts with either Microsoft Word or LaTeX. The probe texts included simple continuous text, text with tables and subheadings, and complex text with several mathematical equations. We show that LaTeX users were slower than Word users, wrote less text in the same amount of time, and produced more typesetting, orthographical, grammatical, and formatting errors. On most measures, expert LaTeX users performed even worse than novice Word users. LaTeX users, however, more often report enjoying using their respective software. We conclude that even experienced LaTeX users may suffer a loss in productivity when LaTeX is used, relative to other document preparation systems. Individuals, institutions, and journals should carefully consider the ramifications of this finding when choosing document preparation strategies, or requiring them of authors.

  16. New J-STAGE system accelerates digitization and distribution of academic journals from Japan

    NASA Astrophysics Data System (ADS)

    Sato, Ryuichi; Kubota, Soichi; Aoyama, Kota; Tsuchiya, Eri; Miyagawa, Yoshiyuki

    13 years have passed since J-STAGE was launched. At present no one could deny that its user interface and functions were already out of date comparing to foreign established e-journals. So JST has developed a new system called “J-STAGE3” in order to offer better usability and give powerful dissemination of academic papers from Japan. As the result of it, they will be able to enjoy the following things: 1) integration of two databases, Journal@rchive and J-STAGE, 2) new design/interface, 3) introduction of international standard XML format, 4) advanced subscription management, 5) saving cost of publishers, and 6) improving J-STAGE online submission and review system. At the end of March 2011, we conducted a market research on current status of digitization on Japanese society journals. The report told us that digitization ratio of those was 62% in total but it was 34% in humanities/social sciences. Or it was 92% in English journals and 55% in Japanese ones. It means that we need further promotion of digitization. In this paper, we discuss functions and direction of J-STAGE3 as well as our role in promotion of digitization of Japanese society journals.

  17. Views on the peer review system of biomedical journals: an online survey of academics from high-ranking universities

    PubMed Central

    2013-01-01

    Background Peer review is the major method used by biomedical journals for making the decision of publishing an article. This cross-sectional survey assesses views concerning the review system of biomedical journals among academics globally. Methods A total of 28,009 biomedical academics from high-ranking universities listed by the 2009 Times Higher Education Quacquarelli Symonds (THE-QS) World University Rankings were contacted by email between March 2010 and August 2010. 1,340 completed an online survey which focused on their academic background, negative experiences and views on biomedical journal peer review and the results were compared among basic scientists, clinicians and clinician scientists. Results Fewer than half of the respondents agreed that the peer review systems of biomedical journals were fair (48.4%), scientific (47.5%), or transparent (25.1%). Nevertheless, 58.2% of the respondents agreed that authors should remain anonymous and 64.4% agreed that reviewers should not be disclosed. Most, (67.7%) agreed to the establishment of an appeal system. The proportion of native English-speaking respondents who agreed that the “peer review system is fair” was significantly higher than for non-native respondents (p = 0.02). Similarly, the proportion of clinicians stating that the “peer review system is fair” was significantly higher than that for basic scientists and clinician-scientists (p = 0.004). For females, (β = −0.1, p = 0.03), the frequency of encountering personal attacks in reviewers’ comments (β = −0.1, p = 0.002) and the frequency of imposition of unnecessary references by reviewers (β = −0.06, p = 0.04) were independently and inversely associated with agreement that “the peer review system is fair”. Conclusion Academics are divided on the issue of whether the biomedical journal peer review system is fair, scientific and transparent. A majority of academics agreed with the double-blind peer

  18. Academic Hospitality

    ERIC Educational Resources Information Center

    Phipps, Alison; Barnett, Ronald

    2007-01-01

    Academic hospitality is a feature of academic life. It takes many forms. It takes material form in the hosting of academics giving papers. It takes epistemological form in the welcome of new ideas. It takes linguistic form in the translation of academic work into other languages, and it takes touristic form through the welcome and generosity with…

  19. The value of numbers in economic rewards.

    PubMed

    Kanayet, Frank J; Opfer, John E; Cunningham, William A

    2014-08-01

    Previous work has identified a distributed network of neural systems involved in appraising the value of rewards, such as when winning $100 versus $1. These studies, however, confounded monetary value and the number used to represent it, which leads to the possibility that some elements in the network may be specialized for processing numeric rather than monetary value. To test this hypothesis, we manipulated numeric magnitude and units to construct a range of economic rewards for simple decisions (e.g., 1¢, $1, 100¢, $100). Consistent with previous research in numerical cognition, results showed that blood-oxygen-level-dependent (BOLD) activity in intraparietal sulcus was correlated with changes in numeric magnitude, independent of monetary value, whereas activity in orbitofrontal cortex was correlated with monetary value, independent of numeric magnitude. Finally, region-of-interest analyses revealed that the BOLD response to numeric magnitude, but not monetary value, described a compressive function. Together, these findings highlight the importance of numerical cognition for understanding how the brain processes monetary rewards. PMID:24958687

  20. The value of numbers in economic rewards.

    PubMed

    Kanayet, Frank J; Opfer, John E; Cunningham, William A

    2014-08-01

    Previous work has identified a distributed network of neural systems involved in appraising the value of rewards, such as when winning $100 versus $1. These studies, however, confounded monetary value and the number used to represent it, which leads to the possibility that some elements in the network may be specialized for processing numeric rather than monetary value. To test this hypothesis, we manipulated numeric magnitude and units to construct a range of economic rewards for simple decisions (e.g., 1¢, $1, 100¢, $100). Consistent with previous research in numerical cognition, results showed that blood-oxygen-level-dependent (BOLD) activity in intraparietal sulcus was correlated with changes in numeric magnitude, independent of monetary value, whereas activity in orbitofrontal cortex was correlated with monetary value, independent of numeric magnitude. Finally, region-of-interest analyses revealed that the BOLD response to numeric magnitude, but not monetary value, described a compressive function. Together, these findings highlight the importance of numerical cognition for understanding how the brain processes monetary rewards.

  1. Evolutionary advantages of adaptive rewarding

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2012-09-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment.

  2. Frontostriatal response to set switching is moderated by reward sensitivity.

    PubMed

    Avila, César; Garbin, Gabriele; Sanjuán, Ana; Forn, Cristina; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rodríguez-Pujadas, Aina; Belloch, Vicente; Parcet, Maria Antònia

    2012-04-01

    The reinforcement sensitivity theory (RST) relates individual differences in reward sensitivity to the activation of the behavioral approach system (BAS). Dopamine-related brain structures have been repeatedly associated with reward processing, but also with cognitive processes such as task switching. In the present study, we examined the association between reward sensitivity and the event-related fMRI BOLD response with set switching in 31 males. As expected, the right inferior frontal cortex (rIFG) and the striatum (i.e. the left putamen) were involved in set-switching activity for the overall sample. Interindividual differences in Gray's reward sensitivity were related to stronger activity in the rIFG and the ventral striatum. Thus, trait reward sensitivity contributed to the modulation of brain responsiveness in set-switching tasks. Having considered previous research, we propose that higher BAS activity is associated with a stronger reward to process a better implementation of goal-directed tasks and the diminished processing of secondary cues.

  3. Revealing the paradox of drug reward in human evolution.

    PubMed

    Sullivan, Roger J; Hagen, Edward H; Hammerstein, Peter

    2008-06-01

    Neurobiological models of drug abuse propose that drug use is initiated and maintained by rewarding feedback mechanisms. However, the most commonly used drugs are plant neurotoxins that evolved to punish, not reward, consumption by animal herbivores. Reward models therefore implicitly assume an evolutionary mismatch between recent drug-profligate environments and a relatively drug-free past in which a reward centre, incidentally vulnerable to neurotoxins, could evolve. By contrast, emerging insights from plant evolutionary ecology and the genetics of hepatic enzymes, particularly cytochrome P450, indicate that animal and hominid taxa have been exposed to plant toxins throughout their evolution. Specifically, evidence of conserved function, stabilizing selection, and population-specific selection of human cytochrome P450 genes indicate recent evolutionary exposure to plant toxins, including those that affect animal nervous systems. Thus, the human propensity to seek out and consume plant neurotoxins is a paradox with far-reaching implications for current drug-reward theory. We sketch some potential resolutions of the paradox, including the possibility that humans may have evolved to counter-exploit plant neurotoxins. Resolving the paradox of drug reward will require a synthesis of ecological and neurobiological perspectives of drug seeking and use.

  4. Revealing the paradox of drug reward in human evolution

    PubMed Central

    Sullivan, Roger J; Hagen, Edward H; Hammerstein, Peter

    2008-01-01

    Neurobiological models of drug abuse propose that drug use is initiated and maintained by rewarding feedback mechanisms. However, the most commonly used drugs are plant neurotoxins that evolved to punish, not reward, consumption by animal herbivores. Reward models therefore implicitly assume an evolutionary mismatch between recent drug-profligate environments and a relatively drug-free past in which a reward centre, incidentally vulnerable to neurotoxins, could evolve. By contrast, emerging insights from plant evolutionary ecology and the genetics of hepatic enzymes, particularly cytochrome P450, indicate that animal and hominid taxa have been exposed to plant toxins throughout their evolution. Specifically, evidence of conserved function, stabilizing selection, and population-specific selection of human cytochrome P450 genes indicate recent evolutionary exposure to plant toxins, including those that affect animal nervous systems. Thus, the human propensity to seek out and consume plant neurotoxins is a paradox with far-reaching implications for current drug-reward theory. We sketch some potential resolutions of the paradox, including the possibility that humans may have evolved to counter-exploit plant neurotoxins. Resolving the paradox of drug reward will require a synthesis of ecological and neurobiological perspectives of drug seeking and use. PMID:18353749

  5. Advances in studying phasic dopamine signaling in brain reward mechanisms

    PubMed Central

    Wickham, Robert J.; Solecki, Wojciech; Rathbun, Liza R.; Neugebauer, Nichole M.; Wightman, R. Mark; Addy, Nii A.

