Sample records for academic scientists engineers

  1. Mentoring, Gender, and Careers of Academic Scientists.

    ERIC Educational Resources Information Center

    Grant, Linda; And Others

    This study explores the dynamics and effects of mentoring relationships, with particular emphasis on the experiences of women and minorities as proteges. It draws upon quantitative and qualitative data gathered from a survey of 587 academic scientists and interviews with 55 academic scientists, in 3 disciplinary areas: physics and astronomy,…

  2. Young Engineers and Scientists: a Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  3. Stress and morale of academic biomedical scientists.

    PubMed

    Holleman, Warren L; Cofta-Woerpel, Ludmila M; Gritz, Ellen R

    2015-05-01

    Extensive research has shown high rates of burnout among physicians, including those who work in academic health centers. Little is known, however, about stress, burnout, and morale of academic biomedical scientists. The authors interviewed department chairs at one U.S. institution and were told that morale has plummeted in the past five years. Chairs identified three major sources of stress: fear of not maintaining sufficient funding to keep their positions and sustain a career; frustration over the amount of time spent doing paperwork and administrative duties; and distrust due to an increasingly adversarial relationship with the executive leadership.In this Commentary, the authors explore whether declining morale and concerns about funding, bureaucracy, and faculty-administration conflict are part of a larger national pattern. The authors also suggest ways that the federal government, research sponsors, and academic institutions can address these concerns and thereby reduce stress and burnout, increase productivity, and improve overall morale of academic biomedical scientists.

  4. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  5. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Lin, C.; Clarac, T.

    2004-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  6. The Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Jahn, J.; Hummel, P.

    2003-12-01

    The Young Engineers and Scientists (YES) Program is a ommunity partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We gratefully acknowledge partial funding for the YES Program from a NASA EPO grant.

  7. The Young Engineers and Scientists (YES) mentorship program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.

  8. The Young Engineers and Scientists (YES) Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Clarac, T.; Lin, C.

    2004-11-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.

  9. It's a wonderful life: a career as an academic scientist.

    PubMed

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  10. Gender Differences in the Careers of Academic Scientists and Engineers: A Literature Review. Special Report.

    ERIC Educational Resources Information Center

    Bentley, Jerome T.; Adamson, Rebecca

    The literature on women in science and engineering is extensive and addresses such issues as early education, decision to study and pursue careers in science, and how women fair in their jobs. This review used the literature on the careers of women scientists and engineers employed in academia to examine how women in these disciplines fare…

  11. Participation of Academic Scientists in Relationships with Industry

    PubMed Central

    Zinner, Darren E.; Bolcic-Jankovic, Dragana; Clarridge, Brian; Blumenthal, David; Campbell, Eric G.

    2013-01-01

    Relationships between academic researchers and industry have received considerable attention in the last 20 years, but current data on the prevalence, magnitude, and trends in such relationships are rare. In a mailed survey of 3080 academic life science researchers conducted in 2007, we found the majority (52.8%) of academic life scientists have some form of relationship with industry. Compared to our previous studies in 1995 and 1985, we found a significant decrease in industry support of university research, which could have major consequences for the academic life science research sector. PMID:19887423

  12. Information needs of academic medical scientists at Chulalongkorn University.

    PubMed Central

    Premsmit, P

    1990-01-01

    The information needs of scientists in English-speaking countries have been studied and reported in the library literature. However, few studies exist on the information-seeking patterns of scientists in developing countries, and no study has examined the information needs of medical scientists in developing Asian countries. This study investigated the information needs of academic medical scientists at Chulalongkorn University in Bangkok, Thailand. The results indicate that medical scientists have three types of information needs: identifying up-to-date information, obtaining relevant studies and data, and developing research topics. Thai scientists' information-seeking behavior was different from that of scientists in developed countries. The study shows a high use of libraries as information providers; Thai medical scientists rely heavily on information from abroad. PMID:2224302

  13. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  14. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  15. Ethical considerations for biomedical scientists and engineers: issues for the rank and file.

    PubMed

    Kwarteng, K B

    2000-01-01

    Biomedical science and engineering is inextricably linked with the fields of medicine and surgery. Yet, while physicians and surgeons, nurses, and other medical professionals receive instruction in ethics during their training and must abide by certain codes of ethics during their practice, those engaged in biomedical science and engineering typically receive no formal training in ethics. In fact, the little contact that many biomedical science and engineering professionals have with ethics occurs either when they participate in government-funded research or submit articles for publication in certain journals. Thus, there is a need for biomedical scientists and engineers as a group to become more aware of ethics. Moreover, recent advances in biomedical technology and the ever-increasing use of new devices virtually guarantee that biomedical science and engineering will become even more important in the future. Although they are rarely in direct contact with patients, biomedical scientists and engineers must become aware of ethics in order to be able to deal with the complex ethical issues that arise from our society's increasing reliance on biomedical technology. In this brief communication, the need for ethical awareness among workers in biomedical science and engineering is discussed in terms of certain conflicts that arise in the workaday world of the biomedical scientist in a complex, modern society. It is also recognized that inasmuch as workers in the many branches of bioengineering are not regulated like their counterparts in medicine and surgery, perhaps academic institutions and professional societies are best equipped to heighten ethical awareness among workers in this important field.

  16. Inside the "Turris Eburnea": Entrepreneurial Scientists Emerging from Academic Hierarchies

    ERIC Educational Resources Information Center

    Peruta, Maria Rosaria Della

    2008-01-01

    Why do inventors and top scientists from leading universities exploit their research results differently from others? Why do apparently similar laboratory experiences make "academic entrepreneurs" achieve different entrepreneurial goals? Does the academic experience have an influence on the willingness to spin off? Or is that willingness simply…

  17. The Impacts of Postdoctoral Training on Scientists' Academic Employment

    ERIC Educational Resources Information Center

    Su, Xuhong

    2013-01-01

    This article examines the dynamics of postdoctoral training affecting scientists' academic employment, focusing on timing and prestige dimensions. Postdoc training proves beneficial to academic employment--more so in less prestigious departments than in top ones. Postdoc duration is subject to diminishing returns. The benefits of training…

  18. Living with Internationalization: The Changing Face of the Academic Life of Chinese Social Scientists

    ERIC Educational Resources Information Center

    Xie, Meng

    2018-01-01

    Internationalization is an integral part of the strategies of leading Chinese universities to strive for world-class standing. It has left its marks on the academic life of China's social scientists. This article explores the impact of internationalization on the academic life of Chinese social scientists using Tsinghua University as an example.…

  19. Young Engineers and Scientists (YES) - A Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2007-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years and YES 2K7 continued this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  20. Differential forms for scientists and engineers

    NASA Astrophysics Data System (ADS)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  1. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  2. Young engineers and scientists - a mentorship program emphasizing space education

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  3. Supply and Demand for Scientists and Engineers. Second Edition.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    This report, which includes 51 tables and charts, examines past, present, and future imbalances in the supply of and demand for scientists and engineers. The supply is assessed by source and by field, and compared with current and short-range demand for new graduates and for experienced scientists and engineers, including assessment of the…

  4. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    ERIC Educational Resources Information Center

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  5. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    ERIC Educational Resources Information Center

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  6. YES 2K5: Young Engineers and Scientists Mentorship Program

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2005-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 13 years, and YES 2K5 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K5 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K5 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of a high school student. Over the past 13 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from the NASA MMS Mission, the NASA E/PO program, and local charitable foundations.

  7. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  8. Nuclear Targeting Terms for Engineers and Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, John W.

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less

  9. Career Management for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  10. Continuing Education for Scientists and Engineers: Delivery Systems in North Carolina.

    ERIC Educational Resources Information Center

    Harrell, Daniel E.; Gibbs, Rebecca F.

    Focusing on the continuing education (CE) of scientists/engineers in North Carolina working in small (1-500 employees), geographically dispersed companies, this study: 1) identified and described CE resources currently being used by scientists/engineers to maintain and extend their professional competence and capabilities; 2) determined the extent…

  11. Key Barriers for Academic Institutions Seeking To Retain Female Scientists and Engineers: Family-Unfriendly Policies, Low Numbers, Stereotypes, and Harassment.

    ERIC Educational Resources Information Center

    Rosser, Sue V.; Lane, Eliesh O'Neil

    2002-01-01

    Evaluates survey responses from almost (n=400) Professional Opportunities for Women in Research and Education (POWRE) awardees from fiscal years 1997-2000 to elucidate problems and opportunities identified by female scientists and engineers. (Contains 25 references.) (Author/YDS)

  12. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    NASA Astrophysics Data System (ADS)

    Lee, Sang Eun

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement outcomes at early career stages. Female academic scientists have disadvantages in the career progress in the academic STEM. They tend to fall behind throughout their career paths and to leave the field compared to their male colleagues. Researchers have found that gender differences in the career advancement are shaped by gender-biased evaluations derived from gender stereotypes. Other studies demonstrate the positive impacts of mentoring and gender homophily in the mentoring dyads. To add greater insights to the current findings of female academic scientists' career disadvantages, this dissertation investigates comprehensive effects of gender, mentoring, and gender homophily in the mentoring dyads on female scientists' career advancement outcomes in academic science. Based on the Status Characteristics Theory, the concept of mentoring, Social Capital Theory, and Ingroup Bias Theory, causal path models are developed to test direct and indirect effects of gender, mentoring resources, and gender homophily on STEM faculty's career advancement. The research models were tested using structural equation modeling (SEM) with data collected from a national survey, funded by the National Science Foundation, completed in 2011 by tenured and tenure-track academic STEM faculty from higher education institutions in the United States. Findings suggest that there is no gender difference in career advancement controlling for mentoring resources and gender homophily in the mentoring dyads and other factors including research productivity and domestic caregiving responsibilities. Findings also show that the positive relationship between

  13. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    PubMed

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  14. YES 2K7: A Mentorship Program for Young Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P.

    2007-10-01

    The Young Engineers and Scientists 2007 (YES 2K7) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 15 years, with YES 2K7 continuing this trend. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science and astronomy) and engineering. YES 2K7 consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES 2K7 developed a website for the Magnetospheric Multiscale Mission (MMS) from the perspective of 20 high school students (yesserver.space.swri.edu). Over the past 15 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Acknowledgements: We acknowledge funding and support from the NASA MMS Mission, SwRI, Northside Independent School District, and local charitable foundations.

  15. Can a Clinician-Scientist Training Program Develop Academic Orthopaedic Surgeons? One Program's Thirty-Year Experience.

    PubMed

    Brandt, Aaron M; Rettig, Samantha A; Kale, Neel K; Zuckerman, Joseph D; Egol, Kenneth A

    2017-10-25

    Clinician-scientist numbers have been stagnant over the past few decades despite awareness of this trend. Interventions attempting to change this problem have been seemingly ineffective, but research residency positions have shown potential benefit. We sought to evaluate the effectiveness of a clinician-scientist training program (CSTP) in an academic orthopedic residency in improving academic productivity and increasing interest in academic careers. Resident training records were identified and reviewed for all residents who completed training between 1976 and 2014 (n = 329). There were no designated research residents prior to 1984 (pre-CSTP). Between 1984 and 2005, residents self-selected for the program (CSTP-SS). In 2005, residents were selected by program before residency (CSTP-PS). Residents were also grouped by program participation, research vs. clinical residents (RR vs. CR). Data were collected on academic positions and productivity through Internet-based and PubMed search, as well as direct e-mail or phone contact. Variables were then compared based on the time duration and designation. Comparing all RR with CR, RR residents were more likely to enter academic practice after training (RR, 34%; CR, 20%; p = 0.0001) and were 4 times more productive based on median publications (RR, 14; CR, 4; p < 0.0001). Furthermore, 42% of RR are still active in research compared to 29% of CR (p = 0.04), but no statistical difference in postgraduate academic productivity identified. The CSTP increased academic productivity during residency for the residents and the program. However, this program did not lead to a clear increase in academic productivity after residency and did not result in more trainees choosing a career as clinician-scientists. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Young Engineers and Scientists (YES 2K6): Independent and Group Mentorship Projects

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    2006-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). YES has been highly successful during the past 14 years, and YES 2K6 continued this trend. It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences and engineering. YES 2K6 consists of two parts: 1) a three-week summer workshop and 2) a mentorship where students complete individual research projects during their academic year. The intensive workshop is held at SwRI where students experience the research environment first-hand. They also develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. YES 2K6 students developed a website for the Magnetospheric Multiscale (MMS) Mission from the perspective of a high school student. The collegial mentorship takes place during their academic year where students complete individual research projects under the guidance of their mentors and earn honors credit. At the end of the school year, students publicly present and display their work at their schools. This acknowledges their accomplishments and spreads career awareness to other students and teachers. Over the past 14 years, all YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the benefits of YES for their academic preparation and choice of college majors. We acknowledge E/PO funding from the NASA MMS Mission and local charitable foundations.

  17. SCIENTISTS AND ENGINEERS STATISTICAL DATA SYSTEM (SESTAT)

    EPA Science Inventory

    SESTAT is a comprehensive and integrated system of information about the employment, educational, and demographic characteristics of scientists and engineers (S&E) in the United States. In concept it covers those with a bachelor's degree or higher who either work in or are educat...

  18. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    NASA Astrophysics Data System (ADS)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  19. Connections, Productivity and Funding: An Examination of Factors Influencing Scientists' Perspectives on the Market Orientation of Academic Research

    ERIC Educational Resources Information Center

    Ronning, Emily Anne

    2012-01-01

    This study examines scientists' perceptions of the environment in which they do their work. Specifically, this study examines how academic and professional factors such as research productivity, funding levels for science, connections to industry, type of academic appointment, and funding sources influence scientists' perceptions of the…

  20. Written Communication Skills for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2016-12-01

    Lord Chancellor, Francis Bacon of England said: Reading maketh a full man; conference a ready man; and writing an exact man. Even after his death, Francis Bacon remained extremely influential through his works, especially as philosophical advocate and practitioner of the scientific method during the scientific revolution. Written communication skills are extremely important for scientists and engineers because it helps them to achieve their goals effectively and meet stipulated deadlines according to a pre-established schedule. Richard Arum and Josipa Roksa claim that American students are learning very little during their first two years of college (Arum and Roksa, 2011). Written communication involves expressing yourself clearly, using language with precision; constructing a logical argument; taking notes; editing and summarizing; and writing reports. There are three main elements to written communication. First and foremost is the structure because this in principle outlines clearly the way the entire content is laid out. Second, the style which primarily indicates the way it is written and how communication is made effective and vibrant. Third, the content which should document in complete detail, what you are writing about. Some researchers indicate that colleges and universities are failing to prepare the students to meet the demanding challenges of the present day workforce and are struggling to maintain an international status (Johnson, K. 2013). In this presentation, the author provides some guidelines to help students improve their written communication skills. References: Johnson, Kristine (2013) "Why Students Don't Write: Educating in the Era of Credentialing: Academically Adrift: Limited Learning on College Campuses," Conversations on Jesuit Higher Education: Vol. 43, Article 9. Available at: http://epublications.marquette.edu/conversations/vol43/iss1/9 Arum, Richard and Roksa, Josipa (2011) Academically Adrift: Limited Learning on College Campuses

  1. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  2. YES 2K6: A mentorship program for young engineers and scientists

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  3. Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework.

    PubMed

    Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M; Goldberg, Judith D; Lindsell, Christopher J; Morton, Sally C; Pollock, Brad H; Rahbar, Mohammad H; Welty, Leah J; Parker, Robert A

    2015-10-01

    Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, nontraditional education, and specialized service activities is also outlined. Although biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines.The authors offer three key recommendations to members of institutional promotion committees, department chairs, and others evaluating team scientists. First, contributions to team-based scholarship and specialized contributions to education and service need to be assessed and given appropriate and substantial weight. Second, evaluations must be founded on well-articulated criteria for assessing the stature and accomplishments of team scientists. Finally, mechanisms for collecting evaluative data must be developed and implemented at the institutional level. Without these three essentials, contributions of team scientists will continue to be undervalued in the academic environment.

  4. The talent process of successful academic women scientists at elite research universities in New York state

    NASA Astrophysics Data System (ADS)

    Kaenzig, Lisa M.

    The importance of science in our society continues to increase, as the needs of the global culture and the problems of the world's growing populations affect resources internationally (DeLisi, 2008; Fischman, 2007; Park, 2008). The need for qualified and experienced scientists to solve complex problems is important to the future of the United States. Models of success for women in STEM disciplines are important to improve the recruitment and retention of women in academic science. This study serves as an examination of the facilitators and barriers---including external factors and internal characteristics---on the talent development process of successful women academic scientists. Since there are few studies relating specifically to the career experiences of successful women in academic science careers (Ceci & Williams, 2007; Wasserman, 2000; Xie & Shauman, 2003), a literature review was conducted that examined the (1) the gifted literature on women, including the eminence literature; (2) the higher education literature on women faculty and academic science, and (3) the literature related to the internal characteristics and external factors that influence the talent development process. The final section of the literature review includes a literature map (Creswell, 2009) outlining the major studies cited in this chapter. The conclusion, based on a critical analysis of the literature review, outlines the need for this study. The current study utilizes the framework of Gagne's differentiated talent development model for gifted individuals (Gagne, 1985, 1991) to examine the themes cited in multiple studies that influence the talent development process. Through a mixed-design methodology (Creswell, 2009) that incorporates quantitative and qualitative analysis using a survey and follow-up interviews with selected participants, this study seeks to explore the effects of internal characteristics, external influences, significant events, and experiences on the success of

  5. Self-Control and Academic Performance in Engineering

    ERIC Educational Resources Information Center

    Honken, Nora; Ralston, Patricia A.; Tretter, Thomas R.

    2016-01-01

    Self-control has been related to positive student outcomes including academic performance of college students. Because of the critical nature of the first semester academic performance for engineering students in terms of retention and persistence in pursuing an engineering degree, this study investigated the relationship between freshmen…

  6. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  7. The Science Race: Training and Utilization of Scientists and Engineers, US and USSR.

    ERIC Educational Resources Information Center

    Ailes, Catherine P.; Rushing, Francis W.

    This book represents a comparison of the systems of training and utilization of scientists/engineers in the United States and Soviet Union. Chapter 1 provides a general description of the economic structure and organization in which the training of scientists/engineers is conducted and in which such trained personnel are employed. In chapters 2-5,…

  8. Handbook of applied mathematics for engineers and scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, M.

    1991-12-31

    This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.

  9. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  10. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  11. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    NASA Astrophysics Data System (ADS)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our

  12. Going "Green": Environmental Jobs for Scientists and Engineers

    ERIC Educational Resources Information Center

    Ramey, Alice

    2009-01-01

    Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…

  13. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  14. Educating the surgeon-scientist: A qualitative study evaluating challenges and barriers toward becoming an academically successful surgeon.

    PubMed

    Kodadek, Lisa M; Kapadia, Muneera R; Changoor, Navin R; Dunn, Kelli Bullard; Are, Chandrakanth; Greenberg, Jacob A; Minter, Rebecca M; Pawlik, Timothy M; Haider, Adil H

    2016-12-01

    The advancement of surgical science relies on educating new generations of surgeon-scientists. Career development awards (K Awards) from the National Institutes of Health, often considered a marker of early academic success, are one way physician-scientists may foster skills through a mentored research experience. This study aimed to develop a conceptual framework to understand institutional support and other factors leading to a K Award. A national, qualitative study was conducted with academic surgeons. Participants included 15 K Awardees and 12 surgery department Chairs. Purposive sampling ensured a diverse range of experiences. Semistructured, in-depth telephone interviews were conducted. Interviews were audio recorded and transcribed verbatim, and 2 reviewers analyzed the transcripts using Grounded Theory methodology. Participants described individual and institutional factors contributing to success. K Awardees cited personal factors such as perseverance and team leadership skills. Chairs described the K Awardee as an institutional "investment" requiring protected time for research, financial support, and mentorship. Both K Awardees and Chairs identified a number of challenges unique to the surgeon-scientist, including financial strains and competing clinical demands. Institutional support for surgeons pursuing K Awards is a complex investment with significant initial costs to the department. Chairs act as stewards of institutional resources and support those surgeon-scientists most likely to be successful. Although the K Award pathway is one way to develop surgeon-scientists, financial burdens and challenges may limit its usefulness. These findings, however, may better prepare young surgeons to develop career plans and identify new mechanisms for academic productivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design

    NASA Astrophysics Data System (ADS)

    Kugelmass, Rachel

    This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.

  16. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  17. Lived Experiences and Perceptions on Mentoring among Latina Scientists and Engineers

    ERIC Educational Resources Information Center

    San Miguel, Anitza M.

    2010-01-01

    The purpose of this qualitative study was to reveal the lived mentoring experiences of Latinas in science and engineering. The study also sought to understand how Latina scientists and engineers achieved high-level positions within their organizations and the impediments they encountered along their professional journey. The theoretical framework…

  18. Reviews of Data on Science Resources, No. 25. Doctoral Scientists and Engineers in Private Industry, 1973.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported are manpower data needed by those engaged in science and engineering policy activities. The information is collected from scientists and engineers themselves. The basis of this report is the first survey, in a biennial series, of the Doctoral Roster of Scientists and Engineers, conducted for the National Science Foundation by the…

  19. Characteristics of Doctoral Scientists and Engineers in the United States, 1973.

    ERIC Educational Resources Information Center

    Scopino, John A.; And Others

    This publication presents data on the supply, utilization, and characteristics of U.S. doctoral scientists and engineers. The population surveyed consisted of individuals in the United States who held science or engineering doctorates, or who had received doctorates in nonscience and nonengineering areas but were employed in science or engineering…

  20. The Information-Seeking Habits of Engineering Faculty

    ERIC Educational Resources Information Center

    Engel, Debra; Robbins, Sarah; Kulp, Christina

    2011-01-01

    Many studies of information-seeking habits of engineers focus on understanding the similarities and differences between scientists and engineers. This study explores the information-seeking behavior of academic engineering faculty from twenty public research universities. This investigation includes an examination of how frequently engineer- ing…

  1. The Information Needs of Scientists and Engineers in Aerospace.

    ERIC Educational Resources Information Center

    Raitt, D. I.

    The information seeking and use habits of more than 600 scientists and engineers on staff at the European Space Agency (ESA) were studied and compared with those of staff at five European organizations with similar missions: the United Nations Education, Scientific, and Cultural Organization (UNESCO) in France; the International Atomic Energy…

  2. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  3. SED Alumni---breeding ground for scientists

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2006-04-01

    In 1943 the US Army established the Special Engineering Detachment (SED), in which mostly drafted young soldiers possessing some scientific credentials (though usually quite minimal) were reassigned from other duties to the Manhattan Project to assist in various research and development aspects of nuclear weapons. The Los Alamos contingent, never more than a few hundred GIs, worked with more senior scientists and engineers, often assuming positions of real responsibility. An unintended consequence of this circumstance was the fact that being in the SEDs turned out to be a fortuitous breeding ground for future physicists, chemists, and engineers. SEDs benefited from their close contacts with established scientists, working with them side by side, attended lectures by luminaries, and gained invaluable experience that would help them establish academic and industrial careers later in life. I will discuss some of these individuals (I list only those of whom I am personally aware). These include Henry ``Heinz'' Barschall*, Richard Bellman*-RAND Corporation, Murray Peshkin-ANL, Peter Lax-Courant Institute, NYU, William Spindel*-NRC,NAS, Bernard Waldman- Notre Dame, Richard Davisson*-U of Washington, Arnold Kramish- RAND, UNESCO, Josef Hofmann- Acoustic Research Corp, Val Fitch- Princeton U. *deceased

  4. Successful Latina Scientists and Engineers: Their Lived Mentoring Experiences and Career Development

    ERIC Educational Resources Information Center

    San Miguel, Anitza M.; Kim, Mikyong Minsun

    2015-01-01

    Utilizing a phenomenological perspective and method, this study aimed to reveal the lived career mentoring experiences of Latinas in science and engineering and to understand how selected Latina scientists and engineers achieved high-level positions. Our in-depth interviews revealed that (a) it is important to have multiple mentors for Latinas'…

  5. The women in science and engineering scholars program

    NASA Technical Reports Server (NTRS)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  6. The Impact of Federal Programs and Policies on Manpower Planning for Scientists and Engineers: Problems and Progress.

    ERIC Educational Resources Information Center

    Scientific Manpower Commission, Washington, DC.

    This document reports the results of a workshop held to assess the impact of federal programs and legislation on manpower planning for scientists and engineers. Included are presentations relating to manpower utilization and planning via federal government agencies and professional societies for scientists and engineers. It was concluded that the…

  7. From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers.

    ERIC Educational Resources Information Center

    Long, J. Scott, Ed.

    This study documents the changes that have occurred in the representation of women in science and engineering and the characteristics of women scientists and engineers. Data from two National Science Foundation databases, the Survey of Earned Doctorates for New Ph.D.s and the Survey of Doctoral Recipients for the science & engineering doctoral…

  8. Turkish Adaptation of Questionnaire on Attitudes towards Engineers and Scientists

    ERIC Educational Resources Information Center

    Ergün, Aysegül; Balçin, Muhammed Dogukan

    2017-01-01

    The aim of this research was to present the Turkish adaptation of the survey for Middle-School Students' Attitudes toward Engineers and Scientists prepared by Lyons, Fralick and Kearn (2009) 32 items in a 5-point Likert type scale. The questionnaire was administered to 707 students receiving education in the fifth, sixth, seventh and eighth grades…

  9. Scientists, Engineers, and Physicians From Abroad, Trends Through Fiscal Year 1970.

    ERIC Educational Resources Information Center

    Gannon, Joseph; Stewart, Christine C.

    A report on the influx of scientists, engineers, and physicians from abroad is presented to assess recent trends in terms of numbers, occupations, and national backgrounds. Both immigrant and nonimmigrant components are included. Descriptions are made in connection with migration patterns, aliens adjusted to immigrant status, demographic…

  10. Study of the scientific reasoning methods: Identifying the salient reasoning characteristics exhibited by engineers and scientists in an R&D environment

    NASA Astrophysics Data System (ADS)

    Kuhn, William F.

    At the core of what it means to be a scientist or engineer is the ability to think rationally using scientific reasoning methods. Yet, typically if asked, scientist and engineers are hard press for a reply what that means. Some may argue that the meaning of scientific reasoning methods is a topic for the philosophers and psychologist, but this study believes and will prove that the answers lie with the scientists and engineers, for who really know the workings of the scientific reasoning thought process than they. This study will provide evidence to the aims: (a) determine the fundamental characteristics of cognitive reasoning methods exhibited by engineer/scientists working in R&D projects, (b) sample the engineer/scientist community to determine their views as to the importance, frequency, and ranking of each of characteristics towards benefiting their R&D projects, (c) make concluding remarks regarding any identified competency gaps in the exhibited or expected cognitive reasoning methods of engineer/scientists working on R&D projects. To drive these aims are the following three research questions. The first, what are the salient characteristics of cognitive reasoning methods exhibited by engineer/scientists in an R&D environment? The second, what do engineer/scientists consider to be the frequency and importance of the salient cognitive reasoning methods characteristics? And the third, to what extent, if at all, do patent holders and technical fellows differ with regard to their perceptions of the importance and frequency of the salient cognitive reasoning characteristics of engineer/scientists? The methodology and empirical approach utilized and described: (a) literature search, (b) Delphi technique composed of seven highly distinguish engineer/scientists, (c) survey instrument directed to distinguish Technical Fellowship, (d) data collection analysis. The results provide by Delphi Team answered the first research question. The collaborative effort validated

  11. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  12. An examination of undergraduate engineering students' stereotype of scientists and their career intentions

    NASA Astrophysics Data System (ADS)

    Stara, Michelle M.

    The US Government Accountability Office (GAO) (2013) has acknowledged that additional graduates are needed in engineering and related STEM fields. However, the GAO has also noted that it is difficult to determine if the additional graduates will align with employer demand at the time of entry into the workforce. This research study attempts to examine undergraduate engineering students' perceptions of scientists and if they were related to students' intentions to pursue science by examining the constructs of Stereotypes of Scientists (SOS) and Career Intentions in Science (CIS). While results of data analysis were not significant, patterns were seen that provided valuable information with regard to the variability of undergraduate engineering students and the complexity of what goes into stereotype formation and career choice. As a practitioner, there were pertinent applications that could be implemented from the results of this and related studies. From the perspective of practitioners, the findings may be used to target recruitment, retention, and specific teaching strategies to increase enrollment and graduate numbers in the lesser known engineering and STEM fields.

  13. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Aleta, Beda T.

    2016-01-01

    This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…

  14. Towards a portal and search engine to facilitate academic and research collaboration in engineering and education

    NASA Astrophysics Data System (ADS)

    Bonilla Villarreal, Isaura Nathaly

    While international academic and research collaborations are of great importance at this time, it is not easy to find researchers in the engineering field that publish in languages other than English. Because of this disconnect, there exists a need for a portal to find Who's Who in Engineering Education in the Americas. The objective of this thesis is to built an object-oriented architecture for this proposed portal. The Unified Modeling Language (UML) model developed in this thesis incorporates the basic structure of a social network for academic purposes. Reverse engineering of three social networks portals yielded important aspects of their structures that have been incorporated in the proposed UML model. Furthermore, the present work includes a pattern for academic social networks..

