Science.gov

Sample records for acc oxidase aco

  1. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs).

    PubMed

    Clouse, Ronald M; Carraro, Nicola

    2014-01-01

    The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived.

  2. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs)

    PubMed Central

    Clouse, Ronald M.; Carraro, Nicola

    2014-01-01

    The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived. PMID

  3. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs).

    PubMed

    Clouse, Ronald M; Carraro, Nicola

    2014-01-01

    The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived. PMID

  4. An ACC Oxidase Gene Essential for Cucumber Carpel Development.

    PubMed

    Chen, Huiming; Sun, Jinjing; Li, Shuai; Cui, Qingzhi; Zhang, Huimin; Xin, Fengjiao; Wang, Huaisong; Lin, Tao; Gao, Dongli; Wang, Shenhao; Li, Xia; Wang, Donghui; Zhang, Zhonghua; Xu, Zhihong; Huang, Sanwen

    2016-09-01

    Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.

  5. An ACC Oxidase Gene Essential for Cucumber Carpel Development.

    PubMed

    Chen, Huiming; Sun, Jinjing; Li, Shuai; Cui, Qingzhi; Zhang, Huimin; Xin, Fengjiao; Wang, Huaisong; Lin, Tao; Gao, Dongli; Wang, Shenhao; Li, Xia; Wang, Donghui; Zhang, Zhonghua; Xu, Zhihong; Huang, Sanwen

    2016-09-01

    Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon. PMID:27403533

  6. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    PubMed Central

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  7. Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress.

    PubMed

    Zanetti, María Eugenia; Terrile, María Cecilia; Arce, Débora; Godoy, Andrea Verónica; Segundo, Blanca San; Casalongué, Claudia

    2002-12-01

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to other ACC oxidase proteins from several plants species. Northern blot analysis revealed that the ST-ACO3 mRNA level increased in potato tubers upon inoculation with F. eumartii, as well as after treatment with salicylic acid and indole-3-acetic acid, suggesting a cross-talk between different signalling pathways involved in the defence response of potato tubers against F. eumartii attack.

  8. A fifth member of the tomato 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced.

    PubMed

    Sell, Simone; Hehl, Reinhard

    2005-02-01

    Using the leucine zipper domain of a small anaerobically induced bZIP transcription factor in a yeast two hybrid screen, anaerobically induced genes were identified. One peptide corresponds to an anaerobically induced IDS4-like protein that maybe involved in G-protein signaling. Surprisingly, another interacting peptide corresponds to a novel anaerobically induced 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, designated ACO5. ACO5 harbours a leucine zipper and transcription is mainly induced in fruits and to a lesser extend in leaves. The role of ACO5 in the low oxygen response of tomato is discussed. PMID:16040352

  9. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa): molecular characterization of the 1-aminocyclopropane-1-carboxylate oxidase BrACO1 throughout zygotic embryogenesis and germination of heterogeneous seeds.

    PubMed

    Del Carmen Rodríguez-Gacio, María; Nicolás, Carlos; Matilla, Angel Jesús

    2004-05-01

    In a previous report from the present authors, it was shown that the 1-aminocyclopropane-1-carboxylate (ACC) oxidation may play a crucial role during zygotic embryogenesis of turnip tops seeds. The present study was performed to elucidate the contribution of the silique-wall and seeds in ethylene production during this developmental process. ACC content in the silique wall is only higher than in seeds during the middle phases of zygotic embryogenesis. The ACC-oxidase (ACO) activity peaks in the silique-wall and seeds during the onset of embryogenesis, declining gradually afterwards, being undetectable during desiccation period. Using reverse transcriptase-polymerase chain reaction, one cDNA clone coding for an ACO and called BrACO1, was isolated. The deduced protein for BrACO1 has a molecular weight of 36.8 kDa and a high homology with other crucifer ACOs. The heterologous expression of this cDNA confirmed that BrACO1 is an ACO. The expression of this gene was high during the first phases of silique-wall development, low during the middle phases and undetectable during desiccation. By contrast, BrACO1 transcript was accumulated only in the earliest phases of seed embryogenesis and may participate in the highest ACO activity and ethylene production by seeds at the beginning of embryogenesis. Finally, in this work a correlation between the heterogeneity of Brassica rapa L. cv. Rapa seeds and the ability to oxidize the ACC to ethylene has been demonstrated.

  10. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  11. [Integration of different T-DNA structures of ACC oxidase gene into carnation genome extended cut flower vase-life differently].

    PubMed

    Yu, Yi-Xun; Bao, Man-Zhu

    2004-09-01

    The cultivar 'Master' of carnation (Dianthus caryophyllus L.) was transformed with four T-DNA structures containing sense, antisense, sense direct repeat and antisense direct repeat gene of ACC oxidase mediated by Agrobacterium tumefaciens. Southern blotting detection showed that foreign gene was integrated into the carnation genome and 14 transgenic lines were obtained. The transgenic plants were transplanted to soil and grew normally in greenhouse. Of the 12 transgenic lines screened, the cut flower vase life of 8 transgenic lines is up to 11 days and the longest one is 12.8 days while the vase life of the control is 5.8 days under 25 degrees C. The vase life of 2 lines out of 3 with single sense ACO gene is same as that of the control, while the vase life of 3 lines out of 4 with single antisense ACO gene is prolonged. The vase life of cut flowers of 5 lines with direct repeat ACO genes is all prolonged by about 6 days, while the vase life of 3 out of 7 lines with single ACO gene is same as that of the control. During the senescence of cut flowers, the ethylene production of the most of the transgenic lines decreased significantly, and the production of ethylene is not detectable in lines T456, T556 and T575. The results of the research demonstrate that antisense foreign gene inhibits expression of endogenesis gene more significantly than sense one. Both sense direct repeat and antisense direct repeat foreign genes can suppress endogenous gene expression more significantly comparing to single foreign genes. The transgenic lines obtained from this research are useful to minimize carnation cut flower transportation and storage expenses.

  12. [Prolonging the vase life of carnation "Mabel" through integrating repeated ACC oxidase genes into its genome].

    PubMed

    Yu, Yi-Xun; Bao, Man-Zhu

    2004-10-01

    Carnation (Dianthus caryophyllus L.) is one of the most important cut flowers. The cultivar "Mabel" of carnation was transformed with direct repeat gene of ACC oxidase, the key enzyme in ethylene synthesis, driven by the CaMV35S promoter mediated by Agrobacterium tumefacien. Hygromycin phosphotransferase (HPT) gene was used as selection marker. Leaf explants were pre-cultured on shoot-inducing medium for 2 d, then immersed in Agrobacterium suspension for 8-12 min. Co-cultivation was carried out on the medium (MS+BA 1.0 mg/L+NAA 0.3 mg/L +Acetosyringone 100 micromol/L, pH 5.8-6.0) for 3 d. After that transformants were obtained by transferring explants to selection medium supplemented with 5 mg/L hygromycin (Hyg) and 400 mg/L cefotaxime (Cef). Southern blotting detection showed that a foreign gene was integrated into the carnation genome and 3 transgenic lines (T257, T299 and T273 line) obtained. Addition of acetosyringone and the time of co-culture were the main factors that influenced transformation frequency. After being transplanted to soil, transgenic plants were grew normally in greenhouse. Ethylene production of cut flower of transgenic T257 line was 95% lower than that of the control, and that of T299 line was reduced by 90% than that of the control, while that of transgenic T273 line has no of significantly different from control. Vase life of transgenic T257 line was 5 d longer than that of the control line at 25 degrees C.

  13. Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses.

    PubMed

    Nie, Xianzhou; Singh, Rudra P; Tai, George C C

    2002-10-01

    In this work, we report cloning of two full-length 1-aminocyclopropane-1-carboxylate oxidase (ACO) cDNAs (ACO1 and ACO2) from potato (Solanum tuberosum) and their expression in potato tissues. The sequence data indicate that the two cDNAs share a high degree of homology with each other, and with known ACO genes from other plant species, including monocots and dicots. However, these potato genes lack homology at the 5' and 3' ends, despite similarities in their open reading frames and encoded amino acids. Phylogenetic analysis places them in two subfamilies of ACOs. The genes are tissue specific: expression is high in leaves and low in roots and tubers. In sprouts and tubers, ACO1 is induced by heat (40 degrees C) and cold (0 degrees C) stresses, whereas ACO2 is induced only by cold (0 degrees C). ACO1 is markedly induced in leaves by wounding, soil-flooding, and exogenous application of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, ACO2 induction is lower under these treatments. ACO1 and ACO2 are regulated very differently in potato leaves with respect to senescence. ACO2 expression is unaffected by senescence, whereas that of ACO1 is closely related to the age and senescence in both attached and detached leaves. Exogenous ACC not only induces ACO1, but also accelerates leaf senescence. ACO1 transcripts are induced significantly in leaves, stems, and tubers in the Potato virus A (PVA)-resistant potato cultivar Shepody when graft inoculated with PVA. PMID:12416623

  14. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence

    PubMed Central

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.

    1999-01-01

    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  15. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation

  16. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation

  17. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2008-12-01

    The ripening-specific genes MA-ACS1 (Musa acuminata ACC synthase1) and MA-ACO1 (M. acuminata ACC oxidase 1) are regulated in response to a wide variety of factors. Here, we have studied the differential transcript accumulation pattern and protein levels of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding and low temperature in preclimacteric banana fruit. We have shown that exogenous application of ethylene and auxin induced the expression of MA-ACS1, while MA-ACO1 showed marginal expression following ethylene treatment in preclimacteric stage. Auxin did not induce MA-ACO1 expression. Thus, auxin-treated banana fruits showed lower ethylene production rate as compared to ethylene-treated fruits. Conversely, wounding and cold treatment down-regulated the expression of both the genes and thus inhibited ethylene production. Furthermore, we have detected a GCC-box putative ethylene-responsive element (ERE)- and an auxin-responsive element (ARE)-specific DNA-binding activity in the banana pulp and studied the ethylene and auxin responsive characteristics of the GCC-box and ARE (TGTCTC) containing synthetic promoter fragments. In addition, we have detected an enhanced ethylene production rate and expression level of MA-ACS1 and MA-ACO1 genes along with a strong GCC-box-specific DNA-binding activity following exposure to constant dark period for 8d at the preclimacteric stage. Together, our study provides interesting information about the regulation of expression of MA-ACS1 and MA-ACO1 genes in response to various factors during ripening in banana fruit, which may have physiological relevance concerning ethylene biosynthesis during post-harvest conditions. PMID:18554749

  18. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2008-12-01

    The ripening-specific genes MA-ACS1 (Musa acuminata ACC synthase1) and MA-ACO1 (M. acuminata ACC oxidase 1) are regulated in response to a wide variety of factors. Here, we have studied the differential transcript accumulation pattern and protein levels of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding and low temperature in preclimacteric banana fruit. We have shown that exogenous application of ethylene and auxin induced the expression of MA-ACS1, while MA-ACO1 showed marginal expression following ethylene treatment in preclimacteric stage. Auxin did not induce MA-ACO1 expression. Thus, auxin-treated banana fruits showed lower ethylene production rate as compared to ethylene-treated fruits. Conversely, wounding and cold treatment down-regulated the expression of both the genes and thus inhibited ethylene production. Furthermore, we have detected a GCC-box putative ethylene-responsive element (ERE)- and an auxin-responsive element (ARE)-specific DNA-binding activity in the banana pulp and studied the ethylene and auxin responsive characteristics of the GCC-box and ARE (TGTCTC) containing synthetic promoter fragments. In addition, we have detected an enhanced ethylene production rate and expression level of MA-ACS1 and MA-ACO1 genes along with a strong GCC-box-specific DNA-binding activity following exposure to constant dark period for 8d at the preclimacteric stage. Together, our study provides interesting information about the regulation of expression of MA-ACS1 and MA-ACO1 genes in response to various factors during ripening in banana fruit, which may have physiological relevance concerning ethylene biosynthesis during post-harvest conditions.

  19. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  20. Characteristics of Rural Accountable Care Organizations (ACOs) – A Survey of Medicare ACOs with Rural Presence.

    PubMed

    Salako, Abiodun; Zhu, Xi; MacKinney, A Clinton; Ullrich, Fred; Mueller, Keith

    2015-05-01

    Accountable Care Organizations (ACOs) are groups of health care providers, principally physicians and hospitals, who develop a new entity that contracts to provide coordinated care to assigned patients with the goal of improving quality of care while controlling costs. Section 3022 of the Patient Protection and Affordable Care Act of 2010 created the Medicare Shared Savings Program (SSP). The Centers for Medicare & Medicaid Services (CMS) implements this program and has approved SSP contracts in five cycles since 2011, including some that participated in a special demonstration project that provided advance payment (as a forgivable loan). A new ACO Investment Model (AIM) program starts in 2015 that provides initial investment capital and variable monthly payments to ACO participants in rural and underserved areas who may not have access to the capital needed for successful ACO formation and operation. CMS also contracted with 32 organizations under a special demonstration project, "Pioneer ACOs" (as of November 16, 2014, there were 19 remaining).8 At the time of the research reported in this brief, there were 455 Medicare ACOs (Pioneer and SSP). While there is growing literature about ACOs, much remains to be learned about ACO development in rural areas. A previous RUPRI Center policy brief 2 examined the formation of four rural ACOs. The authors found that prior experience with risk sharing and provider integration facilitated ACO formation. This brief expands on the earlier brief by describing the findings of a survey of 27 rural ACOs, focusing on characteristics important to their formation and operation. Prospective rural ACO participants can draw from the experiences of predecessors, and the survey findings can inform policy discussions about ACO formation and operation. Key Findings from 27 Respondents. (1) Sixteen rural ACOs were formed by pre-existing integrated delivery networks. (2) Physician groups played a more prominent role than other participant

  1. Including Language Access into Medicaid ACO Design.

    PubMed

    Gershon, Rachel; Morris, Lisa; Ferguson, Warren

    2016-09-01

    Quality health care relies upon communication in a patient's preferred language. Language access in health care occurs when individuals are: (1) Welcomed by providers regardless of language ability; and (2) Offered quality language services as part of their care. Federal law generally requires access to health care and quality language services for deaf and Limited English Proficient (LEP) patients in health care settings, but these patients still find it hard to access health care and quality language services.Meanwhile, several states are implementing Medicaid Accountable Care Organization (ACO) initiatives to reduce health care costs and improve health care quality. Alternative payment methods used in these initiatives can give Accountable Care Organizations more flexibility to design linguistically accessible care, but they can also put ACOs at increased financial risk for the cost of care. If these new payment methods do not account for differences in patient language needs, ACO initiatives could have the unintended consequence of rewarding ACOs who do not reach out to deaf and LEP communities or offer quality language services.We reviewed public documents related to Medicaid ACO initiatives in six states. Some of these documents address language access. More could be done, however, to pay for language access efforts. This article describes Medicaid ACO initiatives and explores how different payment tools could be leveraged to reward ACOs for increased access to care and quality language services. We find that a combination of payment tools might be helpful to encourage both access and quality. PMID:27587453

  2. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.