    2013-01-01

    The last sixty years of research have provided extraordinary advances of our knowledge of the reward system. Since its initial discovery as a neurotransmitter by Carlsson and colleagues (Carlsson et al., 1957), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to directly measure DA levels in the brain using various preparations. Many of these techniques and preparations differ in the types of questions that they can address. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and in addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new insight of the mechanisms of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior. PMID:23747914

  6. Replicator dynamics in public goods games with reward funds.

    PubMed

    Sasaki, Tatsuya; Unemi, Tatsuo

    2011-10-21

    Which punishment or rewards are most effective at maintaining cooperation in public goods interactions and deterring defectors who are willing to freeload on others' contribution? The sanction system is itself a public good and can cause problematic "second-order free riders" who do not contribute to the provisions of the sanctions and thus may subvert the cooperation supported by sanctioning. Recent studies have shown that public goods games with punishment can lead to a coercion-based regime if participation in the game is optional. Here, we reveal that even with compulsory participation, rewards can maintain cooperation within an infinitely large population. We consider three strategies for players in a standard public goods game: to be a cooperator or a defector in a standard public goods game, or to be a rewarder who contributes to the public good and to a fund that rewards players who contribute during the game. Cooperators do not contribute to the reward fund and are therefore classified as second-order free riders. The replicator dynamics for the three strategies exhibit a rock-scissors-paper cycle, and can be analyzed fully, despite the fact that the expected payoffs are nonlinear. The model does not require repeated interaction, spatial structure, group selection, or reputation. We also discuss a simple method for second-order sanctions, which can lead to a globally stable state where 100% of the population are rewarders.

  7. Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation.

    PubMed

    Orona-Tamayo, Domancar; Wielsch, Natalie; Blanco-Labra, Alejandro; Svatos, Ales; Farías-Rodríguez, Rodolfo; Heil, Martin

    2013-08-01

    Myrmecophytic Acacia species produce food bodies (FBs) to nourish ants of the Pseudomyrmex ferrugineus group, with which they live in an obligate mutualism. We investigated how the FBs are protected from exploiting nonmutualists. Two-dimensional gel electrophoresis of the FB proteomes and consecutive protein sequencing indicated the presence of several Kunitz-type protease inhibitors (PIs). PIs extracted from Acacia FBs were biologically active, as they effectively reduced the trypsin-like and elastase-like proteolytic activity in the guts of seed-feeding beetles (Prostephanus truncatus and Zabrotes subfasciatus), which were used as nonadapted herbivores representing potential exploiters. By contrast, the legitimate mutualistic consumers maintained high proteolytic activity dominated by chymotrypsin 1, which was insensitive to the FB PIs. Larvae of an exploiter ant (Pseudomyrmex gracilis) taken from Acacia hosts exhibited lower overall proteolytic activity than the mutualists. The proteases of this exploiter exhibited mainly elastase-like and to a lower degree chymotrypsin 1-like activity. We conclude that the mutualist ants possess specifically those proteases that are least sensitive to the PIs in their specific food source, whereas the congeneric exploiter ant appears partly, but not completely, adapted to consume Acacia FBs. By contrast, any consumption of the FBs by nonadapted exploiters would effectively inhibit their digestive capacities. We suggest that the term 'exclusive rewards' can be used to describe situations similar to the one that has evolved in myrmecophytic Acacia species, which reward mutualists with FBs but safeguard the reward from exploitation by generalists by making the FBs difficult for the nonadapted consumer to use.

  8. Network information security in a phase III Integrated Academic Information Management System (IAIMS).

    PubMed Central

    Shea, S.; Sengupta, S.; Crosswell, A.; Clayton, P. D.

    1992-01-01

    The developing Integrated Academic Information System (IAIMS) at Columbia-Presbyterian Medical Center provides data sharing links between two separate corporate entities, namely Columbia University Medical School and The Presbyterian Hospital, using a network-based architecture. Multiple database servers with heterogeneous user authentication protocols are linked to this network. "One-stop information shopping" implies one log-on procedure per session, not separate log-on and log-off procedures for each server or application used during a session. These circumstances provide challenges at the policy and technical levels to data security at the network level and insuring smooth information access for end users of these network-based services. Five activities being conducted as part of our security project are described: (1) policy development; (2) an authentication server for the network; (3) Kerberos as a tool for providing mutual authentication, encryption, and time stamping of authentication messages; (4) a prototype interface using Kerberos services to authenticate users accessing a network database server; and (5) a Kerberized electronic signature. PMID:1336414

  9. Measure for Measure: How Proficiency-Based Accountability Systems Affect Inequality in Academic Achievement

    PubMed Central

    Jennings, Jennifer; Sohn, Heeju

    2016-01-01

    How do proficiency-based accountability systems affect inequality in academic achievement? This paper reconciles mixed findings in the literature by demonstrating that three factors jointly determine accountability's impact. First, by analyzing student-level data from a large urban school district, we find that when educators face accountability pressure, they focus attention on students closest to proficiency. We refer to this practice as educational triage, and show that the difficulty of the proficiency standard affects whether lower or higher performing students gain most on high-stakes tests used to evaluate schools. Less difficult proficiency standards decrease inequality in high-stakes achievement, while more difficult ones increase it. Second, we show that educators emphasize test-specific skills with students near proficiency, a practice that we refer to as instructional triage. As a result, the effects of accountability pressure differ across high and low-stakes tests; we find no effects on inequality in low-stakes reading and math tests of similar skills. Finally, we provide suggestive evidence that instructional triage is most pronounced in the lowest performing schools. We conclude by discussing how these findings shape our understanding of accountability's impacts on educational inequality. PMID:27122642

  10. Reward and learning in the goldfish.

    PubMed

    Lowes, G; Bitterman, M E

    1967-07-28

    An experiment with goldfish showed the effects of change in amount of reward that are predicted from reinforcement theory. The performance of animals shifted from small to large reward improved gradually to the level of unshifted large-reward controls, while the performance of animals shifted from large to small reward remained at the large-reward level. The difference between these results and those obtained in analogous experiments with the rat suggests that reward functions differently in the instrumental learning of the two animals.

  11. Rewarding safe behavior: strategies for change.

    PubMed

    Fell-Carlson, Deborah

    2004-12-01

    Effective, sustainable safety incentives are integrated into a performance management system designed to encourage long term behavior change. Effective incentive program design integrates the fundamental considerations of compensation (i.e., valence, instrumentality, expectancy, equity) with behavior change theory in the context of a strong merit based performance management system. Clear expectations are established and communicated from the time applicants apply for the position. Feedback and social recognition are leveraged and used as rewards, in addition to financial incentives built into the compensation system and offered periodically as short term incentives. Rewards are tied to specific objectives intended to influence specific behaviors. Objectives are designed to challenge employees, providing opportunities to grow and enhance their sense of belonging. Safety contests and other awareness activities are most effective when used to focus safety improvement efforts on specific behaviors or processes, for a predetermined period of time, in the context of a comprehensive safety system. Safety incentive programs designed around injury outcomes can result in unintended, and undesirable, consequences. Safety performance can be leveraged by integrating safety into corporate cultural indicators. Symbols of safety remind employees of corporate safety goals and objectives (e.g., posted safety goals and integrating safety into corporate mission and vision). Rites and ceremonies provide opportunities for social recognition and feedback and demonstrate safety is a corporate value. Feedback opportunities, rewards, and social recognition all provide content for corporate legends, those stories embellished over time, that punctuate the overall system of organizational norms, and provide examples of the organizational safety culture in action. PMID:15635933

  12. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards.

    PubMed

    Miyazaki, Katsuhiko; Miyazaki, Kayoko W; Doya, Kenji

    2011-01-12

    The serotonergic system plays a key role in the control of impulsive behaviors. Forebrain serotonin depletion leads to premature actions and steepens discounting of delayed rewards. However, there has been no direct evidence for serotonin neuron activity in relation to actions for delayed rewards. Here we show that serotonin neurons increase their tonic firing while rats wait for food and water rewards and conditioned reinforcement tones. The rate of tonic firing during the delay period was significantly higher for rewards than for tones, for which rats could not wait as long. When the delay was extended, tonic firing persisted until reward or tone delivery. When rats gave up waiting because of extended delay or reward omission, serotonin neuron firing dropped preceding the exit from reward sites. Serotonin neurons did not show significant response when an expected reward was omitted, which was predicted by the theory that serotonin signals negative reward prediction errors. These results suggest that increased serotonin neuron firing facilitates a rat's waiting behavior in prospect of forthcoming rewards and that higher serotonin activation enables longer waiting.

  13. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards.

    PubMed

    Miyazaki, Katsuhiko; Miyazaki, Kayoko W; Doya, Kenji

    2011-01-12

    The serotonergic system plays a key role in the control of impulsive behaviors. Forebrain serotonin depletion leads to premature actions and steepens discounting of delayed rewards. However, there has been no direct evidence for serotonin neuron activity in relation to actions for delayed rewards. Here we show that serotonin neurons increase their tonic firing while rats wait for food and water rewards and conditioned reinforcement tones. The rate of tonic firing during the delay period was significantly higher for rewards than for tones, for which rats could not wait as long. When the delay was extended, tonic firing persisted until reward or tone delivery. When rats gave up waiting because of extended delay or reward omission, serotonin neuron firing dropped preceding the exit from reward sites. Serotonin neurons did not show significant response when an expected reward was omitted, which was predicted by the theory that serotonin signals negative reward prediction errors. These results suggest that increased serotonin neuron firing facilitates a rat's waiting behavior in prospect of forthcoming rewards and that higher serotonin activation enables longer waiting. PMID:21228157

  14. The Effects of Rewards and Punishments on Motivations of the Elementary School Student

    ERIC Educational Resources Information Center

    Matera, Bryan D.

    2009-01-01

    Past research has shown that rewards and punishments imposed on elementary school students may contribute to increases in student motivation and academic achievement. However, alternative research findings indicate that students may exhibit temporary compliance with such external stimuli and may not develop intrinsic motivation to perform well…

  15. Examining the Relationship between Institutional Mission and Faculty Reward for Teaching via Distance

    ERIC Educational Resources Information Center

    Simpson, Cheryl M.

    2010-01-01

    Distance education is fast becoming an elemental part of the fabric of academic life on many campuses, and this has implications for existing reward structures for faculty at these institutions. In addition, distance education is becoming an essential feature of the outreach mission of a number of departments at college and university campuses.…

  16. Performance, Rewards, and Perceptions of Sex Discrimination among Male and Female Faculty

    ERIC Educational Resources Information Center

    Ferber, Marianne A.; Loab, Jane W.

    1973-01-01

    Married women with or without children appear to experience less success in academic life. Marital and, for men, parental status may enter reward decisions as a possible indicator of perceived financial need. Perception of sex discrimination appears to be more accurate among women than men. (Author/JB)

  17. Caudate clues to rewarding cues.

    PubMed

    Platt, Michael L

    2002-01-31

    Behavioral studies indicate that prior experience can influence discrimination of subsequent stimuli. The mechanisms responsible for highlighting a particular aspect of the stimulus, such as motion or color, as most relevant and thus deserving further scrutiny, however, remain poorly understood. In the current issue of Neuron, demonstrate that neurons in the caudate nucleus of the basal ganglia signal which dimension of a visual cue, either color or location, is associated with reward in an eye movement task. These findings raise the possibility that this structure participates in the reward-based control of visual attention.