  15. Analysis of Office/Laboratory Staying Hour and Home Working Hour of Japanese Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Ejiri, A.

    The second questionnaire for scientists and engineers was carried out in 2007, and status of Japanese scientists and engineers were analyzed and reported. A part of the data was reanalyzed from the viewpoint of work life balance. In particular, office/laboratory staying hour and home working hour were analyzed and dependences on various factors were investigated. It was found that these hours depend on gender, marital status, number of child, employment status and age. In addition, the total hours tend to be kept constant regardless of various factors.

  16. Mentoring the next generation of physician-scientists in Japan: a cross-sectional survey of mentees in six academic medical centers.

    PubMed

    Sakushima, Ken; Mishina, Hiroki; Fukuhara, Shunichi; Sada, Kenei; Koizumi, Junji; Sugioka, Takashi; Kobayashi, Naoto; Nishimura, Masaharu; Mori, Junichiro; Makino, Hirofumi; Feldman, Mitchell D

    2015-03-19

    Physician-scientists play key roles in biomedical research across the globe, yet prior studies have found that it is increasingly difficult to recruit and retain physician-scientists in research careers. Access to quality research mentorship may help to ameliorate this problem in the U.S., but there is virtually no information on mentoring in academic medicine in Japan. We conducted a survey to determine the availability and quality of mentoring relationships for trainee physician-scientists in Japan. We surveyed 1700 physician-scientists in post-graduate research training programs in 6 academic medical centers in Japan about mentorship characteristics, mentee perceptions of the mentoring relationship, and attitudes about career development. A total of 683 potential physician-scientist mentees completed the survey. Most reported that they had a departmental mentor (91%) with whom they met at least once a month; 48% reported that they were very satisfied with the mentoring available to them. Mentoring pairs were usually initiated by the mentor (85% of the time); respondents identified translational research skills (55%) and grant writing (50%) as unmet needs. Mentoring concerning long-term career planning was significantly associated with the intention to pursue research careers, however this was also identified by some mentees as an unmet need (35% desired assistance; 15% reported receiving it). More emphasis and formal training in career mentorship may help to support Japanese physician-scientist mentees to develop a sense of self-efficacy to pursue and stay in research careers.

  17. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  18. Utilization of and Demand for Engineers and Scientists in Industrial Research.

    ERIC Educational Resources Information Center

    Alden, John D.

    A survey of the employment and demand for scientists and engineers in industrial research laboratories was made among all companies belonging to the Industrial Research Institute and a number of other organizations early in 1972. A questionnaire was used to analyze such aspects as reliability of future estimates, employment trends, personnel…

  19. NASA Science Mission Directorate Forum Support of Scientists and Engineers to Engage in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.

    2015-12-01

    For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.

  20. Impact of Entrepreneurship Teaching in Higher Education on the Employability of Scientists and Engineers

    ERIC Educational Resources Information Center

    O'Leary, Simon

    2012-01-01

    This paper explores the impact effective entrepreneurship teaching has on the employability of scientists and engineers. Business teaching, guest speakers and work placements are part of many science and engineering degrees and this research indicates that entrepreneurship and related issues are also being addressed in a variety of ways and having…

  1. Managing an academic career in science: What gender differences exist and why?

    NASA Astrophysics Data System (ADS)

    Richards, Gayle Patrice

    The present study examines the career trajectories of academic scientists during the period from 1993 to 2001 to explore gender differences in mobility. Data from the National Science Foundation's Survey of Doctorate Recipients are used to examine and compare gender differences in the odds of promotion. The effects of age, marital and family status, duration of time to complete doctorate, academic discipline, cumulative number of publications and time in the survey are considered as explanatory variables. Event history analyses are conducted for all scientists, for scientists in four major academic disciplines and for scientists in various academic ranks. While no overall gender differences were observed in the odds of promotion, several important similarities and differences were evident. Expectedly, publications had a significant and positive relationship with advancement for both women and men. The role of parent influenced promotions quite differently for women and men. Contrary to expectations based on prior research, academic women scientists who were mothers advanced at similar rates as women without children. Consistent with expectations based on traditional roles, married men and men with children generally advanced more quickly than single or childless men, respectively. Two surprising patterns emerged among subgroups of women. Marriage was associated with greater odds of advancement for women engineers and motherhood was associated with greater odds of advancement for among assistant professors. Possible explanations for these findings are presented.

  2. Innovation Development--An Action Learning Programme for Medical Scientists and Engineers

    ERIC Educational Resources Information Center

    Beniston, Lee; Ellwood, Paul; Gold, Jeff; Roberts, James; Thorpe, Richard

    2014-01-01

    There is increasing evidence that action learning is valuable in a higher education setting. This paper goes on to report a personal development programme, based on principles of critical action learning, where the aim is to equip early-career scientists and engineers working in a university setting with the knowledge, skills and confidence to…

  3. Advantage, Absence of Advantage, and Disadvantage Among Scientists and Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy DiTomaso

    2008-09-23

    DiTomaso talks about survey data on the career experiences of 3,200 scientists and engineers from 24 major companies. Her survey findings indicate that most people who do well in their careers and make significant contributions to their organizations get assistance from others in their workplace in many forms, including offering opportunities such as good projects, providing resources that make good performance more likely, and opening up networking possibilities.

  4. Entrepreneurship for Creative Scientists

    NASA Astrophysics Data System (ADS)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  5. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  6. Scientists and Engineers in the Federal Government. Personnel Bibliography Series Number 30.

    ERIC Educational Resources Information Center

    Witham, Frank

    Annotations and bibliographic information are provided for reports, journal articles and other documents referring to scientists and engineers received by the U. S. Civil Service Commission library between 1965 and 1969. The documents are classified and reported in the following sections: supply and demand for technical personnel; personnel…

  7. Gender Differences in the Academic Performance and Retention of Undergraduate Engineering Majors

    ERIC Educational Resources Information Center

    Haemmerlie, Frances Montgomery; Montgomery, Robert L.

    2012-01-01

    This study examined the role of academic performance factors, and personality traits as measured by the "Hogan Personality Inventory" (Hogan & Hogan, 2007), in the academic success and retention of undergraduate engineering majors. With regard to academic performance, the academic measures of ACT score and high school GPA were…

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  10. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    PubMed

    Beaudrie, Christian E H; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development.

  11. STEMujeres: A case study of the life stories of first-generation Latina engineers and scientists

    NASA Astrophysics Data System (ADS)

    Vielma, Karina I.

    Research points to the many obstacles that first-generation, Latina students face when attempting to enter fields in science, technology, engineering, and mathematics, STEM. This qualitative, case study examined the personal and educational experiences of first-generation Latina women who successfully navigated the STEM educational pipeline earning bachelor's, master's, and doctoral degrees in various fields of engineering. Three research questions guided the study: (1) How does a first-generation Latina engineer and scientist describe her life experiences as she became interested in STEM? (2) How does she describe her educational experiences as she navigated the educational pipeline in the physics, mathematics, and/or engineering field(s)? (3) How did she respond to challenges, obstacles and microaggressions, if any, while navigating the STEM educational pipeline? The study was designed using a combination of Critical Race Theory frameworks---Chicana feminist theory and racial microaggressions. Through a life history case study approach, the women shared their stories of success. With the participants' help, influential persons in their educational paths were identified and interviewed. Data were analyzed using crystallization and thematic results indicated that all women in this study identified their parents as planting the seed of interest through the introduction of mathematics. The women unknowingly prepared to enter the STEM fields by taking math and science coursework. They were guided to apply to STEM universities and academic programs by others who knew about their interest in math and science including teachers, counselors, and level-up peers---students close in age who were just a step more advanced in the educational pipeline. The women also drew from previous familial struggles to guide their perseverance and motivation toward educational degree completion. The lives of the women where complex and intersected with various forms of racism including

  12. PREDICTING ACADEMIC ACHIEVEMENTS OF ENGINEERING AND SCIENCE STUDENTS IN ISRAEL.

    ERIC Educational Resources Information Center

    PERLBERG, ARYE

    A LONGITUDINAL STUDY (HIGH SCHOOL THROUGH COLLEGE) WAS CARRIED OUT AT THE TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY TO INVESTIGATE ACADEMIC PREDICTORS AND PROBLEMS RELATED TO PREDICTION. FOR FOUR YEARS, THREE CLASSES OF 1,087 ENGINEERING STUDENTS WERE FOLLOWED. INTELLECTIVE PREDICTORS AND ACADEMIC CRITERIA ALONE WERE INVESTIGATED. HIGH SCHOOL AND…

  13. Citizenship Ceremony for Dr. von Braun and German-Born Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    1955-01-01

    In a swearing-in ceremony held at Huntsville High School, one hundred and three German-born scientists and engineers, along with family members, took the oath of citizenship to become United States citizens. Among those taking the oath was Dr. Wernher von Braun, located in the second row, right side, third from the end.

  14. Learning Styles of Mexican Food Science and Engineering Students

    ERIC Educational Resources Information Center

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  15. Scientists versus Regulators: Precaution, Novelty & Regulatory Oversight as Predictors of Perceived Risks of Engineered Nanomaterials

    PubMed Central

    Beaudrie, Christian E. H.; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H.

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of ‘nano experts’ to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  16. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  17. Academic satisfaction among Latino/a and White men and women engineering students.

    PubMed

    Flores, Lisa Y; Navarro, Rachel L; Lee, Hang Shim; Addae, Dorothy A; Gonzalez, Rebecca; Luna, Laura L; Jacquez, Ricardo; Cooper, Sonya; Mitchell, Martha

    2014-01-01

    The current study tests a model of academic satisfaction in engineering based on Lent, Brown, and Hackett's (1994, 2000) social cognitive career theory among a sample of 527 engineering majors attending a Hispanic serving institution. The findings indicated that (a) an alternative bidirectional model fit the data for the full sample; (b) all of the hypothesized relations were significant for the full sample, except the path from engineering interests to goals; (c) social cognitive career theory predictors accounted for a significant amount of variance in engineering goals (26.6%) and academic satisfaction (45.1%); and (d) the model parameters did not vary across men and women or across Latino/a and White engineering undergraduate students. Implications for research and practice are discussed in relation to persistence in engineering among women and Latinos/as. (c) 2014 APA, all rights reserved.

  18. Perspective: PhD scientists completing medical school in two years: looking at the Miami PhD-to-MD program alumni twenty years later.

    PubMed

    Koniaris, Leonidas G; Cheung, Michael C; Garrison, Gwen; Awad, William M; Zimmers, Teresa A

    2010-04-01

    Producing and retaining physician-scientists remains a major challenge in advancing innovation, knowledge, and patient care across all medical disciplines. Various programs during medical school, including MD-PhD programs, have been instituted to address the need for continued production of physician-scientists. From 1971 through 1989, 508 students with a prior PhD in the sciences, mathematics, or engineering graduated in two years from an accelerated MD program at the University of Miami School of Medicine. The program, designed to address potential clinical physician shortages rather than physician-scientist shortages, quickly attracted many top-notch scientists to medicine. Many program graduates went to top-tier residencies, pursued research careers in academic medicine, and became academic leaders in their respective fields. A retrospective examination of graduates conducted in 2008-2009 demonstrated that approximately 59% took positions in academic university medical departments, 3% worked for governmental agencies, 5% entered industry as researchers or executives, and 33% opted for private practice. Graduates' positions included 85 full professors, 11 university directors or division heads, 14 academic chairs, 2 medical school deans, and 1 astronaut. Overall, 30% of graduates had obtained National Institutes of Health funding after completing the program. These results suggest that accelerated medical training for accomplished scientists can produce a large number of successful physician-scientists and other leaders in medicine. Furthermore, these results suggest that shortening the medical portion of combined MD-PhD programs might also be considered.

  19. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  20. Physics for Scientists and Engineers, 5th edition - Volume 1

    NASA Astrophysics Data System (ADS)

    Tipler, Paul A.; Mosca, Gene P.

    For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.

  1. CosmoAcademy Training and Certification for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Grier, Jennifer A.; Gay, Pamela L.; CosmoQuest Team

    2016-10-01

    CosmoQuest is a virtual research facility bringing together scientists, citizens, and learners of all ages. CosmoQuest offers classes, training, and learning opportunities online through CosmoAcademy, offering opportunities for all kinds of learners to become more connected to the science of the Universe. In this poster we describe CosmoAcademy opportunities for Subject Matter Experts (SMEs), scientists and engineers who are interested in broadening their impact of their work by providing learning opportunities for those outside of the scientific community. CosmoAcademy offers SME programs at a variety of levels and across a variety of topics in formal and informal education and outreach -- ranging from sharing the results of your work on social media, through delivering an online class series, to partnering with teachers and schools. SMEs may combine sequences of training to earn certification at various levels for their participation in the CosmoAcademy programs. SMEs who have been trained may also apply to teach CosmoAcademy classes for the community on subjects of their expertise to build a rich and engaging learning resource for members of society who wish to understand more about the Universe.

  2. Characterizing learning-through-service students in engineering by gender and academic year

    NASA Astrophysics Data System (ADS)

    Carberry, Adam Robert

    Service is increasingly being viewed as an integral part of education nationwide. Service-based courses and programs are growing in popularity as opportunities for students to learn and experience their discipline. Widespread adoption of learning-through-service (LTS) in engineering is stymied by a lack of a body of rigorous research supporting the effectiveness of these experiences. In this study, I examine learning-through-service through a nationwide survey of engineering undergraduate and graduate students participating in a variety of LTS experiences. Students (N = 322) participating in some form of service -- service-learning courses or extra-curricular service programs -- from eighty-seven different institutions across the United States completed a survey measuring demographic information (institution, gender, academic year, age, major, and grade point average), self-perceived sources of learning (service and traditional coursework), engineering epistemological beliefs, personality traits, and self-concepts (self-efficacy, motivation, expectancy, and anxiety) toward engineering design. Responses to the survey were used to characterize engineering LTS students and identify differences in these variables in terms of gender and academic year. The overall findings were that LTS students perceived their service experience to be a beneficial source for learning professional skills and, to a lesser degree, technical skills, held moderately sophisticated engineering epistemological beliefs, and were generally outgoing, compassionate, and adventurous. Self-perceived sources of learning, epistemological beliefs, and personality traits were shown to be poor predictors of student engineering achievement. Self-efficacy, motivation, and outcome expectancy toward engineering design were generally high for all LTS students; most possessed rather low anxiety levels toward engineering design. These trends were generally consistent between genders and across the five academic

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  4. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  5. Bourdieu and Academic Capitalism: Faculty "Habitus" in Materials Science and Engineering

    ERIC Educational Resources Information Center

    Mendoza, Pilar; Kuntz, Aaron M.; Berger, Joseph B.

    2012-01-01

    We present Bourdieu's notions of field, capital, "habitus," and strategy and how these concepts apply today in light of academic capitalism using an empirical study of faculty work in one specific field in engineering that exemplifies current tendencies brought by academic capitalism. We conclude with a discussion of practical implications.…

  6. Project Lead the Ways' Long-Term Effects on Post-Secondary Engineering Academic Success

    NASA Astrophysics Data System (ADS)

    Zion, George H.

    The purpose of this study was to investigate the relationship between students' high school Project Lead They Way participation and their subsequent academic success in post-secondary engineering studies and to assess to what degree, if any, their level of Project Lead The Way (PLTW) participation, gender, and AALANA status (African American, Latino/a American and Native American) effected this success. PLTW is the nation's single largest provider of pre-engineering curriculums, the subject of this research study, currently being offered in over 3,200 secondary schools nationwide. Despite this level of integration, the amount of research on PLTW's effectiveness has been very limited. To date, the majority of the literature on PLTW has examined its impact on students' high school academic performance or their desire to further their engineering studies. The findings from these studies have been overwhelmingly positive, indicating that PLTW students often had greater achievements in math and science and either plan to, or have actually enrolled, in post-secondary studies at higher rates. Nevertheless, the amount of literature on PLTW's effects on students' academic success in post-secondary engineering studies is very limited. Furthermore, no research has yet to examine for the moderating effects of gender, ethnicity, or level of PLTW participation on students' post-secondary academics success. The population of interest for this research study was 1,478 students who entered an undergraduate engineering program from 2007 to 2009 at a privately endowed, co-educational university located in the northeastern United States. The findings of this research study were that virtually all the effects of PLTW participation, gender, and AALANA status had on academic success were observed during students' freshmen and sophomore years. These effects were positive for PLTW participation, and adverse for female and AALANA students. Additionally, PLTW participation, gender, and

  7. Senior scientists

    NASA Astrophysics Data System (ADS)

    A small task force of volunteer senior scientists and engineers was organized recently under the aegis of the American Association of Retired Persons (AARP) “to utilize its collective talents for the betterment of society and to provide opportunities for individual personal accomplishment and enrichment.” Among the projects under consideration are assisting the Washington, D.C., school system to improve its science and mathematics instruction and assessing the impact of technology on older persons.One of the task force's first projects is to develop a roster of retired scientists and engineers in the Washington, D.C., metropolitan area to garner volunteer talent for future projects.

  8. Engineering Students and Faculty Perceptions of Academic Dishonesty

    ERIC Educational Resources Information Center

    Tabsh, Sami W.; Abdelfatah, Akmal S.; El Kadi, Hany A.

    2017-01-01

    Purpose: This paper aims to survey students and faculty from the College of Engineering at an American university in the United Arab Emirates about their perception on different issues related to academic dishonesty. Opinions were sought on plagiarism, inappropriate collaboration, cheating on exams, copyright violations and complicity in academic…

  9. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    ERIC Educational Resources Information Center

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  10. Freshman Engineering Students At-Risk of Non-Matriculation: Self-Efficacy for Academic Learning

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Bowen, Bradley D.; Williams, Thomas O.

    2016-01-01

    Students identified as at-risk of non-academic continuation have a propensity toward lower academic self-efficacy than their peers (Lent, 2005). Within engineering, self-efficacy and confidence are major markers of university continuation and success (Lourens, 2014 Raelin, et al., 2014). This study explored academic learning self-efficacy specific…

  11. Exploring the Engineering Student Experience: Findings from the Academic Pathways of People Learning Engineering Survey (APPLES). TR-10-01

    ERIC Educational Resources Information Center

    Sheppard, Sheri; Gilmartin, Shannon; Chen, Helen L.; Donaldson, Krista; Lichtenstein, Gary; Eris, Ozgur; Lande, Micah; Toye, George

    2010-01-01

    This report is based on data from the Academic Pathways of People Learning Engineering Survey (APPLES), administered to engineering students at 21 U.S. engineering colleges and schools in the spring of 2008. The first comprehensive set of analyses completed on the APPLES dataset presented here looks at how engineering students experience their…

  12. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  13. Review of carbon dioxide research staffing and academic support

    NASA Astrophysics Data System (ADS)

    Clark, S. B.; Howard, L.; Stevenson, W.; Trice, J.

    1985-04-01

    More than 60 percent of the staff on Carbon Dioxide Research Division (CDRD) projects were university affiliated, and over one third of project scientists and engineers also had university teaching responsibilities. Almost 20 percent of project staff were students. CO2 research is unlikely to affect the general labor market for scientists and engineers because it uses such a small portion of the total pool. On the other hand, anticipated tight labor markets in some disciplines important to CO2 research may make it advantageous for CDRD to expand its support of university faculty, students, and staff to ensure that competent, knowledgeable researchers and managers are available for eventual policy decisions on CO2 issues. Options for academic support that lend themselves readily to the diffuse nature of CO2 research, while providing flexibility in the identification and accomplishment of specific programmatic objectives, include modifying procurement procedures for research contracts to enhance academic involvement, sponsoring summer institutes tailored to specific participants and focused on issues of interest to CDRD, and supporting traveling lecture programs designed to bring information of concern to CDRD to technical and nontechnical audiences.

  14. External Labor Markets and the Distribution of Black Scientists and Engineers in Academia.

    ERIC Educational Resources Information Center

    Kulis, Stephen; Shaw, Heather; Chong, Yinong

    2000-01-01

    Analyzes data from the 1989 Survey of Doctorate Recipients to evaluate racial segmentation of the academic labor market along geographic and disciplinary lines. Finds that black faculty in the sciences and engineering are found disproportionately in southern, historically black institutions; areas with sizable black populations; and, independent…

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  17. Predicting the performance and innovativeness of scientists and engineers.

    PubMed

    Keller, Robert T

    2012-01-01

    A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.

  18. Predicting Academic Performance of Master's Students in Engineering Management

    ERIC Educational Resources Information Center

    Calisir, Fethi; Basak, Ecem; Comertoglu, Sevinc

    2016-01-01

    The purpose of this study is to investigate the factors affecting academic achievement of the master's students who are enrolling in the executive engineering management master's programs in Turkey. These factors include admission requirements (entrance examination, undergraduate grade point average, English proficiency) and demographic attributes…

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  20. Scaling up: Taking the Academic Pathways of People Learning Engineering Survey (APPLES) National. Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Clark, Mia; Sheppard, Sheri D.

    2008-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES) was deployed for a second time in spring 2008 to undergraduate engineering students at 21 US universities. The goal of the second deployment of APPLES was to corroborate and extend findings from the Academic Pathways Study (APS; 2003-2007) and the first deployment of APPLES…

  1. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O

    2018-04-01

    Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.

  2. Targeting Undergraduate Students for Surveys: Lessons from the Academic Pathways of People Learning Engineering Survey (APPLES). Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Sheppard, Sheri D.

    2007-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES or APPLE survey) is a component of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE). The APS aims to provide a comprehensive account of how people become engineers by exploring key questions around the engineering learning…

  3. Careers in Government: Bench Scientist to Policy Wonk

    NASA Astrophysics Data System (ADS)

    Gebbie, Katharine B.

    1998-04-01

    The U.S. system for graduate education in physics is arguably the most effective system yet devised for advanced training in physics. Focused as it is on original research, it teaches students to identify significant problems, study them in depth, and communicate the results. Because it trains them to be analytical, adaptable, persevering, and pragmatic problem solvers, it prepares them for a wide variety of nontraditional careers. Hence the demand for physicists by Wall Street and management consultant teams. Yet, as stressed in the 1995 report by the Committee on Science, Engineering and Public Policy (COSEPUP)("Reshaping the Graduate Education of Scientists and Engineers," COSEPUP; National Academy of Sciences/National Academy of Engineering/Institute of Medicine. National Academy Press, 1995), what is lacking is exposure to career information and guidance. Many students appear to be unaware of the range and richness of opportunities outside academe. In an effort to fill this gap, illustrative examples of diverse careers and career changes in government will be presented, together with examples of cooperative programs that can enhance the student's appreciation of career possibilities.

  4. Academic career intentions in the life sciences: Can research self-efficacy beliefs explain low numbers of aspiring physician and female scientists?

    PubMed Central

    Epstein, Nurith; Fischer, Martin R.

    2017-01-01

    A lack of physician scientists as well as a high female dropout rate from academic medicine and basic life sciences is a concern in many countries. The current study analyzes academic career intentions within a sample of recent doctoral graduates from medicine and basic life sciences (N = 1109), focusing on research self-efficacy beliefs as explanatory variable of gender and disciplinary differences. To ensure that differences in research self-efficacy could not be attributed solely to objective scientific performance, we controlled for number of publications and dissertation grade. The results of multivariate analyses pointed to a strong and significant association between research self-efficacy and academic career intentions (ß = 0.49, p<0.001). The lower academic career intentions of medical doctoral graduates were no longer significant when controlling for research self-efficacy. Within the field of medicine, female doctoral graduates expressed lower research self-efficacy beliefs and academic career intentions. When controlling for research self-efficacy, the correlation between gender and academic career intention was no longer significant. In contrast, no gender differences were found within the basic life sciences with respect to neither academic career intentions nor research self-efficacy. PMID:28910334

  5. Academic career intentions in the life sciences: Can research self-efficacy beliefs explain low numbers of aspiring physician and female scientists?

    PubMed

    Epstein, Nurith; Fischer, Martin R

    2017-01-01

    A lack of physician scientists as well as a high female dropout rate from academic medicine and basic life sciences is a concern in many countries. The current study analyzes academic career intentions within a sample of recent doctoral graduates from medicine and basic life sciences (N = 1109), focusing on research self-efficacy beliefs as explanatory variable of gender and disciplinary differences. To ensure that differences in research self-efficacy could not be attributed solely to objective scientific performance, we controlled for number of publications and dissertation grade. The results of multivariate analyses pointed to a strong and significant association between research self-efficacy and academic career intentions (ß = 0.49, p<0.001). The lower academic career intentions of medical doctoral graduates were no longer significant when controlling for research self-efficacy. Within the field of medicine, female doctoral graduates expressed lower research self-efficacy beliefs and academic career intentions. When controlling for research self-efficacy, the correlation between gender and academic career intention was no longer significant. In contrast, no gender differences were found within the basic life sciences with respect to neither academic career intentions nor research self-efficacy.

  6. Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.

    PubMed

    VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal

    2017-08-01

    Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.

  7. George Washington University Visa Project-Streamlining Our Visa and Immigration Systems for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Teich, Albert H.

    2014-03-01

    Many scientists believe that current U.S. visa and immigration systems are out of sync with today's increasingly globalized science and technology. This talk will highlight specific proposals that would facilitate the recruitment of promising STEM students by U.S. universities and better enable international scientists and engineers to visit the United States for scientific conferences and research collaboration. Most of these proposals could be implemented without additional resources and without compromising U.S. security. The talk is based on the results of an 18 month study conducted at the George Washington University's Center for International Science & Technology Policy.

  8. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 6: The relationship between the use of US government technical reports by US aerospace engineers and scientists and selected institutional and sociometric variables. Ph.D. Thesis - Indiana Univ., Nov. 1990 No. 6

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.

    1991-01-01

    The relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and selected institutional and sociometric variables was investigated. The methodology used for this study was survey research. Data were collected by means of a self-administered mail questionnaire. The approximately 34,000 members of the American Institute of Aeronautics and Astronauts (AIAA) served as the study population. The response rate for the survey was 70 percent. A dependent relationship was found to exist between the use of U.S. government technical reports and three of the institutional variables (academic preparation, years of professional aerospace work experience, and technical discipline). The use of U.S. government technical reports was found to be independent of all of the sociometric variables. The institutional variables best explain the use of U.S. government technical reports by U.S. aerospace engineers and scientists.

  10. Factors influencing career progress for early stage clinician-scientists in emerging Asian academic medical centres: a qualitative study in Singapore.

    PubMed

    Yoon, Sungwon; Koh, Woon-Puay; Ong, Marcus E H; Thumboo, Julian

    2018-03-03

    To explore the factors that influence career progress for early stage clinician-scientists and to identify ways to mitigate these factors in the context of emerging Asian academic medical centres (AMCs). Qualitative interviews and thematic data analysis based on grounded theory. Five focus group interviews comprising 29 early career clinician-scientists who have received their first national-level career development award in Singapore. Clinical priorities represented an overarching concern with many reporting the difficulty in delineating responsibilities between clinical care and research. Additionally, there was a prevailing perception of the lack of support for research at the institutional level. Participants tended to identify mentors through their own efforts in a relatively haphazard manner, often owing to the dearth of role models and perceived inadequacy of reward systems for mentoring. Support from mentors was thought to be limited in terms of targeted scientific guidance and long-term commitments to the relationship. Most of the participants expressed concerns about how they could secure the next level of funding with diminishing confidence. Notably, the work-life balance was neither conceptualised as a 'barrier' to successful pursuit of research career nor was it translated into the reason for leaving the dual clinical-research career pathway. Results revealed specific limitations presented by the research environment in newly emerging Asian AMCs. To retain a vibrant clinician-scientist workforce, additional measures are needed, aiming to improve institutional culture of research, build mentoring networks, adopt effective tools for tracking career progress and provide a clear and viable career progression path for clinician-scientist. Further research might explore the cross-cultural differences in managing work-life balance in academic medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  11. Factors influencing career progress for early stage clinician-scientists in emerging Asian academic medical centres: a qualitative study in Singapore

    PubMed Central

    Yoon, Sungwon; Koh, Woon-Puay; Ong, Marcus E H; Thumboo, Julian

    2018-01-01

    Objectives To explore the factors that influence career progress for early stage clinician-scientists and to identify ways to mitigate these factors in the context of emerging Asian academic medical centres (AMCs). Design Qualitative interviews and thematic data analysis based on grounded theory. Setting and participants Five focus group interviews comprising 29 early career clinician-scientists who have received their first national-level career development award in Singapore. Results Clinical priorities represented an overarching concern with many reporting the difficulty in delineating responsibilities between clinical care and research. Additionally, there was a prevailing perception of the lack of support for research at the institutional level. Participants tended to identify mentors through their own efforts in a relatively haphazard manner, often owing to the dearth of role models and perceived inadequacy of reward systems for mentoring. Support from mentors was thought to be limited in terms of targeted scientific guidance and long-term commitments to the relationship. Most of the participants expressed concerns about how they could secure the next level of funding with diminishing confidence. Notably, the work-life balance was neither conceptualised as a ‘barrier’ to successful pursuit of research career nor was it translated into the reason for leaving the dual clinical-research career pathway. Conclusions Results revealed specific limitations presented by the research environment in newly emerging Asian AMCs. To retain a vibrant clinician-scientist workforce, additional measures are needed, aiming to improve institutional culture of research, build mentoring networks, adopt effective tools for tracking career progress and provide a clear and viable career progression path for clinician-scientist. Further research might explore the cross-cultural differences in managing work-life balance in academic medicine. PMID:29502093

  12. Outreach to Scientists and Engineers at the Hanford Technical Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Karen A.