    PubMed

    Atkinson, Ross G; Gunaseelan, Kularajathevan; Wang, Mindy Y; Luo, Luke; Wang, Tianchi; Norling, Cara L; Johnston, Sarah L; Maddumage, Ratnasiri; Schröder, Roswitha; Schaffer, Robert J

    2011-07-01

    During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.

  3. Evaluating Performance Portability of OpenACC

    SciTech Connect

    Sabne, Amit J; Sakdhnagool, Putt; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    Accelerator-based heterogeneous computing is gaining momentum in High Performance Computing arena. However, the increased complexity of the accelerator architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle the problem. While the abstraction endowed by OpenACC offers productivity, it raises questions on its portability. This paper evaluates the performance portability obtained by OpenACC on twelve OpenACC programs on NVIDIA CUDA, AMD GCN, and Intel MIC architectures. We study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.

  4. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  5. ACC Effectiveness Review, 1999-2002.

    ERIC Educational Resources Information Center

    Wallace, Roslyn, Ed.

    2002-01-01

    These newsletters on Institutional Effectiveness (IE) at Austin Community College (ACC) in Texas include the following articles: (1) "The 'Fast Track'...Students Say It Works!" (2) "Are Students Successfully Completing Distance Learning Courses at ACC?" (3) "Tracking Transfers"; (4) "Math Pilot: Study Skills Attached Labs"; (5)…

  6. Inhibition by 1-aminocyclobutane-1-carboxylate of the activity of 1-aminocyclopropane-1-carboxylate oxidase obtained from senescing petals of carnation (Dianthus caryophyllus L.) flowers.

    PubMed

    Kosugi, Y; Oyamada, N; Satoh, S; Yoshioka, T; Onodera, E; Yamada, Y

    1997-03-01

    We partially purified 1-aminocyclopropane-1-carboxylate (ACC) oxidase from senescing petals of carnation (Dianthus caryophyllus L. cv. Nora) flowers and investigated its general characteristics, and, in particular, the inhibition of its activity by ACC analogs. The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbate and NaHCO3 for its maximal activity. The Km for ACC was calculated as 111-125 microM in the presence of NaHCO3. Its M(r) was estimated to be 35 and 36 kDa by gel-filtration chromatography on HPLC and SDS-PAGE, respectively, indicating that the enzyme exists in a monomeric form. These properties were in agreement with those reported previously with ACC oxidases from different plant tissues including senescing carnation petals. Among six ACC analogs tested, 1-aminocyclobutane-1-carboxylate (ACBC) inhibited most severely the activity of ACC oxidase from carnation petals. ACBC acted as a competitive inhibitor with the Ki of 20-30 microM. The comparison between the Km for ACC and the Ki for ACBC indicated that ACBC had an affinity which was ca. 5-fold higher than that of ACC. Whereas ACC inactivated carnation ACC oxidase in a time-dependent manner during incubation, ACBC did not cause the inactivation of the enzyme. Preliminary experiments showed that ACBC and its N-substituted derivatives delayed the onset of senescence in cut carnation flowers.

  7. Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest.

    PubMed Central

    Pogson, B J; Downs, C G; Davies, K M

    1995-01-01

    Broccoli (Brassica oleracea L.) floral tissues rapidly differentiate and grow before harvest and then senesce rapidly after harvest. Associated with this postharvest deterioration is an increase in ethylene production by florets. Two cDNA clones having high nucleotide identity to sequences encoding 1-amino-cyclopropane-1-carboxylic acid (ACC) oxidase were isolated from senescing florets. The cDNAs, ACC Ox1 and ACC Ox2, apparently encode mRNAs from different genes. ACC Ox1 transcripts were found at low levels in whole florets at the time of harvest and increased markedly in abundance after harvest. ACC Ox1 transcript abundance also increased in sepals after harvest and in excised yellowing leaves. Transcripts corresponding to ACC Ox2 were found exclusively within the reproductive structures. These ACC Ox2 transcripts were absent at harvest but started to increase in abundance within 2 h of harvest and then accumulated to high levels. Hormone treatment did not alter the abundance of ACC Ox1 transcripts, whereas ACC Ox2 transcripts increased in abundance after treatment with abscisic acid and propylene. Wounding did not affect the levels of ACC Ox1 or Ox2 transcripts after harvest. At harvest, individual broccoli florets were closed and remained unpollinated. We propose a model whereby the rapid increase in ACC Ox1 and Ox2 transcript abundance after harvest contributes to increased ethylene production by florets. This ethylene may regulate aspects of postharvest senescence, in particular chlorophyll loss. PMID:7610162

  8. Navigating the road ahead: lessons from a pioneer ACO.

    PubMed

    James, Michael H

    2012-08-01

    Genesys PHO in Flint, Mich., is one of 32 ACOs participating in the Pioneer ACO Model initiative administered by the CMS. Genesys PHO' experience suggests that successful ACOs will invest physicians with decision power and focus on strengthening the physician-patient relationship, restoring patients' trust in physicians, and allocating the right human resources to the effort. Organizations that are considering an ACO strategy should evaluate the risk structures of their proposed contracts and their provider groups' willingness to accept the contractual level of risk.

  9. Cost-outcomes focus is essential for ACO success.

    PubMed

    Greenspun, Harry; Bercik, William

    2013-02-01

    To succeed under value-based payment, accountable care organizations (ACOs) must be able to link, analyze, and compare clinical and administrative data from across their constituent organizations. ACOs require a precise costing methodology, such as activity-based costing, to be able to manage costs effectively and gain critical insight into which service lines are delivering value from a clinical and financial standpoint. To support informed strategic decision-making, ACOs also require ready access to integrated patient encounter data to be able to perform the sophisticated modeling of predictive analytics.

  10. Cost-outcomes focus is essential for ACO success.

    PubMed

    Greenspun, Harry; Bercik, William

    2013-02-01

    To succeed under value-based payment, accountable care organizations (ACOs) must be able to link, analyze, and compare clinical and administrative data from across their constituent organizations. ACOs require a precise costing methodology, such as activity-based costing, to be able to manage costs effectively and gain critical insight into which service lines are delivering value from a clinical and financial standpoint. To support informed strategic decision-making, ACOs also require ready access to integrated patient encounter data to be able to perform the sophisticated modeling of predictive analytics. PMID:23413676

  11. ACC forum looks at 'burning' questions

    SciTech Connect

    Carter, R.

    2005-06-01

    The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

  12. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.

    PubMed Central

    Oppermann, F B; Steinbüchel, A

    1994-01-01

    Use of oligonucleotide probes, which were deduced from the N-terminal sequences of the purified enzyme components, identified the structural genes for the alpha and beta subunits of E1 (acetoin:2,6-dichlorophenolindophenol oxidoreductase), E2 (dihydrolipoamide acetyltransferase), and E3 (dihydrolipoamide dehydrogenase) of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system, which were designated acoA, acoB, acoC, and acoL, respectively. The nucleotide sequences of acoA (979 bp), acoB (1,014 bp), acoC (1,353 bp), and acoL (1,413 bp) as well as of acoS (933 bp), which encodes a protein with an M(r) of 34,421 exhibiting 64.7% amino acid identity to the Escherichia coli lipA gene product, were determined. These genes are clustered on a 6.1-kbp region. Heterologous expression of acoA, acoB, acoC, acoL, and acoS in E. coli was demonstrated. The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 34,854), E1 beta (M(r), 36,184), E2 (M(r), 47,281), and E3 (M(r), 49,394) exhibited striking similarities to the amino acid sequences of the components of the Alcaligenes eutrophus acetoin-cleaving system. Homologies of up to 48.7% amino acid identity to the primary structures of the enzyme components of various 2-oxo acid dehydrogenase complexes also were found. In addition, the respective genes of the 2-oxo acid dehydrogenase complexes and of the acetoin dehydrogenase enzyme system were organized very similarly, indicating a close relationship of the P. carbinolicus acetoin dehydrogenase enzyme system to 2-oxo acid dehydrogenase complexes. Images PMID:8110297

  13. Pleiotropic Effect of AccD5 and AccE5 Depletion in Acyl-Coenzyme A Carboxylase Activity and in Lipid Biosynthesis in Mycobacteria

    PubMed Central

    Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Cabruja, Matías; Bardou, Fabienne; Quémard, Annaïk; Gago, Gabriela; Gramajo, Hugo

    2014-01-01

    Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs. PMID:24950047

  14. Characterizing the population of Asteroids in Cometary Orbits (ACOs)

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Licandro, Javier; Alí-Lagoa, Victor; Martino, Silvia; Vieira Monteiro, Filipe; Silva, Jose Sergio; Lazzaro, Daniela

    2015-08-01

    The classification criterion between asteroids and comets has evolved in recent decades, but the main phenomenological distinction remains unchanged: comets are active objects as they present gas and dust ejection from the surface at some point of their orbits, while asteroids are inert objects as they do not show any kind of large scale gas and dust ejection.To identify the transitional objects several classification schemes based on the orbital elements have been used. They are usually based on the Tisserand’s parameter (TJ). Tancredi (2014) presents a much more restrictive criterion to identify ACOs that ensured that the objects have a dynamical evolution similar to the population of periodic comets. After applying the criteriaa to the sample of over half a million asteroids already discovered, we obtain 316 ACOs that are further classified in subclasses similar to the cometary classification: 203 objects belong to the Jupiter Family group; 72 objects are classified as Centaurs; and 56 objects have Halley Type Orbits (also known as Damocloids). These are the best-known extinct/dormant comets candidates from a dynamical point of view.We study the physical properties of this sample of ACOs. Two results will be presented:- We look for the ACOs detected by the NASA’s WISE and by fitting a thermal model to their observations, we derive: the effective diameter, beaming parameter and the visible geometric albedo, using the method described in Al-Lagoa et al (2013). We obtain these parameters for 37 of 203 ACOs in JFC orbits and 13 of 56 Damocloids. We also compute the Cumulative Size Distribution (CSDs) of these populations and compare them with the CSDs of JF Comets and Centaurs.- We have been monitoring the observable ACOs since 12/2014 up to 06/2015. Every other month we select all the ACOs with elongations >90deg and estimated magnitudes V<21. We try to observe them with the 1m IMPACTON telescope of the Observatório Astronômico do Sertão de Itaparica (OASI

  15. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.

    PubMed

    Brisson, Lydie; El Bakkali-Taheri, Nadia; Giorgi, Michel; Fadel, Antoine; Kaizer, József; Réglier, Marius; Tron, Thierry; Ajandouz, El Hassan; Simaan, A Jalila

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket. PMID:22711330

  16. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  17. Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO

    PubMed Central

    Xiong, Shengwu; Zong, Xinlu

    2013-01-01

    Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem. PMID:23861678

  18. The opportunities and challenges of the MSSP ACO program: a report from the field.

    PubMed

    Mostashari, Farzad; Broome, Travis

    2016-09-01

    In this article, we seek to provide the first detailed description of a Medicare Shared Savings Program (MSSP) accountable care organization (ACO)'s actions and results to help increase understanding of the challenges and opportunities facing ACOs, and in particular, those comprised of a network of independent practices. Whether ACOs have been successful in delivering value has been the subject of much debate and speculation. What has been missing from this discussion is a look at the program from the frontlines and those who are launching and running MSSP ACOs. We hope to fill that gap. PMID:27662219

  19. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings.

    PubMed

    Jakubowicz, Małgorzata; Gałgańska, Hanna; Nowak, Witold; Sadowski, Jan

    2010-07-01

    In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.

  20. 24 CFR 982.154 - ACC reserve account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false ACC reserve account. 982.154... and PHA Administration of Program § 982.154 ACC reserve account. (a) HUD may establish and maintain an unfunded reserve account for the PHA program from available budget authority under the consolidated...