  18. Effect of Familiarity on Reward Anticipation in Children with and without Autism Spectrum Disorders

    PubMed Central

    Stavropoulos, Katherine K. M.; Carver, Leslie J.

    2014-01-01

    Background Previous research on the reward system in autism spectrum disorders (ASD) suggests that children with ASD anticipate and process social rewards differently than typically developing (TD) children—but has focused on the reward value of unfamiliar face stimuli. Children with ASD process faces differently than their TD peers. Previous research has focused on face processing of unfamiliar faces, but less is known about how children with ASD process familiar faces. The current study investigated how children with ASD anticipate rewards accompanied by familiar versus unfamiliar faces. Methods The stimulus preceding negativity (SPN) of the event-related potential (ERP) was utilized to measure reward anticipation. Participants were 6- to 10-year-olds with (N = 14) and without (N = 14) ASD. Children were presented with rewards accompanied by incidental face or non-face stimuli that were either familiar (caregivers) or unfamiliar. All non-face stimuli were composed of scrambled face elements in the shape of arrows, controlling for visual properties. Results No significant differences between familiar versus unfamiliar faces were found for either group. When collapsing across familiarity, TD children showed larger reward anticipation to face versus non-face stimuli, whereas children with ASD did not show differential responses to these stimulus types. Magnitude of reward anticipation to faces was significantly correlated with behavioral measures of social impairment in the ASD group. Conclusions The findings do not provide evidence for differential reward anticipation for familiar versus unfamiliar face stimuli in children with or without ASD. These findings replicate previous work suggesting that TD children anticipate rewards accompanied by social stimuli more than rewards accompanied by non-social stimuli. The results do not support the idea that familiarity normalizes reward anticipation in children with ASD. Our findings also suggest that magnitude

  19. Introduction: Addiction and Brain Reward and Anti-Reward Pathways

    PubMed Central

    Gardner, Eliot L.

    2013-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the

  20. Challenges to the Russian Academic Profession.

    ERIC Educational Resources Information Center

    Smolentseva, Anna

    2003-01-01

    Analyzes the post-Soviet academic profession, focusing on the challenges it has to meet. Discusses the system of academic appointments and promotion, remuneration, motivation, evaluation of faculty, and academic freedom. (EV)

  1. Aging Affects Acquisition and Reversal of Reward-Based Associative Learning

    ERIC Educational Resources Information Center

    Weiler, Julia A.; Bellebaum, Christian; Daum, Irene

    2008-01-01

    Reward-based associative learning is mediated by a distributed network of brain regions that are dependent on the dopaminergic system. Age-related changes in key regions of this system, the striatum and the prefrontal cortex, may adversely affect the ability to use reward information for the guidance of behavior. The present study investigated the…

  2. Food Approach and Food Avoidance in Young Children: Relation with Reward Sensitivity and Punishment Sensitivity

    PubMed Central

    Vandeweghe, Laura; Vervoort, Leentje; Verbeken, Sandra; Moens, Ellen; Braet, Caroline

    2016-01-01

    It has recently been suggested that individual differences in Reward Sensitivity and Punishment Sensitivity may determine how children respond to food. These temperamental traits reflect activity in two basic brain systems that respond to rewarding and punishing stimuli, respectively, with approach and avoidance. Via parent-report questionnaires, we investigate the associations of the general motivational temperamental traits Reward Sensitivity and Punishment Sensitivity with Food Approach and Food Avoidance in 98 preschool children. Consistent with the conceptualization of Reward Sensitivity in terms of approach behavior and Punishment Sensitivity in terms of avoidance behavior, Reward Sensitivity was positively related to Food Approach, while Punishment Sensitivity was positively related to Food Avoidance. Future research should integrate these perspectives (i.e., general temperamental traits Reward Sensitivity and Punishment Sensitivity, and Food Approach and Avoidance) to get a better understanding of eating behavior and related body weight. PMID:27445898

  3. Food Approach and Food Avoidance in Young Children: Relation with Reward Sensitivity and Punishment Sensitivity.

    PubMed

    Vandeweghe, Laura; Vervoort, Leentje; Verbeken, Sandra; Moens, Ellen; Braet, Caroline

    2016-01-01

    It has recently been suggested that individual differences in Reward Sensitivity and Punishment Sensitivity may determine how children respond to food. These temperamental traits reflect activity in two basic brain systems that respond to rewarding and punishing stimuli, respectively, with approach and avoidance. Via parent-report questionnaires, we investigate the associations of the general motivational temperamental traits Reward Sensitivity and Punishment Sensitivity with Food Approach and Food Avoidance in 98 preschool children. Consistent with the conceptualization of Reward Sensitivity in terms of approach behavior and Punishment Sensitivity in terms of avoidance behavior, Reward Sensitivity was positively related to Food Approach, while Punishment Sensitivity was positively related to Food Avoidance. Future research should integrate these perspectives (i.e., general temperamental traits Reward Sensitivity and Punishment Sensitivity, and Food Approach and Avoidance) to get a better understanding of eating behavior and related body weight.

  4. Reward expectation alters learning and memory: The impact of the amygdala on appetitive-driven behaviors

    PubMed Central

    Savage, Lisa M.; Ramos, Raddy L.

    2009-01-01

    The capacity to seek and obtain rewards is essential for survival. Pavlovian conditioning is one mechanism by which organisms develop predictions about rewards and such anticipatory or expectancy states enable successful behavioral adaptations to environmental demands. Reward expectancies have both affective/motivational and discriminative properties that allow for the modulation of instrumental goal-directed behavior. Recent data provides evidence that different cognitive strategies (cue-outcome associations) and neural systems (amygdala) are used when subjects are trained under conditions that allow Pavlovian-induced reward expectancies to guide instrumental behavioral choices. Furthermore, it has been demonstrated that impairments typically observed in a number of brain-damaged models are alleviated or eliminated by embedding unique reward expectancies into learning/memory tasks. These results suggest that Pavlovian-induced reward expectancies can change both behavioral and brain processes. PMID:19022299

  5. Food Approach and Food Avoidance in Young Children: Relation with Reward Sensitivity and Punishment Sensitivity.

    PubMed

    Vandeweghe, Laura; Vervoort, Leentje; Verbeken, Sandra; Moens, Ellen; Braet, Caroline

    2016-01-01

    It has recently been suggested that individual differences in Reward Sensitivity and Punishment Sensitivity may determine how children respond to food. These temperamental traits reflect activity in two basic brain systems that respond to rewarding and punishing stimuli, respectively, with approach and avoidance. Via parent-report questionnaires, we investigate the associations of the general motivational temperamental traits Reward Sensitivity and Punishment Sensitivity with Food Approach and Food Avoidance in 98 preschool children. Consistent with the conceptualization of Reward Sensitivity in terms of approach behavior and Punishment Sensitivity in terms of avoidance behavior, Reward Sensitivity was positively related to Food Approach, while Punishment Sensitivity was positively related to Food Avoidance. Future research should integrate these perspectives (i.e., general temperamental traits Reward Sensitivity and Punishment Sensitivity, and Food Approach and Avoidance) to get a better understanding of eating behavior and related body weight. PMID:27445898

  6. What Rewards Do Students Want?

    ERIC Educational Resources Information Center

    Ware, Barbara Ann

    1978-01-01

    In general, students ranked personal kinds of recognition high and teachers ranked tangible sources of recognition high in surveys of the kinds of rewards that motivate students. The students' top two kinds of recognition were ranked as the bottom two by teachers. (Author/IRT)

  7. Virtual Rewards for Driving Green

    ERIC Educational Resources Information Center

    Pritchard, Josh

    2010-01-01

    Carbon dioxide from automobiles is a major contributor to global climate change. In "Virtual Rewards for Driving Green," Josh Pritchard proposes a computer application that will enable fuel-efficient drivers to earn "green" dollars with which to buy digital merchandise on the Web. Can getting items that exist only in cyberspace actually change a…

  8. The Hidden Costs of Rewards.

    ERIC Educational Resources Information Center

    Deci, Edward L.

    1976-01-01

    This paper discusses ways managers can motivate their employees to work and at the same time to increase their performance. Two theories of motivation--Vroom's theory and Atkinson's theory--focus on the use of extrinsic and intrinsic rewards respectively. A managerial strategy that combines the best of both intrinsic and extrinsic approaches to…

  9. Food as a reward in the classroom: school district policies are associated with practices in US public elementary schools.

    PubMed

    Turner, Lindsey; Chriqui, Jamie F; Chaloupka, Frank J

    2012-09-01

    The use of food as a reward for good student behavior or academic performance is discouraged by many national organizations, yet this practice continues to occur in schools. Our multiyear cross-sectional study examined the use of food as a reward in elementary schools and evaluated the association between district policies and school practices. School data were gathered during the 2007-2008, 2008-2009, and 2009-2010 school years via mail-back surveys (N=2,069) from respondents at nationally representative samples of US public elementary schools (1,525 unique schools, 544 of which also participated for a second year). During every year, the corresponding district policy for each school was gathered and coded for provisions pertaining to the use of food as a reward. School practices did not change over time and as of the 2009-2010 school year, respondents in 42.1% and 40.7% of schools, respectively, indicated that food was not used as a reward for academic performance or for good student behavior. In multivariate logistic regression analyses controlling for school characteristics and year, having a district policy that prohibited the use of food as a reward was significantly associated with school respondents reporting that food was not used as a reward for academic performance (P<0.05) or for good student behavior (P<0.05). School-level respondents in the West and the Midwest were less likely to report that food was not used as a reward than were respondents in the South and Northeast. As of 2009-2010, only 11.9% of the districts in our study prohibited the use of food as a reward. Strengthening district policies may reduce the use of food rewards in elementary schools.

  10. Effects of Varying Contingency and Directness of Rewards upon Children's Performance under Implicit Reward Conditions.

    ERIC Educational Resources Information Center

    Sharpley, Christopher F.

    1988-01-01

    Investigated the application of verbal praise as a reward with 84 third and fourth grade children who completed a digit-symbol coding task under contingent versus noncontingent and direct versus implicit reward conditions. Noncontingent rewards possessed no significant reinforcer effect under either reward condition. (SKC)

  11. The folly of rewarding silence while hoping for open reporting of adverse medical events--how to realign the rewards.