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than themore » traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use

  13. ROBOTIC MINING COMPETITORS BREAKFAST WITH NASA WOMEN ENGINEERS AND SCIENTISTS

    NASA Image and Video Library

    2017-05-25

    More than 40 female NASA engineers and scientists shared insights into their successful careers with several hundred students at NASA’s Women in STEM Mentoring Breakfast on Thursday, May 25, at Kennedy Space Center’s Debus Center in Florida. The students, members of the 45 teams in the 2017 NASA Robotic Mining Competition, sat alongside the female mentors and, between bites, learned of what paths the women took to establish their own careers in a field of science, technology, engineering and math, also known as STEM. Managed by, and held annually at Kennedy Space Center, the Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars. SOTs (In order of appearance): Janet Petro, Deputy Director, NASA Kennedy Space Center Camille Stimpson, Melbourne Central Catholic High School (Florida), Observer of Event Lynette Sugatan, Oakton Comminity College (Illinois), “Oaktobotics”

  14. Embedding Academic Literacy Support within the Electrical Engineering Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Skinner, I.; Mort, P.

    2009-01-01

    This paper reports the integration of supplementary training in academic literacy, for those without the assumed entry standard, into a standard electrical engineering program without compromising any other educational objectives. All students who commenced an engineering degree were tested as part of their first session's assessment activities.…

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  16. Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See

    ScienceCinema

    Lienhard, John [NPR, United States

    2017-12-09

    Public radio host Dr. John Lienhard gives a talk titled "Eye of the Forehead and Eye of the Mind: How Engineers and Scientists See". Lienhard contends that spatial visualization is the subtlest of abilities. In his talk, he traces its evolution through the past five centuries and explains how remarkable aids to seeing may have been placing mental visualization under threat.

  17. Assessment of USAFs Hiring Potential of Civilian Scientists and Engineers of the Millennial Generation

    DTIC Science & Technology

    2016-02-12

    AIR WAR COLLEGE AIR UNIVERSITY ASSESSMENT OF USAF’S HIRING POTENTIAL OF CIVILIAN SCIENTISTS AND ENGINEERS OF THE MILLENNIAL GENERATION...government organizations. iv Abstract The Millennial Generation (individuals born 1981-2000) is entering the workforce in large numbers and...of Millennials and what they view as important in their work and social lives revealed policy approaches that could ensure the USAF maximizes it

  18. Academic Instruction with the Visible V-8 Engine. The Coordinated Correlated Instructional Program.

    ERIC Educational Resources Information Center

    Davis, W. J.

    The book presents three 93-day lesson plans to motivate and teach handicapped secondary students basic academic skills in reading and language arts, English, and mathematics in conjunction with learning about automobile engines from Revell's Visible V8 Engine Kit. Each lesson plan is correlated with the Visible V8 Engine Kit and includes daily…

  19. MATHEMATICAL ROUTINES FOR ENGINEERS AND SCIENTISTS

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The purpose of this package is to provide the scientific and engineering community with a library of programs useful for performing routine mathematical manipulations. This collection of programs will enable scientists to concentrate on their work without having to write their own routines for solving common problems, thus saving considerable amounts of time. This package contains sixteen subroutines. Each is separately documented with descriptions of the invoking subroutine call, its required parameters, and a sample test program. The functions available include: maxima, minima, and sort of vectors; factorials; random number generator (uniform or Gaussian distribution); complimentary error function; fast Fourier Transformation; Simpson's Rule integration; matrix determinate and inversion; Bessel function (J Bessel function for any order, and modified Bessel function for zero order); roots of a polynomial; roots of non-linear equation; and the solution of first order ordinary differential equations using Hamming's predictor-corrector method. There is also a subroutine for using a dot matrix printer to plot a given set of y values for a uniformly increasing x value. This package is written in FORTRAN 77 (Super Soft Small System FORTRAN compiler) for batch execution and has been implemented on the IBM PC computer series under MS-DOS with a central memory requirement of approximately 28K of 8 bit bytes for all subroutines. This program was developed in 1986.

  20. Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Becker, Kurt

    2010-01-01

    The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…

  1. Youth's Engagement as Scientists and Engineers in an Afterschool Making and Tinkering Program

    NASA Astrophysics Data System (ADS)

    Simpson, Amber; Burris, Alexandra; Maltese, Adam

    2017-11-01

    Making and tinkering is currently gaining traction as an interdisciplinary approach to education. However, little is known about how these activities and explorations in formal and informal learning spaces address the content and skills common to professionals across science, technology, engineering, and mathematics. As such, the purpose of this qualitative study was to examine how youth were engaged in the eight science and engineering practices outlined within the US Next Generation Science Standards within an informal learning environment utilizing principles of tinkering within the daily activities. Findings highlight how youth and facilitators engaged and enacted in practices common to scientists and engineers. Yet, in this study, enactment of these practices "looked" differently than might be expected in a formal learning environment such as a laboratory setting. For example, in this setting, students were observed carrying out trials on their design as opposed to carrying out a formal scientific investigation. Results also highlight instances of doing science and engineering not explicitly stated within parameters of formal education documents in the USA, such as experiences with failure.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  3. A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  4. How Are Scientists Using Social Media in the Workplace?

    PubMed

    Collins, Kimberley; Shiffman, David; Rock, Jenny

    2016-01-01

    Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use) social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy.

  5. How Are Scientists Using Social Media in the Workplace?

    PubMed Central

    Collins, Kimberley; Shiffman, David

    2016-01-01

    Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use) social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy. PMID:27732598

  6. Next generation of scientists and engineers: Who`s in the pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babco, E.L.

    1995-12-31

    Our ability to produce the next generation of scientists and engineers is dependent upon two important demographic changes: the trends in the number of births and the increasingly diverse racial and ethnic backgrounds of those already born. The number of births dropped 25% from 1956 to 1976. As a consequence, the number of high school graduates dropped from 3.1 million in 1977 to 2.4 million in 1992 and will not reach the 1977 high until after 2000. More than half of these graduates are women, and one of every four is a member of minority group. Women now make upmore » more than half of all undergraduates and almost half of all graduate students, but are underrepresented in the natural science and engineering fields. Minority students are about half as likely to be enrolled in college as white students. About 32% of all precollege students and 20% of all college students are members of minority groups. Based on current graduate enrollment figures in natural science and engineering, there will be little increase in women`s share of doctorates in the next several years. The number of PhDs earned by American minorities continues to be very small. Not known is when our economy will require more professionals trained in science and engineering. But any serious attempt to increase the number of students eligible to choose college majors in science or engineering must take both sex and race/ethnicity into account. The nation cannot afford to waste the talent in two-thirds of our increasingly diverse population.« less

  7. Scientists May Have Put Their Names on Papers Written by Drug Companies

    ERIC Educational Resources Information Center

    Guterman, Lila

    2008-01-01

    This article describes how academic scientists appear to have put their names on papers that are actually ghostwritten by for-profit companies and then published in medical journals. Some of the scientists accused of doing so deny any wrongdoing, but journal editors are already outlining measures to prevent future breaches of academic integrity.…

  8. Using the Curriculum Vita To Study the Career Paths of Scientists and Engineers: An Assessment.

    ERIC Educational Resources Information Center

    Lane, Eliesh O'Neil; Dietz, James S.; Chompalov, Ivan; Bozeman, Barry; Park, Jongwon

    The usefulness of the curriculum vita (CV) as a data source for examining the career paths of scientists and engineers was studied. CVs were obtained in response to an e-mail message sent to researchers working in the area of biotechnology who were funded by the National Science Foundation (55 responses) or listed as authors (industry only) in the…

  9. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  10. Critical Interfaces for Engineers and Scientists, 4 Appraisals. Proceedings of the Annual Joint Meeting of the Engineering Manpower Commission of Engineers Joint Council and the Scientific Manpower Commission, New York, May 18, 1967.

    ERIC Educational Resources Information Center

    Alden, John D.

    Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…

  11. Advising International Students in Engineering Programs: Academic Advisors' Perceptions of Intercultural Communication Competence

    ERIC Educational Resources Information Center

    Zhang, Yi Leaf; Dinh, Trang V.

    2017-01-01

    In recent years, an increasing number of international students have enrolled in engineering programs in U.S. colleges and universities. These students often encounter challenges, and academic advisors play a significant role in international students' academic success. Using a model of intercultural communication competence, we explored attitudes…

  12. The training, careers, and work of Ph.D. physical scientists: Not simply academic

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Pedersen-Gallegos, Liane; Riegle-Crumb, Catherine

    2002-11-01

    We present an in-depth portrait of the training, careers, and work of recent Ph.D. physical scientists. Use of specialized training varies widely, with about half often using knowledge of their Ph.D. specialty area in their jobs. The use of specialized training does not, however, correlate with job satisfaction. In this and other important measures, there are relatively few differences between "academics" and "nonacademics." Important job skills for all employment sectors include writing, oral presentation, management, data analysis, designing projects, critical thinking, and working in an interdisciplinary context. Rankings given by respondents of graduate training in some of these skill areas were significantly lower than the importance of these skills in the workplace. We also found that the rated quality of graduate training varies relatively little by department or advisor. Finally, although nonacademic aspirations among graduate students are fairly common, these do not appear to be well supported while in graduate school.

  13. The Role of Work Placement in Engineering Students' Academic Performance

    ERIC Educational Resources Information Center

    Blicblau, Aaron Simon; Nelson, Tracey Louise; Dini, Kurosh

    2016-01-01

    Engineering graduates without industrial experience may find that employment is difficult to obtain immediately after completing their studies. This study investigates the impact of two arrangements of work experiences; short term (over 12 weeks, STP) and long-term (over 52 weeks, IBL) on academic grades. This study involved 240 undergraduate…

  14. AAAS Mass Media Science and Engineering Fellowship Program: Building Communication Skills in Young Scientists

    NASA Astrophysics Data System (ADS)

    Pasco, S.

    2006-12-01

    The AAAS Mass Media Science &Engineering Fellowship program has succeeded in training scientists to become more effective communicators for more than 30 years. The program places advanced science, engineering and mathematics students at media sites to work as science reporters for ten weeks each summer. AAAS places between 15 to 20 students a year at newspapers, magazines and radio stations. Our goal is to create better science communicators who understand their role in fostering the public's understanding of science. Fellows leave the program with a greater awareness of how to communicate complex issues by making the connection as to why people should be interested in certain developments, and more specifically, how they will impact their communities. 2004 AGU Fellow Rei Ueyama put her lessons learned to good use during her Fellowship at the Sacramento Bee. "In a regional paper like The Bee, a (story) also had to have a local touch. I needed to show why people in Sacramento (or California) should bother to read the story. One example is the story I wrote about seeding the ocean with iron particles to fight global warming. Since ocean fertilization is a global issue, I had to clearly specify the reason why The Bee and not The New York Times was running the story. The local angle I chose was to point out that the core group of scientists involved in this study was from Monterey Bay, Calif." Many alumni tell us the program has been an integral force in shaping the course of their career. Similarly, sites often report that having a scientist on staff is an invaluable resource that allows them to cover additional science stories as well as report some technical stories in more depth. The American Geophysical Union has sponsored a Mass Media Fellow since 1997. Sponsorship allows affiliate program partners to establish connections with young professionals in their field. They are then also able to take advantage of the communication skills resident in their alumni base

  15. Who Gets Promoted? Gender Differences in Science and Engineering Academia

    NASA Astrophysics Data System (ADS)

    Olson, Kristen

    Using a nationally representative sample of doctoral academic scientists and engineers, this study examines gender differences in the likelihood of having tenure and senior faculty ranks after controlling for academic age, field, doctoral origins, employing educational institution, productivity, postdoctoral positions, work activities, and family characteristics. Logistic regressions show that many of these controls are significant; that biology and employment at comprehensive universities have a gender-specific advantage for women; and that postdoctoral positions, teaching instead of doing administrative work, and having children have a gender-specific disadvantage. Although the statistical methods employed here do not reveal the exact nature of how gender inequities in science and engineering careers arise, the author suggests that they exist.

  16. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; themore » analysis of variance; quality control procedures; and linear regression analysis.« less

  17. Comparative Study of the academic performance between different curricula in Agricultural Engineering

    NASA Astrophysics Data System (ADS)

    Vazquez, J. L.; Serrano, A.; Caniego, J.

    2012-04-01

    Due to the introduction of new degrees on the College of Agricultural Engineering of the Technical University of Madrid adapted to the European Space for Higher Education (Bologna), we have made a comparative study of academic achievement obtained by the students during their first year at the Centre according to different curricula. We used data from 2 curricula leading to the degree in Agricultural Engineering, Curriculumn 74 (6 years and annual structure) and Curriculum 96 modified in 2006 (5 years with quarterly structure) and the new curriculum in grades (4 years semi-structured). It has been used as a data source, the qualifications of new students during the last three years prior to the extinction of the curriculum.The study shows that current rates of academic success or failure and dropout during the first year of college are very similar to those happening 12 years ago, when it was assumed that the preparation of students from high school was much higher than today. Keywords: Academic performance, curricula, Bologna.

  18. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  19. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  20. A numerical algorithm with preference statements to evaluate the performance of scientists.

    PubMed

    Ricker, Martin

    Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores ) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.

  1. Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success

    NASA Astrophysics Data System (ADS)

    Karpilo, Lacy N.

    Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher

  2. Inspiring the Next Generation of Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Tambara, Kevin

    2013-04-01

    Students are usually not excited about abstract concepts, and teachers struggle to inject "pizzazz" into many of their lessons. K-12 teachers need opportunities and the associated pedagogical training to bring meaningful and authentic learning to their students. The professional educator community needs to develop a learning environment which connects desired content knowledge with science and engineering practices that students need to be successful future technology leaders. Furthermore, this environment must foster student exploration and discovery by encouraging them to use their natural creativity with newly acquired technical skills to complete assigned projects. These practices are explicitly listed in the US "Next Generation Science Standards" document that is due for final publication in the very near future. Education in America must unleash students' desires to create and make with their hands, using their intellect, and growing academic knowledge. In this submission I will share various student projects that I have created and implemented for middle and high school. For each project, students were required to learn and implement engineering best practices while designing, building, and testing prototype models, according to pre-assigned teacher specifications. As in all real-world engineering projects, students were required to analyze test data, re-design their models accordingly, and iterate the design process several times to meet specifications. Another key component to successful projects is collaboration between student team members. All my students come to realize that nothing of major significance is ever accomplished alone, that is, without the support of a team. I will highlight several projects that illustrate key engineering practices as well as lessons learned, for both student and teacher. Projects presented will include: magnetically levitated vehicles (maglev) races, solar-powered and mousetrap-powered cars and boats, Popsicle stick

  3. Scientist-Image Stereotypes: The Relationships among Their Indicators

    ERIC Educational Resources Information Center

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  4. The Evidence Base for How We Learn: Supporting Students' Social, Emotional, and Academic Development. Consensus Statements of Evidence from the Council of Distinguished Scientists

    ERIC Educational Resources Information Center

    Jones, Stephanie M.; Kahn, Jennifer

    2017-01-01

    "The Evidence Base for How We Learn: Supporting Students' Social, Emotional, and Academic Development" articulates the scientific consensus regarding how people learn. The research brief presents a set of consensus statements--developed and unanimously signed onto by the Commission's Council of Distinguished Scientists--that affirm the…

  5. 76 FR 72004 - Request for Comments on the Intent To Conduct an Evaluation of the Scientists and Engineers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... NATIONAL SCIENCE FOUNDATION Request for Comments on the Intent To Conduct an Evaluation of the Scientists and Engineers Statistical Data System (SESTAT) AGENCY: National Science Foundation. ACTION: Notice of availability. SUMMARY: This notice announces the intent of the National Center for Science and...

  6. "Sounds like something a white man should be doing": Academic identity in African American female engineering students

    NASA Astrophysics Data System (ADS)

    Stitt, Rashunda LaRuth

    This study exposed the way African American female engineering students constructed their academic identities by focusing on their lived experiences. Participants included nine engineering students at Mid-South University (pseudonym) who identified as African American females. Participants were required to sit for one semi-structured academic life history interview that focused on their academic experiences from early childhood to present. This study employed two levels of theory in order to obtain a comprehensive view of participants' experiences. Black feminist theory, which accounts for the intersectionality of participants' race and gender, served as the macro level theory and academic identity, which accounts for the individual's sense of identity within an academic context, served as the mid-level theory. I engaged in thematic analysis, narrative analysis, and creative analytic practice in order to highlight similarities between participants' stories, differences between participants' experiences, and to make this research accessible to individuals outside of academia. As a result, the following three themes emerged to highlight the similarities between participants: (a) just because you struggle, does not mean you should quit; (b) engineering is something you cannot do alone; and (c) I can be creative and do math and science? That's cool! Narrative analysis exposed the academic identity statuses of participants to be either identity achieved, identity moratorium, identity foreclosed or identity diffused. The final piece of analysis involved creating a play that highlights the experiences of an African American girl's pursuit of her engineering degree. Additionally, the final chapter provides conclusions, implications, suggestions for future research, and limitations of the current study.

  7. Scientists as writers

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  8. Gore's Nobel May Bring Even More Attention on Campuses to Environmental Issues: Award for Combating Climate Change Implicitly Honors the Work of Academic Scientists

    ERIC Educational Resources Information Center

    Byrne, Richard; Monastersky, Richard

    2007-01-01

    When the Norwegian Nobel Committee announced that the 2007 Nobel Peace Prize would be shared by Al Gore, the former U.S. vice president, and the Intergovernmental Panel on Climate Change, the award implicitly celebrated a third party--academic institutions. Much of the research on global warming has come from university scientists, and higher…

  9. What does it take to be a successful pediatric surgeon-scientist?

    PubMed

    Watson, Carey; King, Alice; Mitra, Shaheel; Shaaban, Aimen F; Goldstein, Allan M; Morowitz, Michael J; Warner, Brad W; Crombleholme, Timothy M; Keswani, Sundeep G

    2015-06-01

    The factors that contribute to success as a pediatric surgeon-scientist are not well defined. The purpose of this study is to define a group of NIH-funded pediatric surgeons, assess their academic productivity, and elucidate factors that have contributed to their success. Pediatric surgeons were queried in the NIH report database to determine NIH funding awarded. Academic productivity was then assessed. An online survey was then targeted to NIH-funded pediatric surgeons. Since 1988, 83 pediatric surgeon-investigators have received major NIH funding. Currently, there are 37 pediatric surgeons with 43 NIH-sponsored awards. The mean h-index of this group of pediatric surgeons was 18 ± 1.1, mean number of publications (since 2001) was 21 ± 2.1, and both increase commensurate with academic rank. In response to the survey, 81% engaged in research during their surgical residency, and 48% were mentored by a pediatric surgeon-scientist. More than 60% of respondents had significant protected time and financial support. Factors felt to be most significant for academic success included mentorship, perseverance, and protected time. Mentorship, perseverance, institutional commitment to protected research time, and financial support are considered to be important to facilitate the successes of pediatric surgeon-scientists. These results will be useful to aspiring pediatric surgeon-scientists and departments wishing to develop a robust research program. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Examining the Academic Success of Latino Students in Science Technology Engineering and Mathematics (STEM) Majors

    ERIC Educational Resources Information Center

    Cole, Darnell; Espinoza, Araceli

    2008-01-01

    Using a longitudinal sample of 146 Latino students' in science, technology, engineering, and mathematics majors, the purpose of the study was to examine factors that affect their academic performance. The main premise supporting this study suggested that Latino students perform better academically when they have cultural congruity within their…

  11. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  12. Scientists want more children.

    PubMed

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  13. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  14. Characterizing Twitter Communication--A Case Study of International Engineering Academic Units

    ERIC Educational Resources Information Center

    Palmer, Stuart

    2014-01-01

    Engineering academic units might engage with social media for a range of purposes including for general communication with students, staff, alumni, other important stakeholders and the wider community at large; for student recruitment and for marketing and promotion more generally. This paper presents an investigation into the use of Twitter by…

  15. Management Development of Scientists and Engineers in the Federal Government; An Analysis of Basic Behavioral and Systems Considerations.

    ERIC Educational Resources Information Center

    Berniklau, Vladimir V.

    Focusing on management development of scientists and engineers within the Federal government, this study was done to form a framework of factors (mainly attitudes, motives or needs, and leadership styles) to be evaluated before choosing suitable techniques and alternatives. Such variables as differing program objectives, characteristics of…

  16. Global Science Share: Connecting young scientists from developing countries with science writing mentors to strengthen and widen the international science community

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2012-12-01

    Collaborative science in which scientists are able to form research questions based on the current body of scientific knowledge and get feedback from colleagues on their ideas and work is essential for pushing science forward. However, not all scientists are able to fully participate in the international science community. Scientists from developing countries can face barriers to communicating with the international community due to, among other issues: fewer scientists in their home country, difficulty in getting language-specific science writing training, fewer established pre-existing international collaborations and networks, and sometimes geographic isolation. These barriers not only result in keeping individual scientists from contributing their ideas, but they also slow down the progress of the scientific enterprise for everyone. Global Science Share (http://globalscienceshare.org/) is a new project, entering its pilot phase in Fall 2012, which will work to reduce this disparity by connecting young scientists and engineers from developing countries seeking to improve their technical writing with other scientists and engineers around the world via online collaborations. Scientist-volunteers act as mentors and are paired up with mentees according to their academic field and writing needs. The mentors give feedback and constructive technical and editorial criticisms on mentees' submitted pieces of writing through a four-step email discussion. Mentees gain technical writing skills, as well as make international connections with other scientists and engineers in fields related to their own. Mentors also benefit by gaining new international scientific colleagues and honing their own writing skills through their critiques. The Global Science Share project will begin its pilot phase by first inviting Mongolian science students to apply as mentees this fall. This abstract will introduce the Global Science Share program, present a progress report from its first

  17. Perceptions of Engineering Students, Lecturers and Academic Development Practitioners about Academic Development Classes at a University of Technology

    ERIC Educational Resources Information Center

    Shange, Thembeka G. C.

    2015-01-01

    With the increase in student enrolments in higher education, which has resulted in changes to student profiles, academic development has become important in terms of students' success. This article is a report on a qualitative study that used in-depth interviews to investigate the perceptions of Engineering students and staff to academic…

  18. Competitive Science Events: Gender, Interest, Science Self-Efficacy, and Academic Major Choice

    NASA Astrophysics Data System (ADS)

    Forrester, Jennifer Harris

    Understanding present barriers to choosing a STEM major is important for science educators so that we may better prepare and inspire future generations of scientists and engineers. This study examined the relationships between participation in competitive science events, gender, race, science self-efficacy, interest in science, and choosing a STEM discipline as a college major. The participants included 1,488 freshman students at a large southeastern public university. Students completed a survey of pre-college experiences with science events, science interests, and college major, as well as, an assessment of science self-efficacy. A subsample of sixty students (30 STEM; 30 non-STEM majors) were interviewed about their participation and academic major choice. Results showed that science, engineering, and non-STEM disciplines were the most frequently reported academic majors. Significant gender differences were found for science self-efficacy and academic major choice. There were significant race differences for participation in specific types of science competitions. Study participants also reported being motivated to participate in a competitive science event as a result of their teacher or parents' encouragement.

  19. Scientists' and Teachers' Perspectives about Collaboration

    ERIC Educational Resources Information Center

    Munson, Bruce H.; Martz, Marti Ann; Shimek, Sarah

    2013-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education is resulting in more opportunities for scientists and teachers to collaborate. The relationships can result in failed collaborations or success. We recently completed a 6-year regional project that used several approaches to develop scientist-teacher relationships.…

  20. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  1. Scientists vs. Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, H. S.

    In the past, I have heard there was conflict between the “two cultures” of science and the humanities. I don’t see a lot of evidence for that type of conflict today, mostly because my scientific friends all are big fans of the arts and literature. However, the two cultures that I do see a great deal of conflict between are those of science and engineering.

  2. An Investigation of Factors Affecting How Engineers and Scientists Seek Information

    NASA Technical Reports Server (NTRS)

    Anderson, Claire J; Glassman, Myron; McAfee, R. Bruce; Pinelli, Thomas

    2001-01-01

    This study investigated how 872 US aerospace scientists and engineers select information carriers. When considering oral and written information carriers, the principle of least effort was supported with a strong preference for oral communication over written communication. In examining how the respondents select written carriers, the decision to use or not to use a written carrier was found to be primarily a function of the perceived importance of the carrier's information to a person's work. Task uncertainty and task complexity were found to be significant, but not the primary nor a totally consistent criteria. The perceived quality and accessibility of written carriers were not found significant. The findings reinforce the need for firms to hire knowledgeable employees, to provide them with comprehensive training programs, and to develop formal and informal communication networks.

  3. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    ERIC Educational Resources Information Center

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  5. Problematising the `Career Academic' in UK construction and engineering education: does the system want what the system gets?

    NASA Astrophysics Data System (ADS)

    Pilcher, Nick; Forster, Alan; Tennant, Stuart; Murray, Mike; Craig, Nigel

    2017-11-01

    'Career Academics' are principally research-led, entering academia with limited or no industrial or practical experience. UK Higher Education Institutions welcome them for their potential to attain research grant funding and publish world-leading journal papers, ultimately enhancing institutional reputation. This polemical paper problematises the Career Academic around three areas: their institutional appeal; their impact on the student experience, team dynamics and broader academic functions; and current strategic policy to employ them. We also argue that recent UK Government teaching-focused initiatives will not address needs to employ practical academics, or 'Pracademics' in predominantly vocational Construction and Engineering Education. We generate questions for policy-makers, institutions and those implementing strategy. We argue that research is key, but partial rebalancing will achieve a diverse academic skill base to achieve contextualised construction and engineering education. In wider European contexts, the paper resonates with issues of academic 'drift' and provides reflection for others on the UK context.

  6. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  7. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  8. Academic Identity Reconstruction: The Transition of Engineering Academics to Engineering Education Researchers

    ERIC Educational Resources Information Center

    Gardner, Anne; Willey, Keith

    2018-01-01

    The field of research (FoR) that an academic participates in is both a manifestation of, and a contributor to the development of their identity. When an academic changes that FoR the question then arises as to how they reconcile this change with their identity. This paper uses the identity-trajectory framework to analyse the discourse of 19…

  9. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    PubMed

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  10. Predicting Student Academic Performance in an Engineering Dynamics Course: A Comparison of Four Types of Predictive Mathematical Models

    ERIC Educational Resources Information Center

    Huang, Shaobo; Fang, Ning

    2013-01-01

    Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…

  11. Examining the relationship of ethnicity, gender and social cognitive factors with the academic achievement of first-year engineering students

    NASA Astrophysics Data System (ADS)

    Carr, Bruce Henry

    The purpose of the study was to examine the relationships of social cognitive factors and their influence on the academic performance of first-year engineering students. The nine social cognitive variables identified were under the groupings of personal support, occupational self-efficacy, academic self-efficacy, vocational interests, coping, encouragement, discouragement, outcome expectations, and perceived stress. The primary student participants in this study were first-year engineering students from underrepresented groups which include African American, Hispanic American students and women. With this in mind, the researcher sought to examine the interactive influence of race/ethnicity and gender based on the aforementioned social cognitive factors. Differences in academic performance (university GPA of first-year undergraduate engineering students) were analyzed by ethnicity and gender. There was a main effect for ethnicity only. Gender was found not to be significant. Hispanics were not found to be significantly different in their GPAs than Whites but Blacks were found to have lower GPAs than Whites. Also, Pearson correlation coefficients were used to examine the relationship between and among the nine identified social cognitive variables. The data from the analysis uncovered ten significant correlations which were as follows: occupational self-efficacy and academic self-efficacy, occupational self-efficacy and vocational interest, occupational self-efficacy and perceived stress, academic self-efficacy and encouragement, academic self-efficacy and outcome expectations, academic self-efficacy and perceived stress, vocational interest and outcome expectations, discouragement and encouragement, coping and perceived stress, outcome expectations and perceived stress. Next, a Pearson correlation coefficient was utilized to examine the relationship between academic performance (college GPA) of first-year undergraduate engineering students and the nine identified

  12. Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework

    PubMed Central

    Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M.; Goldberg, Judith D.; Lindsell, Christopher J.; Morton, Sally C.; Pollock, Brad H.; Rahbar, Mohammad H.; Welty, Leah J.; Parker, Robert A.

    2015-01-01

    Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, non-traditional education, and specialized service activities is also outlined. While biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines. PMID:25993282

  13. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  14. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  15. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  16. 45 CFR 9.3 - Delegations of authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACADEMIC SCIENTISTS, ENGINEERS, AND STUDENTS § 9.3 Delegations of authority. (a) The heads of operating... qualified academic scientists, engineers, and students. (b) The heads of operating agencies may (and are...