  1. Plasmid-Encoded ACC-4, an Extended-Spectrum Cephalosporinase Variant from Escherichia coli▿

    PubMed Central

    Papagiannitsis, Costas C.; Tzouvelekis, Leonidas S.; Tzelepi, Eva; Miriagou, Vivi

    2007-01-01

    ACC-4, an omega loop mutant (Val211→Gly) of the Hafnia alvei-derived cephalosporinase ACC-1, was encoded by an Escherichia coli plasmid. The genetic environment of blaACC-4 shared similarities with plasmidic regions carrying blaACC-1. Kinetics of β-lactam hydrolysis and levels of resistance to β-lactams showed that ACC-4 was more effective than ACC-1 against expanded-spectrum cephalosporins. PMID:17664321

  2. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers. PMID:25554619

  3. First national survey of ACOs finds that physicians are playing strong leadership and ownership roles.

    PubMed

    Colla, Carrie H; Lewis, Valerie A; Shortell, Stephen M; Fisher, Elliott S

    2014-06-01

    The extent to which physicians lead, own, and govern accountable care organizations (ACOs) is unknown. However, physicians' involvement in ACOs will influence how clinicians and patients perceive the ACO model, how effective these organizations are at improving quality and costs, and how future ACOs will be organized. From October 2012 to May 2013 we fielded the National Survey of Accountable Care Organizations, the first such survey of public and private ACOs. We found that 51 percent of ACOs were physician-led, with another 33 percent jointly led by physicians and hospitals. In 78 percent of ACOs, physicians constituted a majority of the governing board, and physicians owned 40 percent of ACOs. The broad reach of physician leadership has important implications for the future evolution of ACOs. It seems likely that the challenge of fundamentally changing care delivery as the country moves away from fee-for-service payment will not be accomplished without strong, effective leadership from physicians. PMID:24889945

  4. SamACO: variable sampling ant colony optimization algorithm for continuous optimization.

    PubMed

    Hu, Xiao-Min; Zhang, Jun; Chung, Henry Shu-Hung; Li, Yun; Liu, Ou

    2010-12-01

    An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising.

  5. 42 CFR 425.502 - Calculating the ACO quality performance score.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Calculating the ACO quality performance score. 425... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE SHARED SAVINGS PROGRAM Quality Performance Standards and Reporting § 425.502 Calculating the ACO quality performance score. (a)...

  6. 42 CFR 425.502 - Calculating the ACO quality performance score.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Calculating the ACO quality performance score. 425... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE SHARED SAVINGS PROGRAM Quality Performance Standards and Reporting § 425.502 Calculating the ACO quality performance score. (a)...

  7. 42 CFR 425.306 - Participation agreement and exclusivity of ACO participant TINs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... participant TINs. 425.306 Section 425.306 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT... participant TINs. (a) For purposes of the Shared Savings Program, each ACO participant TIN is required to commit to a participation agreement with CMS. (b) Each ACO participant TIN upon which...

  8. 42 CFR 425.306 - Participation agreement and exclusivity of ACO participant TINs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... participant TINs. 425.306 Section 425.306 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT... participant TINs. (a) For purposes of the Shared Savings Program, each ACO participant TIN is required to commit to a participation agreement with CMS. (b) Each ACO participant TIN upon which...

  9. 42 CFR 425.306 - Participation agreement and exclusivity of ACO participant TINs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... participant TINs. 425.306 Section 425.306 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT... participant TINs. (a) For purposes of the Shared Savings Program, each ACO participant TIN is required to commit to a participation agreement with CMS. (b) Each ACO participant TIN upon which...

  10. ACC deaminase activity in avirulent Agrobacterium tumefaciens D3.

    PubMed

    Hao, Youai; Charles, Trevor C; Glick, Bernard R

    2011-04-01

    Some plant-growth-promoting bacteria encode the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which breaks down ACC, the direct precursor of ethylene biosynthesis in all higher plants, into ammonia and α-ketobutyrate and, as a result, reduces stress ethylene levels in plants caused by a wide range of biotic and abiotic stresses. It was previously shown that ACC deaminase can inhibit crown gall development induced by Agrobacterium tumefaciens and can partially protect plants from this disease. Agrobacterium tumefaciens D3 has been previously reported to contain a putative ACC deaminase structural gene (acdS) and a regulatory gene (acdR = lrpL). In the present study, it was found that A. tumefaciens D3 is an avirulent strain. ACC deaminase activity and its regulation were also characterized. Under gnotobiotic conditions, wild-type A. tumefaciens D3 was shown to be able to promote plant root elongation, while the acdS and lrpL double mutant strain A. tumefaciens D3-1 lost that ability. When co-inoculated with the virulent strain, A. tumefaciens C58, in wounded castor bean plants, both the wild-type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were found to be able to significantly inhibit crown gall development induced by A. tumefaciens C58. PMID:21491979

  11. Report on the 10th International Conference of the Asian Clinical Oncology Society (ACOS 2012).

    PubMed

    Kim, Yeul Hong; Yang, Han-Kwang; Kim, Tae Won; Lee, Jung Shin; Seong, Jinsil; Lee, Woo Yong; Ahn, Yong Chan; Lim, Ho Yeong; Won, Jong-Ho; Park, Kyong Hwa; Cho, Kyung Sam

    2013-04-01

    The 10th International Conference of the Asian Clinical Oncology Society (ACOS 2012) in conjunction with the 38th Annual Meeting of the Korean Cancer Association, was held on June 13 to 15 (3 days) 2012 at COEX Convention and Exhibition Center in Seoul, Korea. ACOS has a 20-year history starting from the first conference in Osaka, Japan, which was chaired by Prof. Tetsuo Taguchi and the ACOS conferences have since been conducted in Asian countries every 2 years. Under the theme of "Work Together to Make a Difference for Cancer Therapy in Asia", the 10th ACOS was prepared to discuss various subjects through a high-quality academic program, exhibition, and social events. The ACOS 2012 Committee was composed of the ACOS Organizing Committee, Honorary Advisors, Local Advisors, and ACOS 2012 Organizing Committee. The comprehensive academic program had a total of 92 sessions (3 Plenary Lectures, 1 Award Lectures, 1 Memorial Lectures, 9 Special Lectures, 15 Symposia, 1 Debate & Summary Sessions, 1 Case Conferences, 19 Educational Lectures, 1 Research & Development Session, 18 Satellite Symposia, 9 Meet the Professors, 14 Oral Presentations) and a total 292 presentations were delivered throughout the entire program. Amongst Free Papers, 462 research papers (110 oral presentations and 352 poster presentations) were selected to be presented. This conference was the largest of all ACOS conferences in its scale with around 1,500 participants from 30 countries. Furthermore, despite strict new financial policies and requirements governing fundraising alongside global economic stagnation, a total of 14 companies participated as sponsors and an additional 35 companies purchased 76 exhibition booths. Lastly, the conference social events provided attendees with a variety of opportunities to experience and enjoy Korea's rich culture and traditions during the Opening Ceremony, Welcome Reception, Invitee Dinner, Banquet, and Closing Ceremony. Overall, ACOS 2012 reinforced and promoted

  12. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings.

    PubMed

    Penrose, D M; Moffatt, B A; Glick, B R

    2001-01-01

    Previously, it was proposed that plant growth-promoting bacteria that possess the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, can reduce the amount of ethylene produced by a plant and thereby promote root elongation. To test this model, canola seeds were imbibed in the presence of the chemical ethylene inhibitor, 2-aminoethoxyvinyl glycine (AVG), various strains of plant growth-promoting bacteria, and a psychrophilic bacterium containing an ACC deaminase gene on a broad host range plasmid. The extent of root elongation and levels of ACC, the immediate precursor of ethylene, were measured in the canola seedling roots. A modification of the Waters AccQ.Tag Amino Acid Analysis Method was used to quantify ACC in the root extracts. It was found that, in the presence of the ethylene inhibitor, AVG, or any one of several ACC deaminase-containing strains of bacteria, the growth of canola seedling roots was enhanced and the ACC levels in these roots were lowered.

  13. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    PubMed

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-01

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency. PMID:25969323

  14. Physicians' Participation In ACOs Is Lower In Places With Vulnerable Populations Than In More Affluent Communities.

    PubMed

    Yasaitis, Laura C; Pajerowski, William; Polsky, Daniel; Werner, Rachel M

    2016-08-01

    Early evidence suggested that accountable care organizations (ACOs) could improve health care quality while constraining costs, and ACOs are expanding throughout the United States. However, if disadvantaged patients have unequal access to physicians who participate in ACOs, that expansion may exacerbate health care disparities. We examined the relationship between physicians' participation in both Medicare and commercial ACOs across the country and the sociodemographic characteristics of their likely patient populations. Physicians' participation in ACOs varied widely across hospital referral regions, from nearly 0 percent to over 85 percent. After we adjusted for individual physician and practice characteristics, we found that physicians who practiced in ZIP Code Tabulation Areas where a higher percentage of the population was black, living in poverty, uninsured, or disabled or had less than a high school education-compared to other areas-had significantly lower rates of ACO participation than other physicians. Our findings suggest that vulnerable populations' access to physicians participating in ACOs may not be as great as access for other groups, which could exacerbate existing disparities in health care quality. PMID:27503961

  15. Hospitals Participating In ACOs Tend To Be Large And Urban, Allowing Access To Capital And Data.

    PubMed

    Colla, Carrie H; Lewis, Valerie A; Tierney, Emily; Muhlestein, David B

    2016-03-01

    Relationships between physicians and hospitals have changed considerably over the past decade, as hospitals and physician groups have integrated and new public and private payment policies have created financial interdependence. The extent to which accountable care organizations (ACOs) involve hospitals in their operations may prove to be vitally important, because managing hospital care is a key part of improving health care quality and lowering cost growth. Using primary data on ACO composition and capabilities paired with hospital characteristics, we found that 20 percent of US hospitals were part of an ACO in 2014. Hospitals that were in urban areas, were nonprofit, or had a smaller share of Medicare patients were more likely to participate in ACOs, compared to hospitals that were in more rural areas, were for-profit or government owned, or had a larger share of Medicare patients, respectively. Qualitative data identified the following advantages of including a hospital in an ACO: the availability of start-up capital, advanced data sharing, and engagement of providers across the care continuum. Although the 63 percent of ACOs that included hospitals offered more comprehensive services compared to ACOs without hospitals, we found no differences between the two groups in their ability to manage hospital-related aspects of patient care.

  16. Discovery and optimization of antibacterial AccC inhibitors

    SciTech Connect

    Cheng, Cliff C.; Shipps, Jr., Gerald W.; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A.; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd

    2010-09-17

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS). The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC{sub 50} of 20 nM and a MIC of 0.8 {micro}g/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  17. The ACCE 2012 Study Tour: Reflections on Reoccurring Themes

    ERIC Educational Resources Information Center

    Clements, Di; Grover, David; Grover, Pam; Hearne, Dominic; Knipe, Steven; Martin, Kim; Pazzi, Georgina; Pollard, Edward; Prestridge, Sarah

    2012-01-01

    Transformational leadership is essential in education as it empowers educators to make positive changes to the way they think, feel and act in improving learning for all. Reflection is a vital element of leading the change process. In relation to participating in the ACCE study tour experience, reflection allows one to sit and think about the…

  18. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  19. CHARACTERISTICS OF POLYPHENOL OXIDASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones. Highly reactive o-quinones couple with phenolics and specific amino acids on proteins to form the characteristic browning products in many wounded fruits, vegetables, and leaf tissues of plant...

  20. ACOs in real life: a reflection on the Medicare Shared Savings Program.

    PubMed

    Behm, Craig R

    2015-01-01

    The Medicare Shared Savings Program introduced Accountable Care Organizations (ACOs) as one potential method for meeting the often-cited triple aim of better individual care, improved population health, and lower cost. Built on concepts originating from HMOs and then Medicare Advantage plans, ACOs provide incentives based on total cost of care rather than any individual provider's cost. Early quality and cost results are mixed, and, more importantly, so is physician response. The ACO program still has potential to be a bright spot for the future of healthcare, but until there is widespread physician engagement, achieving the triple aim is likely to remain elusive.

  1. The Impact Of Medicare ACOs On Improving Integration And Coordination Of Physical And Behavioral Health Care.

    PubMed

    Fullerton, Catherine A; Henke, Rachel M; Crable, Erica; Hohlbauch, Andriana; Cummings, Nicholas

    2016-07-01

    The accountable care organization (ACO) model holds the promise of reducing costs and improving the quality of care by realigning payment incentives to focus on health outcomes instead of service volume. One key to managing the total cost of care is improving care coordination for and treatment of people with behavioral health disorders. We examined qualitative data from ninety organizations participating in Medicare ACO demonstration programs from 2012 through 2015 to determine whether and how they focused on behavioral health care. These ACOs had mixed degrees of engagement in improving behavioral health care for their populations. The biggest challenges included a lack of behavioral health care providers, data availability, and sustainable financing models. Nonetheless, we found substantial interest in integrating behavioral health care into primary care across a majority of the ACOs. PMID:27385242

  2. The Impact Of Medicare ACOs On Improving Integration And Coordination Of Physical And Behavioral Health Care.

    PubMed

    Fullerton, Catherine A; Henke, Rachel M; Crable, Erica; Hohlbauch, Andriana; Cummings, Nicholas

    2016-07-01

    The accountable care organization (ACO) model holds the promise of reducing costs and improving the quality of care by realigning payment incentives to focus on health outcomes instead of service volume. One key to managing the total cost of care is improving care coordination for and treatment of people with behavioral health disorders. We examined qualitative data from ninety organizations participating in Medicare ACO demonstration programs from 2012 through 2015 to determine whether and how they focused on behavioral health care. These ACOs had mixed degrees of engagement in improving behavioral health care for their populations. The biggest challenges included a lack of behavioral health care providers, data availability, and sustainable financing models. Nonetheless, we found substantial interest in integrating behavioral health care into primary care across a majority of the ACOs.

  3. The formation of ACC and competition between polyamines and ethylene for SAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene biosynthesis involves the conversion of S-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS). ACC is then converted to ethylene. The genes that encode enzymes in this pathway all belong to a family of genes. Differential transcriptional regulation ...