    PubMed

    Chamberlain, Nick

    2008-09-22

    The recent release under the Official Information Act (OIA) of Capital and Coast District Health Board's (CandC DHB) Serious and Sentinel Event Report, the subsequent national report, and the commitment to fund a New Zealand-wide incident reporting system raise a number of important issues. This paper discusses the barriers to incident reporting and the folly of attempting to reward system improvements while the barriers are still in place. Suggestions are also made to help guide the development of appropriate systems which will eliminate barriers and realign the rewards.

  12. Abnormal temporal difference reward-learning signals in major depression.

    PubMed

    Kumar, P; Waiter, G; Ahearn, T; Milders, M; Reid, I; Steele, J D

    2008-08-01

    Anhedonia is a core symptom of major depressive disorder (MDD), long thought to be associated with reduced dopaminergic function. However, most antidepressants do not act directly on the dopamine system and all antidepressants have a delayed full therapeutic effect. Recently, it has been proposed that antidepressants fail to alter dopamine function in antidepressant unresponsive MDD. There is compelling evidence that dopamine neurons code a specific phasic (short duration) reward-learning signal, described by temporal difference (TD) theory. There is no current evidence for other neurons coding a TD reward-learning signal, although such evidence may be found in time. The neuronal substrates of the TD signal were not explored in this study. Phasic signals are believed to have quite different properties to tonic (long duration) signals. No studies have investigated phasic reward-learning signals in MDD. Therefore, adults with MDD receiving long-term antidepressant medication, and comparison controls both unmedicated and acutely medicated with the antidepressant citalopram, were scanned using fMRI during a reward-learning task. Three hypotheses were tested: first, patients with MDD have blunted TD reward-learning signals; second, controls given an antidepressant acutely have blunted TD reward-learning signals; third, the extent of alteration in TD signals in major depression correlates with illness severity ratings. The results supported the hypotheses. Patients with MDD had significantly reduced reward-learning signals in many non-brainstem regions: ventral striatum (VS), rostral and dorsal anterior cingulate, retrosplenial cortex (RC), midbrain and hippocampus. However, the TD signal was increased in the brainstem of patients. As predicted, acute antidepressant administration to controls was associated with a blunted TD signal, and the brainstem TD signal was not increased by acute citalopram administration. In a number of regions, the magnitude of the abnormal

  13. Abnormal temporal difference reward-learning signals in major depression.

    PubMed

    Kumar, P; Waiter, G; Ahearn, T; Milders, M; Reid, I; Steele, J D

    2008-08-01

    Anhedonia is a core symptom of major depressive disorder (MDD), long thought to be associated with reduced dopaminergic function. However, most antidepressants do not act directly on the dopamine system and all antidepressants have a delayed full therapeutic effect. Recently, it has been proposed that antidepressants fail to alter dopamine function in antidepressant unresponsive MDD. There is compelling evidence that dopamine neurons code a specific phasic (short duration) reward-learning signal, described by temporal difference (TD) theory. There is no current evidence for other neurons coding a TD reward-learning signal, although such evidence may be found in time. The neuronal substrates of the TD signal were not explored in this study. Phasic signals are believed to have quite different properties to tonic (long duration) signals. No studies have investigated phasic reward-learning signals in MDD. Therefore, adults with MDD receiving long-term antidepressant medication, and comparison controls both unmedicated and acutely medicated with the antidepressant citalopram, were scanned using fMRI during a reward-learning task. Three hypotheses were tested: first, patients with MDD have blunted TD reward-learning signals; second, controls given an antidepressant acutely have blunted TD reward-learning signals; third, the extent of alteration in TD signals in major depression correlates with illness severity ratings. The results supported the hypotheses. Patients with MDD had significantly reduced reward-learning signals in many non-brainstem regions: ventral striatum (VS), rostral and dorsal anterior cingulate, retrosplenial cortex (RC), midbrain and hippocampus. However, the TD signal was increased in the brainstem of patients. As predicted, acute antidepressant administration to controls was associated with a blunted TD signal, and the brainstem TD signal was not increased by acute citalopram administration. In a number of regions, the magnitude of the abnormal

  14. Defining rewardable innovation in drug therapy.

    PubMed

    Aronson, Jeffrey K; Ferner, Robin E; Hughes, Dyfrig A

    2012-03-30

    Implementing mechanisms for rewarding those who introduce innovative medicinal products requires a definition of 'rewardable innovation'. Here, we propose a definition of innovation with respect to medicinal products, accompanied by a ranking of the importance of different types of innovativeness, with the aim of providing a basis for rewarding such innovation.

  15. Academic writing

    NASA Astrophysics Data System (ADS)

    Eremina, Svetlana V.

    2003-10-01

    The series of workshops on academic writing have been developed by academic writing instructors from Language Teaching Centre, Central European University and presented at the Samara Academic Writing Workshops in November 2001. This paper presents only the part dealing with strucutre of an argumentative essay.

  16. Academic Jibberish

    ERIC Educational Resources Information Center

    Krashen, Stephen

    2012-01-01

    In this article, the author talks about academic jibberish. Alfie Kohn states that a great deal of academic writing is incomprehensible even to others in the same area of scholarship. Academic Jibberish may score points for the writer but does not help research or practice. The author discusses jibberish as a career strategy that impresses those…

  17. Supporting and Rewarding Accomplished Teaching: Insights from Austin, Texas

    ERIC Educational Resources Information Center

    Lussier, David F.; Forgione, Pascal D., Jr.

    2010-01-01

    This article explores the strategic compensation efforts of the Austin Independent School District (AISD) in Texas, which is piloting a system of supports and rewards for teachers and administrators. The article highlights the key components of this system, what it took to put a 4-year pilot program in place, and what results are emerging from…

  18. 5 CFR 9901.412 - Rating and rewarding performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Rating and rewarding performance. 9901... LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL SECURITY PERSONNEL SYSTEM (NSPS) Performance Management § 9901.412 Rating and...

  19. Making Connections: A Curriculum Ideabook for Teachers of Applied Academics and Industrial & Engineering Systems.

    ERIC Educational Resources Information Center

    Harrington, Lois G.

    This document is designed to help vocational/tech prep and applied academics teachers plan and present their subject matter in a more integrated manner. The introduction presents the rationale for the ideabook. It is designed to help teachers modify their instructional program to more closely match the demands and realities of the real world. The…

  20. Injecting Warm Fuzzies into Cold Systems: Defining, Benchmarking, and Assessing Holistic, Person-Centered Academic Advising

    ERIC Educational Resources Information Center

    Ferguson, Holly Brooke

    2010-01-01

    This study examines if and how holistic, person-centered academic advising, based on an integrative framework of educational psychology (Bronfenbrenner), sociology (Weber), and counseling (Rogers) theories, can be fostered, implemented, and assessed at a research university. The study design uses the coding of qualitative data and its translation…

  1. Social Support Systems and Academic Performance of Single-Parent Students.

    ERIC Educational Resources Information Center

    Roy, Crystal M.; Fuqua, Dale R.

    1983-01-01

    Investigated the mediating effects of social support on the academic achievement of children in single parent families. Parents and oldest school-age children completed questionnaires on demographic and support group information. Results indicated adequate social support may mediate negative effects of single parent family status on academic…

  2. Detrimental effects of reward. Reality or myth?

    PubMed

    Eisenberger, R; Cameron, J

    1996-11-01

    Based on seemingly overwhelming empirical evidence of the decremental effects of reward on intrinsic task interest and creativity, the use of reward to alter human behavior has been challenged in literature reviews, textbooks, and the popular media. An analysis of a quarter century of research on intrinsic task interest and creativity revealed, however, that (a) detrimental effects of reward occur under highly restricted, easily avoidable conditions; (b) mechanisms of instrumental and classical conditioning are basic for understanding incremental and decremental effects of reward on task motivation; and (c) positive effects of reward on generalized creativity are easily attainable using procedures derived from behavior theory.

  3. How Academic Is Academic Development?

    ERIC Educational Resources Information Center

    Fraser, Kym; Ling, Peter

    2014-01-01

    University provision for academic development is well established in the USA, UK and many other countries. However, arrangements for its provision and staffing vary. In Australia, there has been a trend towards professional rather than academic staff appointments. Is this appropriate? In this paper, the domains of academic development work are…

  4. Goal or gold: overlapping reward processes in soccer players upon scoring and winning money.

    PubMed

    Häusler, Alexander Niklas; Becker, Benjamin; Bartling, Marcel; Weber, Bernd

    2015-01-01

    Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning, i.e., reward probability (RP), reward reception (RR) and reward prediction errors (RPE) showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes.

  5. A Leptin-Mediated Central Mechanism in Analgesia-Enhanced Opioid Reward in Rats

    PubMed Central

    Lim, Grewo; Kim, Hyangin; McCabe, Michael F.; Chou, Chiu-Wen; Wang, Shuxing; Chen, Lucy L.; Marota, John J.A.; Blood, Anne; Breiter, Hans C.

    2014-01-01

    Opioid analgesics are commonly used in chronic pain management despite a potential risk of rewarding. However, it remains unclear whether opioid analgesia would enhance the opioid rewarding effect thereby contributing to opioid rewarding. Utilizing a rat paradigm of conditioned place preference (CPP) combined with ankle monoarthritis as a condition of persistent nociception, we showed that analgesia induced by either morphine or the nonsteroid anti-inflammatory drug ibuprofen increased CPP scores in arthritic rats, suggesting that analgesia itself had a rewarding effect. However, arthritic rats exhibited a significantly higher CPP score in response to morphine than ibuprofen. Thus, the rewarding effect of morphine was enhanced in the presence of persistent nociception, producing a phenomenon of analgesia-enhanced opioid reward. At the cellular level, administration of morphine activated a cascade of leptin expression, glial activation, and dopamine receptor upregulation in the nucleus accumbens (NAc), while administration of ibuprofen decreased glial activation with no effect on leptin expression in the NAc. Furthermore, the morphine rewarding effect was blocked in leptin deficient ob/ob mice or by neutralizing leptin or interleukin-1β in the NAc without diminishing morphine analgesia. The data indicate that systemic opioid can activate a leptin-mediated central mechanism in the NAc that led to the enhanced opioid rewarding effect. These findings provide evidence for an interaction between opioid analgesia and opioid rewarding, which may have implications in clinical opioid dose escalation in chronic pain management. PMID:25031415

  6. Goal or Gold: Overlapping Reward Processes in Soccer Players upon Scoring and Winning Money

    PubMed Central

    Häusler, Alexander Niklas; Becker, Benjamin; Bartling, Marcel; Weber, Bernd

    2015-01-01

    Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning i.e. reward probability (RP), reward reception (RR) and reward prediction errors (RPE) showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes. PMID:25875594