  17. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  18. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  19. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  20. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Department of Health and Human Services GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  1. 45 CFR 9.4 - Criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... of the academic scientist, or engineer, or student, with the prospect of fruitful interchange of ideas and information between Department personnel and the academic scientist, or engineer, or student...

  2. Scientists Popularizing Science: Characteristics and Impact of TED Talk Presenters

    PubMed Central

    Sugimoto, Cassidy R.; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community. PMID:23638069

  3. Scientists popularizing science: characteristics and impact of TED talk presenters.

    PubMed

    Sugimoto, Cassidy R; Thelwall, Mike; Larivière, Vincent; Tsou, Andrew; Mongeon, Philippe; Macaluso, Benoit

    2013-01-01

    The TED (Technology, Entertainment, Design) conference and associated website of recorded conference presentations (TED Talks) is a highly successful disseminator of science-related videos, claiming over a billion online views. Although hundreds of scientists have presented at TED, little information is available regarding the presenters, their academic credentials, and the impact of TED Talks on the general population. This article uses bibliometric and webometric techniques to gather data on the characteristics of TED presenters and videos and analyze the relationship between these characteristics and the subsequent impact of the videos. The results show that the presenters were predominately male and non-academics. Male-authored videos were more popular and more liked when viewed on YouTube. Videos by academic presenters were more commented on than videos by others and were more liked on YouTube, although there was little difference in how frequently they were viewed. The majority of academic presenters were senior faculty, males, from United States-based institutions, were visible online, and were cited more frequently than average for their field. However, giving a TED presentation appeared to have no impact on the number of citations subsequently received by an academic, suggesting that although TED popularizes research, it may not promote the work of scientists within the academic community.

  4. Professional Ethics for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  5. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers

    NASA Astrophysics Data System (ADS)

    Seiler, David G.

    1997-10-01

    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  6. Purist or Pragmatist? UK Doctoral Scientists' Moral Positions on the Knowledge Economy

    ERIC Educational Resources Information Center

    Hancock, Sally; Hughes, Gwyneth; Walsh, Elaine

    2017-01-01

    Doctoral scientists increasingly forge non-academic careers after completing the doctorate. Governments and industry in advanced economies welcome this trend, since it complements the "knowledge economy" vision that has come to dominate higher education globally. Knowledge economy stakeholders consider doctoral scientists to constitute…

  7. Life as a Mother-Scientist

    ERIC Educational Resources Information Center

    Louis, Lucille

    2006-01-01

    In this article, the author shares the difficulties she faced as she tried to reach a balance between her career as a scientist and her role as a mother. She speaks of how she often found problems in putting her children into day care centers. She also relates that the confidence mothers have in their academic careers is correlated to the quality…

  8. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE

  9. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    ERIC Educational Resources Information Center

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  10. Meet EPA Scientist Mehdi S. Hazari, Ph.D.

    EPA Pesticide Factsheets

    EPA scientist Mehdi S. Hazari is a recipient of the 2011 Presidential Early Career Award for Scientists and Engineers. This award was for his work demonstrating how breathing in low levels of air pollutants can increase susceptibility to heart attacks

  11. The institutional workers of biomedical science: Legitimizing academic entrepreneurship and obscuring conflicts of interest.

    PubMed

    Axler, Renata E; Miller, Fiona A; Lehoux, Pascale; Lemmens, Trudo

    2018-06-01

    Given growing initiatives incentivizing academic researchers to engage in 'entrepreneurial' activities, this article examines how these academic entrepreneurs claim value in their entrepreneurial engagements, and navigate concerns related to conflicts of interest. Using data from qualitative interviews with twenty-four academic entrepreneurs in Canada, we show how these scientists value entrepreneurial activities for providing financial and intellectual resources to academic science, as well as for their potential to create impact through translation. Simultaneously, these scientists claimed to maintain academic norms of disinterested science and avoid conflicts of interest. Using theories of institutional work, we demonstrate how entrepreneurial scientists engage in processes of institutional change-through-maintenance, drawing on the maintenance of academic norms as institutional resources to legitimize entrepreneurial activities. As entrepreneurial scientists work to legitimize new zones of academic scientific practice, there is a need to carefully regulate and scrutinize these activities so that their potential harms do not become obscured.

  12. Social scientist's viewpoint on conflict management

    USGS Publications Warehouse

    Ertel, Madge O.

    1990-01-01

    Social scientists can bring to the conflict-management process objective, reliable information needed to resolve increasingly complex issues. Engineers need basic training in the principles of the social sciences and in strategies for public involvement. All scientists need to be sure that that the information they provide is unbiased by their own value judgments and that fair standards and open procedures govern its use.

  13. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    Japanese (n=94) and U.S. (n=340) aerospace scientists/engineers described time spent communicating information, collaborative writing, importance of technical communication courses, and the use of libraries, computer networks, and technical reports. Japanese respondents had greater language fluency; U.S. respondents spent more time with…

  14. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  15. Engineering Employment and Unemployment, 1971. Engineering Manpower Bulletin Number 19.

    ERIC Educational Resources Information Center

    Alden, John D.

    Statistics concerning employment of scientists were obtained from 59,300 scientists responding to an Engineers Joint Council questionnaire. Findings reported are: (1) the overall unemployment rate was 3 percent for engineers compared to a rate of 5.8 percent for all other workers; (2) considering engineers not having engineering jobs, the…

  16. From the wizard to the doubter: prototypes of scientists and engineers in fiction and non-fiction media aimed at Dutch children and teenagers.

    PubMed

    Van Gorp, Baldwin; Rommes, Els; Emons, Pascale

    2014-08-01

    The aim of this paper is to gain insight into the prototypical scientists as they appear in fiction and non-fiction media consumed by children and teenagers in The Netherlands. A qualitative-interpretive content analysis is used to identify seven prototypes and the associated characteristics in a systematic way. The results show that the element of risk is given more attention in fiction than in non-fiction. Also, eccentric scientists appear more often in fiction. In non-fiction, the dimension useful/useless is more important. Furthermore, fictional scientists are loners, although in practice scientists more often work in a team. In both fiction and non-fiction, the final product of the scientific process gets more attention than the process itself. The prototype of the doubter is introduced as an alternative to the dominant representations because it represents scientists and engineers in a more nuanced way.

  17. A Triangulated Study of Academic Language Needs of Iranian Students of Computer Engineering: Are the Courses on Track?

    ERIC Educational Resources Information Center

    Atai, Mahmood Reza; Shoja, Leila

    2011-01-01

    Even though English for Specific Academic Purposes (ESAP) courses constitute a significant part of the Iranian university curriculum, curriculum developers have generally developed the programs based on intuition. This study assessed the present and target situation academic language needs of undergraduate students of computer engineering. To this…

  18. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  19. Shortage or Surplus? A Long-Term Perspective on the Supply of Scientists and Engineers in the USA and the UK

    ERIC Educational Resources Information Center

    Smith, Emma

    2017-01-01

    A "crisis account" of shortages of well-qualified scientists, engineers, mathematicians and technologists has shaped education policy in the UK and the USA for decades. The apparent poor quality of school science education along with insufficient numbers of well-qualified teachers have been linked to skills shortages by government and…

  20. Flexible workflow sharing and execution services for e-scientists

    NASA Astrophysics Data System (ADS)

    Kacsuk, Péter; Terstyanszky, Gábor; Kiss, Tamas; Sipos, Gergely

    2013-04-01

    integrated with the execution engine of the SHIWA Portal. Other engines can be added when required. Through the SHIWA Portal one can define and run simulations on the SHIWA Virtual Organisation, an e-infrastructure that gathers computing and data resources from various DCIs, including the European Grid Infrastructure. The Portal via third party workflow engines provides support for the most widely used academic workflow engines and it can be extended with other engines on demand. Such extensions translate between workflow languages and facilitate the nesting of workflows into larger workflows even when those are written in different languages and require different interpreters for execution. Through the workflow repository and the portal lonely scientists and scientific collaborations can share and offer workflows for reuse and execution. Given the integrated nature of the SHIWA Simulation Platform the shared workflows can be executed online, without installing any special client environment and downloading workflows. The FP7 "Building a European Research Community through Interoperable Workflows and Data" (ER-flow) project disseminates the achievements of the SHIWA project and use these achievements to build workflow user communities across Europe. ER-flow provides application supports to research communities within and beyond the project consortium to develop, share and run workflows with the SHIWA Simulation Platform.

  1. Exploring the Relationship between Time Management Skills and the Academic Achievement of African Engineering Students--A Case Study

    ERIC Educational Resources Information Center

    Swart, Arthur James; Lombard, Kobus; de Jager, Henk

    2010-01-01

    Poor academic success by African engineering students is currently experienced in many higher educational institutions, contributing to lower financial subsidies by local governments. One of the contributing factors to this low academic success may be the poor time management skills of these students. This article endeavours to explore this…

  2. Shortage of Engineers and Scientists. Hearing before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. United States Senate One Hundred First Congress, Second Session on Training Scientists and Engineers for the Year 2000--The National Science Foundation's Role.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This document is the transcript of a Congressional hearing focusing on the status of the training of scientists and engineers in the United States and the role of the federal government in the improvement of this situation. Included are opening statements from Senators Albert Gore, Jr. (Tennessee), Robert W. Kasten, Jr. (Wisconsin), and Larry…

  3. Exploring the relationship between time management skills and the academic achievement of African engineering students - a case study

    NASA Astrophysics Data System (ADS)

    Swart, Arthur James; Lombard, Kobus; de Jager, Henk

    2010-03-01

    Poor academic success by African engineering students is currently experienced in many higher educational institutions, contributing to lower financial subsidies by local governments. One of the contributing factors to this low academic success may be the poor time management skills of these students. This article endeavours to explore this relationship by means of a theoretical literature review and an empirical study. Numerous studies have been conducted in this regard, but with mixed results. The case study of this article involves a design module termed Design Projects III, where the empirical study incorporated an ex post facto study involving a pre-experimental/exploratory design using descriptive statistics. The results of this study were applied to various tests, which indicated no statistically significant relationship between time management skills and the academic achievement of African engineering students.

  4. Academic Research Equipment in Selected Science Engineering Fields: 1982-83 to 1985-86.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; Chaney, Bradford

    This report presents information for identification of the national trends in the amount, age, loss, condition, and perceived adequacy of academic research equipment in selected science and engineering fields. The data were obtained from a stratified probability sample of 55 colleges and universities and from a separately selected sample of 24…

  5. Research and Development in Industry: 1979. Funds, 1979. Scientists and Engineers, January 1980. Surveys of Science Resources Series. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles,…

  6. The Relationship between Seven Variables and the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Describes a project sponsored by the National Aeronautics and Space Administration (NASA) and the Department of Defense that investigated the relationship between the use of U.S. government technical reports by aerospace engineers and scientists and seven independent sociometric variables. The conceptual framework is explained, and relevant…

  7. Trouble in Paradise: Problems in Academic Research Co-authoring.

    PubMed

    Bozeman, Barry; Youtie, Jan

    2016-12-01

    Scholars and policy-makers have expressed concerns about the crediting of coauthors in research publications. Most such problems fall into one of two categories, excluding deserving contributors or including undeserving ones. But our research shows that there is no consensus on "deserving" or on what type of contribution suffices for co-authorship award. Our study uses qualitative data, including interviews with 60 US academic science or engineering researchers in 14 disciplines in a set of geographically distributed research-intensive universities. We also employ data from 161 website posts provided by 93 study participants, again US academic scientists. We examine a variety of factors related to perceived unwarranted exclusion from co-author credit and unwarranted inclusion, providing an empirically-informed conceptual model to explain co-author crediting outcomes. Determinants of outcomes include characteristics of disciplines and fields, institutional work culture, power dynamics and team-specific norms and decision processes.

  8. Do the Brain Networks of Scientists Account for Their Superiority in Hypothesis-Generating?

    ERIC Educational Resources Information Center

    Lee, Jun-Ki

    2012-01-01

    Where do scientists' superior abilities originate from when generating a creative idea? What different brain functions are activated between scientists and i) general academic high school students and ii) science high school students when generating a biological hypothesis? To reveal brain level explanations for these questions, this paper…

  9. The Rehabilitation Medicine Scientist Training Program

    PubMed Central

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  10. Motivational Factors of Professional Engineers and Non-Professional Engineers in Applying for License as Professional Engineer: A Comparative Study

    ERIC Educational Resources Information Center

    Khamis, Nor Kamaliana; Harun, Zambri; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Sabri, Mohd Anas Mohd

    2013-01-01

    All engineering faculties in Malaysia are required to have at least three academics who have engineering competency for each program. Having an engineering competency means academics has obtained the compulsory endorsements from the Boards of Engineers, Malaysia, BEM. Upon approval, academics seeking such competency could carry the suffix Ir. to…

  11. Nothing to lose: why early career scientists make ideal entrepreneurs.

    PubMed

    Thon, Jonathan N

    2014-12-01

    An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Political Scientist as Local Campaign Consultant

    ERIC Educational Resources Information Center

    Crew, Robert E., Jr.

    2011-01-01

    During my 45 years as an academic, I have followed the admonition sometimes attributed to the legendary Jedi warrior Obi-Wan Kenobe that political scientists should "use [their] power for good and not for evil." In this spirit, I have devoted substantial portions of my career to public service by providing strategic advice and campaign management…

  13. Intending to Stay: Images of Scientists, Attitudes Toward Women, and Gender as Influences on Persistence among Science and Engineering Majors

    NASA Astrophysics Data System (ADS)

    Wyer, Mary

    Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.

  14. The Relationship of Learning Communities to Engineering Students' Perceptions of the Freshman Year Experience, Academic Performance, and Persistence

    ERIC Educational Resources Information Center

    Tolley, Patricia Ann Separ

    2009-01-01

    The purpose of this correlational study was to examine the effects of a residential learning community and enrollment in an introductory engineering course to engineering students' perceptions of the freshman year experience, academic performance, and persistence. The sample included students enrolled in a large, urban, public, research university…

  15. Transnational migration of Mexican scientists: A circuit between Mexico and the EEUU

    NASA Astrophysics Data System (ADS)

    Tinoco Herrera, Mario Luis

    The experience and meaning of migration for a group of Mexican scientists participating in the construction of a migratory circuit between Mexico and US within the field of agricultural sciences is the object of this study. I define this migratory circuit of scientists as a social, historical and cultural process, and draw from transnational migration theories to analyze it. From this perspective, I view the migratory circuit of Mexican scientists to be a field of social relationships extended across Mexico and the US. In studying the migratory experience and its significance, I draw upon the methods of historical reconstruction of the circuit of scientists between Mexico and the US, participatory observation, informal narratives, testimonies and their analysis. This study focuses on three crucial moments of their migratory experience: (1) the moment prior to their trip to the US; (2) their academic training at a research center in the US; and (3) their return to a research center in Mexico. At the same time, this study highlights three key factors that determine and ascribe different meanings to the experiences of this migratory circuit: gender, academic trajectory, and the belonging to a migratory circuit. The findings from this study have shown that the experiences of migration and their multiple meanings are complex, heterogeneous and paradoxical. The complexity lies in the challenges of academic responsibilities and their near total integration and transformation of the participants' social life, as well as family life. These migratory experiences are further differentiated and problematic because of the various perceptions and sense of value that are mediated by gender, academic trajectory, and belonging to a circuit of migration; and, they are paradoxical because even though the experiences, perceptions and meanings are different and, at times, challenging, every single participant has described their experience as positive.

  16. Meet EPA Scientist Valerie Zartarian, Ph.D.

    EPA Pesticide Factsheets

    Senior exposure scientist and research environmental engineer Valerie Zartarian, Ph.D. helps build computer models and other tools that advance our understanding of how people interact with chemicals.

  17. Are Australasian academic physicians an endangered species?

    PubMed

    Wilson, A

    2007-11-01

    It has been stated that academic medicine is in a worldwide crisis. Is this decline in hospital academic practice a predictable consequence of modern clinical practice with its emphasis on community and outpatient-based services as well as a corporate health-care ethos or does it relate to innate problems in the training process and career structure for academic clinicians? A better understanding of the barriers to involvement in academic practice, including the effect of gender, the role and effect of overseas training, expectation of further research degrees and issues pertaining to the Australian academic workplace will facilitate recruitment and retention of the next generation of academic clinicians. Physician-scientists remain highly relevant as medical practice and education evolves in the 21st century. Hospital-based academics carry out a critical role in the ongoing mentoring of trainees and junior colleagues, whose training is still largely hospital based in most specialty programmes. Academic clinicians are uniquely placed to translate the rapid advances in medical biology into the clinical sphere, by guiding and carrying out translational research as well as leading clinical studies. Academic physicians also play key leadership in relations with government and industry, in professional groups and medical colleges. Thus, there is a strong case to assess the problems facing recruitment and retention of physician-scientists in academic practice and to develop workable solutions.

  18. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  19. Social Scientists' Understanding of Academic Freedom in Addis Ababa University, Ethiopia: A Descriptive Analysis

    ERIC Educational Resources Information Center

    Degefa, Demoze

    2015-01-01

    The perennial debate about academic freedom engages with assessing the extent to which academic freedom has been exercised by academics by using some normative and quantitative approaches. Often studies on academic freedom deal with the extent to which institutions comply with norms in terms of the rights of the academics on some international…

  20. Scientists in the Classroom

    NASA Astrophysics Data System (ADS)

    Lundin, J.

    2009-12-01

    High school science is often the first time students are presented with the scientific method as a tool to assist discovery. I aim to help students ‘think like a scientist’, through my role as a graduate student NSF GK-12 fellow in the Ocean and Coastal Interdisciplinary Science (OACIS) program, where I am paired with a high school science teacher and their classes for the year. To help students gain a familiarity and understanding of how scientists approach research, I will (1) utilize technology, including youtube, powerpoint, and research modeling applications; (2) bring in experts from the University to demonstrate the diversity of the science community; (3) connect with the classroom research from meetings, journals and reports. The goal is to broaden the scope of how research science is conducted, but also to allow individual students to be involved in projects, from developing a hypothesis to presenting their data. A survey at the beginning of the academic year and a survey before the AGU Fall meeting will be compared to assess the influence of having a research scientist present. Results will include how students view of science and scientists has changed, feedback on how successfully technology has improved students’ comprehension, and ideas for making science approachable for diverse high school learners.

  1. Implementing vertical and horizontal engineering students' integration and assessment of consequence academic achievement

    NASA Astrophysics Data System (ADS)

    Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza

    2012-08-01

    Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to vertical and horizontal integration. Different activities have been embedded to ensure that students integrated and worked together with their peers and colleagues at different levels. The implemented processes and practices led to improved academic achievements, which were better than those of a similar cohort of students where no effort had been made to integrate. The analysis revealed that cooperative learning and the degree of academic support provided by teachers are positively and directly correlated with academic as well as the students' own sense of personal achievement. The results are discussed in light of previous research and with reference to the cultural context of the study.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  4. Similarities and Differences in the Academic Education of Software Engineering and Architectural Design Professionals

    ERIC Educational Resources Information Center

    Hazzan, Orit; Karni, Eyal

    2006-01-01

    This article focuses on the similarities and differences in the academic education of software engineers and architects. The rationale for this work stems from our observation, each from the perspective of her or his own discipline, that these two professional design and development processes share some similarities. A pilot study was performed,…

  5. Industry is Largest Employer of Scientists

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1977

    1977-01-01

    Cites statistics of a National Science Foundation report on scientists and engineers in 1974. Reports that chemists are better educated, older, have a better chance of being employed, and do more work for industry, than other scientific personnel. (MLH)

  6. Scientists Like Me: Faces of Discovery

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  7. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    NASA Astrophysics Data System (ADS)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    on presenting what they're passionate about, not get bogged down by basic groundwork. Vlogs and short video bios showcase the enthusiasm and personality of the scientists, an important ingredient in crafting compelling videos. Featured scientists become better communicators, and learn to bring their research to life. When viewers see that genuine wonder, they can be motivated to ask questions and pursue more information about the topic, broadening community participation. The website interface opens the door to audience discussion. Digital media is a community builder, an inclusive tool that lets people continents-apart engage with compelling stories and then interact. Internet videos have become a means of supplementing face-to-face education; video reaches people, it's informal self-education from the comfort of one's own computer screen. FS uses videos and social media as part of an education outreach effort directed at lifelong learners. We feature not only scientists, but also teachers who've gone into the field to add to their own science knowledge, and to bring back new lessons for their students. Students who are exposed to FS videos see science in action in the professional world, which might inspire them in a STEM academic and career path, encouraging the next generation of researchers, as well as scientific and environmental literacy.

  8. WFIRST CGI Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  9. Assessing scientists for hiring, promotion, and tenure.

    PubMed

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  10. Assessing scientists for hiring, promotion, and tenure

    PubMed Central

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  11. Do economic equality and generalized trust inhibit academic dishonesty? Evidence from state-level search-engine queries.

    PubMed

    Neville, Lukas

    2012-04-01

    What effect does economic inequality have on academic integrity? Using data from search-engine queries made between 2003 and 2011 on Google and state-level measures of income inequality and generalized trust, I found that academically dishonest searches (queries seeking term-paper mills and help with cheating) were more likely to come from states with higher income inequality and lower levels of generalized trust. These relations persisted even when controlling for contextual variables, such as average income and the number of colleges per capita. The relation between income inequality and academic dishonesty was fully mediated by generalized trust. When there is higher economic inequality, people are less likely to view one another as trustworthy. This lower generalized trust, in turn, is associated with a greater prevalence of academic dishonesty. These results might explain previous findings on the effectiveness of honor codes.

  12. Academic Entrepreneurship and Exchange of Scientific Resources: Material Transfer in Life and Materials Sciences in Japanese Universities

    ERIC Educational Resources Information Center

    Shibayama, Sotaro; Walsh, John P.; Baba, Yasunori

    2012-01-01

    This study uses a sample of Japanese university scientists in life and materials sciences to examine how academic entrepreneurship has affected the norms and behaviors of academic scientists regarding sharing scientific resources. Results indicate that high levels of academic entrepreneurship in a scientific field are associated with less reliance…

  13. Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employment Growth. Science Resources Studies Highlights, April 20, 1979.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Presented are the results of a survey of over 100,000 manufacturing establishments, conducted for the National Science Foundation by the Bureau of Labor Statistics, covering average annual employment for calendar year 1977. Industries whose relative concentration of scientists and engineers was high in 1977, such as petroleum refining, chemicals,…

  14. The Future of Basic Science in Academic Surgery

    PubMed Central

    Keswani, Sundeep G.; Moles, Chad M.; Morowitz, Michael; Zeh, Herbert; Kuo, John S.; Levine, Matthew H.; Cheng, Lily S.; Hackam, David J.; Ahuja, Nita; Goldstein, Allan M.

    2017-01-01

    Objective The aim of this study was to examine the challenges confronting surgeons performing basic science research in today’s academic surgery environment. Summary of Background Data Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. Methods An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). Results NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today’s environment, including departmental leadership. Conclusions We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists. PMID:27643928

  15. Training and career development in clinical and translational science: an opportunity for rehabilitation scientists.

    PubMed

    Kelly, Thomas H; Mattacola, Carl G

    2010-11-01

    The National Institutes of Health's Clinical and Translational Science Award initiative is designed to establish and promote academic centers of clinical and translational science (CTS) that are empowered to train and advance multi- and interdisciplinary investigators and research teams to apply new scientific knowledge and techniques to enhance patient care. Among the key components of a full-service center for CTS is an educational platform to support research training in CTS. Educational objectives and resources available to support the career development of the clinical and translational scientists, including clinical research education, mentored research training, and career development support, are described. The purpose of the article is to provide an overview of the CTS educational model so that rehabilitation specialists can become more aware of potential resources that are available and become more involved in the delivery and initiation of the CTS model in their own workplace. Rehabilitation clinicians and scientists are well positioned to play important leadership roles in advancing the academic mission of CTS. Rigorous academic training in rehabilitation science serves as an effective foundation for supporting the translation of basic scientific discovery into improved health care. Rehabilitation professionals are immersed in patient care, familiar with interdisciplinary health care delivery, and skilled at working with multiple health care professionals. The NIH Clinical and Translational Science Award initiative is an excellent opportunity to advance the academic development of rehabilitation scientists.

  16. Women scientists in Taiwan: an update.

    PubMed

    Wang, Hsiu-Yun; Stocker, Joel Floyd

    2010-06-01

    This paper reflects upon issues of gender and science in Taiwan. Its starting point is the first academic paper on the subject published in Taiwan in 1996 by Fu and Wang, and then it draws upon the biographical accounts of 20 women scientists. We emphasize the importance of focusing on the specific contexts of the history of science and women in Taiwan. Partly as a result of Taiwan's colonial past and women's limited access to education, women scientists did not emerge in Taiwan until the second half of the 20(th) century when higher education became available to women. The gender issues with which women scientists in Taiwan have had to cope include the ways in which women have been excluded or included, their marital and career status, the local and global politics of scientific knowledge, and negotiating social networks. These issues have remained largely the same since the Fu and Wang study, but they have certainly gained wider attention and understanding, and greater articulation, both within academia and society. 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  17. The Doris Duke Clinical Scientist Development Award: implications for early-career physician scientists.

    PubMed

    Escobar-Alvarez, Sindy N; Myers, Elizabeth R

    2013-11-01

    The Doris Duke Charitable Foundation Clinical Scientist Development Award (CSDA) supports early-career physician scientists in their transition to independent research funding. The authors aimed to analyze the characteristics associated with success in CSDA competitions, determine whether attainment of a CSDA is associated with receiving subsequent research funding, and assess whether alumni remain in research. In 2011, the authors tested for associations between gender, age, race/ethnicity, academic degree, National Institutes of Health (NIH) funding rank of the applicant's institution, and success in CSDA competitions. They compared NIH R01 grant attainment, defined as the percentage of individuals who received at least one R01 grant, between CSDA alumni and highly ranked but unsuccessful CSDA applicants (1998-2007). Finally, the authors surveyed alumni to learn more about their professional activities. Demographic factors were not predictors of success in CSDA competitions; academic degree and funding rank of the applicant's institution, however, were. A greater percentage of CSDA alumni than nonalumni received at least one R01 grant (62% [74/120] versus 42% [44/105]). For CSDA alumni who were 10 or more years from the start of their award, their median percent effort toward research activities was 68%. The factors associated with success in a CSDA competition included a combined clinical and doctoral research degree and affiliation with a well-funded institution. More alumni received NIH independent research funding than those who applied but did not receive the award. Thus, the CSDA is associated with physicians establishing independent and recognized research careers.

  18. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  19. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    NASA Astrophysics Data System (ADS)

    Enevoldsen, Alice

    2008-05-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center is hoping to host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, walks of life, and branches of science. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We hope to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by underrepresented minorities in scientific and engineering careers. In this session I will present our preliminary plan for creating the photographs and working with the Discovery Corps youth, which will be available to other institutions interested in creating a similar project. I will also present more detail on the distribution plan for the photographs, so interested members and institutions can discuss contributing images to the project, or learn how they could receive copies of the photographs during IYA and beyond.

  20. Bats and Academics: How Do Scientists Perceive Their Object of Study?

    PubMed

    Boëte, Christophe; Morand, Serge

    2016-01-01

    Bats are associated with conflicting perceptions among humans, ranging from affection to disgust. If these attitudes can be associated with various factors among the general public (e.g. social norms, lack of knowledge), it is also important to understand the attitude of scientists who study bats. Such reflexive information on the researchers community itself could indeed help designing adequate mixed communication tools aimed at protecting bats and their ecosystems, as well as humans living in their vicinity that could be exposed to their pathogens. Thus, we conducted an online survey targeting researchers who spend a part of their research activity studying bats. Our aim was to determine (1) how they perceive their object of study, (2) how they perceive the representation of bats in the media and by the general population, (3) how they protect themselves against pathogen infections during their research practices, and (4) their perceptions of the causes underlying the decline in bat populations worldwide. From the 587 completed responses (response rate of 28%) having a worldwide distribution, the heterogeneity of the scientists' perception of their own object of study was highlighted. In the majority of cases, this depended on the type of research they conducted (i.e. laboratory versus field studies) as well as their research speciality. Our study revealed a high level of personal protection equipment being utilised against pathogens during scientific practices, although the role bats play as reservoirs for a number of emerging pathogens remains poorly known. Our results also disclosed the unanimity among specialists in attributing a direct role for humans in the global decline of bat populations, mainly via environmental change, deforestation, and agriculture intensification. Overall, the present study suggests the need for better communication regarding bats and their biology, their role within the scientific community, as well as in the general public

  1. Science and Society Test for Scientists: The Energy Crisis

    ERIC Educational Resources Information Center

    Hafemeister, David

    1974-01-01

    Presents a test stressing back-of-the-envelope questions most academic scientists should be able to answer. Topics include laser fusion, emergency core cooling, solar sea power, urban transportation, etc. Suggests that question-answer format can be used to transmit science and society subject matter more effectively than sophisticated computer…

  2. Lessons Learned at LPI for Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Kramer, G. Y.; Gross, J.; Shaner, A. J.; Dalton, H.; Grier, J.; Buxner, S.; Shipp, S. S.; Hackler, A. S.