  4. A pheromone-rate-based analysis on the convergence time of ACO algorithm.

    PubMed

    Huang, Han; Wu, Chun-Guo; Hao, Zhi-Feng

    2009-08-01

    Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms. PMID:19380276

  5. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.

    PubMed

    Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517

  6. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET

    PubMed Central

    Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517

  7. Reward salience and risk aversion underlie differential ACC activity in substance dependence

    PubMed Central

    Alexander, William H.; Fukunaga, Rena; Finn, Peter; Brown, Joshua W.

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed. PMID:26106528

  8. MGA trajectory planning with an ACO-inspired algorithm

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo; Vasile, Massimiliano

    2010-11-01

    Given a set of celestial bodies, the problem of finding an optimal sequence of swing-bys, deep space manoeuvres (DSM) and transfer arcs connecting the elements of the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem. Its automated solution would greatly improve the design of future space missions, allowing the assessment of a large number of alternative mission options in a short time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the optimal planetary sequence and a good estimation of the set of associated optimal trajectories. The trajectory model consists of a sequence of celestial bodies connected by two-dimensional transfer arcs containing one DSM. For each transfer arc, the position of the planet and the spacecraft, at the time of arrival, are matched by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. For each departure date, this model generates a full tree of possible transfers from the departure to the destination planet. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by ant colony optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select a feasible direction. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter. Solutions are compared to those found through more traditional genetic-algorithm techniques.

  9. Crystallization of Mitochondrial Cytochrome Oxidase

    NASA Astrophysics Data System (ADS)

    Ozawa, Takayuki; Tanaka, Masashi; Wakabayashi, Takashi

    1982-12-01

    Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was purified from beef heart mitochondria. By washing the oxidase with detergent on a hydrophobic interaction column, phospholipids were depleted to the level of 1 mol of cardiolipin per mol of heme a. Hydrophobic impurities and partially denatured oxidase were separated from the intact oxidase on an affinity column with cytochrome c as the specific ligand. The final preparation of the oxidase contained seven distinct polypeptides. The molecular weight of the oxidase was estimated to be 130,000 from its specific heme a and copper content and from the subunit composition. Crystals of the oxidase were obtained by slow removal of the detergent from the buffer in which the oxidase was dissolved. The needle-shaped crystals were 100 μ m in average length and 5 μ m in width, and they strongly polarized visible light. Electron diffraction patterns were obtained with an unstained glutaraldehyde-fixed single crystal by electron microscopy using 1,000-kV electrons. From electron micrographs and the diffraction patterns of the crystal, it was concluded that the crystal is monoclinic in the space group P21, with unit cell dimensions a = 92 angstrom, b = 84 angstrom, and c = 103 angstrom, and α =β 90 degrees, γ = 126 degrees.

  10. A Few Thoughts about ACO Antitrust Issues from a Local Enforcement Perspective.

    PubMed

    Foote, Kathleen E; Varanini, Emilio E

    2015-08-01

    Accountable care organizations (ACOs), joint ventures of commercial insurers and various groups of medical providers such as physicians, specialists, and hospitals whose development in California has been quickened by the Affordable Care Act, carry with them both promise and pitfalls. On the positive side of the ledger, ACOs may improve the quality of medical care even as they lower the costs of that care. On the negative side of the ledger, ACOs may lead to a gain in market power for their participations, allowing those participants to increase the prices they charge to commercial insurers. It is thus a key question for antitrust enforcers to figure out how to separate the sheep from the goats. This article, representing our personal views as state antitrust enforcers in the California attorney general's office, offers our reflection on a number of ACO articles and studies in this special issue through the prism of this key question and sets out a number of additional issues that we believe warrant study in conjunction with ACOs. PMID:26124293

  11. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  12. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  13. PCMHs, ACOs, and medication management: lessons learned from early research partnerships.

    PubMed

    Schnur, Evan S; Adams, Alex J; Klepser, Donald G; Doucette, William R; Scott, David M

    2014-02-01

    The Patient Protection and Affordable Care Act has greatly accelerated the formation of team-based models of care delivery, primarily accountable care organizations (ACOs) and patient-centered medical homes (PCMHs).  Many have written about the need to incorporate medication management services into these systems in order to improve care and reduce total health care costs. Two primary ways of doing so have emerged: (1) an embedded model, whereby pharmacists are employed directly by a physician practice, or (2) a "virtual care team" model, whereby a PCMH or ACO develops an arrangement with external pharmacists in community settings to provide coordinated services.

  14. Few ACOs pursue innovative models that integrate care for mental illness and substance abuse with primary care.

    PubMed

    Lewis, Valerie A; Colla, Carrie H; Tierney, Katherine; Van Citters, Arica D; Fisher, Elliott S; Meara, Ellen

    2014-10-01

    Accountable care organizations (ACOs) may be well positioned to increase the focus on managing behavioral health conditions (mental health and substance abuse) through the integration of behavioral health treatment and primary care. We used a mixed-methods research design to examine the extent to which ACOs are clinically, organizationally, and financially integrating behavioral health care and primary care. We used data from 257 respondents to the National Survey of Accountable Care Organizations, a nationally representative survey of ACOs. The data were supplemented with semistructured, in-depth interviews with clinical leaders at sixteen ACOs purposively sampled to represent the spectrum of behavioral health integration. We found that most ACOs hold responsibility for some behavioral health care costs, and 42 percent include behavioral health specialists among their providers. However, integration of behavioral health care and primary care remains low, with most ACOs pursuing traditional fragmented approaches to physical and behavioral health care and only a minority implementing innovative models. Contract design and contextual factors appear to influence the extent to which ACOs integrate behavioral health care. Nevertheless, the ACO model has the potential to create opportunities for improving behavioral health care and integrating it with primary care.

  15. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  16. Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer.

    PubMed

    Wang, Peng; Mai, Cong; Wei, Yong-li; Zhao, Jing-jing; Hu, Yu-min; Zeng, Zhao-lei; Yang, Jing; Lu, Wen-hua; Xu, Rui-hua; Huang, Peng

    2013-06-01

    Alterations in energy metabolism play a major role in cancer development. Aconitase (ACO2) is an essential enzyme located in the mitochondria and catalyzes the interconversion of citrate and isocitrate in the tricarboxylic acid cycle. Recent studies suggest that the expression of ACO2 may be altered in certain types of cancer. The purpose of this study was to examine ACO2 expression in clinical tumor specimens from patients with gastric cancer and to evaluate the clinical relevance of ACO2 expression in gastric cancer. A total of 456 paraffin-embedded gastric cancer tissues and 30 pairs of freshly frozen tissues were used in this study. Real-time quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemical staining were performed to measure ACO2 expression in tumor tissues and matched adjacent non-tumorous tissues. The results showed that the expression of ACO2 was significantly down-regulated in gastric cancer tissues compared with matched adjacent nontumorous tissues and was associated with clinical stage (p = 0.001), T classification (p = 0.027), N classification (p = 0.012), M classification (p = 0.002), and pathological differentiation states (p = 0.036). Patients with lower ACO2 expression had a shorter survival time than those with higher ACO2 expression. Univariate and multivariate analyses indicated that ACO2 expression functions as an independent prognostic factor (p < 0.001). Our data suggested that ACO2 could play an important role in gastric cancer and may potentially serve as a prognostic biomarker. PMID:23550275

  17. Indole-3-ethanol Oxidase

    PubMed Central

    Percival, Frank W.; Purves, William K.; Vickery, Larry E.

    1973-01-01

    We report the further characterization of indole-3-ethanol oxidase from cucumber seedlings. The effects of various inhibitors suggest that the enzyme may be a flavoprotein with a metal ion and sulfhydryl groups required for full activity. Indole-3-acetaldehyde, a product of the reaction, inhibits the enzyme. This inhibition is overcome by O2 but not by indole-3-ethanol, indicating that the kinetic mechanism of the enzyme is a ping-pong Bi-Bi. The enzyme undergoes cooperative interactions with indoleethanol, yielding Hill coefficients as high as 2.96. Gibberellins are without effect on the enzyme, but it is inhibited by several acidic indoles possessing growth-promoting activity and by two synthetic auxins, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Increasing concentrations of indoleacetic acid (IAA) brought about a slight reduction in the indoleethanol concentration producing halfmaximal velocity. Increasing levels of indoleethanol decreased the concentration of IAA required for half-maximal inhibition. At low concentrations of indoleethanol, low levels of IAA activated rather than inhibited. The effect of IAA was not overcome at higher levels of indoleethanol. These results may be interpreted as showing that IAA is a noncompetitive inhibitor which binds to that conformation of the enzyme which also binds indoleethanol. The significance of these interactions for the regulation of IAA biosynthesis is discussed. PMID:16658401

  18. 42 CFR 425.500 - Measures to assess the quality of care furnished by an ACO.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE SHARED SAVINGS PROGRAM Quality Performance Standards and Reporting § 425.500 Measures to assess the quality of care furnished by an ACO. (a) General. CMS establishes quality performance measures to assess the quality of...

  19. 42 CFR 425.500 - Measures to assess the quality of care furnished by an ACO.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE SHARED SAVINGS PROGRAM Quality Performance Standards and Reporting § 425.500 Measures to assess the quality of care furnished by an ACO. (a) General. CMS establishes quality performance measures to assess the quality of...

  20. 24 CFR 882.805 - HA application process, ACC execution, and pre-rehabilitation activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Register notice, plus the cost of the fire and safety improvements required by 24 CFR 982.605(b)(4). HUD... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false HA application process, ACC... § 882.805 HA application process, ACC execution, and pre-rehabilitation activities. (a) Review....

  1. ACCE/ACS National Educator and Leader of the Year Winners: AEC Congratulates These Outstanding Educators

    ERIC Educational Resources Information Center

    Australian Educational Computing, 2012

    2012-01-01

    This article presents the ACCE/ACS National Educator and Leader of the Year winners. Anne Mirtschin is the recipient of the ACCE/ACS 2012 Educator of the Year Award. Mirtschin is an innovative teacher at Hawkesdale P-12 College a small rural school that is isolated culturally and geographically. She uses online tools and technology to create…

  2. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress.

    PubMed

    Datta, Riddhi; Kumar, Deepak; Sultana, Asma; Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2015-12-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.

  3. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. PMID:26668208

  4. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  5. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.

  6. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  7. [Alternative oxidase in industrial fungi].

    PubMed

    Gu, Shuai; Liu, Qiang; He, Hao; Li, Shuang

    2015-01-01

    Filamentous fungi have been used in industrial fermentation extensively. Based on non-phosphorylating electron transport process, alternative respiration pathway (ARP) acts as an energy overflow, which can balance carbon metabolism and electron transport, allow the continuance of tricarboxylic acid cycle without the formation of ATP, and permit the turnover of carbon skeletons. Alternative respiration pathway also plays an important role in the stress response of fungi and the physiological function of conditioned pathogen. Alternative oxidase (AOX) is the terminal oxidase responsible for the activity of alternative respiration pathway, which exists widely in higher plants, parts of fungi and algae. Owing to the property that alternative oxidase (AOX) is sensitive to salicylhydroxamic acid (SHAM) and insensitive to conventional inhibitors of cytochrome respiration, alternative respiration pathway by AOX is also named as cyanide-resistant respiration (CRR). In recent years, the study of the alternative respiration pathway and alternative oxidase has been a hot topic in the area involving cellular respiration metabolism. In this review we summarized the latest research advances about the functions of alternative respiration pathway and alternative oxidase in industrial fungi.

  8. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the

  9. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  10. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  11. Hordeum vulgare Seedlings Amine Oxidase

    PubMed Central

    Cogoni, Antonina; Piras, Carla; Farci, Raffaele; Melis, Antonello; Floris, Giovanni

    1990-01-01

    Although no amine oxidase could be detected in crude extracts, the enzyme has been purified to apparent homogeneity from Hordeum vulgare seedlings using ammonium sulfate precipitation and chromatography on DEAE cellulose, Hydroxylapatite, and Sephadex G200 columns. Gel filtration experiments indicate a molecular weight of about 150,000. The pH optimum of the enzyme was found to be 7.5 in potassium phosphate buffer. The spectrum of ultraviolet and visible regions were similar to Cuamine oxidase from Leguminosae. PMID:16667542

  12. Recalibration of the ACC/AHA Risk Score in Two Population-Based German Cohorts

    PubMed Central

    de las Heras Gala, Tonia; Geisel, Marie Henrike; Peters, Annette; Thorand, Barbara; Baumert, Jens; Lehmann, Nils; Jöckel, Karl-Heinz; Moebus, Susanne; Erbel, Raimund; Meisinger, Christine

    2016-01-01

    Background The 2013 ACC/AHA guidelines introduced an algorithm for risk assessment of atherosclerotic cardiovascular disease (ASCVD) within 10 years. In Germany, risk assessment with the ESC SCORE is limited to cardiovascular mortality. Applicability of the novel ACC/AHA risk score to the German population has not yet been assessed. We therefore sought to recalibrate and evaluate the ACC/AHA risk score in two German cohorts and to compare it to the ESC SCORE. Methods We studied 5,238 participants from the KORA surveys S3 (1994–1995) and S4 (1999–2001) and 4,208 subjects from the Heinz Nixdorf Recall (HNR) Study (2000–2003). There were 383 (7.3%) and 271 (6.4%) first non-fatal or fatal ASCVD events within 10 years in KORA and in HNR, respectively. Risk scores were evaluated in terms of calibration and discrimination performance. Results The original ACC/AHA risk score overestimated 10-year ASCVD rates by 37% in KORA and 66% in HNR. After recalibration, miscalibration diminished to 8% underestimation in KORA and 12% overestimation in HNR. Discrimination performance of the ACC/AHA risk score was not affected by the recalibration (KORA: C = 0.78, HNR: C = 0.74). The ESC SCORE overestimated by 5% in KORA and by 85% in HNR. The corresponding C-statistic was 0.82 in KORA and 0.76 in HNR. Conclusions The recalibrated ACC/AHA risk score showed strongly improved calibration compared to the original ACC/AHA risk score. Predicting only cardiovascular mortality, discrimination performance of the commonly used ESC SCORE remained somewhat superior to the ACC/AHA risk score. Nevertheless, the recalibrated ACC/AHA risk score may provide a meaningful tool for estimating 10-year risk of fatal and non-fatal cardiovascular disease in Germany. PMID:27732641

  13. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  14. Report of the American College of Cardiology (ACC) Scientific Sessions 2015, San Diego.