  7. How sequential changes in reward magnitude modulate cognitive flexibility: Evidence from voluntary task switching.

    PubMed

    Fröber, Kerstin; Dreisbach, Gesine

    2016-02-01

    There is much evidence that the prospect of reward modulates cognitive control in terms of more stable behavior. Increases in expected reward magnitude, however, have been suggested to increase flexible behavior as evidenced by reduced switch costs. In a series of experiments, the authors provide evidence that this increased cognitive flexibility following increases in reward magnitude also promotes deliberate task switching. A modified task switching paradigm with forced- and free-choice trials and varying reward prospects was used. In Experiments 1-3 the prospect of a reward increase as compared to unchanged high reward increased voluntary switching rate (VSR). Experiment 4 showed that the prospect of a reward decrease did not alter VSR as compared to unchanged low reward. Experiment 5 used a standard voluntary task switching procedure and confirmed VSR effects found in Experiments 1-4. These findings are strong evidence for a mechanism that biases the cognitive system either toward stability or flexibility depending on changing reward expectation. Results are discussed within the framework of the adaptive gain theory. PMID:26237619

  8. Basal ganglia orient eyes to reward.

    PubMed

    Hikosaka, Okihide; Nakamura, Kae; Nakahara, Hiroyuki

    2006-02-01

    Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Sensorimotor/cognitive activities of neurons in the basal ganglia are strongly modulated by expected reward. Through their abundant outputs to the brain stem motor areas and the thalamocortical circuits, the basal ganglia appear capable of producing body movements based on expected reward. A good behavioral measure to test this hypothesis is saccadic eye movement because its brain stem mechanism has been extensively studied. Studies from our laboratory suggest that the basal ganglia play a key role in guiding the gaze to the location where reward is available. Neurons in the caudate nucleus and the substantia nigra pars reticulata are extremely sensitive to the positional difference in expected reward, which leads to a bias in excitability between the superior colliculi such that the saccade to the to-be-rewarded position occurs more quickly. It is suggested that the reward modulation occurs in the caudate where cortical inputs carrying spatial signals and dopaminergic inputs carrying reward-related signals are integrated. These data support a specific form of reinforcement learning theories, but also suggest further refinement of the theory.

  9. Incremental effects of reward on creativity.

    PubMed

    Eisenberger, R; Rhoades, L

    2001-10-01

    The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization. PMID:11642357

  10. Brain Circuits Encoding Reward from Pain Relief

    PubMed Central

    Navratilova, Edita; Atcherley, Christopher; Porreca, Frank

    2015-01-01

    Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex, activation of midbrain dopamine neurons and release of dopamine in the nucleus accumbens. Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute and chronic pain. PMID:26603560

  11. Academic Freedom and Indentured Students

    ERIC Educational Resources Information Center

    Williams, Jeffrey J.

    2012-01-01

    Discussion of academic freedom usually focuses on faculty, and it usually refers to speech. That is the gist of the 1915 "General Report of the Committee on Academic Freedom and Academic Tenure," appearing in the inaugural AAUP "Bulletin" as a kind of mission statement. Given the conditions of the American system of higher education--decentralized…

  12. Rewards for Inventors: A Review of Current Practice in UK Universities.

    ERIC Educational Resources Information Center

    Handscombe, R. D.

    1996-01-01

    Since the British government began allowing universities to exploit the products of their research, universities have developed cash reward systems for inventors. For many researchers, job satisfaction and peer recognition appear more important than monetary rewards. The money is often reinvested in further research. (SK)

  13. Reducing Absenteeism and Rescheduling among Grocery Store Employees with Point-Contingent Rewards

    ERIC Educational Resources Information Center

    Camden, Matt C.; Price, Virginia A.; Ludwig, Timothy D.

    2011-01-01

    The purpose of this research was to evaluate a reward program designed to reduce absenteeism among staff (N = 38) at a grocery store. The intervention included public feedback and a credit reward system whereby participants got store dollars for attendance and authorized rescheduling of work assignments. Results showed that absenteeism decreased…

  14. A Review of Reward Processing and Motivational Impairment in Schizophrenia

    PubMed Central

    Strauss, Gregory P.

    2014-01-01

    This article reviews and synthesizes research on reward processing in schizophrenia, which has begun to provide important insights into the cognitive and neural mechanisms associated with motivational impairments. Aberrant cortical-striatal interactions may be involved with multiple reward processing abnormalities, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; and (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. It will be important for psychosocial interventions targeting negative symptoms to account for abnormalities in each of these reward processes, which may also have important interactions; suggestions for novel behavioral intervention strategies that make use of external cues, reinforcers, and mobile technology are discussed. PMID:24375459

  15. Altruism and reward: motivational compatibility in deceased organ donation.

    PubMed

    Voo, Teck Chuan

    2015-03-01

    Acts of helping others are often based on mixed motivations. Based on this claim, it has been argued that the use of a financial reward to incentivize organ donation is compatible with promoting altruism in organ donation. In its report Human Bodies: Donation for Medicine and Research, the Nuffield Council on Bioethics uses this argument to justify its suggestion to pilot a funeral payment scheme to incentivize people to register for deceased organ donation in the UK. In this article, I cast a sceptical eye on the above Nuffield report's argument that its proposed funeral payment scheme would prompt deceased organ donations that remain altruistic (as defined by and valued the report). Specifically, I illustrate how this scheme may prompt various forms of mixed motivations which would not satisfy the report's definition of altruism. Insofar as the scheme produces an expectation of the reward, it stands diametrical to promoting an 'altruistic perspective'. My minimal goal in this article is to argue that altruism is not motivationally compatible with reward as an incentive for donation. My broader goal is to argue that if a financial reward is used to incentivize organ donation, then we should recognize that the donation system is no longer aiming to promote altruism. Rewarded donation would not be altruistic but it may be ethical given a persistent organ shortage situation.

  16. Altruism and reward: motivational compatibility in deceased organ donation.

    PubMed

    Voo, Teck Chuan

    2015-03-01

    Acts of helping others are often based on mixed motivations. Based on this claim, it has been argued that the use of a financial reward to incentivize organ donation is compatible with promoting altruism in organ donation. In its report Human Bodies: Donation for Medicine and Research, the Nuffield Council on Bioethics uses this argument to justify its suggestion to pilot a funeral payment scheme to incentivize people to register for deceased organ donation in the UK. In this article, I cast a sceptical eye on the above Nuffield report's argument that its proposed funeral payment scheme would prompt deceased organ donations that remain altruistic (as defined by and valued the report). Specifically, I illustrate how this scheme may prompt various forms of mixed motivations which would not satisfy the report's definition of altruism. Insofar as the scheme produces an expectation of the reward, it stands diametrical to promoting an 'altruistic perspective'. My minimal goal in this article is to argue that altruism is not motivationally compatible with reward as an incentive for donation. My broader goal is to argue that if a financial reward is used to incentivize organ donation, then we should recognize that the donation system is no longer aiming to promote altruism. Rewarded donation would not be altruistic but it may be ethical given a persistent organ shortage situation. PMID:24547770

  17. Glutamatergic transmission in drug reward: implications for drug addiction

    PubMed Central

    D'Souza, Manoranjan S.

    2015-01-01

    Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse. PMID:26594139

  18. Glutamatergic transmission in drug reward: implications for drug addiction.

    PubMed

    D'Souza, Manoranjan S

    2015-01-01

    Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse. PMID:26594139

  19. Glutamatergic transmission in drug reward: implications for drug addiction.

    PubMed

    D'Souza, Manoranjan S

    2015-01-01

    Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.

  20. Cortical control of VTA function and influence on nicotine reward.

    PubMed

    Wu, Jie; Gao, Ming; Shen, Jian-Xin; Shi, Wei-Xing; Oster, Andrew M; Gutkin, Boris S

    2013-10-15

    Tobacco use is a major public health problem. Nicotine acts on widely distributed nicotinic acetylcholine receptors (nAChRs) in the brain and excites dopamine (DA) neurons in the ventral tegmental area (VTA). The elicited increase of DA neuronal activity is thought to be an important mechanism for nicotine reward and subsequently the transition to addiction. However, the current understanding of nicotine reward is based predominantly on the data accumulated from in vitro studies, often from VTA slices. Isolated VTA slices artificially terminate communications between neurons in the VTA and other brain regions that may significantly alter nicotinic effects. Consequently, the mechanisms of nicotinic excitation of VTA DA neurons under in vivo conditions have received only limited attention. Building upon the existing knowledge acquired in vitro, it is now time to elucidate the integrated mechanisms of nicotinic reward on intact systems that are more relevant to understanding the action of nicotine or other addictive drugs. In this review, we summarize recent studies that demonstrate the impact of prefrontal cortex (PFC) on the modulation of VTA DA neuronal function and nicotine reward. Based on existing evidence, we propose a new hypothesis that PFC-VTA functional coupling serves as an integration mechanism for nicotine reward. Moreover, addiction may develop due to nicotine perturbing the PFC-VTA coupling and thereby eliminating the PFC-dependent cognitive control over behavior.

  1. Addiction is a Reward Deficit and Stress Surfeit Disorder

    PubMed Central

    Koob, George F.

    2013-01-01

    Drug addiction can be defined by a three-stage cycle – binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation – that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction. PMID:23914176

  2. Reward and punishment processing in depression.

    PubMed

    Eshel, Neir; Roiser, Jonathan P

    2010-07-15

    Depression is a complex and heterogeneous disorder whose cause is poorly understood. Theories on the mechanisms of the disease have often focused on either its neurobiology or its cognitive and behavioral manifestations. Recently, studies exploring how depressed patients process reward and punishment have linked these two facets together. It has been suggested that individuals with a dysfunction in a specialized network of brain regions are unable to exploit affective information to guide behavior. Deficits in this ability might predispose such individuals to develop depression, whereas subsequent restoration of this ability--whether through pharmacological or behavioral treatments--might enable recovery from the disorder. Here we review behavioral, neuroimaging, and computational findings relevant to this hypothesis. There is good evidence that depressed patients exhibit abnormal behavioral responses to rewards and punishments and that these tendencies correspond to aberrant function in frontostriatal systems modulated by the monoamine systems. Furthermore, computational studies have generated testable predictions for how these neural signaling and neurochemical abnormalities might contribute to the symptoms of depression. Combining these approaches--as well as molecular and behavioral work in animals--provides great promise for furthering our understanding of this common and debilitating disease.