    2015-12-01

    The Lunar and Planetary Institute (LPI) has engaged scientists in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, communication workshops, and outreach events. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the lessons we have learned through these experiences, including the value of collaborations between scientists and educators, the importance of understanding the audience's interests and knowledge, and the insights that audiences gain during unstructured discussion and interactions with scientists. LPI has also worked with the NASA Science Mission Directorate E/PO community to determine ways to enable scientists and engineers to engage in E/PO and STEM learning, including examining the research and programs for becoming involved in the preparation of future teachers (see the Menu of Opportunities at http://www.lpi.usra.edu/education/pre_service_edu/). We will share key research-based best practices that are recommended for scientists and engineers interested in participating in E/PO activities.

  3. Telling Your Story: Ocean Scientists in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    McWilliams, H.

    2006-12-01

    Most scientists and engineers are accustomed to presenting their research to colleagues or lecturing college or graduate students. But if asked to speak in front of a classroom full of elementary school or junior high school students, many feel less comfortable. TERC, as part of its work with The Center for Ocean Sciences Education Excellence-New England (COSEE-NE) has designed a workshop to help ocean scientists and engineers develop skills for working with K-12 teachers and students. We call this program: Telling Your Story (TYS). TYS has been offered 4 times over 18 months for a total audience of approximately 50 ocean scientists. We will discuss the rationale for the program, the program outline, outcomes, and what we have learned. ne.net/edu_project_3/index.php

  4. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    NASA Astrophysics Data System (ADS)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  5. Perceptions of Academic Staff towards Accommodating Students with Disabilities in a Civil Engineering Undergraduate Program in a University in South Africa

    ERIC Educational Resources Information Center

    Mayat, Nafisa; Amosun, Seyi Ladele

    2011-01-01

    This study explored the perceptions of academic staff towards admission of students with disabilities, and their accommodation once accepted into an undergraduate Civil Engineering program in a South African university. Qualitative responses relating to the perceptions of five academic staff were obtained through semi-structured interviews. The…

  6. Urban Underrepresented Minority Students in Science, Technology, Engineering, and Math: An Analysis of the Differences between Developmental Assets and Academic Achievement

    ERIC Educational Resources Information Center

    Wells, Jovan Grant

    2013-01-01

    The purpose of this study is to determine the relationship between the developmental assets and academic achievement of urban underrepresented minority male and female students in a specialized science, technology, engineering, and math program, and the developmental assets and academic achievement of urban underrepresented minority male and…

  7. Examining the Impact of Academic Development in the Engineering Faculties in Chile: Changes in Teaching Philosophy and Teachers' Competencies

    ERIC Educational Resources Information Center

    Acosta Peña, Roxana; Tomás-Folch, Marina; Feixas, Mònica

    2017-01-01

    The Faculties of Engineering Sciences at Universidad Católica del Norte in Chile regard teacher training as a necessary tool for its academics' professional development and as a fundamental way to improve their teaching quality. The Teaching Unit for Innovation in Engineering (UIDIN) has developed a new curriculum and training programme which…

  8. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    PubMed

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  9. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and

  10. The Impact of Group Design Projects in Engineering on Achievement Goal Orientations and Academic Outcomes

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; Atadero, Rebecca A.; Balgopal, Meena

    2017-01-01

    This study examined the impact of incorporating group design projects into a second-year engineering class on achievement goal orientations and two academic outcomes: concept inventory and final exam scores. In this study, two sections were taught using lecture format, but one section also completed three group design projects as part of their…

  11. Why Students Leave Engineering and Built Environment Programmes When They Are Academically Eligible to Continue

    ERIC Educational Resources Information Center

    Ahmed, Nazeema; Kloot, Bruce; Collier-Reed, Brandon I.

    2015-01-01

    The retention of students to graduation is a concern for most higher education institutions. This article seeks to understand why engineering and built environment students fail to continue their degree programmes despite being academically eligible to do so. The sample comprised 275 students registered between 2006 and 2011 in a faculty of…

  12. What Account of Science Shall We Give? a Case Study of Scientists Teaching First-Year University Subjects

    ERIC Educational Resources Information Center

    Smith, Dorothy V.; Mulhall, Pamela J.; Gunstone, Richard F.; Hart, Christina E.

    2015-01-01

    This article presents a case study of four academic scientists. These academics teach in the first year of a Bachelor of Science degree at a large research-focused Australian university that has demanded and supported a greater focus on undergraduate learning. Taken as a whole, the accounts of science that the first-year academics in this case…

  13. Business development activities at academic institutions as related to the education, training, and career development of the next generation of scientists and professionals

    NASA Astrophysics Data System (ADS)

    Mobarhan, Kamran S.

    2007-06-01

    Every year large sums of tax payers money are used to fund scientific research at various universities. The result is outstanding new discoveries which are published in scientific journals. However, more often than not, once the funding for these research programs end, the results of these new discoveries are buried deep within old issues of technical journals which are archived in university libraries and are consequently forgotten. Ideally, these scientific discoveries and technological advances generated at our academic institutions should lead to the creation of new jobs for our graduating students and emerging scientists and professionals. In this fashion the students who worked hard to produce these new discoveries and technological advances, can continue with their good work at companies that they helped launch and establish. This article explores some of the issues related to new business development activities at academic institutions. Included is a discussion of possible ways of helping graduating students create jobs for themselves, and for their fellow students, through creation of new companies which are based on the work that they did during their course of university studies.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  15. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  16. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    NASA Astrophysics Data System (ADS)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable

  17. Applied Theatre Facilitates Dialogue about Career Challenges for Scientists.

    PubMed

    Segarra, Verónica A; Zavala, MariaElena; Hammonds-Odie, Latanya

    2017-04-01

    The design of programs in support of a strong, diverse, and inclusive scientific workforce and academe requires numerous difficult conversations about sensitive topics such as the challenges scientists can face in their professional development. Theatre can be an interactive and effective way to foster discussion around such subjects. This article examines the implementation and benefits of such interactive strategies in different contexts, including the benefits of getting early career academics and professionals talking about some of the situations that women and underrepresented minorities face in the workplace, while allowing more seasoned professionals and colleagues to join in the conversation.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  19. The Scarcity of Orthopaedic Physician Scientists.

    PubMed

    Buckwalter, Joseph A; Elkins, Jacob M

    2017-01-01

    Breakthrough advances in medicine almost uniformly result from the translation of new basic scientific knowledge into clinical practice, rather than from assessment, modification or refinement of current methods of diagnosis and treatment. However, as is intuitively understood, those most responsible for scientific conception and creation-scientists - are generally not the ones applying these advances at the patient's bedside or the operating room, and vice versa. Recognition of the scarcity of clinicians with a background that prepares them to develop new basic knowledge, and to critically evaluate the underlying scientific basis of methods of diagnosis and treatment, has led to initiatives including federally funded Physician-Scientist programs, whereby young, motivated scholars begin a rigorous training, which encompasses education and mentorship within both medical and scientific fields, culminating in the conferment of both MD and PhD degrees. Graduates have demonstrated success in integrating science into their academic medical careers. However, for unknown reasons, orthopaedic surgery, more than other specialties, has struggled to recruit and retain physician-scientists, who possess a skill set evermore rare in today's increasingly complicated medical and scientific landscape. While the reasons for this shortfall have yet to be completely elucidated, one thing is clear: If orthopaedics is to make significant advances in the diagnosis and treatment of musculoskeletal diseases and injuries, recruitment of the very best and brightest physician-scientists to orthopaedics must become a priority. This commentary explores potential explanations for current low-recruitment success regarding future orthopaedic surgeon-scientists, and discusses avenues for resolution.

  20. Fostering institutional practices in support of public engagement by scientists

    NASA Astrophysics Data System (ADS)

    Cobb, K. M.

    2016-12-01

    Scientists are increasingly called on to communicate the findings of their research outside the scientific sphere, to members of the public, media, and/or policymakers eager for information about topics at the intersections of science and society. While all scientists share a desire for a more informed public, and for the development of evidence-based public policy, there are profound hurdles that prevent most scientists from meaningfully engaging the public. Here, I identify and discuss both internal (i.e. finite time, discomfort in public speaking and interview settings, etc) and external (metrics for promotion and tenure, scholarly reputation, etc) obstacles for public engagement. At the same time, I also discuss how recent trends in scientific practice provide clear, concrete, and compelling rewards for public engagement. Specifically, institutions of higher education have a vested interest in fostering and rewarding greater public engagement by scientists across all academic ranks. I review a variety of innovative mechanisms, both informal and formal, that institutions are employing to achieve this goal, and assess their potential impact on the engagement levels of scientists.

  1. How Academic Biologists and Physicists View Science Outreach

    PubMed Central

    Ecklund, Elaine Howard; James, Sarah A.; Lincoln, Anne E.

    2012-01-01

    Scholars and pundits alike argue that U.S. scientists could do more to reach out to the general public. Yet, to date, there have been few systematic studies that examine how scientists understand the barriers that impede such outreach. Through analysis of 97 semi-structured interviews with academic biologists and physicists at top research universities in the United States, we classify the type and target audiences of scientists’ outreach activities. Finally, we explore the narratives academic scientists have about outreach and its reception in the academy, in particular what they perceive as impediments to these activities. We find that scientists’ outreach activities are stratified by gender and that university and disciplinary rewards as well as scientists’ perceptions of their own skills have an impact on science outreach. Research contributions and recommendations for university policy follow. PMID:22590526

  2. Summer enrichment partnership (SEP) - society of hispanic professional engineers (SHPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela, C.E.

    1994-12-31

    SEP recruits talented Hispanic high school students in the Washington metropolitan area and seeks to increase the number of Hispanics who enter graduate programs in engineering and science. New students are exposed to engineering, experimental science and business, and visit R&D centers and corporations. Returning students take college level courses, such as Vector-Based Analytic Geometry and Probability and Statistics. Advanced students work on special projects. Hispanic engineers, scientists, and managers offer career guidance. Parental participation is actively encouraged. Students are selected based on: (a) commitment to succeed, (b) academic record, and (c) willingness to attend the program through graduation. Coursesmore » are taught by university faculty, with one teacher assistant per five students. Program evaluation encompasses: (1) student participation and performance, (2) school achievement, and (3) continuation to college. SEP is a partnership between the Society of Hispanic Professional Engineers, The Catholic University of America, NASA, school districts, parents and students, and Hispanic professionals.« less

  3. Involving scientists in public and pre-college education at Princeton University

    NASA Astrophysics Data System (ADS)

    Steinberg, D. J.

    2011-12-01

    The Princeton Center for Complex Materials (PCCM) is a National Science Foundation (NSF) funded Materials Research Science and Engineering Center (MRSEC). As a MRSEC, it is part of the PCCM's mission to inspire and educate school children, teachers and the public about STEM and materials science. Research shows that it is critical to excite students at a young age and maintain that excitement, and without that these students are two to three times less likely to have any interest in science and engineering and pursue science careers as adults. We conduct over a dozen different education programs at Princeton University, in which scientists and engineers are directly involved with students, teachers and the public. As an ongoing MRSEC education and outreach program, we have developed many successful educational partnerships to increase our impact. The scientists and engineers who participate in our programs are leading experts in their research field and excellent communicators to their peers. They are not experts in precollege pedagogy or in communication to the public. Scientists often require some preparation in order to have the greatest chance of success. The amount and type of professional development required for these scientists to succeed in education programs depends on many factors. These include the age of the audience, the type of interaction, and the time involved. Also different researchers require different amount of help, advice, and training. Multiple education programs that involve Princeton University researchers will be discussed here. We will focus on what has worked best when preparing scientists and engineers for involvement in education programs. The Princeton University Materials Academy (PUMA) is a three week total immersion in science for minority high school students involving many faculty and their research groups. Our Making Stuff day reaches 100's of middle school students in which faculty interact directly with students and teachers

  4. Perspective: Entering uncharted waters: navigating the transition from trainee to career for the nonphysician clinician-scientist.

    PubMed

    MacDonald, Shannon E; Sharpe, Heather M; Shikako-Thomas, Keiko; Larsen, Bodil; MacKay, Lyndsay

    2013-01-01

    The transition from trainee to career clinician-scientist can be a stressful and challenging time, particularly for those entering the less established role of nonphysician clinician-scientist. These individuals are typically PhD-prepared clinicians in the allied health professions, who have either a formal or informal joint appointment between a clinical institution and an academic or research institution. The often poorly defined boundaries and expectations of these developing roles can pose additional challenges for the trainee-to-career transition.It is important for these trainees to consider what they want and need in a position in order to be successful, productive, and fulfilled in both their professional and personal lives. It is also critical for potential employers, whether academic or clinical (or a combination of both), to be fully aware of the supports and tools necessary to recruit and retain new nonphysician clinician-scientists. Issues of relevance to the trainee and the employer include finding and negotiating a position; the importance of mentorship; the value of effective time management, particularly managing clinical and academic time commitments; and achieving work-life balance. Attention to these issues, by both the trainee and those in a position to hire them, will facilitate a smooth transition to the nonphysician clinician-scientist role and ultimately contribute to individual and organizational success.

  5. The Use of Internet Services and Resources by Scientists at Olabisi Onabanjo University, Ago Iwoye, Nigeria

    ERIC Educational Resources Information Center

    Bankole, Olubanke M.

    2013-01-01

    Purpose: This study aims to investigate the extent and level of internet access and use among scientists at Olabisi Onabanjo University (OOU), Ago Iwoye, Nigeria, its impact on their academic activities and the constraints faced in internet use. Design/methodology/approach: A questionnaire survey with all the 125 scientists in the Faculty of…

  6. Exploring the Academic and Social Experiences of Latino Engineering Community College Transfer Students at a 4-Year Institution: A Qualitative Research Study

    NASA Astrophysics Data System (ADS)

    Hagler, LaTesha R.

    As the number of historically underrepresented populations transfer from community college to university to pursue baccalaureate degrees in science, technology, engineering, and mathematics (STEM), little research exists about the challenges and successes Latino students experience as they transition from 2-year colleges to 4-year universities. Thus, institutions of higher education have limited insight to inform their policies, practices, and strategic planning in developing effective sources of support, services, and programs for underrepresented students in STEM disciplines. This qualitative research study explored the academic and social experiences of 14 Latino engineering community college transfer students at one university. Specifically, this study examined the lived experiences of minority community college transfer students' transition into and persistence at a 4-year institution. The conceptual framework applied to this study was Schlossberg's Transition Theory, which analyzed the participant's social and academic experiences that led to their successful transition from community college to university. Three themes emerged from the narrative data analysis: (a) Academic Experiences, (b) Social Experiences, and (c) Sources of Support. The findings indicate that engineering community college transfer students experience many challenges in their transition into and persistence at 4-year institutions. Some of the challenges include lack of academic preparedness, environmental challenges, lack of time management skills and faculty serving the role as institutional agents.

  7. The Influence of Protege-Mentor Relationships and Social Networks on Women Doctoral Students' Academic Career Aspirations in Physical Sciences and Engineering

    ERIC Educational Resources Information Center

    Gu, Yu

    2012-01-01

    Physical sciences and engineering doctoral programs serve as the most important conduit through which future academics are trained and prepared in these disciplines. This study examined women doctoral students' protege-mentor relationships in Physical sciences and engineering programs. Particularly, the study examined the influence of such…

  8. Maximizing the potential of scientists in Japan: promoting equal participation for women scientists through leadership development.

    PubMed

    Homma, Miwako Kato; Motohashi, Reiko; Ohtsubo, Hisako

    2013-07-01

    In order to examine the current status of gender equality in academic societies in Japan, we inquired about the number of women involved in leadership activities at society conferences and annual meetings, as these activities are critical in shaping scientific careers. Our findings show a clear bias against female scientists, and a need to raise consciousness and awareness in order to move closer to equality for future generations. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  9. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    PubMed

    Stoet, Gijsbert; Geary, David C

    2018-04-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women's engagement with STEM subjects.

  10. Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist.

    PubMed

    Humphreys, L G; Lubinski, D; Yao, G

    1993-04-01

    This article has two themes: First, we explicate how the prediction of group membership can augment test validation designs restricted to prediction of individual differences in criterion performance. Second, we illustrate the utility of this methodology by documenting the importance of spatial visualization for becoming an engineer, physical scientist, or artist. This involved various longitudinal analyses on a sample of 400,000 high school students tracked after 11 years following their high school graduation. The predictive validities of Spatial-Math and Verbal-Math ability composites were established by successfully differentiating a variety of educational and occupational groups. One implication of our findings is that physical science and engineering disciplines appear to be losing many talented persons by restricting assessment to conventional mathematical and verbal abilities, such as those of the Scholastic Aptitude Test (SAT) and the Graduate Record Examination (GRE).

  11. A Serendipitous Scientist.

    PubMed

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  12. Beyond the Dualism between Lifelong Employment and Job Insecurity: Some New Career Promises for Young Scientists

    ERIC Educational Resources Information Center

    Dany, F.; Mangematin, Vincent

    2004-01-01

    This article analyses the early careers of young scientists in France. Since training and early career management are designed to cater almost exclusively for an academic career, a substantial proportion of PhDs lack support to design their training in relation to the job they will look for after graduation. Even if most young scientists manage to…

  13. Biological, Social, and Organizational Components of Success for Women in Academic Science and Engineering: Workshop Report

    ERIC Educational Resources Information Center

    National Academies Press, 2006

    2006-01-01

    During the last 40 years, the number of women studying science and engineering (S&E) has increased dramatically. Nevertheless, women do not hold academic faculty positions in numbers that commensurate with their increasing share of the S&E talent pool. The discrepancy exists at both the junior and senior faculty levels. In December 2005,…

  14. Asian and Pacific Islander women scientists and engineers: A narrative exploration of model minority, gender, and racial stereotypes

    NASA Astrophysics Data System (ADS)

    Chinn, Pauline W. U.

    2002-04-01

    This qualitative study uses narrative methodology to understand what becoming a scientist or engineer entails for women stereotyped as model minorities. Interviews with four Chinese and Japanese women focused on the social contexts in which science is encountered in classrooms, families, and community. Interpretation was guided by theories that individuals construct personal narratives mediated by cultural symbolic systems to make meaning of experiences. Narratives revealed that Confucian cultural scripts shaped gender expectations even in families several generations in America. Regardless of parents' level of education, country of birth, and number of children, educational expectations, and resources were lower for daughters. Parents expected daughters to be compliant, feminine, and educated enough to be marriageable. Findings suggest K-12 gender equity science practices encouraged development of the women's interests and abilities but did not affect parental beliefs. The author's 1999 study of Hawaiians/Pacific Islander and Filipina female engineers is included in implications for teacher education programs sensitive to gender, culture, ethnicity, and language.

  15. Explaining Scientists' Plans for International Mobility from a Life Course Perspective

    ERIC Educational Resources Information Center

    Netz, Nicolai; Jaksztat, Steffen

    2017-01-01

    We identify factors influencing young scientists' plans for research stays abroad by embedding theories of social inequality, educational decision making, and migration into a life course framework. We test the developed model of international academic mobility by calculating a structural equation model using data from an online survey of…

  16. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    PubMed

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  17. On being a scientist in a rapidly changing world.

    PubMed

    Mandel, I D

    1996-02-01

    The practice of biological science has changed dramatically since mid-century, reshaped not only by a rapid series of landmark discoveries, but also by governmental directives, institutional policies, and public attitudes. Until 1964, the major influences were the mentor, who provided direction and indoctrination into the culture of science, and in dentistry, the newly established NIDR, which fueled the research engine with an expanding research and training program. The 1965-74 period witnessed the advent of the Institutional Review Board, an increased social involvement of biological scientists, and a recognition of the need for biological and physical safeguards in the conduct of research. The most turbulent years were 1975-89, when there was a confluence of animal rights activism and regulation, growing concerns with scientific fraud and publication malpractice, and the stresses and strains (and opportunities) resulting from the rapid expansion of the academic-industrial complex. The current period is characterized by rapid pace, high volume, and an increased depth and breadth of knowledge-a major change in scale in the conduct of science. It is an exciting time but one in which ethical issues are multiplying. Attention must be paid.

  18. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  19. Engaging Students and Scientists through ROV Competitions

    NASA Astrophysics Data System (ADS)

    Zande, J.

    2004-12-01

    while doing your work. -Recruiting students to your institution. -Heightening your and your institution's visibility within the scientific community -Building a positive image within your own local community. -Networking with other scientists and research and academic institutions as well as professional societies, industry, government, and other organizations such as aquaria. Whether or not you use ROVs to support your work is not important. What is important are the knowledge and skills that you do use to accomplish your research goals. In the case of the competition, ROVs are the vehicle to teach concepts such as physics, oceanography, math, science, and engineering - the same concepts that you understand and apply when doing your science. By sharing your time and expertise, you can help students solidify what they are learning as they design and build their ROVs and make the connection to how it can be applied to other disciplines.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  1. Learning with Teachers; A Scientist's Perspective

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  2. A grounded theory study on the academic success of undergraduate women in science, engineering, and mathematics fields at a private, research university

    NASA Astrophysics Data System (ADS)

    Hroch, Amber Michelle

    2011-12-01

    This grounded theory study revealed the common factors of backgrounds, strategies, and motivators in academically successful undergraduate women in science, engineering, and mathematics (SEM) fields at a private, research university in the West. Data from interviews with 15 women with 3.25 or better grade point averages indicated that current academic achievement in their college SEM fields can be attributed to previous academic success, self awareness, time management and organizational skills, and maintaining a strong support network. Participants were motivated by an internal drive to academically succeed and attend graduate school. Recommendations are provided for professors, advisors, and student affairs professionals.

  3. Academic Integrity and Cultural Capital: A Case Study of Incoming Indian Graduate Students in Engineering and Computing

    NASA Astrophysics Data System (ADS)

    Burger, Catherine E.

    As the number of international students studying in the United States continues to grow, it is important that educators and administrators at postsecondary institutions understand the diverse educational backgrounds of these students, which has the potential to influence their chances for academic success. Nowhere is this truer than at the graduate-level, where international students now earn more than one-quarter of all doctoral research degrees. Through the lens of academic integrity, this study explores the undergraduate educational experiences of incoming Indian graduate students in engineering and computing disciplines at one southeastern research university, and compares the academic preparedness of these students to the expectations of the graduate faculty. This project demonstrates that the nature of undergraduate education at Indian institutions does not adequately prepare incoming graduate students for the expectations present at US institutions, specifically regarding academic writing and cheating. However, this lack of cultural capital does not appear to disadvantage the student population over the course of their academic careers, as the graduate faculty working with these students spend a significant amount of time and energy helping them socialize into Western educational practices.

  4. VII International Congress of Engineering Physics

    NASA Astrophysics Data System (ADS)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  5. Navigating translational ecology: Creating opportunities and overcoming obstacles for scientist participation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Hallett, L. M.; Gerber, L. R.; Moritz, M.; Schwartz, M.; Stephenson, N.; Tank, J. L.; Williamson, M. A.; Woodhouse, C. A.

    2016-12-01

    As scientists seek to make their research more relevant and impactful, a growing number are interested in translational approaches that yield scientific and applied outcomes through iterative collaboration between scientists and practitioners. This is particularly true in the field of ecology, where many of its experts are interested in the resource management and conservation implications of their research. Unfortunately, the pathways to translational ecology are not always apparent. Here we will outline a set of principles to guide academic scientists in the process of translational ecology and provide concrete examples of novel outcomes. We will highlight structural aspects of collaborations, such as how to initiate and sustain projects in ways that meet the needs of all participants. We will also outline common pitfalls for scientists and practitioners, and ways in which translational research can help overcome them. Throughout we will use pressing environmental challenges to emphasize opportunities that exist within current institutional frameworks, while also highlighting ways in which institutions are changing to facilitate effective translational research.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  7. How do engineering attitudes vary by gender and motivation? Attractiveness of outreach science exhibitions in four countries

    NASA Astrophysics Data System (ADS)

    Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina

    2016-11-01

    Outreach activities, like mobile science exhibitions, give opportunities to hands-on experiences in an attractive learning environment. We analysed attitudes, motivation and learning during a science exhibition visit, their relations to gender and future educational plans in Finland, Estonia, Latvia and Belgium (N = 1210 sixth-graders). Pupils' performance in a knowledge test improved after the visit. Autonomous motivation and attitudes towards science predicted situation motivation awakened in the science exhibition. Interestingly, the scientist attitude and the societal attitude were clearly separate dimensions. The third dimension was manifested in the engineering attitude typical for boys, who were keener on working with appliances, designing computer games and animations. Scientist and societal attitudes correlated positively and engineering attitude correlated negatively with the future educational plans of choosing the academic track in secondary education. The societal perspective on science was connected to above average achievement. In the follow-up test, these attitudes showed to be quite stable.

  8. Women scientists' scientific and spiritual ways of knowing

    NASA Astrophysics Data System (ADS)

    Buffington, Angela Cunningham

    While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.

  9. Biographies of Women Scientists for Young Readers.

    ERIC Educational Resources Information Center

    Bettis, Catherine; Smith, Walter S.

    The participation of women in the physical sciences and engineering woefully lags behind that of men. One significant vehicle by which students learn to identify with various adult roles is through the literature they read. This annotated bibliography lists and describes biographies on women scientists primarily focusing on publications after…

  10. Changes in Academic Entrepreneurship among Japanese University Bioscientists, 1980-2012

    ERIC Educational Resources Information Center

    Kameo, Nahoko

    2014-01-01

    The dissertation examines how Japanese university scientists in the biosciences responded to legal and institutional changes in academic entrepreneurship. Beginning in the 1990s, the Japanese government initiated a series of policy initiatives that attempted to imitate the U.S. academic environment's approach to promoting entrepreneurship. Using…

  11. Work and family conflict in academic science: patterns and predictors among women and men in research universities.

    PubMed

    Fox, Mary Frank; Fonseca, Carolyn; Bao, Jinghui

    2011-10-01

    This article addresses work-family conflict as reported among women and men academic scientists in data systematically collected across fields of study in nine US research universities. Arguing that academic science is a particularly revealing case for studying work-family conflict, the article addresses: (1) the bi-directional conflict of work with family, and family with work, reported among the scientists; (2) the ways that higher, compared with lower, conflict, is predicted by key features of family, academic rank, and departments/institutions; and (3) patterns and predictors of work-family conflict that vary, as well as converge, by gender. Results point to notable differences, and commonalties, by gender, in factors affecting interference in both directions of work-family conflict reported by scientists. These findings have implications for understandings of how marriage and children, senior compared with junior academic rank, and departmental climates shape work-family conflict among women and men in US academic science.

  12. Becoming the Citizen Scientist: Opportunities and Challenges in Science Policy

    NASA Astrophysics Data System (ADS)

    Bosler, T. L.

    2007-03-01

    The methodologies, creativity and intellectual capacity of today's physicists are becoming more and more relevant in the world of policy and politics. Some issues such as climate change, alternative energy and avian influenza clearly reveal the relevance of scientific knowledge and research in policy. However, the connection between science and issues such as electronic voting, government earmarks and international cooperation are not as obvious, but the role of scientists in these topics and their effects on science itself are critical. As the world becomes increasingly technological and global, the need for the involvement of scientists in the political process grows. The traditional scientific training of physicists emphasizes intense scrutiny of specific physical phenomena in the natural world but often misses the opportunity to utilize trained scientific minds on some of society's greatest problems. I will discuss the many ways in which scientists can contribute to society far beyond the academic community and the unique opportunities science policy work offers to the socially conscious scientist or even those just looking to get more grant money.

  13. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    NASA Technical Reports Server (NTRS)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  14. First Generation College Students in Engineering: A Grounded Theory Study of Family Influence on Academic Decision Making

    ERIC Educational Resources Information Center

    Simmons, Denise Rutledge

    2012-01-01

    This work develops a constructivist grounded theory describing the influence of family and those that serve a role similar to family on the academic decision making of undergraduate first generation in college (FGC) students majoring in engineering. FGC students, in this study, are students with neither parent having attained a bachelor's…

  15. Second RAS Symposium Brings Together World’s Leading RAS Scientists | Poster

    Cancer.gov

    From December 6–8, the Advanced Technology Research Facility of the Frederick National Laboratory for Cancer Research was abuzz with conversation and collaboration as nearly 450 scientists, academics, and industry partners gathered for the Second RAS Initiative Symposium. Attendees hailed from 14 nations, dozens of institutions, and diverse scientific backgrounds, but they

  16. On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate.

    PubMed

    Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan

    2012-12-01

    In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos - mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a "good" scientist. Tensions between promoting "science" versus promotion of the "scientist;" engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers.

  17. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  18. Science, Engineering Employment Up in 1970s.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Highlights findings from the National Science Foundation's "1982 Postcensal Survey of Natural and Social Scientists and Engineers." Indicates that, from 1972 to 1982, employment of scientists and engineers increased 4 percent per year. However, these employment gains do not reflect the picture for chemists or chemical engineers. (JN)

  19. Successfully Engaging Scientists in NASA Education and Public Outreach: Examples from a Teacher Professional Development Workshop Series and a Planetary Analog Festival

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.