    PubMed

    Murohara, Toyoaki

    2015-01-01

    The 64th Annual Scientific Sessions and Exposition of the American College of Cardiology (ACC) were held at the San Diego Convention Center from March 14-16, 2015. The ACC Scientific Sessions are 1 of 2 major scientific cardiology meetings in the United States, with nearly 20,000 attendees, including 15,000 cardiovascular professionals. There were over 2,100 oral and poster abstracts, and more than 15 late-breaking clinical trials (LBCTs) abstructs. This report presents the highlights and several key presentations, especially the LBCTs, from the ACC Scientific Sessions 2015. I hope this review will help cardiologists update to the latest information.

  15. Report of the American College of Cardiology (ACC) Scientific Sessions 2015, San Diego.

    PubMed

    Murohara, Toyoaki

    2015-01-01

    The 64th Annual Scientific Sessions and Exposition of the American College of Cardiology (ACC) were held at the San Diego Convention Center from March 14-16, 2015. The ACC Scientific Sessions are 1 of 2 major scientific cardiology meetings in the United States, with nearly 20,000 attendees, including 15,000 cardiovascular professionals. There were over 2,100 oral and poster abstracts, and more than 15 late-breaking clinical trials (LBCTs) abstructs. This report presents the highlights and several key presentations, especially the LBCTs, from the ACC Scientific Sessions 2015. I hope this review will help cardiologists update to the latest information. PMID:25959559

  16. Report of the American College of Cardiology (ACC) Scientific Sessions 2016, Chicago.

    PubMed

    Mano, Toshiaki; Yamamoto, Kazuhiro

    2016-05-25

    The 65(th)Annual Scientific Sessions of the American College of Cardiology (ACC) were held at McCormick Place, Chicago, from April 2-4, 2016. The ACC Scientific Sessions are one of the 2 major scientific cardiology meetings in the USA and one of the major scientific meetings of cardiology in the world. It had an attendance of 18,769 and over 2,000 oral and poster abstracts, including 8 late-breaking clinical trials. This report presents the key presentations and the highlights from the ACC Scientific Sessions 2016 in Chicago. (Circ J 2016; 80: 1308-1313).

  17. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi

    2012-09-01

    In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.

  18. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.

    PubMed Central

    Ampe, F; Lindley, N D

    1995-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure. PMID:7592330

  19. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  20. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  1. IMPACC: A Tightly Integrated MPI+OpenACC Framework Exploiting Shared Memory Parallelism

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2016-01-01

    We propose IMPACC, an MPI+OpenACC framework for heterogeneous accelerator clusters. IMPACC tightly integrates MPI and OpenACC, while exploiting the shared memory parallelism in the target system. IMPACC dynamically adapts the input MPI+OpenACC applications on the target heterogeneous accelerator clusters to fully exploit target system-specific features. IMPACC provides the programmers with the unified virtual address space, automatic NUMA-friendly task-device mapping, efficient integrated communication routines, seamless streamlining of asynchronous executions, and transparent memory sharing. We have implemented IMPACC and evaluated its performance using three heterogeneous accelerator systems, including Titan supercomputer. Results show that IMPACC can achieve easier programming, higher performance, and better scalability than the current MPI+OpenACC model.

  2. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  3. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  4. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  5. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    PubMed

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  6. Ozone stress induces the expression of ACC synthase in potato plants

    SciTech Connect

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. )

    1993-05-01

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACC synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.

  7. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress1[OPEN

    PubMed Central

    Kumar, Deepak; Hazra, Saptarshi; Chattopadhyay, Sharmila

    2015-01-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress. PMID:26463088

  8. Elevated Monoamine Oxidase-A Distribution Volume in Borderline Personality Disorder Is Associated With Severity Across Mood Symptoms, Suicidality, and Cognition

    PubMed Central

    Kolla, Nathan J.; Chiuccariello, Lina; Wilson, Alan A.; Houle, Sylvain; Links, Paul; Bagby, R. Michael; McMain, Shelley; Kellow, Charis; Patel, Jalpa; Rekkas, Paraskevi V.; Pasricha, Suvercha; Meyer, Jeffrey H.

    2016-01-01

    BACKGROUND Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude. METHODS [11C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female. RESULTS Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = −.44, p = .023). CONCLUSIONS These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment. PMID:25698585

  9. Incorporation of copper into lysyl oxidase.

    PubMed

    Kosonen, T; Uriu-Hare, J Y; Clegg, M S; Keen, C L; Rucker, R B

    1997-10-01

    Lysyl oxidase is a copper-dependent enzyme involved in extracellular processing of collagens and elastin. Although it is known that copper is essential for the functional activity of the enzyme, there is little information on the incorporation of copper. In the present study we examined the insertion of copper into lysyl oxidase using 67Cu in cell-free transcription/translation assays and in normal skin fibroblast culture systems. When a full-length lysyl oxidase cDNA was used as a template for transcription/translation reactions in vitro, unprocessed prolysyl oxidase appeared to bind copper. To examine further the post-translational incorporation of copper into lysyl oxidase, confluent skin fibroblasts were incubated with inhibitors of protein synthesis (cycloheximide, 10 microg/ml), glycosylation (tunicamycin, 10 microg/ml), protein secretion (brefeldin A, 10 microg/ml) and prolysyl oxidase processing (procollagen C-peptidase inhibitor, 2.5 microg/ml) together with 300 microCi of carrier-free 67Cu. It was observed that protein synthesis was a prerequisite for copper incorporation, but inhibition of glycosylation by tunicamycin did not affect the secretion of 67Cu as lysyl oxidase. Brefeldin A inhibited the secretion of 67Ci-labelled lysyl oxidase by 46%, but the intracellular incorporation of copper into lysyl oxidase was not affected. In addition, the inhibition of the extracellular proteolytic processing of prolysyl oxidase to lysyl oxidase had minimal effects on the secretion of protein-bound 67Cu. Our results indicate that, similar to caeruloplasmin processing [Sato and Gitlin (1991) J. Biol. Chem. 266, 5128-5134], copper is inserted into prolysyl oxidase independently of glycosylation. PMID:9355764

  10. Positive coping styles and perigenual ACC volume: two related mechanisms for conferring resilience?

    PubMed

    Holz, Nathalie E; Boecker, Regina; Jennen-Steinmetz, Christine; Buchmann, Arlette F; Blomeyer, Dorothea; Baumeister, Sarah; Plichta, Michael M; Esser, Günter; Schmidt, Martin; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2016-05-01

    Stress exposure has been linked to increased rates of depression and anxiety in adults, particularly in females, and has been associated with maladaptive changes in the anterior cingulate cortex (ACC), which is an important brain structure involved in internalizing disorders. Coping styles are important mediators of the stress reaction by establishing homeostasis, and may thus confer resilience to stress-related psychopathology. Anatomical scans were acquired in 181 healthy participants at age 25 years. Positive coping styles were determined using a self-report questionnaire (German Stress Coping Questionnaire, SVF78) at age 22 years. Adult anxiety and depression symptoms were assessed at ages 22, 23 and 25 years with the Young Adult Self-Report. Information on previous internalizing diagnoses was obtained by diagnostic interview (2-19 years). Positive coping styles were associated with increased ACC volume. ACC volume and positive coping styles predicted anxiety and depression in a sex-dependent manner with increased positive coping and ACC volume being related to lower levels of psychopathology in females, but not in males. These results remained significant when controlled for previous internalizing diagnoses. These findings indicate that positive coping styles and ACC volume are two linked mechanisms, which may serve as protective factors against internalizing disorders. PMID:26743466

  11. ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant.

    PubMed

    Nascimento, Francisco X; Brígido, Clarisse; Glick, Bernard R; Oliveira, Solange

    2012-11-01

    Rhizobia strains expressing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase have been reported to display an augmented symbiotic performance as a consequence of lowering the plant ethylene levels that inhibit the nodulation process. Genes encoding ACC deaminase (acdS) have been studied in Rhizobium spp.; however, not much is known about the presence of acdS genes in Mesorhizobium spp. The aim of this study was to assess the prevalence and phylogeny of acdS genes in Mesorhizobium strains including a collection of chickpea-nodulating mesorhizobia from Portugal. ACC deaminase genes were detected in 10 of 12 mesorhizobia type strains as well as in 18 of 18 chickpea Mesorhizobium isolates studied in this work. No ACC deaminase activity was detected in any Mesorhizobium strain tested under free-living conditions. Despite the lack of ACC deaminase activity, it was possible to demonstrate that in Mesorhizobium ciceri UPM-Ca7(T) , the acdS gene is transcribed under symbiotic conditions. Phylogenetic analysis indicates that strains belonging to different species of Mesorhizobium, but nodulating the same host plant, have similar acdS genes, suggesting that acdS genes are horizontally acquired by transfer of the symbiosis island. This data, together with analysis of the symbiosis islands from completely sequenced Mesorhizobium genomes, suggest the presence of the acdS gene in a Mesorhizobium common ancestor that possessed this gene in a unique symbiosis island.

  12. Positive coping styles and perigenual ACC volume: two related mechanisms for conferring resilience?

    PubMed

    Holz, Nathalie E; Boecker, Regina; Jennen-Steinmetz, Christine; Buchmann, Arlette F; Blomeyer, Dorothea; Baumeister, Sarah; Plichta, Michael M; Esser, Günter; Schmidt, Martin; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2016-05-01

    Stress exposure has been linked to increased rates of depression and anxiety in adults, particularly in females, and has been associated with maladaptive changes in the anterior cingulate cortex (ACC), which is an important brain structure involved in internalizing disorders. Coping styles are important mediators of the stress reaction by establishing homeostasis, and may thus confer resilience to stress-related psychopathology. Anatomical scans were acquired in 181 healthy participants at age 25 years. Positive coping styles were determined using a self-report questionnaire (German Stress Coping Questionnaire, SVF78) at age 22 years. Adult anxiety and depression symptoms were assessed at ages 22, 23 and 25 years with the Young Adult Self-Report. Information on previous internalizing diagnoses was obtained by diagnostic interview (2-19 years). Positive coping styles were associated with increased ACC volume. ACC volume and positive coping styles predicted anxiety and depression in a sex-dependent manner with increased positive coping and ACC volume being related to lower levels of psychopathology in females, but not in males. These results remained significant when controlled for previous internalizing diagnoses. These findings indicate that positive coping styles and ACC volume are two linked mechanisms, which may serve as protective factors against internalizing disorders.

  13. OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2016-01-01

    This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, this design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.

  14. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16.

    PubMed Central

    Krüger, N; Steinbüchel, A

    1992-01-01

    Two hundred thirty-nine base pairs upstream from acoXABC, which encodes the Alcaligenes eutrophus H16 structural genes essential for cleavage of acetoin, the 2,004-bp acoR gene was identified. acoR encodes a protein of 668 amino acids with a molecular mass of 72.9 kDa. The amino acid sequence deduced from acoR exhibited homologies to the primary structures of transcriptional activators such as NifA of Azotobacter vinelandii, NtrC of Klebsiella pneumoniae, and HoxA of A. eutrophus. Striking similarities to the central domain of these proteins and the presence of a typical nucleotide-binding site (GETGSGK) as well as of a C-terminal helix-turn-helix motif as a DNA-binding site were revealed. Between acoR and acoXABC, two different types of sequences with dual rotational symmetry [CAC-(N11 to N18)-GTG and TGT-(N10 to N14)-ACA] were found; these sequences are similar to NtrC and NifA upstream activator sequences, respectively. Determination of the N-terminal amino acid sequence of an acoR'-'lacZ gene fusion identified the translational start of acoR. S1 nuclease protection assay identified the transcriptional start site 109 bp upstream of acoR. The promoter region (TTGCGC-N18-TACATT) resembled the sigma 70 consensus sequence of Escherichia coli. Analysis of an acoR'-'lacZ fusion and primer extension studies revealed that acoR was expressed at a low level under all culture conditions, whereas acoXABC was expressed only in acetoin-grown cells. The insertions of Tn5 in six transposon-induced acetoin-negative mutants of A. eutrophus were mapped within acoR. On the basis of these studies, it is probable that AcoR represents a regulatory protein which is required for sigma 54-dependent transcription of acoXABC. Images PMID:1378052

  15. Radiolabeling of a wound-inducible pyridoxal phosphate utilizing protein from tomato: evidence for its identification as ACC synthase

    SciTech Connect

    Privalle, L.S.; Graham, J.S.; Caughey, P.A.