  3. Changes in Reward after Gastric Bypass: the Advantages and Disadvantages.

    PubMed

    Scholtz, Samantha; Goldstone, Anthony P; le Roux, Carel W

    2015-10-01

    Gastric bypass surgery is an effective long-term weight loss intervention. Key to its success appears a putative shift in food preference away from high-energy-density foods associated with a reduced appetitive drive and loss of neural reactivity in the reward system of the brain towards food. Post-prandial exaggerated satiety gut hormone responses have been implicated as mediators. Whilst the positive impact of bariatric surgery on both physical and psychological outcomes for many patients is clearly evident, a subset of patients appear to be detrimentally affected by this loss of reward from food and by a lack of alternative strategies for regulating affect after surgery. Mindfulness training has emerged as a potential tool in reducing the need for immediate reward that underpins much of eating behaviour. Further research is needed to help identify patients who may be more vulnerable after gastric bypass and which forms of support may be most beneficial.

  4. Interaction of satiety and reward response to food stimulation.

    PubMed

    James, G Andrew; Gold, Mark S; Liu, Yijun

    2004-01-01

    Obesity is among the most pressing health issues affecting developed countries. The etiology of obesity remains unclear despite its associated health risks. We propose a framework for obesity modeled upon overeating as a substance dependence disorder arising from a combination of abnormal cognitive and neuroendocrine processes. While significant work in both of these fields has investigated the body's regulation of satiety signals, fewer studies have focused upon the mechanisms by which these two seemingly disparate systems interact. Although emotional states have been shown to mediate reward processing, the implications for hunger mediating reward have not previously been addressed. We review the interaction between central satiety signals and reward responses to food stimuli and discuss the implications of this research for understanding the causes of obesity.

  5. Potential effects of reward and loss avoidance in overweight adolescents

    PubMed Central

    Reyes, Sussanne; Peirano, Patricio; Luna, Beatriz; Lozoff, Betsy; Algarín, Cecilia

    2015-01-01

    Background Reward system and inhibitory control are brain functions that exert an influence on eating behavior regulation. We studied the differences in inhibitory control and sensitivity to reward and loss avoidance between overweight/obese and normal-weight adolescents. Methods We assessed 51 overweight/obese and 52 normal-weight 15-y-old Chilean adolescents. The groups were similar regarding sex and intelligence quotient. Using Antisaccade and Incentive tasks, we evaluated inhibitory control and the effect of incentive trials (neutral, loss avoidance, and reward) on generating correct and incorrect responses (latency and error rate). Results Compared to normal-weight group participants, overweight/obese adolescents showed shorter latency for incorrect antisaccade responses (186.0 (95% CI: 176.8–195.2) vs. 201.3 ms (95% CI: 191.2–211.5), P < 0.05) and better performance reflected by lower error rate in incentive trials (43.6 (95% CI: 37.8–49.4) vs. 53.4% (95% CI: 46.8–60.0), P < 0.05). Overweight/obese adolescents were more accurate on loss avoidance (40.9 (95% CI: 33.5–47.7) vs. 49.8% (95% CI: 43.0–55.1), P < 0.05) and reward (41.0 (95% CI: 34.5–47.5) vs. 49.8% (95% CI: 43.0–55.1), P < 0.05) compared to neutral trials. Conclusion Overweight/obese adolescents showed shorter latency for incorrect responses and greater accuracy in reward and loss avoidance trials. These findings could suggest that an imbalance of inhibition and reward systems influence their eating behavior. PMID:25927543

  6. Evaluating the neurobiology of sexual reward.

    PubMed

    Paredes, Raúl G

    2009-01-01

    There is much evidence that naturally occurring behaviors (e.g., the ingestion of food and water) and social behaviors (e.g., play, maternal behavior) can induce a reward state. This review includes definitions to distinguish between "reward" and "reinforcement," and a description of methods to assess reward and demonstrate that social interactions can indeed produce a positive affective (PA) state. Operant responses, partner preference, and sexual incentive motivation are all effective methods for evaluating approach behaviors under different conditions. The method most frequently used to evaluate a positive affective or reward state is conditioned place preference (CPP), which entails modification of an animal's initial preference after alternating exposure to a control stimulus in one chamber and a rewarding condition in the other. At the end of the training the animal shows a clear preference for the compartment associated with the rewarding stimulus. CPP demonstrates that it is possible to use different treatments and naturally occurring behaviors (e.g., water or food consumption, exercise) to induce a reward state. Sexual interactions and other social behaviors also produce a clear change of preference, indicating the induction of a reward or PA state. The reward state in males and females is mediated by opioids, and the medial preoptic area of the anterior hypothalamus is a crucial site for sexual reward. PMID:19106449

  7. Reward circuitry function in autism spectrum disorders

    PubMed Central

    Felder, Jennifer N.; Green, Steven R.; Rittenberg, Alison M.; Sasson, Noah J.; Bodfish, James W.

    2012-01-01

    Social interaction deficits and restricted repetitive behaviors and interests that characterize autism spectrum disorders (ASDs) may both reflect aberrant functioning of brain reward circuits. However, no neuroimaging study to date has investigated the integrity of reward circuits using an incentive delay paradigm in individuals with ASDs. In the present study, we used functional magnetic resonance imaging to assess blood-oxygen level-dependent activation during reward anticipation and outcomes in 15 participants with an ASD and 16 matched control participants. Brain activation was assessed during anticipation of and in response to monetary incentives and object image incentives previously shown to be visually salient for individuals with ASDs (e.g. trains, electronics). Participants with ASDs showed decreased nucleus accumbens activation during monetary anticipation and outcomes, but not during object anticipation or outcomes. Group × reward-type-interaction tests revealed robust interaction effects in bilateral nucleus accumbens during reward anticipation and in ventromedial prefrontal cortex during reward outcomes, indicating differential responses contingent on reward type in these regions. Results suggest that ASDs are characterized by reward-circuitry hypoactivation in response to monetary incentives but not in response to autism-relevant object images. The clinical implications of the double dissociation of reward type and temporal phase in reward circuitry function in ASD are discussed. PMID:21148176

  8. Monetary reward speeds up voluntary saccades

    PubMed Central

    Chen, Lewis L.; Chen, Y. Mark; Zhou, Wu; Mustain, William D.

    2014-01-01

    Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation. PMID:24994970

  9. The U.S. health care system is in crisis: implications for academic medical centers and their missions.

    PubMed

    Lofgren, Richard; Karpf, Michael; Perman, Jay; Higdon, Courtney M

    2006-08-01

    The medical care system in the United States is in crisis. Health care costs are escalating and threatening coverage for millions of people. Concerns about the quality of care and patient safety are heightening; patients and payers now publicly share these concerns and want to make providers more accountable. Traditionally, the response to rising health care costs has been to modify reimbursement models and incentives. Currently there is a movement to shift the responsibility of cost containment to the patients. The authors express doubts about the overall effectiveness of this strategy and propose reengineering the health care system to improve quality and efficiency. Leaders of academic medical centers must understand the forces and dynamics of change, and the potential institutional response to improve the quality and efficiency of their delivery systems and to preserve their missions: clinical care, education, research, and community service. As they suggest the operational changes needed to respond to this evolving health care environment, the authors discuss the implications for the various missions. The graduates of training programs must be prepared to function within multidisciplinary teams and constantly seek ways to improve quality and efficiency to ensure that care is accessible, affordable, and safe. Academic medical centers need to expand their research agenda to develop more expertise in quality and process improvement research. Additionally, they must provide the leadership to foster the transition from an era of "managed care" to an era of "organized systems of care."

  10. Inflated Reward Value in Early Opiate Withdrawal

    PubMed Central

    Wassum, Kate M.; Greenfield, Venuz Y.; Linker, Kay E.; Maidment, Nigel T.; Ostlund, Sean B.

    2014-01-01

    Through incentive learning the emotional experience of a reward in a relevant need state (e.g., hunger for food) sets the incentive value that guides the performance actions that earn that reward when the need state is encountered again. Opiate withdrawal has been proposed as a need state in which, through experience, opiate value can be increased resulting in escalated opiate self-administration. Endogenous opioid transmission plays anatomically dissociable roles in the positive emotional experience of reward consumption and incentive learning. We, therefore, sought to determine if chronic opiate exposure and withdrawal produces a disruption in the fundamental incentive learning process such that reward seeking, even for non-opiate rewards, can become maladaptive, inconsistent with the emotional experience of reward consumption and irrespective of need. Rats trained to earn sucrose or water on a reward-seeking chain were treated with morphine (10-30 mg/k.g., s.c.) daily for 11 d prior to testing in withdrawal. Opiate withdrawn rats showed elevated reward-seeking actions, but only after they experienced the reward in withdrawal, an effect that was strongest in early (1-3 d), as opposed to late (14-16 d) withdrawal. This was sufficient to overcome a negative reward value change induced by sucrose experience in satiety and, in certain circumstances, was inconsistent with the emotional experience of reward consumption. Lastly, we found that early opiate withdrawal-induced inflation of reward value was blocked by inactivation of basolateral amygdala mu opioid receptors. These data suggest that in early opiate withdrawal the incentive learning process is disrupted resulting in maladaptive reward seeking. PMID:25081350

  11. Errors in reward prediction are reflected in the event-related brain potential.

    PubMed

    Holroyd, Clay B; Nieuwenhuis, Sander; Yeung, Nick; Cohen, Jonathan D

    2003-12-19

    The error-related negativity (ERN) is a negative deflection in the event-related brain potential associated with error processing. A recent theory holds that the ERN is elicited by the impact of a reward prediction error signal carried by the mesencephalic dopamine system on anterior cingulate cortex. The theory predicts that larger ERNs should be elicited by unexpected unfavorable outcomes than by expected unfavorable outcomes. We tested the theory in an experiment in which the frequency of occurrence of reward was varied by condition, reasoning that the system that produces the ERN would come to expect non-reward when rewards were infrequent. Consistent with the theory, we found that larger ERNs were elicited by unexpected absences of reward.

  12. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....409 Section 9701.409 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES... SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... § 9701.342(a); (4) A within-grade increase determination under 5 CFR 531.404, prior to conversion to...

  13. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  14. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment.