    2014-12-01

    The Lunar Workshops for Educators are a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO). These workshops have been held across the country for the past five years, in places underserved with respect to NASA workshops and at LRO team member institutions. MarsFest is a planetary analog festival that has been held annually in Death Valley National Park since 2012, made possible with support from the Curiosity (primarily the Sample Analysis at Mars) Education and Public Outreach team, NASA's Ames Research Center, NASA's Goddard Space Flight Center, the SETI Institute, and Death Valley National Park. Both the Lunar Workshops for Educators and MarsFest rely strongly on scientist engagement for their success. In the Lunar Workshops, scientists and engineers give talks for workshop participants, support facility tours and field trips, and, where possible, have lunch with the teachers to interact with them in a less formal setting. Teachers have enthusiastically appreciated and benefited from all of these interactions, and the scientists and engineers also provide positive feedback about their involvement. In MarsFest, scientists and engineers give public presentations and take park visitors on field trips to planetary analog sites. The trips are led by scientists who do research at the field trip sites whenever possible. Surveys of festival participants indicate an appreciation for learning about scientific research being conducted in the park from the people involved in that research, and scientists and engineers report enjoying sharing their work with the public through this program. The key to effective scientist engagement in all of the workshops and festivals has been a close relationship and open communication between the scientists and engineers and the activity facilitators. I will provide more details about both of these programs, how scientists and engineers

  20. Over Time, How Do Post-Ph.D. Scientists Locate Teaching and Supervision within Their Academic Practice?

    ERIC Educational Resources Information Center

    McAlpine, Lynn

    2014-01-01

    While building a strong research profile is usually seen as key for those seeking a traditional academic position, teaching is also understood as central to academic practice. Still, we know little of how post-Ph.D. researchers seeking academic posts locate teaching and supervision in their academic practice, nor how their views may shift as they…

  1. Biotechnology awareness study, Part 1: Where scientists get their information.

    PubMed Central

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  2. Changing the Culture of Science Communication Training for Junior Scientists

    PubMed Central

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  3. Changing the Culture of Science Communication Training for Junior Scientists.

    PubMed

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  4. Gender and Agricultural Science: Evidence from Two Surveys of Land-Grant Scientists.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.; Goldberger, Jessica R.

    2002-01-01

    Analysis of surveys of land-grant agricultural scientists in 1979 and 1996 found significant gender differences in postdoctoral work experience, academic rank, employment of graduate students, book publication, and links with private industry. Gender differences were found in attitudes toward biotechnology and university-industry links, but not in…

  5. Organizational culture in an academic health center: an exploratory study using a competing values framework.

    PubMed

    Ovseiko, Pavel V; Buchan, Alastair M

    2012-06-01

    Implementing cultural change and aligning organizational cultures could enhance innovation, quality, safety, and job satisfaction. The authors conducted this mixed-methods study to assess academic physician-scientists' perceptions of the current and preferred future organizational culture at a university medical school and its partner health system. In October 2010, the authors surveyed academic physicians and scientists jointly employed by the University of Oxford and its local, major partner health system. The survey included the U.S. Veterans Affairs Administration's 14-item Competing Values Framework instrument and two extra items prompting respondents to identify their substantive employer and to provide any additional open-ended comments. Of 436 academic physicians and scientists, 170 (39%) responded. Of these, 69 (41%) provided open-ended comments. Dominant hierarchical culture, moderate rational and team cultures, and underdeveloped entrepreneurial culture characterized the health system culture profile. The university profile was more balanced, with strong rational and entrepreneurial cultures, and moderate-to-strong hierarchical and team cultures. The preferred future culture (within five years) would emphasize team and entrepreneurial cultures and-to a lesser degree-rational culture, and would deemphasize hierarchical culture. Whereas the university and the health system currently have distinct organizational cultures, academic physicians and scientists would prefer the same type of culture across the two organizations so that both could more successfully pursue the shared mission of academic medicine. Further research should explore strengthening the validity and reliability of the organizational culture instrument for academic medicine and building an evidence base of effective culture change strategies and interventions.

  6. Outcomes of a Novel Training Program for Physician-Scientists: Integrating Graduate Degree Training With Specialty Fellowship.

    PubMed

    Wong, Mitchell D; Guerrero, Lourdes; Sallam, Tamer; Frank, Joy S; Fogelman, Alan M; Demer, Linda L

    2016-02-01

    Although physician-scientists generally contribute to the scientific enterprise by providing a breadth of knowledge complementary to that of other scientists, it is a challenge to recruit, train, and retain physicians in a research career pathway. To assess the outcomes of a novel program that combines graduate coursework and research training with subspecialty fellowship. A retrospective analysis was conducted of career outcomes for 123 physicians who graduated from the program during its first 20 years (1993-2013). Using curricula vitae, direct contact, and online confirmation, data were compiled on physicians' subsequent activities and careers as of 2013. Study outcomes included employment in academic and nonacademic research, academic clinical or private practice positions, and research grant funding. More than 80% of graduates were actively conducting research in academic, institutional, or industrial careers. The majority of graduates (71%) had academic appointments; a few (20%) were in private practice. Fifty percent had received career development awards, and 19% had received investigator-initiated National Institutes of Health (NIH) R01 or equivalent grants. Individuals who obtained a PhD during subspecialty training were significantly more likely to have major grant funding (NIH R series or equivalent) than those who obtained a Master of Science in Clinical Research. Trainees who obtained a PhD in a health services or health policy field were significantly more likely to have research appointments than those in basic science. Incorporation of graduate degree research, at the level of specialty or subspecialty clinical training, is a promising approach to training and retaining physician-scientists.

  7. Epistemological undercurrents in scientists' reporting of research to teachers

    NASA Astrophysics Data System (ADS)

    Glasson, George E.; Bentley, Michael L.

    2000-07-01

    Our investigation focused upon how scientists, from both a practical and epistemological perspective, communicated the nature and relevance of their research to classroom teachers. Six scientists were observed during presentations of cutting-edge research at a conference for science teachers. Following the conference, these scientists were interviewed to discern how each perceived the nature of science, technology, and society in relation to his particular research. Data were analyzed to determine the congruence and/or dissimilarity in how scientists described their research to teachers and how they viewed their research epistemologically. We found that a wide array of scientific methodologies and research protocols were presented and that all the scientists expressed links between their research and science-technology-society (STS) issues. When describing their research during interviews, the scientists from traditional content disciplines reflected a strong commitment to empiricism and experimental design, whereas engineers from applied sciences were more focused on problem-solving. Implicit in the data was a commitment to objectivity and the tacit assumption that science may be free of values and ethical assumptions. More dialogue is recommended between the scientific community, science educators, and historians/philosophers of science about the nature of science, STS, and curriculum issues.

  8. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  9. A Database Evaluation Based on Information Needs of Academic Social Scientists.

    ERIC Educational Resources Information Center

    Buterbaugh, Nancy Toth

    This study evaluates two databases, "Historical Abstracts" and REESWeb, to determine their effectiveness in supporting academic social science research. While many performance evaluations gather quantitative data from isolated query and response transactions, this study is a qualitative evaluation of the databases in the context of…

  10. Educators Who Work in Science: The Narratives of Women Negotiating Careers in Academic Science

    NASA Astrophysics Data System (ADS)

    Tullos, Kimberly C.

    2011-12-01

    The purpose of this life story narrative study was to explore how women scientists develop views of self that enable them to negotiate careers within academic science. I framed the study using feminist standpoint theory as my theoretical foundation, and used possible selves theory as my conceptual framework. Eight women scientists working in academe described their journey regarding their views of self and career-related experiences. The study produced two key findings. First, seven themes emerged from my data analysis; these themes suggest that these women shared significant experiences in their quest to become scientists. Second, my feminist analysis of the participants' narratives indicates that distinct, but submerged gender-related tensions shaped their views of themselves as scientists and their science career decisions. These tensions include career choice and advancement constrained by family obligations, work environments that do not recognize or undervalue their skills and contributions to the profession, and perceived pressure to de-feminize their behavior to blend in to their work environment. Not unlike other women negotiating careers in academic science, they generally accepted their status as women to be an inherent part of their career pursuits and viewed workplace challenges as an opportunity to prove their competency. Seven of the eight women did not attribute their challenges to gender differences. However, the combined narratives revealed underlying conflicts between their views of self as women and as scientists resulting from their experiences in, and perceptions of, academic science environments. The study's principal theoretical contribution, from the feminist standpoint perspective, highlights the pervasive and unseen influence of gender dynamics. In this study, the participants developed views of themselves, not as scientists, but as "educators who work in science." This critical distinction enabled these participants, perhaps unknowingly

  11. A Retrospective Study of a Scientist in the Classroom Partnership Program

    ERIC Educational Resources Information Center

    Ufnar, Jennifer A.; Bolger, Molly; Shepherd, Virginia L.

    2017-01-01

    The Scientist in the Classroom Partnership (SCP) is a unique, long-term program that partners STEM fellows with K-12 teachers. The SCP was adapted from the original NSF GK-12 model, with fellows and teachers working in the summer and academic year to build their partnership and design and coteach inquiry-based STEM curricula. The current study is…

  12. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists

    PubMed Central

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists’ attitudes towards these factors. The present survey asked about the scientists’ motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a “basic bibliography” for each new approved drug. PMID:27347372

  13. Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: a multiple-groups analysis.

    PubMed

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-04-01

    This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study's findings are considered as well as future research directions.

  14. Influence of Social Cognitive and Ethnic Variables on Academic Goals of Underrepresented Students in Science and Engineering: A Multiple-Groups Analysis

    PubMed Central

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-01-01

    This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study’s findings are considered as well as future research directions. PMID:20495610

  15. [The Health Technology Assessment Engine of the Academic Hospital of Udine: first appraisal].

    PubMed

    Vidale, Claudia

    2014-01-01

    The Health Technology Assessment Engine (HTAE) of the Academic Hospital of Udine aggregates about one hundred of health technology assessment websites. It was born thanks to Google technology in 2008 and after about four years of testing it became public for everybody from the Homepage of the Italian Society of Health Technology Assessment (SIHTA). In this paper the first results obtained with this resource are reported. The role of the scientific librarian is examined not only as a support specialist in bibliographic search but also as a creative expert in managing new technologies for the community.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 50: From student to entry-level professional: Examining the role of language and written communications in the reacculturation of aerospace engineering students

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Kennedy, John M.; Hecht, Laura F.

    1995-01-01

    When students graduate and enter the world of work, they must make the transition from an academic to a professional knowledge community. Kenneth Bruffee's model of the social construction of knowledge suggests that language and written communication play a critical role in the reacculturation process that enables successful movement from one knowledge community to another. We present the results of a national (mail) survey that examined the technical communications abilities, skills, and competencies of 1,673 aerospace engineering students, who represent an academic knowledge community. These results are examined within the context of the technical communications behaviors and practices reported by 2,355 aerospace engineers and scientists employed in government and industry, who represent a professional knowledge community that the students expect to join. Bruffee's claim of the importance of language and written communication in the successful transition from an academic to a professional knowledge community is supported by the responses from the two communities we surveyed. Implications are offered for facilitating the reacculturation process of students to entry-level engineering professionals.

  17. The Historical Basis of Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Furuya, Keiichi

    There are different objects and motives between scientists and engineers. Science is to create new knowledge (episteme), while technology (techne) is to create new utility. Both types of social responsibility are required for engineer, because modern technology is tightly connected with science. The relationship between ethics for scientists and engineers is discussed as an evolution of ethical objects. A short history of engineering societies in U.S.A. and Japan are introduced with their ethical perspectives. As a conclusion, respect for fundamental rights for existence of those who stand in, with, and around engineers and their societies is needed for better engineering ethics.

  18. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E. (Editor); Sato, Yuko (Editor); Barclay, Rebecca O. (Editor); Kennedy, John M. (Editor)

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: (1) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; (2) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; (3) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  19. Gender Differences in Publication Productivity among Academic Scientists and Engineers in the U.S. and China: Similarities and Differences

    ERIC Educational Resources Information Center

    Tao, Yu; Hong, Wei; Ma, Ying

    2017-01-01

    Gender differences in science and engineering (S&E) have been studied in various countries. Most of these studies find that women are underrepresented in the S&E workforce and publish less than their male peers. The factors that contribute to gender differences in experience and performance in S&E careers can vary from one country to…

  20. Study of Scientists and Engineers in DoD Laboratories

    DTIC Science & Technology

    1982-09-01

    LABORATORY PERSONNEL CEILINGS - REPEAL HIGH GRADE CEILINGS AND CREATE DEFENSE S&T SERVICE - ADJUST S&E PAY SCALE TO MEET MARKET COMPETITION - REMOVE...with an June 1980 examination of the dynamics of the S&E labor NSF-80-316 market -- i.e., the flows into and out of science and engineering. National...at all degreeand beyond Science and levels and tight markets at all degree levels inOct, 1980 Engineerinp, most engineering fields. Engineering and

  1. On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate

    PubMed Central

    Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan

    2012-01-01

    In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos – mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a “good” scientist. Tensions between promoting “science” versus promotion of the “scientist;” engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers. PMID:23293548

  2. Perceptions of Engineers Regarding Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.

    1998-01-01

    The perceptions of engineers and scientists at NASA Langley Research Center toward engineering design teams were evaluated. A sample of 49 engineers and scientists rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors focused on team issues occurring during the early stages of a team's existence. They included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. The discussion includes a comparison of engineering teams with the prototypical business team portrayed in the literature.

  3. Exploring Native American Students' Perceptions of Scientists

    NASA Astrophysics Data System (ADS)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p < 0.05). The results suggest that NA students who practise cultural traditions at home are more able to function fluidly between indigenous knowledge and modern western science than their non-practising counterparts. Overall, these NA students do not see themselves as scientists, which may influence their educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  4. Developing future clinician scientists while supporting a research infrastructure.

    PubMed

    Holsti, Maija; Adelgais, Kathleen M; Willis, Leah; Jacobsen, Kammy; Clark, Edward B; Byington, Carrie L

    2013-04-01

    Supporting clinical research is a national priority. Clinician scientists are rare and clinical trials in academic medical centers (AMC) often fail to meet enrollment goals. Undergraduate students interested in biomedical careers often lack opportunities to perform clinical research. Describe an innovative undergraduate course that supports clinical research in an AMC. The course, Clinical Research Methods and Practice, offers undergraduate students the opportunity to learn clinical research through didactic and practical experiences. The students in turn support clinician scientists' conduct of clinical studies in an AMC. Clinician scientists receive research support and participate in mentoring sessions for students. Over seven semesters, 128 students have assisted in 21 clinical studies located in outpatient and inpatient units of two hospitals. Students identified and screened eligible patients, collected clinical data, assisted in obtaining informed consent, and transported specimens. Many of the clinician scientists have met their enrollment goals and several have been top-enrollers in multicenter clinical trials as a result of student support. The Clinical Research Methods and Practice class addresses barriers to clinical research in AMC. This may be a model for institutions committed to mentoring students early in their career and to developing infrastructures for clinical research. © 2013 Wiley Periodicals, Inc.

  5. The Canadian clinician-scientist training program must be reinstated.

    PubMed

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-11-03

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.

  6. The ranking of scientists based on scientific publications assessment.

    PubMed

    Zerem, Enver

    2017-11-01

    It is generally accepted that the scientific impact factor (Web of Science) and the total number of citations of the articles published in a journal, are the most relevant parameters of the journal's significance. However, the significance of scientists is much more complicated to establish and the value of their scientific production cannot be directly reflected by the importance of the journals in which their articles are published. Evaluating the significance of scientists' accomplishments involves more complicated metrics than just their publication records. Based on a long term of academic experience, the author proposes objective criteria to estimate the scientific merit of an individual's publication record. This metric can serve as a pragmatic tool and the nidus for discussion within the readership of this journal. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inspiring the Next Generation of Naval Scientists and Engineers in Mississippi and Louisiana

    NASA Astrophysics Data System (ADS)

    Breland-Mensi, S.; Calantoni, J.

    2012-12-01

    In 2011, the American Institute of Physics ranked Mississippi 50th out of 50 states in preparing students for science, technology, engineering and math (STEM) careers. Louisiana placed 48th on the list. [1] The Naval Research Laboratory - Stennis Space Center detachment (NRL-SSC) is located on the Mississippi Gulf Coast, approximately 2 miles from the Louisiana state line. In response to a growing need for NRL-SSC to sustain recruitment and retention of the best and brightest scientists and engineers (S&Es), NRL-SSC became a National Defense Education Program (NDEP) site in August 2009. NDEP's mission is to support a new generation of S&Es who will apply their talents in U.S. Defense laboratories. As an NDEP site, NRL-SSC receives funding to promote STEM at K-12 institutions geographically local to NRL-SSC. NDEP funding allows present Department of Defense civilian S&Es to collaborate with teachers to enrich student learning in the classroom environment through various programs, events, training and activities. Since NRL-SSC's STEM program's inception, more than 30 S&Es have supported an array of STEM outreach activities in over 30 different local schools. An important part of the K-12 outreach from NRL-SSC is to provide professional development opportunities for local teachers. During the summer of 2012, in collaboration with STEM programs sponsored by the Office of Naval Research (ONR), we provided a series of professional development opportunities for 120 local science and mathematics teachers across K-12. The foundation of NRL-SSC STEM programs includes MATHCOUNTS, FIRST and SeaPerch—all nationally recognized, results-driven programs. We will discuss the breadth of participation in these programs and how these programs will support NRL-SSC future recruitment goals.

  8. The mobility of elite life scientists: Professional and personal determinants

    PubMed

    Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff

    2017-04-01

    As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14–17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions.

  9. The Mobility of Elite Life Scientists: Professional and Personal Determinants

    PubMed Central

    Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff

    2017-01-01

    As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14-17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions. PMID:29058845

  10. Scientists' Perceptions of Communicating During Crises

    NASA Astrophysics Data System (ADS)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  11. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  12. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  13. A life scientist, an engineer and a social scientist walk into a lab: challenges of dual-use engagement and education in synthetic biology.

    PubMed

    Edwards, Brett; Kelle, Alexander

    2012-01-01

    The discussion of dual-use education is often predicated on a discrete population of practicing life scientists exhibiting certain deficiencies in awareness or expertise. This has lead to the claim that there is a greater requirement for awareness raising and education amongst this population. However, there is yet to be an inquiry into the impact of the 'convergent' nature of emerging techno-sciences upon the prospects of dual-use education. The field of synthetic biology, although often portrayed as homogeneous, is in fact composed of various sub-fields and communities. Its practitioners have diverse academic backgrounds. The research institutions that have fostered its development in the UK often have their own sets of norms and practices in engagement with ethical, legal and social issues associated with scientific knowledge and technologies. The area is also complicated by the emergence of synthetic biologists outside traditional research environments, the so called 'do-it-yourself' or 'garage biologists'. This paper untangles some of the complexities in the current state of synthetic biology and addresses the prospects for dual-use education for practitioners. It provides a short overview of the field and discusses identified dual-use issues. There follows a discussion of UK networks in synthetic biology, including their engagement with ethical, legal, social and dual-use issues and limited educational efforts in relation to these. It concludes by outlining options for developing a more systematic dual-use education strategy for synthetic biology.

  14. Academic Commitment and Self-Efficacy as Predictors of Academic Achievement in Additional Materials Science

    ERIC Educational Resources Information Center

    Vogel, F. Ruric; Human-Vogel, Salomé

    2016-01-01

    A great deal of research within science and engineering education revolves around academic success and retention of science and engineering students. It is well known that South Africa is experiencing, for various reasons, an acute shortage of engineers. Therefore, we think it is important to understand the factors that contribute to attrition…

  15. PREFACE: 2nd International School and Conference Saint-Petersburg OPEN on Optoelectronics, Photonics, Engineering and Nanostructures (SPbOPEN2015)

    NASA Astrophysics Data System (ADS)

    2015-11-01

    The 2nd International School and Conference ''Saint Petersburg OPEN 2015'' on Optoelectronics, Photonics, Engineering and Nanostructures was held on April 6 - 8, 2015 at St. Petersburg Academic University. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were Mikhail V. Maximov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir G. Dubrovskii (St. Petersburg Academic University and St. Petersburg State University, Russia) Anton Yu. Egorov (JSC Connector Optics, Russia) Victor V. Luchinin (St. Petersburg State Electrotechnical University, Russia) Vladislav E. Bugrov (St. Petersburg University of Internet Technologies, Mechanics and Optics, Russia) Vitali A. Schukin (VI Systems, Germany) Yuri P. Svirko (University of Eastern Finland, Finland) During the poster session all undergraduate and graduate students attending the conference presented their works. A sufficiently large number of participants, with more than 170 student attendees from all over the world, allowed the Conference to provide a fertile ground for fruitful discussions between the young scientists as well as to become a perfect platform for valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year ''Saint Petersburg OPEN 2015'' is organized by St. Petersburg Academic University in cooperation with Peter the Great St. Petersburg Polytechnic University. The School and Conference is supported by Russian Science Foundation, SPIE (The International Society for Optics and Photonics), OSA (The Optical Society) and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for

  16. Information needs and information seeking in a biomedical research setting: a study of scientists and science administrators.

    PubMed

    Grefsheim, Suzanne F; Rankin, Jocelyn A

    2007-10-01

    An information needs study of clinical specialists and biomedical researchers was conducted at the US National Institutes of Health (NIH) to inform library services and contribute to a broader understanding of information use in academic and research settings. A random stratified sample by job category of 500 NIH scientists was surveyed by telephone by an independent consultant using a standardized information industry instrument, augmented with locally developed questions. Results were analyzed for statistical significance using t- tests and chi square. Findings were compared with published studies and an aggregated dataset of information users in business, government, and health care from Outsell. The study results highlighted similarities and differences with other studies and the industry standard, providing insights into user preferences, including new technologies. NIH scientists overwhelmingly used the NIH Library (424/500), began their searches at the library's Website rather than Google (P = or< 0.001), were likely to seek information themselves (474/500), and valued desktop resources and services. While NIH staff work in a unique setting, they share some information characteristics with other researchers. The findings underscored the need to continue assessing specialized needs and seek innovative solutions. The study led to improvements or expansion of services such as developing a Website search engine, organizing gene sequence data, and assisting with manuscript preparation.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  18. Science, Technology, Engineering and Math (STEM) Academic Librarian Positions during 2013: What Carnegie Classifications Reveal about Desired STEM Skills

    ERIC Educational Resources Information Center

    Trei, Kelli

    2015-01-01

    This study analyzes the requirements and preferences of 171 science, technology, engineering, and math (STEM) academic librarian positions in the United States as advertised in 2013. This analysis compares the STEM background experience preferences with the Carnegie rankings of the employing institution. The research examines the extent to which…

  19. The Public Good and Academic Capitalism: Science and Engineering Doctoral Students and Faculty on the Boundary of Knowledge Regimes

    ERIC Educational Resources Information Center

    Szelényi, Katalin; Bresonis, Kate

    2014-01-01

    This article examines the research-related experiences of 48 doctoral students and 22 faculty in science and engineering fields at three research universities, with specific emphasis on the intersection of the public good and academic capitalism. Identifying an expansive, intersecting organizational space between the public good and academic…

  20. Understanding him in STEM: Sharing the stories of African American male scholars in engineering academic programs at a predominantly White university

    NASA Astrophysics Data System (ADS)

    Hayes, Robert E., III

    Globalization of the world economy has confirmed the need for citizens to exemplify competitive capacities in science, technology, engineering, and mathematics fields. Since the 1970s, American higher education has seen increasing numbers of students entering college but has witnessed a decline in the number of students enrolling in STEM programs. African American men fall behind other students in regards to academic performance, persistence, and success throughout primary, secondary, and tertiary schooling. Accordingly, participation of African American men in STEM disciplines is low in comparison to White males and other race groups. Various factors have been identified as contributing to the academic failures of Black men. Poor academic and social preparedness, racial identity issues, institutional climates, negative stereotypes, and fear of success have been cited as potential contributors to the relative invisibility of African American men in STEM disciplines. This study explores the life stories of five African American male scholars in the college of engineering at a predominantly white university. The goal of the qualitative investigation is to help university faculty and administrators understand the institutional, interpersonal, and collective mechanisms influencing the success identities of African American male undergraduates in STEM academic programs. Understanding the lived experiences of this population may help universities innovate stronger supports for men of color in college and broaden the borders for all students interested in STEM careers.

  1. Visiting Professorships

    NASA Astrophysics Data System (ADS)

    Applications are now being accepted for the National Science Foundation (NSF) Visiting Professorships for Women Program. Under this program, women scientists and engineers from industry, government, and academia can be visiting professors at academic institutions in the United States.The program's objectives are to provide opportunities for women to advance their careers in the disciplines of science and engineering that are supported by NSF to provide greater visibility and wider opportunities for women scientists and engineers employed in industry, government, and academic institutions, and to provide encouragement for other women to pursue careers in science and engineering through the awardees' research, lecturing, counseling, and mentoring activities.

  2. Open Campus: Strategic Plan

    DTIC Science & Technology

    2016-05-01

    The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors

  3. Purposeful Leadership: The Life Calling of Successful Women Scientists

    NASA Astrophysics Data System (ADS)

    West, Ja-Quel April

    The experiences of six women who are successful in the world of science, technology, engineering, and mathematics (STEM) are examined through lenses constructed from self-efficacy, resiliency, social capital, and identity. Each of the women successfully earned a doctorate in STEM, in spite of being the minority in a male-dominated career field. Examination of individual discoveries and experiences provides a platform for enhancing an understanding of what facilitates women scientists' achievements when pursuing meaningful work. All women in this study display, how social networks and personal characteristics have helped women scientists, become leaders and advance in their field. The findings of this research provides a scaffold for young students to will better understand, and appreciate how women scientists overcome many barriers, how women in science gained their strength, and fulfilled their purposeful leadership.

  4. Gender differences in patenting in the academic life sciences.

    PubMed

    Ding, Waverly W; Murray, Fiona; Stuart, Toby E

    2006-08-04

    We analyzed longitudinal data on academic careers and conducted interviews with faculty members to determine the scope and causes of the gender gap in patenting among life scientists. Our regressions on a random sample of 4227 life scientists over a 30-year period show that women faculty members patent at about 40% of the rate of men. We found that the gender gap has improved over time but remains large.

  5. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they

  6. Automatic jargon identifier for scientists engaging with the public and science communication educators

    PubMed Central

    Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012–2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented

  7. Automatic jargon identifier for scientists engaging with the public and science communication educators.

    PubMed

    Rakedzon, Tzipora; Segev, Elad; Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012-2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented by

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  9. Women Scientists and Engineers: Trends in Participation.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    1981-01-01

    Examines trends in participation of women in science and engineering over the past decade and estimates changes during the 1980s. Focuses on educational attainment, employment status and sector, and salaries, and indicates a gap in salaries and career opportunities between men and women. (JN)

  10. The Teaching of Crystallography to Materials Scientists and Engineers.

    ERIC Educational Resources Information Center

    Wuensch, Bernhardt J.

    1988-01-01

    Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)

  11. Minority Engineering Program Pipeline: A Proposal to Increase Minority Student Enrollment and Retention in Engineering

    NASA Technical Reports Server (NTRS)

    Charity, Pamela C.; Klein, Paul B.; Wadhwa, Bhushan

    1995-01-01

    The Cleveland State University Minority Engineering Program Pipeline consist of programs which foster engineering career awareness, academic enrichment, and professional development for historically underrepresented minority studies. The programs involved are the Access to Careers in Engineering (ACE) Program for high school pre-engineering students: the LINK Program for undergraduate students pursuing degree which include engineering; and the PEP (Pre-calculus Enrichment Program) and EPIC (Enrichment Program in Calculus) mathematics programs for undergraduate academic enrichment. The pipeline is such that high school graduates from the ACE Program who enroll at Cleveland State University in pursuit of engineering degrees are admitted to the LINK Program for undergraduate level support. LINK Program students are among the minority participants who receive mathematics enrichment through the PEP and EPIC Programs for successful completion of their engineering required math courses. THese programs are interdependent and share the goal of preparing minority students for engineering careers by enabling them to achieve academically and obtain college degree and career related experience.

  12. Young Engineers and Sciences (YES) - Mentoring High School Students

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  13. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    PubMed

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  14. Do pressures to publish increase scientists' bias? An empirical support from US States Data.

    PubMed

    Fanelli, Daniele

    2010-04-21

    The growing competition and "publish or perish" culture in academia might conflict with the objectivity and integrity of research, because it forces scientists to produce "publishable" results at all costs. Papers are less likely to be published and to be cited if they report "negative" results (results that fail to support the tested hypothesis). Therefore, if publication pressures increase scientific bias, the frequency of "positive" results in the literature should be higher in the more competitive and "productive" academic environments. This study verified this hypothesis by measuring the frequency of positive results in a large random sample of papers with a corresponding author based in the US. Across all disciplines, papers were more likely to support a tested hypothesis if their corresponding authors were working in states that, according to NSF data, produced more academic papers per capita. The size of this effect increased when controlling for state's per capita R&D expenditure and for study characteristics that previous research showed to correlate with the frequency of positive results, including discipline and methodology. Although the confounding effect of institutions' prestige could not be excluded (researchers in the more productive universities could be the most clever and successful in their experiments), these results support the hypothesis that competitive academic environments increase not only scientists' productivity but also their bias. The same phenomenon might be observed in other countries where academic competition and pressures to publish are high.