    1986-05-01

    Aminocyclopropane 1-carboxylic acid (ACC) synthase, a pyridoxal phosphate utilizing enzyme, catalyzes the conversion of S-adenosylmethionine to ACC, the rate limiting step in the biosynthesis of the plant hormone, ethylene. Ethylene, besides being involved in normal plant growth processes, is also produced in response to stress, e.g. wounding, pathogen infection, etc. The authors report the partial purification (400 fold) of ACC synthase from wounded pink tomato pericarp by classical techniques including ammonium sulfate precipitation, ion exchange and phenyl sepharose chromatography. Further purification results in a decrease in specific activity apparently due to the instability of the enzyme and the low levels present in plant tissue. Radiolabeling of a pyridoxal phosphate-utilizing protein in the ACC synthase enriched fraction was achieved. Evidence that this radiolabeled protein is ACC synthase will be presented. Amino acid sequence determination of putative ACC synthase-derived peptides is underway.

  16. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  17. Glucose oxidase activity of actinomycetes.

    PubMed

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  18. Precipitation of ACC in liposomes-a model for biomineralization in confined volumes

    SciTech Connect

    Tester, Chantel C; Wu, Ching-Hsuan; Weigand, Steven; Joester, Derk

    2013-01-10

    Biomineralizing organisms frequently precipitate minerals in small phospholipid bilayer-delineated compartments. We have established an in vitro model system to investigate the effect of confinement in attoliter to femtoliter volumes on the precipitation of calcium carbonate. In particular, we analyze the growth and stabilization of liposome-encapsulated amorphous calcium carbonate (ACC) nanoparticles using a combination of in situ techniques, cryo-transmission electron microscopy (Cryo-TEM), and small angle X-ray scattering (SAXS). Herein, we discuss ACC nanoparticle growth rate as a function of liposome size, carbon dioxide flux across the liposome membrane, pH, and osmotic pressure. Based on these experiments, we argue that the stabilization of ACC nanoparticles in liposomes is a consequence of a low nucleation rate (high activation barrier) of crystalline polymorphs of calcium carbonate.

  19. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  20. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. PMID:25936227

  1. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; Ding, Wei; Hernandez, Oscar R.

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  2. A feasibility study on porting the community land model onto accelerators using OpenACC

    SciTech Connect

    Wang, Dali; Wu, Wei; Winkler, Frank; Ding, Wei; Hernandez, Oscar R.

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflow procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.

  3. ACC interleukin-10 gene promoter haplotype as a breast cancer risk factor predictor among Jordanian females

    PubMed Central

    Atoum, Manar Fayiz

    2016-01-01

    Introduction Interleukin-10 (IL-10) is a multifactorial cytokine with a complex biological role in breast cancer. The aims of this study were to investigate any association between IL-10 gene promoter polymorphisms, 1082A>/G, −819T>C, and −592A>C, or haplotypes and breast cancer risk among Jordanian women and to evaluate any association between the most common haplotype with clinicopathological features of breast cancer. Patients and methods A total of 202 breast cancer patients and 210 age-matched healthy control subjects were genotyped for −1082A/G, −819T/C, and −592A/C single nucleotide polymorphisms in the promoter region of the IL-10 gene by polymerase chain reaction-restriction fragment length polymorphism. Study patients and control subjects were recruited from Prince Hamzah Hospital, Amman, Jordan (2012–2013). Ethical approval and signed consent forms were signed by all participants. DNA was extracted, and polymerase chain reaction fragments were amplified and restriction digested by MnII, MaeIII, and RsaI. Results This study showed no statistically significant difference between −1082A/G, −819T/C, and −592A/C IL-10 genotypes or alleles among breast cancer patients or controls. Four different haplotypes ATA, ACC, GTA, and ACA within the IL-10 promoter gene were determined among both breast cancer and control groups. The most frequent haplotype was ACC among breast cancer patients and controls (41.6% and 40.7%, respectively). No statistical differences in these haplotypes among breast cancer patients or controls were determined. Analysis of the most common ACC haplotype showed statistical difference in positive estrogen receptor (P=0.022), positive progesterone receptor (P=0.004), cancer grade (P=0.0001), and cancer stage (P=0.009) among the ACC haplotype compared to non-ACC haplotype. Conclusion To our knowledge, this is the first report studying the association of IL-10 haplotype with breast cancer risk events among Jordanian females. The

  4. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    SciTech Connect

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  5. Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying.

    PubMed

    Sacher, Julia; Rekkas, P Vivien; Wilson, Alan A; Houle, Sylvain; Romano, Leslie; Hamidi, Jinous; Rusjan, Pablo; Fan, Ian; Stewart, Donna E; Meyer, Jeffrey H

    2015-01-01

    Postpartum depression (PPD) has a prevalence rate of 13% and a similarly high proportion of women report a subclinical state of one or more major depressive episode symptoms. The aim was to investigate whether monoamine oxidase-A (MAO-A) VT, an index of MAO-A density, is increased in the prefrontal and anterior cingulate cortex (PFC and ACC), during PPD or when a PPD spectrum symptom, greater predisposition to crying, is present. MAO-A is an enzyme that increases in density after estrogen decline, and has several functions including creating oxidative stress, influencing apoptosis and monoamine metabolism. Fifty-seven women were recruited including 15 first-onset, antidepressant naive, PPD subjects, 12 postpartum healthy who cry due to sad mood, 15 asymptomatic postpartum healthy women, and 15 healthy women not recently pregnant. Each underwent [(11)C]-harmine positron emission tomography scanning to measure MAO-A VT. Both PPD and greater predisposition to crying were associated with greater MAO-A VT in the PFC and ACC (multivariate analysis of variance (MANOVA), group effect, F21,135=1.856; p=0.019; mean combined region elevation 21% and 14% in PPD and crying groups, respectively, relative to postpartum asymptomatic). Greater MAO-A VT in the PFC and ACC represents a new biomarker in PPD, and the PPD symptom of predisposition to crying. Novel strategies for preventing PPD (and some PPD symptoms) may be possible by avoiding environmental conditions that elevate MAO-A level and enhancing conditions that normalize MAO-A level. These findings also argue for clinical trials in PPD with the newer, well-tolerated MAO-A inhibitor antidepressants.

  6. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  7. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  8. Optimatization of transient transformation methods to study gene expression in Musa acuminata (AAA group) cultivar Ambon Lumut

    NASA Astrophysics Data System (ADS)

    Prayuni, Kinasih; Dwivany, Fenny M.

    2015-09-01

    Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.

  9. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.

  10. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  11. A Comparative Analysis of the Integration of Faith and Learning between ACSI and ACCS Accredited Schools

    ERIC Educational Resources Information Center

    Peterson, Daniel Carl

    2012-01-01

    The purpose of this descriptive quantitative study was to analyze and compare the integration of faith and learning occurring in Christian schools accredited by the Association of Christian Schools International (ACSI) and classical Christian schools accredited by the Association of Classical and Christian Schools (ACCS). ACSI represents the…

  12. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  13. ACCE Study Tour to ISTE2011 (San Francisco, New York, Washington, Philadelphia)

    ERIC Educational Resources Information Center

    Gronn, Donna; Romeo, Geoff

    2011-01-01

    In June/July this year a group of 28 educators from across Australia travelled to the US on the 2011 ACCE ISTE Study Tour. The group comprised a very broad section of educators--primary, secondary and tertiary classroom teachers, ICT coordinators, managers, private consultants and regional office managers. The government, catholic and independent…

  14. 24 CFR 969.105 - Extension of ACC upon payment of operating subsidy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... are subject to the Consolidated ACC (see 24 CFR part 990). Accordingly, if a PHA, before submitting a..., under 24 CFR part 990, for determination of the total amount of Operating Subsidy payable under the... HOUSING AND URBAN DEVELOPMENT PHA-OWNED PROJ- ECTS-CONTINUED OPERATION AS LOW-INCOME HOUSING...

  15. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    SciTech Connect

    Kohout, E.F.; Folga, S.; Mueller, C.; Nabelssi, B.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure will allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.

  16. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HUD approval of demolition or disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND...

  17. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... expiration. This part is not intended to preclude or restrict the demolition or disposition of a project pursuant to HUD approval in accordance with 24 CFR part 970. Subject to the requirements of 24 CFR part 970... disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development REGULATIONS...

  18. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... expiration. This part is not intended to preclude or restrict the demolition or disposition of a project pursuant to HUD approval in accordance with 24 CFR part 970. Subject to the requirements of 24 CFR part 970... disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development REGULATIONS...

  19. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... expiration. This part is not intended to preclude or restrict the demolition or disposition of a project pursuant to HUD approval in accordance with 24 CFR part 970. Subject to the requirements of 24 CFR part 970... disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development REGULATIONS...

  20. 42 CFR 425.608 - Determining first year performance for ACOs beginning April 1 or July 1, 2012.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Determining first year performance for ACOs... windows. (i) The first window will be the first 12 months used for interim payment calculation. (ii) The second window will be CY2013. (4) Expenditures for the first performance year are the sum of...

  1. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  2. Real-time dynamic optical imaging of ACC-M tumor cells killed by HSV-tk/ACV system.

    PubMed

    Xiong, Tao; Li, Yongjin; Li, Zhiyang; Xie, Xiangmo; Lu, Lisha

    2013-01-01

    HSV-tk/ACV induced and killed human adenoid cystic carcinoma cell (ACC-M) in vivo and in vitro, which were observed through optical imaging and green fluorescence protein (GFP) tagging technique. ACC-M was transfected with TK-GFP, and the single clone cell ACC-M-TK-GFP was selected by G418. With fluorescent stereomicroscope, whole-body fluorescent imaging system and fluorescent microscope, we could observe ACV treated ACC-M-TK-GFP cells in cell level and nude mice. The therapies of tumor were visualized clearly with optical imaging. This study proves that optical imaging is a very good approach for studying the effect of HSV-tk/ACV on the ACC-M tumor cells and decreasing the amount of vessel about tumors cell. Optical imaging will become a visual groundwork for monitoring tumor growth and evaluating in vivo curative effect of antitumor drugs.

  3. Role of the Antarctic Circumpolar Current (ACC) on the Antarctica ice-sheet

    NASA Astrophysics Data System (ADS)

    Ladant, Jean-Baptiste; Donnadieu, Yannick; Lefebvre, Vincent; Dumas, Christophe

    2013-04-01

    Since more than a decade, most publications have put forward the primary role of atmospheric CO2 for explaining the Eocene Oligocene transition while diminishing the potential for the gateways to play a major role. Here we investigate the role of the Drake Passage opening on the Antarctica ice-sheet using a new modelling system including the Fast Ocean Atmosphere Model (FOAM), the high resolution atmospheric model LMDz and the ice-sheet model GRISLI. Using a set of boundary conditions, i.e. atmospheric CO2 level, orbital parameters and continental configuration, FOAM provides SSTs required to run LMDz, which is then used to simulate ice-sheet over Antarctica with GRISLI. As demonstrated by Lefebvre et al. (2012), the opening of southern oceanic gateways does not trigger the onset of the ACC for CO2 typical of the late Eocene (>840 ppm). A cooler background climatic state such as the one prevalent at the end of the Oligocene is required to simulate a well-developed ACC. Here, we show that the formation of the East Antarctica ice-sheet triggers the onset of the ACC in FOAM. Changes in oceanographic conditions have a significative impact on the atmospheric circulation simulated by LMDz, which in turn influence the ice-sheet geometry. In particular, we show that the ACC may have triggered the onset of West Antarctica ice-sheet through a feedback loop including multiple interactions between the atmosphere, the ocean and the Antarctica ice-sheet. The sensitivity of our results to unconstrained parameters such as those fixing the ablation / freezing below the ice-shelves but also to the topography of the Antarctica (Wilson et al., 2012) will be presented. Ref.: Deciphering the role of southern gateways and carbon dioxide on the onset of the ACC, Lefebvre V. et al., vol. 27, Paleoceanography, 2012 Antarctic topography at the Eocene - Oligocene boundary, Wilson D.S. et al., vol. 335, P-cubed, 2012.

  4. Changes in Health Care Spending and Quality for Medicare Beneficiaries Associated with a Commercial ACO Contract

    PubMed Central

    McWilliams, J. Michael; Landon, Bruce E.; Chernew, Michael E.

    2013-01-01

    Importance In a multi-payer system, new payment incentives implemented by one insurer for an accountable care organization (ACO) may affect spending and quality of care for another insurer’s enrollees served by the ACO. Such “spillover” effects reflect the extent of organizational efforts to reform care delivery and can contribute to the total impact of ACOs. Objective We examined whether the Blue Cross Blue Shield (BCBS) of Massachusetts’ Alternative Quality Contract (AQC), an early commercial ACO initiative associated with reduced spending and improved quality for BCBS enrollees, was also associated with changes in spending and quality for Medicare beneficiaries, who were not covered by the AQC. Design and Exposure Quasi-experimental comparisons from 2007–2010 of Medicare beneficiaries served by 11 provider organizations entering the AQC in 2009 or 2010 (intervention group) vs. beneficiaries served by other providers (control group). Using a difference-in-differences approach, we estimated changes in spending and quality for the intervention group in the first and second years of exposure to the AQC relative to concurrent changes for the control group. Regression and propensity-score methods were used to adjust for differences in sociodemographic and clinical characteristics. Participants and Setting Elderly fee-for-service Medicare beneficiaries in Massachusetts (1,761,325 person-years). Main Outcome Measures The primary outcome was total quarterly medical spending per beneficiary. Secondary outcomes included spending by setting and type of service, 5 process measures of quality, potentially avoidable hospitalizations, and 30-day readmissions. Results Before entering the AQC, total quarterly spending for the intervention group was $150 (95% CI, $25–$274) higher than for the control group and rose at a similar rate. In year 2 of the intervention group’s exposure to the AQC, this difference was reduced to $51 (95% CI, −$109–$210; P=0

  5. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  6. Human lysyl oxidase-like 2.

    PubMed

    Moon, Hee-Jung; Finney, Joel; Ronnebaum, Trey; Mure, Minae

    2014-12-01

    Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu(2+)- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2.