  15. A Systems Engineering Framework for Implementing a Security and Critical Patch Management Process in Diverse Environments (Academic Departments' Workstations)

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hadi

    Use of the Patch Vulnerability Management (PVM) process should be seriously considered for any networked computing system. The PVM process prevents the operating system (OS) and software applications from being attacked due to security vulnerabilities, which lead to system failures and critical data leakage. The purpose of this research is to create and design a Security and Critical Patch Management Process (SCPMP) framework based on Systems Engineering (SE) principles. This framework will assist Information Technology Department Staff (ITDS) to reduce IT operating time and costs and mitigate the risk of security and vulnerability attacks. Further, this study evaluates implementation of the SCPMP in the networked computing systems of an academic environment in order to: 1. Meet patch management requirements by applying SE principles. 2. Reduce the cost of IT operations and PVM cycles. 3. Improve the current PVM methodologies to prevent networked computing systems from becoming the targets of security vulnerability attacks. 4. Embed a Maintenance Optimization Tool (MOT) in the proposed framework. The MOT allows IT managers to make the most practicable choice of methods for deploying and installing released patches and vulnerability remediation. In recent years, there has been a variety of frameworks for security practices in every networked computing system to protect computer workstations from becoming compromised or vulnerable to security attacks, which can expose important information and critical data. I have developed a new mechanism for implementing PVM for maximizing security-vulnerability maintenance, protecting OS and software packages, and minimizing SCPMP cost. To increase computing system security in any diverse environment, particularly in academia, one must apply SCPMP. I propose an optimal maintenance policy that will allow ITDS to measure and estimate the variation of PVM cycles based on their department's requirements. My results demonstrate that

  16. Reward positivity elicited by predictive cues.

    PubMed

    Holroyd, Clay B; Krigolson, Olav E; Lee, Seung

    2011-03-30

    A recent theory holds that a component of the human event-related brain potential called the reward positivity reflects a reward prediction error signal. We investigated this idea in gambling-like task in which, on each trial, a visual stimulus predicted a subsequent rewarding or nonrewarding outcome with 80% probability. Consistent with earlier results, we found that the reward positivity was larger to unexpected than to expected outcomes. In addition, we found that the predictive cues also elicited a reward positivity, as proposed by the theory. These results indicate that the reward positivity reflects the initial assessment of whether a trial will end in success or failure and the reappraisal of that information once the outcome actually occurs.

  17. Learning Reward Uncertainty in the Basal Ganglia.

    PubMed

    Mikhael, John G; Bogacz, Rafal

    2016-09-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  18. Learning Reward Uncertainty in the Basal Ganglia

    PubMed Central

    Bogacz, Rafal

    2016-01-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  19. Action controls dopaminergic enhancement of reward representations

    PubMed Central

    Guitart-Masip, Marc; Chowdhury, Rumana; Sharot, Tali; Dayan, Peter; Duzel, Emrah; Dolan, Raymond J.

    2012-01-01

    Dopamine is widely observed to signal anticipation of future rewards and thus thought to be a key contributor to affectively charged decision making. However, the experiments supporting this view have not dissociated rewards from the actions that lead to, or are occasioned by, them. Here, we manipulated dopamine pharmacologically and examined the effect on a task that explicitly dissociates action and reward value. We show that dopamine enhanced the neural representation of rewarding actions, without significantly affecting the representation of reward value as such. Thus, increasing dopamine levels with levodopa selectively boosted striatal and substantia nigra/ventral tegmental representations associated with actions leading to reward, but not with actions leading to the avoidance of punishment. These findings highlight a key role for dopamine in the generation of appetitively motivated actions. PMID:22529363

  20. Academic careers: choice and activity of graduates of a pediatric residency program 1974-1986.

    PubMed Central

    Lovejoy, F. H.; Ledley, F. D.; Nathan, D. G.

    1993-01-01

    In summary, our data suggest that the playing field for academic medicine is changing. It is more patient care oriented, more multifaceted and supported more by clinical dollars than in the past. Greater flexibility in what constitutes "academic success" is necessary to assure a supportive environment in which tomorrow's academic faculty can develop and flourish. To accomplish these goals promotion systems that reward not only research but also teaching and clinical care accomplishments will be necessary. Clinicians will need to be compared with clinicians, teachers with teachers, clinical investigators with clinical investigators and basic investigators with basic investigators. Sources of support will need to be more clearly targeted along activity lines with clinical dollars supporting the clinician, medical education dollars supporting the teacher-educators and federal and foundation dollars supporting research. In our department, time and effort for research (45%) approximates dollar support for this activity (44%), while clinical dollars (43%) fund to a greater degree time and effort committed to clinical care (34%), and administration and teaching dollars (13%) under fund time and effort committed to these activities (21%). This suggests the need to identify increased funding to support teaching and education. Promotion expectations for women will need to be more flexible and adjusted to family responsibilities and demands. Most of all, however, we academic faculty must support enthusiastically the importance and joy of our work. We must be encouraging to our colleagues and our students and continue to recognize that for all of the difficulties and challenges, academic life is a rewarding and fulfilling enterprise. PMID:1343441

  1. Academic careers: choice and activity of graduates of a pediatric residency program 1974-1986.

    PubMed

    Lovejoy, F H; Ledley, F D; Nathan, D G

    1993-01-01

    In summary, our data suggest that the playing field for academic medicine is changing. It is more patient care oriented, more multifaceted and supported more by clinical dollars than in the past. Greater flexibility in what constitutes "academic success" is necessary to assure a supportive environment in which tomorrow's academic faculty can develop and flourish. To accomplish these goals promotion systems that reward not only research but also teaching and clinical care accomplishments will be necessary. Clinicians will need to be compared with clinicians, teachers with teachers, clinical investigators with clinical investigators and basic investigators with basic investigators. Sources of support will need to be more clearly targeted along activity lines with clinical dollars supporting the clinician, medical education dollars supporting the teacher-educators and federal and foundation dollars supporting research. In our department, time and effort for research (45%) approximates dollar support for this activity (44%), while clinical dollars (43%) fund to a greater degree time and effort committed to clinical care (34%), and administration and teaching dollars (13%) under fund time and effort committed to these activities (21%). This suggests the need to identify increased funding to support teaching and education. Promotion expectations for women will need to be more flexible and adjusted to family responsibilities and demands. Most of all, however, we academic faculty must support enthusiastically the importance and joy of our work. We must be encouraging to our colleagues and our students and continue to recognize that for all of the difficulties and challenges, academic life is a rewarding and fulfilling enterprise.

  2. The impact of cognitive load on reward evaluation.

    PubMed

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. PMID:26431993

  3. Individual differences in reward sensitivity are related to food craving and relative body weight in healthy women.

    PubMed

    Franken, Ingmar H A; Muris, Peter

    2005-10-01

    According to the theory of J.A. Gray, a strongly reactive approach system is highly sensitive to reward or to cues that signal reward. This implies that intake driven by the rewarding properties of food should be affected by individual differences in reactivity of the approach system. The present study examined whether reward sensitivity is associated with food craving and relative body weight in a sample of female college students. Participants completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire and the trait version of the Food Craving Questionnaire and also reported their weight and height in order to compute Body Mass Index (BMI). Sensitivity to reward was significantly related to food craving and BMI. Furthermore, the correlation between reward sensitivity and BMI was not attenuated when the influence of food craving was partialled out, indicating that the relation between sensitivity to reward and BMI was not mediated by food craving. This is the first study demonstrating a relation between the personality trait of sensitivity to reward and BMI. These findings are discussed in the context of the involvement of dopaminergic reward circuitry in overeating.

  4. Academic Bullies

    ERIC Educational Resources Information Center

    Fogg, Piper

    2008-01-01

    Many professors have been traumatized by academic bullies. Unlike bullies at school, the academic bully plays a more subtle game. Bullies may spread rumors to undermine a colleague's credibility or shut their target out of social conversations. The more aggressive of the species cuss out co-workers, even threatening to get physical. There is…

  5. Academic Decathlon.

    ERIC Educational Resources Information Center

    Association of California School Administrators.

    This position paper from the Research, Evaluation, and Accreditation Committee of the Association of California School Administrators (ACSA) presents a description of the Academic Decathlon program and offers recommendations for improving the program and ways that ACSA can assist the program. The description of the Academic Decathlon, a ten-event…

  6. Dissociable functions of reward inference in the lateral prefrontal cortex and the striatum

    PubMed Central

    Tanaka, Shingo; Pan, Xiaochuan; Oguchi, Mineki; Taylor, Jessica E.; Sakagami, Masamichi

    2015-01-01

    In a complex and uncertain world, how do we select appropriate behavior? One possibility is that we choose actions that are highly reinforced by their probabilistic consequences (model-free processing). However, we may instead plan actions prior to their actual execution by predicting their consequences (model-based processing). It has been suggested that the brain contains multiple yet distinct systems involved in reward prediction. Several studies have tried to allocate model-free and model-based systems to the striatum and the lateral prefrontal cortex (LPFC), respectively. Although there is much support for this hypothesis, recent research has revealed discrepancies. To understand the nature of the reward prediction systems in the LPFC and the striatum, a series of single-unit recording experiments were conducted. LPFC neurons were found to infer the reward associated with the stimuli even when the monkeys had not yet learned the stimulus-reward (SR) associations directly. Striatal neurons seemed to predict the reward for each stimulus only after directly experiencing the SR contingency. However, the one exception was “Exclusive Or” situations in which striatal neurons could predict the reward without direct experience. Previous single-unit studies in monkeys have reported that neurons in the LPFC encode category information, and represent reward information specific to a group of stimuli. Here, as an extension of these, we review recent evidence that a group of LPFC neurons can predict reward specific to a category of visual stimuli defined by relevant behavioral responses. We suggest that the functional difference in reward prediction between the LPFC and the striatum is that while LPFC neurons can utilize abstract code, striatal neurons can code individual associations between stimuli and reward but cannot utilize abstract code. PMID:26236266

  7. The Impact of High Stakes Accountability Systems and the New Performance Demands on Special Education Teachers' Attitudes, Beliefs and Practice

    ERIC Educational Resources Information Center

    Zane, Robin Lee

    2012-01-01

    The No Child Left Behind Act of 2001 (NCLB) articulates the goal that all children can learn and are expected to achieve grade level academic proficiency by 2014. Based on theories underlying models of extrinsic motivation, the fundamental assumption and theory of action is that a system of rewards and sanctions will motivate teachers to focus on…

  8. Lateral habenula neurons signal errors in the prediction of reward information.

    PubMed

    Bromberg-Martin, Ethan S; Hikosaka, Okihide

    2011-08-21

    Humans and animals have the ability to predict future events, which they cultivate by continuously searching their environment for sources of predictive information. However, little is known about the neural systems that motivate this behavior. We hypothesized that information-seeking is assigned value by the same circuits that support reward-seeking, such that neural signals encoding reward prediction errors (RPEs) include analogous information prediction errors (IPEs). To test this, we recorded from neurons in the lateral habenula, a nucleus that encodes RPEs, while monkeys chose between cues that provided different chances to view information about upcoming rewards. We found that a subpopulation of lateral habenula neurons transmitted signals resembling IPEs, responding when reward information was unexpectedly cued, delivered or denied. These signals evaluated information sources reliably, even when the monkey's decisions did not. These neurons could provide a common instructive signal for reward-seeking and information-seeking behavior.