  15. On the Compliance of Women Engineers with a Gendered Scientific System.

    PubMed

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.

  16. Academic program models for undergraduate biomedical engineering.

    PubMed

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  17. ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Job Satisfaction of Academics: Reflections about Turkey

    ERIC Educational Resources Information Center

    Bilge, Filiz; Akman, Yasemin; Kelecioglu, Hulya

    2007-01-01

    The purpose of this study was to investigate the relationship of academics' job satisfaction to intrinsic and extrinsic factors such as gender, age, marital status, seniority, academic status, position, area of work (science and engineering, social science), and presence or absence of academic experience abroad. Participants included 203 academics…

  19. Persistence of African American Men in Science: Exploring the Influence of Scientist Identity, Mentoring, and Campus Climate

    NASA Astrophysics Data System (ADS)

    Guy, Breonte Stephan

    The scant literature on persistence of African American males in science typically takes a deficits-based approach to encapsulate the myriad reasons this population is so often underrepresented. Scientist Identity, Mentoring, and Campus Climate have, individually, been found to be related to the persistence of African American students. However, the unified impact of these three variables on the persistence of African American students with science interests has not been evaluated, and the relationship between the variables, the students' gender, and markers of academic achievement have not been previously investigated. The current study takes a strengths-based approach to evaluating the relationship between Scientist Identity, Mentoring, and Campus climate with a population of African American students with science interests who were studying at six Minority Serving Institutions and Predominantly White Institutions in the Southern United States. Multiple regression analyses were conducted to determine the impact of Scientist Identity, Mentoring, and Campus Climate on Intention to Persist of African American males. The results indicate that Scientist Identity predicts Intention to Persist, and that gender, academic performance, and institution type moderate the relationship between Scientist Identity and Intention to Persist. These results lend credence to the emerging notion that, for African American men studying science, generating a greater depth and breadth of understanding of the factors that lead to persistence will aid in the development of best practices for supporting persistence among this perpetually underrepresented population.

  20. ReProTool Version 2.0: Re-Engineering Academic Curriculum Using Learning Outcomes, ECTS and Bologna Process Concepts

    ERIC Educational Resources Information Center

    Pouyioutas, Philippos; Gjermundrod, Harald; Dionysiou, Ioanna

    2012-01-01

    Purpose: The purpose of this paper is to present ReProTool Version 2.0, a software tool that is used for the European Credit Transfer System (ECTS) and the Bologna Process re-engineering of academic programmes. The tool is the result of an 18 months project (February 2012-July 2013) project, co-financed by the European Regional Development Fund…

  1. Environmental engineering: A profession in transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.

    1996-11-01

    This 50th Industrial Waste Conference at Purdue gives one an opportunity and excuse to reflect on progress in Environmental Engineering and speculate on future changes. The author suggests that during this 50-year period Environmental Engineering has emerged as a discrete and creditable body of knowledge, practice, and academic study. In this review he presents a personal view of the evolution of Environmental Engineering and its present status. He also suggests some future directions and principles which may prove useful, especially in the academic world. The paper discusses the sphere of the environmental engineer, the social incentive, the academic curriculum, environmentalmore » engineers and society, the chlorine controversy, research, and the electronic revolution.« less

  2. What does the UK public want from academic science communication?

    PubMed

    Redfern, James; Illingworth, Sam; Verran, Joanna

    2016-01-01

    The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent's current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the 'common practice' of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals), there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience.

  3. What does the UK public want from academic science communication?

    PubMed Central

    Redfern, James; Illingworth, Sam; Verran, Joanna

    2016-01-01

    The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent’s current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the ‘common practice’ of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals), there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience. PMID:27347384

  4. Publication metrics and success on the academic job market.

    PubMed

    van Dijk, David; Manor, Ohad; Carey, Lucas B

    2014-06-02

    The number of applicants vastly outnumbers the available academic faculty positions. What makes a successful academic job market candidate is the subject of much current discussion [1-4]. Yet, so far there has been no quantitative analysis of who becomes a principal investigator (PI). We here use a machine-learning approach to predict who becomes a PI, based on data from over 25,000 scientists in PubMed. We show that success in academia is predictable. It depends on the number of publications, the impact factor (IF) of the journals in which those papers are published, and the number of papers that receive more citations than average for the journal in which they were published (citations/IF). However, both the scientist's gender and the rank of their university are also of importance, suggesting that non-publication features play a statistically significant role in the academic hiring process. Our model (www.pipredictor.com) allows anyone to calculate their likelihood of becoming a PI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Finding Meaningful Roles for Scientists in science Education Reform

    NASA Astrophysics Data System (ADS)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  6. Mentoring Among Scientists: Implications of Interpersonal Relationships within a Formal Mentoring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan D. Maughan

    2006-11-01

    Mentoring is an established strategy for learning that has its root in antiquity. Most, if not all, successful scientists and engineers had an effective mentor at some point in their career. In the context of scientists and engineers, mentoring has been undefined. Reports addressing critical concerns regarding the future of science and engineering in the U.S. mention the practice of mentoring a priori, leaving organizations without guidance in its application. Preliminary results from this study imply that formal mentoring can be effective when properly defined and operationalized. Recognizing the uniqueness of the individual in a symbiotic mentor-protégé relationship significantly influencesmore » a protégé’s learning experience which carries repercussions into their career intentions. The mentor-protégé relationship is a key factor in succession planning and preserving and disseminating critical information and tacit knowledge essential to the development of leadership in the science and technological industry.« less

  7. Age distribution among NASA scientists and engineers

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.

    1989-01-01

    The loss of technical expertise through attrition in NASA and the aerospace industry is discussed. This report documents historical age-related information for scientific and engineering personnel in general and the NASA Lewis Research Center in particular, for 1968 through 1987. Recommendations are made to promote discussion and to establish the groundwork for action.

  8. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    NASA Astrophysics Data System (ADS)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  9. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  10. On the Compliance of Women Engineers with a Gendered Scientific System

    PubMed Central

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R.

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers—regardless of their gender—contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse. PMID:26716831

  11. DoD Educational Intervention Programs for Scientists and Engineers.

    DTIC Science & Technology

    1995-10-01

    Nabeel , ed. The Condition of Education: 1993. Washington, D.C.: U.S.Department of Education, National Center for Education Statistics (NCES 93-290), p...Naval Facilities I Undergraduate Academic Program Undergraduate Navy Naval Ocean Sy Cooperative Education Program (COOP) Undergraduate Navy Naval... Nabeel , ed. The Condition of Education: 1993. Washington, D.C.: U.S. Department of Education, National Center for Education Statistics (NCES 93-290

  12. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  13. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    NASA Astrophysics Data System (ADS)

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-02-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents’ general educational beliefs and their underlying epistemological views. The aim of this work was to investigate the respondents’ opinions and, if possible, to identify the areas where convergence or even consensus occurred. The results showed that some of the items on the research questionnaire produced a high degree of agreement with the respondents’ views, while a few others were exactly the opposite. These items are considered to be representative of more widespread views. In order to explore the diverging opinions, the items on the research questionnaire that showed great variance were analyzed to determine, whether or not there were significant inter-item correlations among subgroups of participants with different demographic characteristics. Postgraduate studies, professional occupation, age/experience, and career within or outside the wide educational sector were among the main factors that significantly influenced the research results. The study did not reveal any single belief framework underlying the opinions of the respondents. Nevertheless, three specific approach frameworks—ACADEMIC, CONSTRUCTIVIST and SCIENTIFIC REALISM—were analyzed to determine which had the highest degree of agreement. It was found that the SCIENTIFIC REALISM framework and the curriculum emphasis characteristic of the context-based CTSE (Chemistry, Technology, Society and Environment) prevailed, as they produced a significantly higher mean score. The ACADEMIC framework followed with a moderate mean score and the CONSTRUCTIVIST framework had a lower mean score.

  14. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  16. Different Aspects of Secondary School Students' Mental Frameworks Related to Concept of Scientist

    ERIC Educational Resources Information Center

    Karaçam, Sedat

    2015-01-01

    The aim of this study is to examine secondary school students' images and conceptualisations about scientists by contextual data analysis, and to determine relationships between them. The respondents were 356 students attending 6th and 7th grades of secondary school in Duzce. Tests were conducted during 2013-2014 academic year. Students' images…

  17. Designing a solution to enable agency-academic scientific collaboration for disasters

    USGS Publications Warehouse

    Mease, Lindley A.; Gibbs-Plessl, Theodora; Erickson, Ashley; Ludwig, Kristin A.; Reddy, Christopher M.; Lubchenco, Jane

    2017-01-01

    As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.

  18. The Effect of Military Personnel Requirements on the Future Supply of Scientists and Engineers in the United States. Papers and a Conference Report (Washington, D.C., June 10, 1981).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Human Resources.

    This document contains two papers commissioned by the Human Resources Commission of the National Research Council to explore the potential effects of military personnel requirements on the supply of scientists and engineers, and reaction to the papers from a one-day seminar of invited participants. The first paper, by Dr. Dael Wolfle, considers…

  19. Core competencies for pharmaceutical physicians and drug development scientists

    PubMed Central

    Silva, Honorio; Stonier, Peter; Buhler, Fritz; Deslypere, Jean-Paul; Criscuolo, Domenico; Nell, Gerfried; Massud, Joao; Geary, Stewart; Schenk, Johanna; Kerpel-Fronius, Sandor; Koski, Greg; Clemens, Norbert; Klingmann, Ingrid; Kesselring, Gustavo; van Olden, Rudolf; Dubois, Dominique

    2013-01-01

    Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine), are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes (LO) of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain LO anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide. PMID:23986704

  20. [Attitudes towards the code of conduct for scientists among council members of the Japanese Society for Hygiene].

    PubMed

    Ikeda, Wakaha; Inaba, Yutaka; Yoshida, Katsumi; Takeshita, Tatsuya; Ogoshi, Kumiko; Okamoto, Kazushi

    2010-01-01

    The aim of this study was to clarify the attitudes towards the code of conduct for scientists among council members of the Japanese Society for Hygiene (JSH). We also aimed to collect information to be used as baseline data for future studies. From November to December 2007, 439 Council members of the Japanese Society for Hygiene completed a self-administered questionnaire. The valid response rate was 43.7% (n=192/439). The mean ages of the subjects were 56.2 years for males (n=171), and 53.0 years for females (n=19). Many council members were unfamiliar with the "Code of Conduct for Scientists" established by the Science Council of Japan, suggesting that most of the regular members were also unfamiliar with these guidelines. However, the high level of interest in the "Code of Conduct for Scientists" established by the Science Council of Japan indicated a positive attitude towards learning about research ethics. Moreover, one-half of the subjects responded that JSH should establish a code of conduct for scientists. Below are some of the reasons for requiring JSH to establish a code of conduct: 1. Private information is prevalent in the field of hygiene. 2. The overall stance as an academic society would be established and would encourage individuality in academic societies. 3. Members have various backgrounds within the field of hygiene, and they should have a code of conduct different from that of their institution of affiliation. We clarified attitudes towards the Code of Conduct for Scientists among council members of the Japanese Society for Hygiene.

  1. Organizational stress and individual strain: A social-psychological study of risk factors in coronary heart disease among administrators, engineers, and scientists

    NASA Technical Reports Server (NTRS)

    Caplan, R. D.

    1971-01-01

    It is hypothesized that organizational stresses, such as high quantitative work load, responsibility for persons, poor relations with role senders, and contact with alien organizational territories, may be associated with high levels of psychological and physiological strain which are risk factors in coronary heart disease. It is further hypothesized that persons with coronary-prone Type A personality characteristics are most likely to exhibit strain under conditions of organizational stress. Measures of these stresses, personality traits, and strains were obtained from 205 male NASA administrators, engineers, and scientists. Type A personality measures included sense of time urgency, persistence, involved striving, leadership, and preference for competitive and environmentally overburdening situations.

  2. The mentoring of male and female scientists during their doctoral studies

    NASA Astrophysics Data System (ADS)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional

  3. Scientists Admitting to Plagiarism: A Meta-analysis of Surveys.

    PubMed

    Pupovac, Vanja; Fanelli, Daniele

    2015-10-01

    We conducted a systematic review and meta-analysis of anonymous surveys asking scientists whether they ever committed various forms of plagiarism. From May to December 2011 we searched 35 bibliographic databases, five grey literature databases and hand searched nine journals for potentially relevant studies. We included surveys that asked scientists if, in a given recall period, they had committed or knew of a colleague who committed plagiarism, and from each survey extracted the proportion of those who reported at least one case. Studies that focused on academic (i.e. student) plagiarism were excluded. Literature searches returned 12,460 titles from which 17 relevant survey studies were identified. Meta-analysis of studies reporting committed (N = 7) and witnessed (N = 11) plagiarism yielded a pooled estimate of, respectively, 1.7% (95% CI 1.2-2.4) and 30% (95% CI 17-46). Basic methodological factors, including sample size, year of survey, delivery method and whether survey questions were explicit rather than indirect made a significant difference on survey results. Even after controlling for these methodological factors, between-study differences in admission rates were significantly above those expected by sampling error alone and remained largely unexplained. Despite several limitations of the data and of this meta-analysis, we draw three robust conclusions: (1) The rate at which scientists report knowing a colleague who committed plagiarism is higher than for data fabrication and falsification; (2) The rate at which scientists report knowing a colleague who committed plagiarism is correlated to that of fabrication and falsification; (3) The rate at which scientists admit having committed either form of misconduct (i.e. fabrication, falsification and plagiarism) in surveys has declined over time.

  4. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  5. Scientists in an alternative vision of a globalized world

    NASA Astrophysics Data System (ADS)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  6. An Accidental Scientist: Chance, Failure, Risk-Taking, and Mentoring.

    PubMed

    McGrath, Patrick J

    2018-04-06

    I never intended to become a scientist. My career developed on the basis of chance happenings, repeated failure, the willingness to take risks and the acceptance and provision of mentoring. My career has included periods of difficulty and shifted back and forth between academic health centers and universities in Canada. Although I have been amply recognized for my successes, my greatest learning has come from my failures. My greatest satisfaction has been in the development, evaluation and dissemination of interventions. The combination of intellectual stimulation and emotional gratification has meant a rewarding career.

  7. Disparate foundations of scientists' policy positions on contentious biomedical research.

    PubMed

    Edelmann, Achim; Moody, James; Light, Ryan

    2017-06-13

    What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy.

  8. Building a teaching-research nexus in a research intensive university: rejuvenating the recruitment and training of the clinician scientist.

    PubMed

    Eley, Diann S; Wilkinson, David

    2015-02-01

    The continuing decline in clinician scientists is a global concern. This paper reports on a two-fold rationale to address this decline by increasing the number of students on a formal pathway to an academic research career, and building a 'teaching-research nexus' using the research intensive environment at our University. The University of Queensland has implemented a research intensive program, the Clinician Scientist Track (CST), for a select cohort of students to pursue a part time research Masters degree alongside their full time medical degree. To this end, the support of clinical academics and the research community was vital to achieve a 'teaching-research-clinical nexus' - most appropriate for nurturing future Clinician Scientists. In three years, the CST has 42 enrolled research Masters' students with the majority (90%) upgrading to a PhD. Research represents 33 different areas and over 25 research groups/centres across this University and internationally. Other research intensive institutions may similarly build their 'teaching-research nexus' by purposeful engagement between their medical school and research community. The CST offers a feasible opportunity for outstanding students to build their own 'field of dreams' through an early start to their research career while achieving a common goal of rejuvenating the ethos of the clinician scientist.

  9. Influence of Social Cognitive and Ethnic Variables on Academic Goals of Underrepresented Students in Science and Engineering: A Multiple-Groups Analysis

    ERIC Educational Resources Information Center

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-01-01

    In this study we investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in 2 groups: biological science (BIO) and engineering (ENG) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive…

  10. When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences.

    PubMed

    Stuart, Toby E; Ding, Waverly W

    2006-07-01

    The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.

  11. Conflicts of interest among academic dermatologists: freedom or constraint?

    PubMed

    Naldi, L

    2016-04-01

    Intangible and institutional conflicts of interest can particularly affect academia. Academic scientists have peculiar social responsibilities with respect to education and research. These responsibilities may conflict with the increased presence of industry in academia and commercialization of academic research through patents and royalties. Drug approval is almost entirely dependent worldwide on data produced in studies led by pharmaceutical industries. A reflection of the increasing role of the market in academic research is given by exaggerated claims in press releases by academic institutions. In consideration of the extensive presence of industry in academia, there is a need for a move from individual to institutional conflicts of interest disclosure, defining institutional policies for regulating conflicts of interest and developing an 'ethically credible partnership'. © 2016 British Association of Dermatologists.

  12. Probing scientists' beliefs: how open-minded are modern scientists?

    NASA Astrophysics Data System (ADS)

    Coll, Richard K.; Taylor, Neil

    2004-06-01

    Just how open-minded are modern scientists? In this paper we examine this question for the science faculty from New Zealand and UK universities. The Exeter questionnaire used by Preece and Baxter (2000) to examine superstitious beliefs of high school students and preservice science teachers was used as a basis for a series of in-depth interviews of scientists across a variety of disciplines. The interviews sought to understand the basis on which scientists form beliefs and how they judge evidence for various propositions, including those from the Exeter questionnaire and other contentious beliefs introduced during discourse. The scientists are dismissive of traditional superstitions like bad luck associated with black cats and inauspicious numbers such as 13, seeing such beliefs as socially grounded. There is a strong socio-cultural aspect to other beliefs and personal experiences, and strongly held personal beliefs are influential, resulting in the scientists keeping an open mind about contentious beliefs like alien life and the existence of ghosts. Testimony of others including media reports are deemed unreliable unless provided by credible witnesses such as 'educated people' or 'experts', or if they coincide with the scientists' personal beliefs. These scientists see a need for potential theoretical explanations for beliefs and are generally dismissive of empirical evidence without underlying explanations.

  13. The Manhattan Project and its Effects on American Women Scientists

    NASA Astrophysics Data System (ADS)

    Fletcher, Samuel

    2008-04-01

    There have been many detailed historical accounts of the Manhattan Project, but few have recognized the technical role women scientists and engineers crucially played in the Project's success. Despite their absence from these prominent accounts, recent studies have revealed that, in fact, women participated in every non-combat operation associated with the Manhattan Project. With such extensive participation of women and such a former lack of historical attention upon them, little analysis has been done on how the Manhattan Project might have influenced the prospectus of women scientists after the war. This talk has two aims: 1) to recount some of the technical and scientific contributions of women to the Manhattan Project, and 2) to examine what effects these contributions had on the women's careers as scientists. In other words, I intend offer a preliminary explanation of the extent to which the Manhattan Project acted both as a boon and as a detriment to American women scientists. And finally, I will address what this historical analysis could imply about the effects of current efforts to recruit women into science.

  14. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  15. Team science and the physician-scientist in the age of grand health challenges.

    PubMed

    Steer, Clifford J; Jackson, Peter R; Hornbeak, Hortencia; McKay, Catherine K; Sriramarao, P; Murtaugh, Michael P

    2017-09-01

    Despite remarkable advances in medical research, clinicians face daunting challenges from new diseases, variations in patient responses to interventions, and increasing numbers of people with chronic health problems. The gap between biomedical research and unmet clinical needs can be addressed by highly talented interdisciplinary investigators focused on translational bench-to-bedside medicine. The training of talented physician-scientists comfortable with forming and participating in multidisciplinary teams that address complex health problems is a top national priority. Challenges, methods, and experiences associated with physician-scientist training and team building were explored at a workshop held at the Second International Conference on One Medicine One Science (iCOMOS 2016), April 24-27, 2016, in Minneapolis, Minnesota. A broad range of scientists, regulatory authorities, and health care experts determined that critical investments in interdisciplinary training are essential for the future of medicine and healthcare delivery. Physician-scientists trained in a broad, nonlinear, cross-disciplinary manner are and will be essential members of science teams in the new age of grand health challenges and the birth of precision medicine. Team science approaches have accomplished biomedical breakthroughs once considered impossible, and dedicated physician-scientists have been critical to these achievements. Together, they translate into the pillars of academic growth and success. © 2017 New York Academy of Sciences.

  16. Challenges and responsibilities for public sector scientists.

    PubMed

    Van Montagu, Marc

    2010-11-30

    Current agriculture faces the challenge of doubling food production to meet the food needs of a population expected to reach 9 billion by mid-century whilst maintaining soil and water quality and conserving biodiversity. These challenges are more overwhelming for the rural poor, who are the custodians of environmental resources and at the same time particularly vulnerable to environmental degradation. Solutions have to come from concerted actions by different segments of society in which public sector science plays a fundamental role. Public sector scientists are at the root of all the present generation of GM crop traits under cultivation and more will come with the new knowledge that is being generated by systems biology. To speed up innovation, molecular biologists must interact with scientists from the different fields as well as with stakeholders outside the academic world in order to create an environment capable of capturing value from public sector knowledge. I highlight here the measures that have to be taken urgently to guarantee that science and technology can tackle the problems of subsistence farmers. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. The challenges for scientists in avoiding plagiarism.

    PubMed

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  18. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. A Comparison of the Technical Communication Practices of Aerospace Engineers and Scientists in India and the United States

    DTIC Science & Technology

    1993-09-01

    Indiana University Bloomington, Indiana doc~𔃻 ~ e-an aPP’oveThi %o u E -l:•-,•d sale; its II September 1993 iot public te, an .. itS S =- National...Amount of Time Spent Communicating Technical Information by India and 11 S . Aerospace Engineers and Scientists India U.S. Change % (n) % (n) Increased 83...respondents and 76% of the U.S. respondents indicated that they had taken a course( s ) in technical communications/writing. (Approximately 75% of the India

  20. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  1. A Graduate Academic Program in Medical Information Science.

    ERIC Educational Resources Information Center

    Blois, Marsden S., Jr.; Wasserman, Anthony I.

    A graduate academic program in medical information science has been established at the University of California, San Francisco, for the education of scientists capable of performing research and development in information technology in the health care setting. This interdisciplinary program, leading to a Doctor of Philosophy degree, consists of an…

  2. The role of academic institutions in leveraging engagement and action on climate change

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Palca, J.

    2016-12-01

    Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.

  3. Developing Data System Engineers

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Byrnes, J. B.; Kobler, B.

    2011-12-01

    In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.

  4. Physician Scientist Training in the United States: A Survey of the Current Literature.

    PubMed

    Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q

    2016-03-01

    The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.

  5. Scientists and Science Education: Working at the Interface

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  6. Helping Basic Scientists Engage With Community Partners to Enrich and Accelerate Translational Research.

    PubMed

    Kost, Rhonda G; Leinberger-Jabari, Andrea; Evering, Teresa H; Holt, Peter R; Neville-Williams, Maija; Vasquez, Kimberly S; Coller, Barry S; Tobin, Jonathan N

    2017-03-01

    Engaging basic scientists in community-based translational research is challenging but has great potential for improving health. In 2009, The Rockefeller University Center for Clinical and Translational Science partnered with Clinical Directors Network, a practice-based research network (PBRN), to create a community-engaged research navigation (CEnR-Nav) program to foster research pairing basic science and community-driven scientific aims. The program is led by an academic navigator and a PBRN navigator. Through meetings and joint activities, the program facilitates basic science-community partnerships and the development and conduct of joint research protocols. From 2009-2014, 39 investigators pursued 44 preliminary projects through the CEnR-Nav program; 25 of those became 23 approved protocols and 2 substudies. They involved clinical scholar trainees, early-career physician-scientists, faculty, students, postdoctoral fellows, and others. Nineteen (of 25; 76%) identified community partners, of which 9 (47%) named them as coinvestigators. Nine (of 25; 36%) included T3-T4 translational aims. Seven (of 25; 28%) secured external funding, 11 (of 25; 44%) disseminated results through presentations or publications, and 5 (71%) of 7 projects publishing results included a community partner as a coauthor. Of projects with long-term navigator participation, 9 (of 19; 47%) incorporated T3-T4 aims and 7 (of 19; 37%) secured external funding. The CEnR-Nav program provides a model for successfully engaging basic scientists with communities to advance and accelerate translational science. This model's durability and generalizability have not been determined, but it achieves valuable short-term goals and facilitates scientifically meaningful community-academic partnerships.

  7. The Evidence Base for How Learning Happens: A Consensus on Social, Emotional, and Academic Development

    ERIC Educational Resources Information Center

    Jones, Stephanie M.; Kahn, Jennifer

    2018-01-01

    The Aspen Institute's National Commission on Social, Emotional, and Academic Development united a broad alliance of leaders to speak with a unified voice about the urgency of integrating social and emotional development into the fabric of K-12 education. The commission convened a group of scientists, researchers, and academics across disparate…

  8. Creating Future Scientists and Engineers. 2013 Keynote Speech

    ERIC Educational Resources Information Center

    Hicks, Stephen

    2013-01-01

    This article presents a summary of the keynote speech presented at the ITEEA Conference in Columbus, OH, March 4, 2013, by Steven Hicks. Hicks is former Director, Research & Development, Flavor & Fragrance Development Global Capability, for the Procter & Gamble Company. Educated as a chemical engineer, his outside interests include…

  9. Diversity Exiting the Academy: Influential Factors for the Career Choice of Well-Represented and Underrepresented Minority Scientists

    ERIC Educational Resources Information Center

    Layton, Rebekah L.; Brandt, Patrick D.; Freeman, Ashalla M.; Harrell, Jessica R.; Hall, Joshua D.; Sinche, Melanie

    2016-01-01

    A national sample of PhD-trained scientists completed training, accepted subsequent employment in academic and nonacademic positions, and were queried about their previous graduate training and current employment. Respondents indicated factors contributing to their employment decision (e.g., working conditions, salary, job security). The data…

  10. Student Satisfaction with Information Provided by Academic Advisors

    ERIC Educational Resources Information Center

    Sutton, Kyra L.; Sankar, Chetan S.

    2011-01-01

    The retention of engineering students is important because more than half of the students who begin engineering programs in the United States will not earn an engineering degree. A literature review showed the importance of academic advising in retaining students in engineering programs. Therefore, the goal of this study is to identify the level…

  11. A Teacher-Scientist Partnership as a Vehicle to Incorporate Climate Data in Secondary Science Curriculum

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2013-12-01

    After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the

  12. Bats and Academics: How Do Scientists Perceive Their Object of Study?

    PubMed Central

    Boëte, Christophe; Morand, Serge

    2016-01-01

    Bats are associated with conflicting perceptions among humans, ranging from affection to disgust. If these attitudes can be associated with various factors among the general public (e.g. social norms, lack of knowledge), it is also important to understand the attitude of scientists who study bats. Such reflexive information on the researchers community itself could indeed help designing adequate mixed communication tools aimed at protecting bats and their ecosystems, as well as humans living in their vicinity that could be exposed to their pathogens. Thus, we conducted an online survey targeting researchers who spend a part of their research activity studying bats. Our aim was to determine (1) how they perceive their object of study, (2) how they perceive the representation of bats in the media and by the general population, (3) how they protect themselves against pathogen infections during their research practices, and (4) their perceptions of the causes underlying the decline in bat populations worldwide. From the 587 completed responses (response rate of 28%) having a worldwide distribution, the heterogeneity of the scientists’ perception of their own object of study was highlighted. In the majority of cases, this depended on the type of research they conducted (i.e. laboratory versus field studies) as well as their research speciality. Our study revealed a high level of personal protection equipment being utilised against pathogens during scientific practices, although the role bats play as reservoirs for a number of emerging pathogens remains poorly known. Our results also disclosed the unanimity among specialists in attributing a direct role for humans in the global decline of bat populations, mainly via environmental change, deforestation, and agriculture intensification. Overall, the present study suggests the need for better communication regarding bats and their biology, their role within the scientific community, as well as in the general public

  13. Asian American women in science, engineering, and mathematics: Background contextual and college environment influences on self-efficacy and academic achievement

    NASA Astrophysics Data System (ADS)

    Vogt, Kristen E.

    2005-07-01

    The purpose of this research study was to examine, for undergraduate women of various Asian American ethnic backgrounds, the influence of background contextual and college environment factors on their sense of academic self-efficacy and achievement in science, technology, engineering, and mathematics (STEM) majors. Social cognitive career theory and its critiques provided a theoretical foundation for relationships from past performance, socioeconomic status, acculturation, and college environment variables (compositional diversity, racial climate, gendered climate, academic peer support), to academic self-efficacy and achievement. Data were collected through an online survey. Instrumentation included the scales of Language, Identity, and Behavioral Acculturation; Gender Discrimination; Faculty and Classroom Behavior; Interactions with Peers; and Academic Milestones Self-efficacy. The participants were 228 Asian American undergraduate women in STEM at a large public, doctoral research extensive university on the east coast; the response rate was 51%. In three MANOVAs for nine social cognitive career variables, four ethnic groups (East, South, Southeast, and Multi-ethnic Asian American) significantly differed only on socioeconomic status. In path analysis, the initial model was not a good fit and was rejected. The model was respecified through statistical and theoretical evaluation, tested in exploratory analysis, and considered a good fit. The respecified model explained 36% of semester GPA (achievement) and 28% of academic self-efficacy. The academic achievement of Asian American women in STEM was related to past performance, background contextual factors, academic self-efficacy, academic peer support, and gendered climate. The strongest direct influence on achievement was academic self-efficacy followed by past performance. The total effect of Asian acculturation on achievement was negative and the total effect of American acculturation on achievement was not

  14. Target-Setting, Early-Career Academic Identities and the Measurement Culture of UK Higher Education

    ERIC Educational Resources Information Center

    Smith, Jan

    2017-01-01

    Early-career academics are subject to a barrage of formal measurements when they secure a first academic post in a UK university. To support this process, guidance is provided by universities on what is measured, though this can lack disciplinary nuance. This article analyses the perceptions of a sample of social scientists of the process of…

  15. Libraries and Information Science: the Profession. Alternative Career Opportunities for Atmospheric, Earth, and Geo-scientists.