  7. An alternative oxidase monoclonal antibody recognises a highly conserved sequence among alternative oxidase subunits.

    PubMed

    Finnegan, P M; Wooding, A R; Day, D A

    1999-03-19

    The alternative oxidase is found in the inner mitochondrial membranes of plants and some fungi and protists. A monoclonal antibody raised against the alternative oxidase from the aroid lily Sauromatum guttatum has been used extensively to detect the enzyme in these organisms. Using an immunoblotting strategy, the antibody binding site has been localised to the sequence RADEAHHRDVNH within the soybean alternative oxidase 2 protein. Examination of sequence variants showed that A2 and residues C-terminal to H7 are required for recognition by the monoclonal antibody raised against the alternative oxidase. The recognition sequence is highly conserved among all alternative oxidase proteins and is absolutely conserved in 12 of 14 higher plant sequences, suggesting that this antibody will continue to be extremely useful in studying the expression and synthesis of the alternative oxidase.

  8. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes.

    PubMed

    Finnegan, Patrick M; Umbach, Ann L; Wilce, Jackie A

    2003-12-18

    The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.

  9. Towards a multi-node OpenACC Implementation of the ICON Model

    NASA Astrophysics Data System (ADS)

    Sawyer, Will; Zaengl, Guenther; Linardakis, Leonidas

    2014-05-01

    We have ported the Icosahedral Non-hydrostatic (ICON) model's dynamics solver to Graphical Processing Units (GPUs), which is a task within the Partnership for Advanced Computing in Europe (PRACE) Second Implementation Phase (2IP) Work Package 8 (WP8). Initial single-node OpenCL and CUDA-Fortran implementations of ICON's non-hydrostatic dynamical core (NHDC) resulted in a maximum factor of two speedup over the latest CPU nodes, e.g., a dual-socket Intel Sandybridge. While this performance was promising, ICON developers viewed neither OpenCL nor CUDA-Fortran as viable programming paradigms for the actual production code, and suggested instead the OpenACC standard as the proper paradigm for the multi-node GPU implementation, which was then undertaken in WP8. We will present the results of the multi-node OpenACC implementation of the ICON NHDC for hybrid multicore platforms. The code baseline is the ICON "DSL" (Domain Specific Language) testbed code, which is essentially a stripped-down version of the ICON model for dynamics simulations only. We will discuss on the OpenACC directives used for the port of the computational as well as the communication code to GPUs, and report the resulting GPU performance on NVIDIA K20x as compared to contemporary CPU architectures. In addition, the future roadmap for an accelerated ICON version will be presented. As a first step, we are now incorporating the OpenACC directives into the ICON development trunk, based on the feedback given to us from the ICON developers at the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD). Moreover, we plan to port the ICON Climate physical parameterizations stemming from the ECHAM model to OpenACC. This step should enable the full ICON on many core platforms which support OpenACC. The resulting model should benefit climate researchers world-wide who plan to transition from ECHAM to ICON in the coming years.

  10. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  11. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  12. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  13. Azide inhibition of urate oxidase

    PubMed Central

    Gabison, Laure; Colloc’h, Nathalie; Prangé, Thierry

    2014-01-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site. PMID:25005084

  14. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  15. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2013-02-01

    The genetic and molecular biological studies mainly in Arabidopsis and in some other plants have begun to uncover the various components of ripening signaling pathway in plants. Although transcriptional regulation of major ripening genes have been studied in detail, information on role of phosphorylation in regulating the activity and stability of core ripening pathway associated proteins in relation to ethylene biosynthesis during fruit ripening is still limited. Recently we have demonstrated the evidence for post-translational regulation of MA-ACS1 (Musa acuminata ACC synthase 1), the rate limiting step enzyme regulating ripening ethylene production in banana, through phosphorylation at the C-terminal Ser 476 and 479 residues by a 41-kDa Ser/Thr protein kinase. (1) Here we have further discussed role of protein phosphorylation in regulation of stability and activity of ACS enzymes and the mechanistic and evolutionary perspective of phosphorylation pattern of Type I ACC synthase enzymes. PMID:23221778

  16. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits

  17. Effects of Nonlinear Frequency Compression on ACC Amplitude and Listener Performance

    PubMed Central

    Kirby, Benjamin J.; Brown, Carolyn J.

    2015-01-01

    Objectives Nonlinear frequency compression is a signal processing technique used to increase the audibility of high frequency speech sounds for hearing aid users with sloping, high frequency hearing loss. However, excessive compression ratios may reduce spectral contrast between sounds and negatively impact speech perception. This is of particular concern in infants and young children who may not be able to provide feedback about frequency compression settings. This study explores use of an objective cortical auditory evoked potential that is sensitive to changes in spectral contrast, the auditory change complex (ACC), in the verification of frequency compression parameters. Design ACC responses were recorded from adult listeners to a spectral ripple contrast stimulus that was processed using a range of frequency compression ratios (1:1, 1.5:1, 2:1, 3:1, and 4:1). Vowel identification, consonant identification, speech recognition in noise (QuickSIN), and behavioral ripple discrimination thresholds were also measured under identical frequency compression conditions. In Experiment 1, these tasks were completed in 10 adults with normal hearing. In Experiment 2, these same tasks were repeated in 10 adults with sloping, high frequency hearing loss. Results Repeated measures ANOVAs were completed for each task and each group with frequency compression ratio as the within-subjects factor. Increasing the compression ratio did not affect vowel identification for the normal hearing group but did cause a significant decrease in vowel identification for the hearing-impaired listeners. Increases in compression ratio were associated with significant decrements in ACC amplitudes, consonant identification scores, ripple discrimination thresholds, and speech perception in noise scores for both groups of listeners. Conclusions The ACC response, like speech and non-speech perceptual measures, is sensitive to frequency compression ratio. Further work is needed to establish optimal

  18. Essential function of Aco2, a fusion protein of aconitase and mitochondrial ribosomal protein bL21, in mitochondrial translation in fission yeast.

    PubMed

    Jung, Soo-Jin; Seo, Youngdae; Lee, Kyung-Chang; Lee, Daeyoup; Roe, Jung-Hye

    2015-03-24

    A possible interaction between aconitase and a mitochondrial ribosomal protein was suggested in a genome-wide interactome study. In fission yeast Schizosaccharomyces pombe, the aco2(+) gene encodes a fusion protein between aconitase and a putative mitochondrial ribosomal protein bL21 (Mrpl49). Two types of aco2(+) transcripts are generated via alternative poly (A) site selection, producing both a single aconitase domain protein and the fusion form. The bL21-fused Aco2 protein resides in mitochondria as well as in the cytosol and the nucleus. The viability defect of aco2 mutation is complemented not by the aconitase domain but by the bL21 domain, which enables mitochondrial translation.

  19. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1.

    PubMed

    Endo, Yusuke; Asou, Hikari K; Matsugae, Nao; Hirahara, Kiyoshi; Shinoda, Kenta; Tumes, Damon J; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori

    2015-08-11

    Chronic inflammation due to obesity contributes to the development of metabolic diseases, autoimmune diseases, and cancer. Reciprocal interactions between metabolic systems and immune cells have pivotal roles in the pathogenesis of obesity-associated diseases, although the mechanisms regulating obesity-associated inflammatory diseases are still unclear. In the present study, we performed transcriptional profiling of memory phenotype CD4 T cells in high-fat-fed mice and identified acetyl-CoA carboxylase 1 (ACC1, the gene product of Acaca) as an essential regulator of Th17 cell differentiation in vitro and of the pathogenicity of Th17 cells in vivo. ACC1 modulates the DNA binding of RORγt to target genes in differentiating Th17 cells. In addition, we found a strong correlation between IL-17A-producing CD45RO(+)CD4 T cells and the expression of ACACA in obese subjects. Thus, ACC1 confers the appropriate function of RORγt through fatty acid synthesis and regulates the obesity-related pathology of Th17 cells.

  20. Adolescent neighborhood quality predicts adult dACC response to social exclusion

    PubMed Central

    Beckes, Lane; Chango, Joanna; Allen, Joseph P.; Coan, James A.

    2015-01-01

    Neuroimaging studies using the social-exclusion paradigm Cyberball indicate increased dorsal anterior cingulate cortex (dACC) and right insula activity as a function of exclusion. However, comparatively less work has been done on how social status factors may moderate this finding. This study used the Cyberball paradigm with 85 (45 females) socio-economically diverse participants from a larger longitudinal sample. We tested whether neighborhood quality during adolescence would predict subsequent neural responding to social exclusion in young adulthood. Given previous behavioral studies indicating greater social vigilance and negative evaluation as a function of lower status, we expected that lower adolescent neighborhood quality would predict greater dACC activity during exclusion at young adulthood. Our findings indicate that young adults who lived in low-quality neighborhoods in adolescence showed greater dACC activity to social exclusion than those who lived in higher quality neighborhoods. Lower neighborhood quality also predicted greater prefrontal activation in the superior frontal gyrus, dorsal medial prefrontal cortex and the middle frontal gyrus, possibly indicating greater regulatory effort. Finally, this effect was not driven by subsequent ratings of distress during exclusion. In sum, adolescent neighborhood quality appears to potentiate neural responses to social exclusion in young adulthood, effects that are independent of felt distress. PMID:25349459

  1. Bacteria with ACC deaminase can promote plant growth and help to feed the world.

    PubMed

    Glick, Bernard R

    2014-01-20

    To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture. PMID:24095256

  2. The ACC strategy in biomineralization: the case of earthworm's amorphous spherulites

    NASA Astrophysics Data System (ADS)

    Briones, Maria J. I.; Alvarez-Otero, Rosa; Méndez, Jesús; Gago Duport, Luis

    2010-05-01

    The occurrence of amorphous calcium carbonate (ACC), an hydrated and highly soluble form of solid CaCO3, seems to be a common feature in all carbonate forming organisms such as mollusks, corals, echinoderms and crustaceans. The ubiquity of ACC in these Ca-carbonate biomineralizing systems, as a precursor of further crystalline phases, has recently open the interesting question about if the formation of an amorphous phase is a necessary step in the calcification process of all organisms and consequently, whether it would be possible to define the "amorphous precursor estategy" as a general mechanism in biomineralization. Neverthelees, although ACC appears to be widespread in these organisms very little is known about its particular role in the biomineralization scheme of the different phyla. The formation of CaCO3 spherulites in the calciferous glands of earthworms is a particular case of calcareous biomineralization involving the presence of ACC as a transient precursor phase [2]. Interestingly, the formation of crystalline carbonates via ACC in these organisms is not connected with skeleton building so it must play another functional role. In addition, the transient transformation stages can be followed by in situ spectrometric techniques and therefore, earthworms provide and adequate model to analyse the mutual interactions between ACC-solvent-and crystalline phases. In this study, we have analysed the morphological and structural transformations from the initial ACC spherulites until the formation of the crystalline phases: vaterite (and/or aragonite) and finally calcite, is accomplished. The characterization of ACC was done by performing in situ FT-IR, together with and HREM and Debye scherrer -XRD. The structural results were interpreted in the light of the histological study of the gland. The geometry of the secretory epithelium of the calciferous gland, as evidenced by TEM [2], shows the presence of irregulary shaped cells with their apical surface

  3. Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation.

    PubMed

    Kerr, Kara L; Avery, Jason A; Barcalow, Joel C; Moseman, Scott E; Bodurka, Jerzy; Bellgowan, Patrick S F; Simmons, W Kyle

    2015-01-01

    Trait impulsivity is characterized by behavioral disinhibition and rash decision-making that contribute to many maladaptive behaviors. Previous research demonstrates that trait impulsivity is related to the activity of brain regions underlying reward sensitivity and emotion regulation, but little is known about this relationship in the context of immediately available primary reward. This is unfortunate, as impulsivity in these contexts can lead to unhealthy behaviors, including poor food choices, dangerous drug use and risky sexual practices. In addition, little is known about the relationship between integration of reward and affective neurocircuitry, as measured by resting-state functional connectivity, and trait impulsivity in everyday life, as measured with a commonly used personality inventory. We therefore asked healthy adults to undergo a functional magnetic resonance imaging task in which they saw cues indicating the imminent oral administration of rewarding taste, as well as a resting-state scan. Trait impulsivity was associated with increased activation during anticipation of primary reward in the anterior cingulate cortex (ACC) and amygdala. Additionally, resting-state functional connectivity between the ACC and the right amygdala was negatively correlated with trait impulsivity. These findings demonstrate that trait impulsivity is related not only to ACC-amygdala activation but also to how tightly coupled these regions are to one another. PMID:24526181

  4. Bacteria with ACC deaminase can promote plant growth and help to feed the world.

    PubMed

    Glick, Bernard R

    2014-01-20

    To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.

  5. Adolescent neighborhood quality predicts adult dACC response to social exclusion.

    PubMed

    Gonzalez, Marlen Z; Beckes, Lane; Chango, Joanna; Allen, Joseph P; Coan, James A

    2015-07-01

    Neuroimaging studies using the social-exclusion paradigm Cyberball indicate increased dorsal anterior cingulate cortex (dACC) and right insula activity as a function of exclusion. However, comparatively less work has been done on how social status factors may moderate this finding. This study used the Cyberball paradigm with 85 (45 females) socio-economically diverse participants from a larger longitudinal sample. We tested whether neighborhood quality during adolescence would predict subsequent neural responding to social exclusion in young adulthood. Given previous behavioral studies indicating greater social vigilance and negative evaluation as a function of lower status, we expected that lower adolescent neighborhood quality would predict greater dACC activity during exclusion at young adulthood. Our findings indicate that young adults who lived in low-quality neighborhoods in adolescence showed greater dACC activity to social exclusion than those who lived in higher quality neighborhoods. Lower neighborhood quality also predicted greater prefrontal activation in the superior frontal gyrus, dorsal medial prefrontal cortex and the middle frontal gyrus, possibly indicating greater regulatory effort. Finally, this effect was not driven by subsequent ratings of distress during exclusion. In sum, adolescent neighborhood quality appears to potentiate neural responses to social exclusion in young adulthood, effects that are independent of felt distress.