  9. Evidence for deficits in reward responsivity in antisocial youth with callous-unemotional traits.

    PubMed

    Marini, Victoria A; Stickle, Timothy R

    2010-10-01

    This study investigated reward responsivity in youth with high levels of callous-unemotional (CU) traits using a cross-sectional design. Whereas deficits in responding to punishment cues are well established in youth with CU traits, it is unclear whether responsivity to rewarding stimuli is impaired as well. Participants were 148 predominantly Caucasian, adjudicated adolescents between the ages of 11 and 17 (M = 15.1, SD = 1.4) who completed the Balloon Analogue Risk Task as part of a larger battery investigating aggression and social information processing. A Reward Responsivity variable was created to capture changes in participants' responding after receiving a reward. A hierarchical regression analysis indicated that higher levels of CU traits significantly predicted less reward responsivity, above and beyond gender, sensation seeking, and impulsivity. Results support Blair's (2004) Integrated Emotion Systems model that proposes individuals with CU traits are impaired in their responsivity to both appetitive and aversive stimuli. PMID:22448665

  10. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    PubMed

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. PMID:25972167

  11. Divergent Relationship of Depression Severity to Social Reward Responses Among Patients with Bipolar Versus Unipolar Depression

    PubMed Central

    Sharma, Anup; Satterthwaite, Theodore D.; Vandekar, Lillie; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; A.Elliott, Mark; Baldassano, Claudia; Thase, Michael E.; Gur, Raquel E.; Kable, Joseph W.; Wolf, Daniel H.

    2016-01-01

    Neuroimaging studies of mood disorders demonstrate abnormalities in brain regions implicated in reward processing. However, there is a paucity of research investigating how social rewards affect reward circuit activity in these disorders. Here, we evaluated the relationship of both diagnostic category and dimensional depression severity to reward system function in bipolar and unipolar depression. In total, 86 adults were included, including 24 patients with bipolar depression, 24 patients with unipolar depression, and 38 healthy comparison subjects. Participants completed a social reward task during 3T BOLD fMRI. On average, diagnostic groups did not differ in activation to social reward. However, greater depression severity significantly correlated with reduced bilateral ventral striatum activation to social reward in the bipolar depressed group, but not the unipolar depressed group. In addition, decreased left orbitofrontal cortical activation correlated with more severe symptoms in bipolar depression, but not unipolar depression. These differential dimensional effects resulted in a significant voxelwise group by depression severity interaction. Taken together, these results provide initial evidence that deficits in social reward processing are differentially related to depression severity in the two disorders. PMID:27295401

  12. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    PubMed

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible.

  13. The feedback-related negativity signals salience prediction errors, not reward prediction errors.

    PubMed

    Talmi, Deborah; Atkinson, Ryan; El-Deredy, Wael

    2013-05-01

    Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of a probabilistic reward expresses a prediction error signal derived from midbrain dopaminergic projections to the anterior cingulate cortex. We tested this theory by investigating whether FRN will also be observed for an inherently aversive outcome: physical pain. In another session, the outcome was monetary reward instead of pain. As predicted, unexpected reward omissions (a negative reward prediction error) yielded a more negative deflection relative to unexpected reward delivery. Surprisingly, unexpected pain omission (a positive reward prediction error) also yielded a negative deflection relative to unexpected pain delivery. Our data challenge the theory by showing that the FRN expresses aversive prediction errors with the same sign as reward prediction errors. Both FRNs were spatiotemporally and functionally equivalent. We suggest that FRN expresses salience prediction errors rather than reward prediction errors. PMID:23658166

  14. The feedback-related negativity signals salience prediction errors, not reward prediction errors.

    PubMed

    Talmi, Deborah; Atkinson, Ryan; El-Deredy, Wael

    2013-05-01

    Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of a probabilistic reward expresses a prediction error signal derived from midbrain dopaminergic projections to the anterior cingulate cortex. We tested this theory by investigating whether FRN will also be observed for an inherently aversive outcome: physical pain. In another session, the outcome was monetary reward instead of pain. As predicted, unexpected reward omissions (a negative reward prediction error) yielded a more negative deflection relative to unexpected reward delivery. Surprisingly, unexpected pain omission (a positive reward prediction error) also yielded a negative deflection relative to unexpected pain delivery. Our data challenge the theory by showing that the FRN expresses aversive prediction errors with the same sign as reward prediction errors. Both FRNs were spatiotemporally and functionally equivalent. We suggest that FRN expresses salience prediction errors rather than reward prediction errors.

  15. Midbrain volume predicts fMRI and ERP measures of reward reactivity.

    PubMed

    Carlson, Joshua M; Foti, Dan; Harmon-Jones, Eddie; Proudfit, Greg H

    2015-01-01

    Ventral striatal activation measured with functional magnetic resonance imaging (fMRI) and feedback negativity amplitude measured with event-related potentials (ERPs) are each enhanced during reward processing. Recent research has found that these two neural measures of reward processing are also related to one another, such that increases in ventral striatal activity are accompanied by increases in the amplitude of the feedback negativity. Although there is a long history of research implicating the midbrain dopamine system in reward processing, there has been little research into the possibility that structural variability in the midbrain may be linked to functional variability in reward reactivity. Here, we used structural MRI to measure midbrain volumes in addition to fMRI and ERP measures of functional neural reactivity to rewards in a simple gambling task. The results suggest that as midbrain volumes increase, fMRI reward reactivity in the ventral striatum and medial prefrontal cortex also increases. A similar relationship exists between midbrain structure and the amplitude of the feedback negativity; further, this relationship is mediated specifically by activity in the ventral striatum. These data demonstrate convergence between neuroanatomical, hemodynamic, and electrophysiological measures. Thus, structural variability in the midbrain relates to variability in fMRI and ERP measures of functional reward reactivity, which may play a critical role in reward-related psychopathologies and the treatment of these disorders.

  16. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study

    PubMed Central

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J.; Davey, Christopher G.; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M.; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN. PMID:26197051

  17. Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae)

    NASA Astrophysics Data System (ADS)

    Kandori, Ikuo; Yamaki, Takafumi

    2012-09-01

    Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.

  18. Academically at-risk students' perceptions of a constructivist high school biology pedagogy

    NASA Astrophysics Data System (ADS)

    Sweeney, Heidi

    Successful completion of the Living Environment, one state's high school biology course, is a state graduation requirement. The academically at-risk students enrolled in one suburban public high school had been disproportionately unsuccessful at achieving a passing grade in this course. In response, a constructivist biology curriculum was created to address the needs of at-risk students in a heterogeneous ability classroom. There is a gap in current research on students' perceptions of their learning experiences; consequently, the purpose of this phenomenological study was to obtain at-risk students' perceptions of a constructivist-based curriculum and to clarify what aspects of the Living Environment course assisted in their success. Eight academically at-risk students who successfully passed the Living Environment course were surveyed to seek their perceptions of the curricular and pedagogical change. These data were analyzed using the typological method with the inclusion of both inductive and predetermined categories. The students stated a preference for group work and active engagement. They also found that the binder system introduced in the course kept them better organized and helped them increase academic performance. Students perceived that effort was required but was rewarding. Findings derived from this study may contribute to social change by assisting teachers in tailoring curriculum and pedagogical decisions. This study provided a voice for the academically at-risk student and, in doing so, may contribute to social change by providing insight to teachers and administrators that can help students succeed academically, increase graduation rates, and enhance employment opportunities.

  19. Rewards and punishments, goal-directed behavior and consciousness.

    PubMed

    Ressler, Newton

    2004-03-01

    A parsimonious account of consciousness is given in which it emerges as a direct consequence of basic neural processes without the necessity of any higher order system. In this model, pleasant or unpleasant conscious feelings of various stimuli in the environment stem from their higher order associations to innate rewards or punishments. When a conditioned stimulus (CS) is associated with a reward, it acquires pleasant feelings due to the temporal correlation of the activations representing its sensory features with those representing innate visceral reward acquisition processes. When the CS is associated with the punishment, it acquires unpleasant feelings due to the correlation of its sensory features with the innate visceral inhibition of punishment acquisition processes. The correlations involve coherent activity between the sensory cortex, the limbic system, the orbital and medial prefrontal cortex, and more lateral prefrontal areas where stimuli can be incorporated into working memory. A conscious act involves responses (or attempts to improve the environment) made on the basis of the feelings of such stimuli. Covert memory scans, in which comparisons are made of the reward and punishment associations of the outcomes of previous responses, are related to the motivations and attention behind the conscious selection of a current response. This model appears to fit together various empirical observations. Its relations to some higher or more abstract mental processes, and some evolutionary implications are discussed. PMID:15036931

  20. Changes in morphine reward in a model of neuropathic pain.

    PubMed

    Cahill, Catherine M; Xue, Lihua; Grenier, Patrick; Magnussen, Claire; Lecour, Samantha; Olmstead, Mary C

    2013-06-01

    In addition to sensory disturbances, neuropathic pain is associated with an ongoing and persistent negative affective state. This condition may be reflected as altered sensitivity to rewarding stimuli. We examined this hypothesis by testing whether the rewarding properties of morphine are altered in a rat model of neuropathic pain. Neuropathic pain was induced by chronic constriction of the common sciatic nerve. Drug reward was assessed using an unbiased, three-compartment conditioned place preference (CPP) paradigm. The rats underwent two habituation sessions beginning 6 days after surgery. Over the next 8 days, they were injected with drug or vehicle and were confined to one CPP compartment for 30 min. On the following test day, the rats had access to all three compartments for 30 min. Consistent with the literature, systemic administration of morphine dose-dependently increased the CPP in pain-naive animals. In rats with neuropathic pain, however, the dose-dependent effects of morphine were in a bell-shaped curve, with a low dose of morphine (2 mg/kg) producing a greater CPP than a higher dose of morphine (8 mg/kg). In a separate group of animals, acute administration of morphine reversed mechanical allodynia in animals with neuropathic pain at the same doses that produced a CPP. The increased potency of systemic morphine to produce a CPP in animals with neuropathic pain suggests that the motivation for opioid-induced reward is different in the two states.