    NASA Astrophysics Data System (ADS)

    Love, A. M.

    2003-12-01

    Many graduate students, researchers and scientists may not be aware that there are other career opportunities available to them as scientists besides the traditional academic, government, industrial and private sector tracks. Subject specialists with science backgrounds are in great demand. Knowledge management and information services affiliated with science and research is an exciting and creative profession. Contributing to, finding and delivering the range of information now emerging from new and established disciplines in all formats defines Information Science and Librarianship with a multitude of opportunities. This poster will offer information to encourage students and researchers with these skills and backgrounds to consider Information and Library Science as an exciting career path.

  16. Personal Characteristics That Distinguish Creative Scientists from Less Creative Scientists

    ERIC Educational Resources Information Center

    Tang, Chaoying; Kaufman, James C.

    2017-01-01

    What are the personal characteristics that distinguish the creative scientist from the less creative scientist? This study used the concept of implicit theory in a four-part study of scientists and graduate students in science. In the first part, we collected 1382 adjective words that describe the personal characteristics of the creative scientist…

  17. Opportunities in Civil Engineering. [VGM Career Horizons Series].

    ERIC Educational Resources Information Center

    Hagerty, D. Joseph; Heer, John E., Jr.

    This book presents information on career opportunities in civil engineering. Chapter 1 focuses on the scope of civil engineering, discussing: role of scientist, engineer, and technologists; engineering and engineering technology; civil engineer's role and obligations; and other information. Chapter 2 considers such aspects of the education for…

  18. The Structure of the Chinese Academic Labor Market, 1997-2004

    ERIC Educational Resources Information Center

    Jiang, Mujuan

    2009-01-01

    Universalism is critical to the development of science because it promotes the objectivity of knowledge. Particularism, on the other hand, evaluates scientists' contributions based on functionally irrelevant characteristics, including personal attributes and academic origins. Previous studies found a persistent significant correlation between…

  19. Publish or perish: Scientists must write or How do I climb the paper mountain?

    USDA-ARS?s Scientific Manuscript database

    This will be an interactive workshop for scientists discussing strategies for improving writing efficiency. Topics covered include database search engines, reference managing software, authorship, journal determination, writing tips and good writing habits....

  20. Rescuing the physician-scientist workforce: the time for action is now.

    PubMed

    Milewicz, Dianna M; Lorenz, Robin G; Dermody, Terence S; Brass, Lawrence F

    2015-10-01

    The 2014 NIH Physician-Scientist Workforce (PSW) Working Group report identified distressing trends among the small proportion of physicians who consider research to be their primary occupation. If unchecked, these trends will lead to a steep decline in the size of the workforce. They include high rates of attrition among young investigators, failure to maintain a robust and diverse pipeline, and a marked increase in the average age of physician-scientists, as older investigators have chosen to continue working and too few younger investigators have entered the workforce to replace them when they eventually retire. While the policy debates continue, here we propose four actions that can be implemented now. These include applying lessons from the MD-PhD training experience to postgraduate training, shortening the time to independence by at least 5 years, achieving greater diversity and numbers in training programs, and establishing Physician-Scientist Career Development offices at medical centers and universities. Rather than waiting for the federal government to solve our problems, we urge the academic community to address these goals by partnering with the NIH and national clinical specialty and medical organizations.

  1. A feeling of flow: exploring junior scientists' experiences with dictation of scientific articles.

    PubMed

    Spanager, Lene; Danielsen, Anne Kjaergaard; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2013-08-10

    Science involves publishing results, but many scientists do not master this. We introduced dictation as a method of producing a manuscript draft, participating in writing teams and attending a writing retreat to junior scientists in our department. This study aimed to explore the scientists' experiences with this process. Four focus group interviews were conducted and comprised all participating scientists (n = 14). Each transcript was transcribed verbatim and coded independently by two interviewers. The coding structure was discussed until consensus and from this the emergent themes were identified. Participants were 7 PhD students, 5 scholarship students and 2 clinical research nurses. Three main themes were identified: 'Preparing and then letting go' indicated that dictating worked best when properly prepared. 'The big dictation machine' described benefits of writing teams when junior scientists got feedback on both content and structure of their papers. 'Barriers to and drivers for participation' described flow-like states that participants experienced during the dictation. Motivation and a high level of preparation were pivotal to be able to dictate a full article in one day. The descriptions of flow-like states seemed analogous to the theoretical model of flow which is interesting, as flow is usually deemed a state reserved to skilled experts. Our findings suggest that other academic groups might benefit from using the concept including dictation of manuscripts to encourage participants' confidence in their writing skills.

  2. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    ERIC Educational Resources Information Center

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  3. Promoting Science Software Best Practices: A Scientist's Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Blanton, B. O.

    2013-12-01

    Software is at the core of most modern scientific activities, and as societal awareness of, and impacts from, extreme weather, disasters, and climate and global change continue to increase, the roles that scientific software play in analyses and decision-making are brought more to the forefront. Reproducibility of research results (particularly those that enter into the decision-making arena) and open access to the software is essential for scientific and scientists' credibility. This has been highlighted in a recent article by Joppa et al (Troubling Trends in Scientific Software Use, Science Magazine, May 2013) that describes reasons for particular software being chosen by scientists, including that the "developer is well-respected" and on "recommendation from a close colleague". This reliance on recommendation, Joppa et al conclude, is fraught with risks to both sciences and scientists. Scientists must frequently take software for granted, assuming that it performs as expected and advertised and that the software itself has been validated and results verified. This is largely due to the manner in which much software is written and developed; in an ad hoc manner, with an inconsistent funding stream, and with little application of core software engineering best practices. Insufficient documentation, limited test cases, and code unavailability are significant barriers to informed and intelligent science software usage. This situation is exacerbated when the scientist becomes the software developer out of necessity due to resource constraints. Adoption of, and adherence to, best practices in scientific software development will substantially increase intelligent software usage and promote a sustainable evolution of the science as encoded in the software. We describe a typical scientist's perspective on using and developing scientific software in the context of storm surge research and forecasting applications that have real-time objectives and regulatory constraints

  4. The Robert E. Hopkins Center for Optical Design and Engineering

    NASA Astrophysics Data System (ADS)

    Zavislan, James M.; Brown, Thomas G.

    2008-08-01

    In 1929, a grant from Eastman Kodak and Bausch and Lomb established The Institute of Optics as the nation's first academic institution devoted to training optical scientists and engineers. The mission was 'to study light in all its phases', and the curriculum was designed to educate students in the fundamentals of optical science and build essential skills in applied optics and optical engineering. Indeed, our historic strength has been a balance between optical science and engineering--we have alumni who are carrying out prize-winning research in optical physics, alumni who are innovative optical engineers, and still other alumni who are leaders in the business community. Faculty who are top-notch optical engineers are an important resource to optical physics research groups -- likewise, teaching and modeling excellent optical science provides a strong underpinning for students on the applied/engineering end of the spectrum. This model -an undergraduate and graduate program that balances fundamental optics, applied optics, and optical engineering- has served us well. The impressive and diverse range of opportunities for our BS graduates has withstood economic cycles, and the students graduate with a healthy dose of practical experience. Undergraduate advisors, with considerable initiative from the program coordinator, are very aggressive in pointing students toward summer research and engineering opportunities. The vast majority of our undergraduate students graduate with at least one summer of experience in a company or a research laboratory. For example, 95% of the class of 2008 spent the summer of 2007 at companies and/or research laboratories: These include Zygo, NRL, Bausch and Lomb, The University of Rochester(The Institute of Optics, Medical Center, and Laboratory for Laser Energetics), QED, ARL Night Vision laboratories, JPL, Kollsman, OptiMax, Northrup Grumman, and at least two other companies. It is an impressive list, and bodes well for the career

  5. Addressing the Misconceptions of Middle School Students About Becoming a Scientist or Engineer

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Sorge, C.; Hagerty, J. J.

    2000-01-01

    Assessment of our educational outreach program shows that students and their parents are excited about space science, but stereotypes about science and scientists drastically effect student attitudes about science and pursuing a technical career.

  6. K-12 Students' Perceptions of Scientists: Finding a valid measurement and exploring whether exposure to scientists makes an impact

    NASA Astrophysics Data System (ADS)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-10-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.

  7. Predictors of Academic Performance among Indian Students

    ERIC Educational Resources Information Center

    Ganguly, Sohinee; Kulkarni, Mrinmoyi; Gupta, Meenakshi

    2017-01-01

    There are two dominant strains in the literature on academic performance, the attribution studies and the self-efficacy studies. The present study attempted to incorporate these two strains while examining the academic performance of engineering undergraduate students in India. Time management and perceived stress were included in the model to…

  8. Data scientist: the sexiest job of the 21st century.

    PubMed

    Davenport, Thomas H; Patil, D J

    2012-10-01

    Back in the 1990s, computer engineer and Wall Street "quant" were the hot occupations in business. Today data scientists are the hires firms are competing to make. As companies wrestle with unprecedented volumes and types of information, demand for these experts has raced well ahead of supply. Indeed, Greylock Partners, the VC firm that backed Facebook and LinkedIn, is so worried about the shortage of data scientists that it has a recruiting team dedicated to channeling them to the businesses in its portfolio. Data scientists are the key to realizing the opportunities presented by big data. They bring structure to it, find compelling patterns in it, and advise executives on the implications for products, processes, and decisions. They find the story buried in the data and communicate it. And they don't just deliver reports: They get at the questions at the heart of problems and devise creative approaches to them. One data scientist who was studying a fraud problem, for example, realized it was analogous to a type of DNA sequencing problem. Bringing those disparate worlds together, he crafted a solution that dramatically reduced fraud losses. In this article, Harvard Business School's Davenport and Greylock's Patil take a deep dive on what organizations need to know about data scientists: where to look for them, how to attract and develop them, and how to spot a great one.

  9. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  10. [How EPMEWSE* worked with supporting programs for female scientists in STEM** fields in Japan].

    PubMed

    Ohtsubo, Hisako

    2013-09-01

    In gender equality, Japan is still lagging behind other developed nations. The ratio of female to male researchers is only at 14% in 2012, the lowest among developed countries. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan has started the programs to support the female researchers and to develop their leadership activities. Our survey revealed that there are too few women in higher positions who can help younger women with career enhancement. Also, male scientists have unconscious bias when they evaluate their female colleagues. At the same time, female scientists often underestimate their ability when seeking leadership roles. The MEXT programs will only exert a long-term effect on the ratio and roles of women in science if the academic climate and leadership changes in Japan. In Japan, a long-term strategy with support by government and universities is essential to overcome the gender gap and maximize the potential of female scientists.

  11. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    NASA Astrophysics Data System (ADS)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  12. STEAM: Using the Arts to Train Well-Rounded and Creative Scientists

    PubMed Central

    Segarra, Verónica A.; Natalizio, Barbara; Falkenberg, Cibele V.; Pulford, Stephanie; Holmes, Raquell M.

    2018-01-01

    While the demand for a strong STEM workforce continues to grow, there are challenges that threaten our ability to recruit, train, and retain such a workforce in a way that is effective and sustainable and fosters innovation. One way in which we are meeting this challenge is through the use of the arts in the training of scientists. In this Perspectives article, we review the use of the arts in science education and its benefits in both K–12 and postsecondary education. We also review the use of STEAM (science, technology, engineering, arts, and mathematics) programs in science outreach and the development of professional scientists. PMID:29904562

  13. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  14. Career preference theory: A grounded theory describing the effects of undergraduate career preferences on student persistence in engineering

    NASA Astrophysics Data System (ADS)

    Dettinger, Karen Marie

    This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According

  15. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  16. Meet the Scientist: The Value of Short Interactions between Scientists and Students

    ERIC Educational Resources Information Center

    Woods-Townsend, Kathryn; Christodoulou, Andri; Rietdijk, Willeke; Byrne, Jenny; Griffiths, Janice B.; Grace, Marcus M.

    2016-01-01

    Students have been reported to have stereotypical views of scientists as middle-aged white men in lab coats. We argue that a way to provide students with a more realistic view of scientists and their work is to provide them with the opportunity to interact with scientists during short, discussion-based sessions. For that reason, 20 scientists from…

  17. Should Scientists Be Involved in Teaching Science Writing and If So, How?

    ERIC Educational Resources Information Center

    Goodell, Rae

    Realizing the importance of writing skills in communicating with other professionals and in educating the public, scientists and scientific institutions have renewed their interest in the writing education of science students. Informal surveys show that technological and engineering schools are reinstituting writing requirements and staffing the…

  18. Academic Genealogy and Direct Calorimetry: A Personal Account

    ERIC Educational Resources Information Center

    Jackson, Donald C.

    2011-01-01

    Each of us as a scientist has an academic legacy that consists of our mentors and their mentors continuing back for many generations. Here, I describe two genealogies of my own: one through my PhD advisor, H. T. (Ted) Hammel, and the other through my postdoctoral mentor, Knut Schmidt-Nielsen. Each of these pathways includes distingished scientists…

  19. Leading US nano-scientists' perceptions about media coverage and the public communication of scientific research findings

    NASA Astrophysics Data System (ADS)

    Corley, Elizabeth A.; Kim, Youngjae; Scheufele, Dietram A.

    2011-12-01

    Despite the significant increase in the use of nanotechnology in academic research and commercial products over the past decade, there have been few studies that have explored scientists' perceptions and attitudes about the technology. In this article, we use survey data from the leading U.S. nano-scientists to explore their perceptions about two issues: the public communication of research findings and media coverage of nanotechnology, which serves as one relatively rapid outlet for public communication. We find that leading U.S. nano-scientists do see an important connection between the public communication of research findings and public attitudes about science. Also, there is a connection between the scientists' perceptions about media coverage and their views on the timing of public communication; scientists with positive attitudes about the media are more likely to support immediate public communication of research findings, while others believe that communication should take place only after research findings have been published through a peer-review process. We also demonstrate that journalists might have a more challenging time getting scientists to talk with them about nanotechnology news stories because nano-scientists tend to view media coverage of nanotechnology as less credible and less accurate than general science media coverage. We conclude that leading U.S. nano-scientists do feel a sense of responsibility for communicating their research findings to the public, but attitudes about the timing and the pathway of that communication vary across the group.

  20. Science Possible Selves and the Desire to be a Scientist: Mindsets, Gender Bias, and Confidence during Early Adolescence.

    PubMed

    Hill, Patricia Wonch; McQuillan, Julia; Talbert, Eli; Spiegel, Amy; Gauthier, G Robin; Diamond, Judy

    2017-06-01

    In the United States, gender gaps in science interest widen during the middle school years. Recent research on adults shows that gender gaps in some academic fields are associated with mindsets about ability and gender-science biases. In a sample of 529 students in a U.S. middle school, we assess how explicit boy-science bias, science confidence, science possible self (belief in being able to become a scientist), and desire to be a scientist vary by gender. Guided by theories and prior research, we use a series of multivariate logistic regression models to examine the relationships between mindsets about ability and these variables. We control for self-reported science grades, social capital, and race/ethnic minority status. Results show that seeing academic ability as innate ("fixed mindsets") is associated with boy-science bias, and that younger girls have less boy-science bias than older girls. Fixed mindsets and boy-science bias are both negatively associated with a science possible self; science confidence is positively associated with a science possible self. In the final model, high science confident and having a science possible self are positively associated with a desire to be a scientist. Facilitating growth mindsets and countering boy-science bias in middle school may be fruitful interventions for widening participation in science careers.

  1. Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment

    NASA Astrophysics Data System (ADS)

    Jabro, A.; Jabro, J.

    2012-04-01

    PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.

  2. "It Becomes Almost an Act of Defiance": Indigenous Australian Transformational Resistance as a Driver of Academic Achievement

    ERIC Educational Resources Information Center

    Pechenkina, Ekaterina

    2017-01-01

    Indigenous Australian underrepresentation in higher education remains a topical issue for social scientists, educationalists and policymakers alike, with the concept of indigenous academic success highly contested. This article is based on findings of a doctoral study investigating the drivers of indigenous Australian academic success in a large,…

  3. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  4. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the

  5. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    PubMed

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  6. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  7. Tools for Reflection on the Academic Identities of Doctoral Students

    ERIC Educational Resources Information Center

    Alexander, Patrick; Harris-Huemmert, Susan; McAlpine, Lynn

    2014-01-01

    In this paper, we explore the usefulness of three different approaches to facilitating reflexivity and a critical awareness of emerging academic identities for doctoral students. This paper stems from a longitudinal research project entitled "The Next Generation of Social Scientists", which was conducted across three research-intensive…

  8. Cognitive styles of Forest Service scientists and managers in the Pacific Northwest.

    Treesearch

    Andrew B. Carey

    1997-01-01

    Preferences of executives, foresters, and biologists of the Pacific Northwest Research Station and executives, District Rangers, foresters, engineers, and biologists of the Pacific Northwest Region, National Forest System (USDA Forest Service), were compared for various thinking styles. Herrmann brain dominance profiles from 230 scientists and managers were drawn from...

  9. A Stochastic Sprint in the Vague Direction of Data Science: Perspectives from a Graduate Student and Aspiring Data Scientist.

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.

    2015-12-01

    Since data science does not exist as a stand-alone discipline within major universities, learning data science, or even learning that data science exists is, for an aspiring researcher at the graduate or undergraduate level, something that only happens by accident. Here I present my own series of accidents that transformed me from a somewhat aimless graduate student into an aspiring data scientist and the challenges that that aspiration has created in fitting into traditional academic programs and finding a coherent path forward. I also present my current conundrum: with the clear intention of pursuing data science but an academic background in other subjects, where do I go from here? Do I start my education over, pursue professional certification courses and bootcamp programs, or engage in not-very-marketable self study? This career chasm creates a strange environment for aspiring data scientists where we have a destination, but not a clear road to get there. I also discuss how joining a data focused interest group called The Federation of Earth Science Information Partners (ESIP) bridged some of the gap left by Academia in allowing me to network and collaborate with real data scientists from a variety of backgrounds. Organizations like this may someday play an important role in helping aspiring data scientists find their place, although for the moment many gaps and obstacles still remain, and the path forward is far from clear.

  10. The "how" and "whys" of research: life scientists' views of accountability.

    PubMed

    Ladd, J M; Lappé, M D; McCormick, J B; Boyce, A M; Cho, M K

    2009-12-01

    To investigate life scientists' views of accountability and the ethical and societal implications of research. Qualitative focus group and one-on-one interviews. 45 Stanford University life scientists, including graduate students, postdoctoral fellows and faculty. Two main themes were identified in participants' discussions of accountability: (1) the "how" of science and (2) the "why" of science. The "how" encompassed the internal conduct of research including attributes such as honesty and independence. The "why," or the motivation for conducting research, was two-tiered: first was the desire to positively impact the research community and science itself, and second was an interest in positively impacting the external community, broadly referred to as society. Participants noted that these motivations were influenced by the current systems of publications, grants and funding, thereby supporting a complex notion of boundary-setting between science and non-science. In addition, while all participants recognised the "how" of science and the two tiers of "why," scientists expressed the need to prioritise these domains of accountability. This prioritisation was related to a researcher's position in the academic career trajectory and to the researcher's subsequent "perceived proximity" to scientific or societal concerns. Our findings therefore suggest the need for institutional change to inculcate early-stage researchers with a broader awareness of the implications of their research. The peer review processes for funding and publication could be effective avenues for encouraging scientists to broaden their views of accountability to society.

  11. A review and evaluation of the Langley Research Center's Scientific and Technical Information Program. Results of phase 4: Knowledge and attitudes survey, academic and industrial personnel

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Glassman, M.; Glassman, N. A.

    1981-01-01

    Feedback from engineers and scientists in the academic and industrial community provided an assessment of the usage and perceived quality of NASA Langley generated STI and the familiarity and usage of selected NASA publications and services and identified ways to increase the accessibility of Langley STI. The questionnaire utilized both open and closed ended questions and was pretested for finalization. The questions were organized around the seven objectives for Phase IV. From a contact list of nearly 1,200 active industrial and academic researchers, approximately 600 addresses were verified. The 497 persons who agreed to participate were mailed questionnaires. The 381 completed questionnaires received by the cutoff date were analyzed. Based on the survey findings, recommendations were made for increasing the familiarity with and use of NASA and Langley STI and selected NASA publications and services. In addition, recommendations were made for increasing the accessibility of Langley STI.

  12. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to

  13. Recruiting and retaining future generations of physician scientists in mental health.

    PubMed

    Kupfer, David J; Hyman, Steven E; Schatzberg, Alan F; Pincus, Harold A; Reynolds, Charles F

    2002-07-01

    The authors discuss 6 challenges facing the recruitment and retention of physician scientists as career mental health researchers. These challenges include (1) early identification and recruitment at the undergraduate and medical student level; (2) recruitment of a more diverse group of trainees; (3) safety nets for reducing attrition; (4) strategies to promote successful competition for K awards; (5) definition of appropriate roles and career development opportunities in multisite clinical trials; and (6) strategies for the mentoring "cost." A coalition of stakeholders--federal, academic, foundational, and in the pharmaceutical industry--is needed to meet these challenges.

  14. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    NASA Astrophysics Data System (ADS)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  15. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors crowd the NASA exhibits during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  16. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look over the many exhibits, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  17. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Participants look through telescopes to observe the Sun during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  18. An Earth System Scientist Network for Student and Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  19. Investigation into Omani Secondary School Students' Perceptions of Scientists and Their Work

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Al-Muqeemi, Fatma; Al-Salmi, Maya

    2015-01-01

    The purpose of this study was to investigate Omani 12th grade students' perceptions about scientists and their work and accordingly propose some recommendations in order to encourage new generations to choose science and engineering-oriented specialisations in higher education. A 37-item questionnaire was designed to determine these perceptions…

  20. Supply and Demand for Scientists and Engineers in the Coming Decade.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    1990-01-01

    With fewer traditional students in the population, and fewer of these electing to earn a degree in natural science and engineering, American colleges are reaching out for women, minorities, and foreign students. Concludes, barring unexpected decline in American economy, job opportunities, especially in engineering, should be excellent. (Author/TE)

  1. Outsiders Looking In: Tutor Expertise in Engineering Writing

    ERIC Educational Resources Information Center

    Bengesai, Annah

    2015-01-01

    Drawing on an academic literacies approach, this article explores the representations of technical communication by non-content expert tutors teaching the Technical Communication for Engineering course at a South African university. The course is offered to all first year engineering students as a developmental academic literacy course. It is…

  2. Women in a Man's World: The Female Engineers

    ERIC Educational Resources Information Center

    Durchholz, Pat

    1977-01-01

    Comparisons and contrasts between female engineers, male engineers, and female scientists are made utilizing freshmen engineering and science students at the University of Cincinnati. Data including attitudes, career influences, parents' educational level, and career advantage ranking are included. (SL)

  3. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  4. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Purpose. 9.1 Section 9.1 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  5. 45 CFR 9.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Purpose. 9.1 Section 9.1 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION USE OF HHS RESEARCH FACILITIES BY ACADEMIC... and study facilities to academic scientists, engineers, and qualified students. ...

  6. Trends in U.S. Engineering and Engineering Technology: A Comparative Study of Admissions, Curricula, and Employment.

    ERIC Educational Resources Information Center

    Lebold, W. K.; Lebold, D. J.

    1985-01-01

    Discusses the admissions selection practices, educational programs, quality standards, and employment characteristics of engineering and engineering technology in the United States. The importance of these two occupations as part of technical teams (which include scientists and technicians) is documented and stressed. (JN)

  7. Scientist in the Classroom: Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Lee, R. L.

    2000-10-01

    The General Atomics education program ``Scientist in the Classroom'' now in its third year, uses scientists and engineers to present ``Plasma the fourth state of matter,'' to students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate a plasma discharge using magnets, observe its spectral properties and observe the plasma in a fluorescent tube. In addition, they observe physical properties of liquid nitrogen, and use an infrared camera to observe radiant heat energy. Several program benefits are; it costs less than facility tours, is more flexible in scheduling, and is adaptable for grades 2--adult. The program has doubled in coverage since last year, with over 2200 students at 20 schools visited by 8 scientists. Increased participation by the DIII-D staff in this program has been achieved by enlisting them to bring the program to their children's school.

  8. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  9. Lab Aliens, Legendary Fossils, and Deadly Science Potions: Views of Science and Scientists from Fifth Graders in a Free-Choice Creative Writing Program

    NASA Astrophysics Data System (ADS)

    Hellman, Leslie G.

    This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.

  10. Metabolic Engineering VII Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Korpics

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniquesmore » important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.« less

  11. Academic nightmares: Predatory publishing.

    PubMed

    Van Nuland, Sonya E; Rogers, Kem A

    2017-07-01

    Academic researchers who seek to publish their work are confronted daily with a barrage of e-mails from aggressive marketing campaigns that solicit them to publish their research with a specialized, often newly launched, journal. Known as predatory journals, they often promise high editorial and publishing standards, yet their exploitive business models, poor quality control, and minimal overall transparency victimize those researchers with limited academic experience and pave the way for low-quality articles that threaten the foundation of evidence-based research. Understanding how to identify these predatory journals requires thorough due diligence on the part of the submitting authors, and a commitment by reputable publishers, institutions, and researchers to publicly identify these predators and eliminate them as a threat to the careers of young scientists seeking to disseminate their work in scholarly journals. Anat Sci Educ 10: 392-394. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  12. Engineering the Space Age: A Rocket Scientist Remembers

    DTIC Science & Technology

    2008-07-01

    energy sources -Research I. Title. 629.130092-dc22 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the...technical armed forces oc- 12 AERONAUTICAL ENGINEERING cupation specialty and keep flying. At the time, the atomic bombs were bulky and heavy and could only...way to learn about the F-84 aircraft. A welcome respite occurred when Major Wailer sent me to RAC to monitor a test to find the source and correct the

  13. Scientists Shaping the Discussion

    NASA Astrophysics Data System (ADS)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  14. An Engineering Degree Does Not (Necessarily) an Engineer Make: Career Decision Making among Undergraduate Engineering Majors. Research Brief

    ERIC Educational Resources Information Center

    Lichtenstein, Gary; Loshbaugh, Heidi G.; Claar, Brittany; Chen, Helen L.; Jackson, Kristyn; Sheppard, Sheri

    2009-01-01

    This paper explores the career-related decision making of seniors enrolled in undergraduate engineering programs at two nationally recognized institutions. This strand of the Academic Pathways Study (APS) research revealed that many engineering students were undecided about their career plans, even late into their senior years and that many were…

  15. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look on at one of the many exhibits, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  16. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Children react as a tiny Mars Rover rolls over their backs at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  17. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Priniciples of air flow are explained to visitors to the wind tunnel exhibit at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  18. Science Possible Selves and the Desire to be a Scientist: Mindsets, Gender Bias, and Confidence during Early Adolescence

    PubMed Central

    McQuillan, Julia; Talbert, Eli; Spiegel, Amy; Gauthier, G. Robin; Diamond, Judy

    2017-01-01

    In the United States, gender gaps in science interest widen during the middle school years. Recent research on adults shows that gender gaps in some academic fields are associated with mindsets about ability and gender-science biases. In a sample of 529 students in a U.S. middle school, we assess how explicit boy-science bias, science confidence, science possible self (belief in being able to become a scientist), and desire to be a scientist vary by gender. Guided by theories and prior research, we use a series of multivariate logistic regression models to examine the relationships between mindsets about ability and these variables. We control for self-reported science grades, social capital, and race/ethnic minority status. Results show that seeing academic ability as innate (“fixed mindsets”) is associated with boy-science bias, and that younger girls have less boy-science bias than older girls. Fixed mindsets and boy-science bias are both negatively associated with a science possible self; science confidence is positively associated with a science possible self. In the final model, high science confident and having a science possible self are positively associated with a desire to be a scientist. Facilitating growth mindsets and countering boy-science bias in middle school may be fruitful interventions for widening participation in science careers. PMID:29527360

  19. German for Engineers and Scientists: Initiatives in International Education.

    ERIC Educational Resources Information Center

    Weinmann, Sigrid

    The Michigan Technological University program in German area studies is described. The program is designed for science and engineering students at both undergraduate and graduate levels. Its components include: a 1-year scientific German sequence, stressing specialized vocabulary, reading skills, use of reference materials, translation into…

  20. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    NASA Technical Reports Server (NTRS)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.