  6. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC).

    PubMed

    Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P; Pezzi, Vincenzo

    2015-09-22

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  7. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC)

    PubMed Central

    Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P.; Pezzi, Vincenzo

    2015-01-01

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  8. Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation

    PubMed Central

    Kerr, Kara L.; Avery, Jason A.; Barcalow, Joel C.; Moseman, Scott E.; Bodurka, Jerzy; Bellgowan, Patrick S. F.

    2015-01-01

    Trait impulsivity is characterized by behavioral disinhibition and rash decision-making that contribute to many maladaptive behaviors. Previous research demonstrates that trait impulsivity is related to the activity of brain regions underlying reward sensitivity and emotion regulation, but little is known about this relationship in the context of immediately available primary reward. This is unfortunate, as impulsivity in these contexts can lead to unhealthy behaviors, including poor food choices, dangerous drug use and risky sexual practices. In addition, little is known about the relationship between integration of reward and affective neurocircuitry, as measured by resting-state functional connectivity, and trait impulsivity in everyday life, as measured with a commonly used personality inventory. We therefore asked healthy adults to undergo a functional magnetic resonance imaging task in which they saw cues indicating the imminent oral administration of rewarding taste, as well as a resting-state scan. Trait impulsivity was associated with increased activation during anticipation of primary reward in the anterior cingulate cortex (ACC) and amygdala. Additionally, resting-state functional connectivity between the ACC and the right amygdala was negatively correlated with trait impulsivity. These findings demonstrate that trait impulsivity is related not only to ACC-amygdala activation but also to how tightly coupled these regions are to one another. PMID:24526181

  9. WASTE-ACC: A computer model for analysis of waste management accidents

    SciTech Connect

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy`s (DOE`s) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives.

  10. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  11. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  12. Comparison of AC/O3-BAC and O3-BAC processes for removing organic pollutants in secondary effluent.

    PubMed

    Li, Laisheng; Zhu, Wanpeng; Zhang, Pengyi; Zhang, Zulin; Wu, Honghai; Han, Wenya

    2006-03-01

    AC (activated carbon)/O3-BAC (biological activated carbon) process was employed to treat secondary effluent and compared to O3-BAC process. The effects of ozone dosages and empty bed contact time (EBCT) in BAC on dissolved organic carbon (DOC) removal were investigated. The results showed that the presence of AC improved ozone utilization and biodegradability of the effluent. DOC removal increased with ozone dosage and EBCT in BAC, however, 3 mg l(-1) ozone dosage with 15 min oxidation time and 15 min EBCT in BAC were more economical and efficient. For DOC removal, AC/O3-BAC was more efficient than O3-BAC and its synergetic effect was more than that in O3-BAC process. The biomass of the subsequent BAC unit in AC/O3-BAC process was more than that in O3-BAC process and much more than that in BAC alone. Except for organic pollutants with molecular weight (MW) >10 kDa, those of other MW range were decomposed much more by AC/O3 process than by O3 process. GC/MS analysis showed that dibutyl phthalate, bis(2-ethylhexyl) phthalate, 4-bromo-3-chloroaniline, 2-propanone-ethylhydrazone and phenol derivatives were prevalent organic compounds in the secondary effluent. Some aromatic compounds, such as 4-bromo-3-chloroaniline and 2,4-dichloro-benzenamine disappeared after AC/O3 treatment. However, some small molecules were generated, after further biological treatment by BAC, the kinds and concentration of organic compounds were greatly reduced. PMID:16087215

  13. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203.

    PubMed

    Viterbo, Ada; Landau, Udi; Kim, Sofia; Chernin, Leonid; Chet, Ilan

    2010-04-01

    1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was evaluated in the biocontrol and plant growth-promoting fungus Trichoderma asperellum T203. Fungal cultures grown with ACC as the sole nitrogen source showed high enzymatic activity. The enzyme encoding gene (Tas-acdS) was isolated, and an average 3.5-fold induction of the gene by 3 mM ACC was detected by real-time PCR. Escherichia coli bacteria carrying the intron-free cDNA of Tas-acdS cloned into the vector pAlter-EX1 under the control of the tac promoter revealed specific ACC deaminase (ACCD) activity and the ability to promote canola (Brassica napus) root elongation in pouch assays. RNAi silencing of the ACCD gene in T. asperellum showed decreased ability of the mutants to promote root elongation of canola seedlings. These data suggest a role for ACCD in the plant root growth-promotion effect by T. asperellum.

  14. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC

    PubMed Central

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-01-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Cav1.2 Ca2+ channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Cav1.2 channels of the ACC in observational social fear. PMID:20190743

  15. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.

    PubMed

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-04-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.

  16. Eight reasons payer interoperability and data sharing are essential in ACOs. Interoperability standards could be a prerequisite to measuring care.

    PubMed

    Mookencherry, Shefali

    2012-01-01

    It makes strategic and business sense for payers and providers to collaborate on how to take substantial cost out of the healthcare delivery system. Acting independently, neither medical groups, hospitals nor health plans have the optimal mix of resources and incentives to significantly reduce costs. Payers have core assets such as marketing, claims data, claims processing, reimbursement systems and capital. It would be cost prohibitive for all but the largest providers to develop these capabilities in order to compete directly with insurers. Likewise, medical groups and hospitals are positioned to foster financial interdependence among providers and coordinate the continuum of patient illnesses and care settings. Payers and providers should commit to reasonable clinical and cost goals, and share resources to minimize expenses and financial risks. It is in the interest of payers to work closely with providers on risk-management strategies because insurers need synergy with ACOs to remain cost competitive. It is in the interest of ACOs to work collaboratively with payers early on to develop reasonable and effective performance benchmarks. Hence, it is essential to have payer interoperability and data sharing integrated in an ACO model. PMID:22352172

  17. Effects of inefficient transcription termination of rbcL on the expression of accD in plastids of Arabidopsis thaliana.

    PubMed

    He, Baoye; Mu, Ying; Chi, Wei

    2015-12-01

    The plastid accD gene encodes one subunit of a multimeric acetyl-CoA carboxylase that is required for fatty acid biosynthesis. In Arabidopsis thaliana, the accD gene is transcribed by the nuclear-encoded phage-type RNA polymerase, and the accumulation of accD transcripts is subjected to a dynamic pattern during chloroplast development. However, the mechanisms underlying the regulation of accD expression remain unknown. Here, we showed that the inefficient transcription termination of rbcL due to the absence of RHON1 impaired the developmental profile of accD, resulting in the constitutive expression of accD during chloroplast development. Moreover, the accumulation of accD transcripts accordingly resulted in an increase in accD protein levels, suggesting that transcript abundance is critical for accD gene production. Our study demonstrates that the interplay between accD and upstream rbcL regulates the expression of accD and highlights the significance of transcriptional regulation in plastid gene expression in higher plants.

  18. Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening.

    PubMed

    Cheng, Guiping; Yang, En; Lu, Wangjin; Jia, Yongxia; Jiang, Yueming; Duan, Xuewu

    2009-07-01

    The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice. PMID:19534461

  19. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  20. The Norma cluster (ACO3627) - II. The near-infrared Ks-band luminosity function

    NASA Astrophysics Data System (ADS)

    Skelton, R. E.; Woudt, P. A.; Kraan-Korteweg, R. C.

    2009-07-01

    A deep Ks-band photometric catalogue of galaxies at the core of the rich, nearby Norma cluster (ACO3627) is presented. The survey covers about 45 × 45arcmin2 (slightly less than 1/3 Abell radius), which corresponds to ~0.8h-270Mpc2 at the adopted distance (vCMB/H0) of 70h-170Mpc of this cluster. The survey is estimated to be complete to a magnitude of . This extends into the dwarf regime, 6 mag below . The catalogue contains 390 objects, 235 of which are classified as likely or definite galaxies and 155 as candidate galaxies. The Ks-band luminosity function (LF) is constructed from the photometric sample, using a spectroscopic subsample to correct for fore and background contamination. We fit a Schechter function with a characteristic magnitude of and faint-end slope of α = -1.26 +/- 0.10 to the data. The shape of the LF is similar to those found in previous determinations of the cluster LF, in both optical and near-infrared. The Schechter parameters agree well with those of recent field LFs, suggesting that the shape of both the bright-end and the faint-end slopes are relatively insensitive to environment.

  1. ACO-zeotype iron aluminum phosphates with variable Al/Fe ratios controlled by F⁻ ions.

    PubMed

    Wang, Yanyan; Li, Yi; Wang, Lei; Zhang, Jingzhe; Yan, Yan; Li, Jiyang; Yu, Jihong; Wang, Jincheng; Xu, Ruren

    2011-03-01

    Three new iron aluminum phosphates |(C(2)H(10)N(2))(4)|[Fe(8 - x)Al(x)F(x)(H(2)O)(2 - x)(PO(4))(8)]·2H(2)O (χ = 1.64, 1.33, 0.80) with ACO-zeotype structures denoted as FeAPO-CJ66(a), FeAPO-CJ66(b), and FeAPO-CJ66(c), respectively, have been synthesized in the fluoride ion system. Their framework structures are made of double 4-ring (D4R) building units formed by the alternating connection of Fe(Al)O(4)F(O) trigonal bipyramids and PO(4) tetrahedra, which possess 3D intersecting 8-ring channels running along the [001], [010], and [100] directions. Fluoride ions or water molecules reside in the center of D4Rs, and diprotonated ethylenediamine cations and water molecules are occluded in the free space of channels to stabilize the whole structure. Notably, the Al/Fe ratios in the frameworks can be effectively controlled from 1/3.9 to 1/5.0 to 1/9.0 by adjusting the amounts of phosphoric acid and hydrofluoric acid added to the initial reaction mixture. Mössbauer and magnetic measurements show that the Fe ions in the compounds are bivalent and undergo antiferromagnetic ordering at room temperature.

  2. NASA GES DISC support of CO2 Data from OCO-2, ACOS, and AIRS

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer C; Vollmer, Bruce E.; Savtchenko, Andrey K.; Hearty, Thomas J; Albayrak, Rustem Arif; Deshong, Barbara E.

    2013-01-01

    NASA Goddard Earth Sciences Data and Information Services Centers (GES DISC) is the data center assigned to archive and distribute current AIRS, ACOS data and data from the upcoming OCO-2 mission. The GES DISC archives and supports data containing information on CO2 as well as other atmospheric composition, atmospheric dynamics, modeling and precipitation. Along with the data stewardship, an important mission of GES DISC is to facilitate access to and enhance the usability of data as well as to broaden the user base. GES DISC strives to promote the awareness of science content and novelty of the data by working with Science Team members and releasing news articles as appropriate. Analysis of events that are of interest to the general public, and that help in understanding the goals of NASA Earth Observing missions, have been among most popular practices.Users have unrestricted access to a user-friendly search interface, Mirador, that allows temporal, spatial, keyword and event searches, as well as an ontology-driven drill down. Variable subsetting, format conversion, quality screening, and quick browse, are among the services available in Mirador. The majority of the GES DISC data are also accessible through OPeNDAP (Open-source Project for a Network Data Access Protocol) and WMS (Web Map Service). These services add more options for specialized subsetting, format conversion, image viewing and contributing to data interoperability.

  3. NADPH oxidases: new actors in thyroid cancer?

    PubMed

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  4. Xanthine oxidase inhibitory activity of alkyl gallates.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Kubo, Isao

    2006-08-01

    A series (C1-C12) of alkyl gallates was examined for their effects on the activity of xanthine oxidase. Octyl (C8), decyl (C10), and dodecyl (C12) gallates competitively inhibited uric acid formation generated by xanthine oxidase, and the inhibition increased upon increasing the alkyl chain length. Interestingly, neither menthyl nor bornyl gallates inhibited uric acid formation. These data indicate that the hydrophobic alkyl portion is associated with the xanthine-binding site in the Mo-binding domain. It is likely that the linear alkyl portion interacts with the hydrophobic domain close to the binding site, and the hydrophobic interaction is crucial to inhibit the xanthine oxidase reaction. On the other hand, all of gallic acid and its esters equally suppress superoxide anion generation catalyzed by xanthine oxidase at low concentration. The suppression is not due to scavenging activity of these gallates but due to reduction of xanthine oxidase by these gallates. The reduced enzyme catalyzes the reaction to generate hydrogen peroxide and uric acid.

  5. Mitochondrial targeting of human protoporphyrinogen oxidase.

    PubMed

    Davids, Lester M; Corrigall, Anne V; Meissner, Peter N

    2006-05-01

    Variegate porphyria is an autosomal dominant disorder of heme metabolism resulting from a deficiency in protoporphyrinogen oxidase, an enzyme located on the inner mitochondrial membrane. This study examined the effect of three South African VP-causing mutations (H20P, R59W, R168C) on mitochondrial targeting. Only H20P did not target, and of eight protoporphyrinogen oxidase-GFP chimeric fusion proteins created, N-terminal residues 1-17 were found to be the minimal protoporphyrinogen oxidase sequence required for efficient mitochondrial targeting. Removal of this N-terminal sequence displayed mitochondrial localization, suggesting internal mitochondrial targeting signals. In addition, six constructs were engineered to assess the effect of charge and helicity on mitochondrial targeting of the protein. Of those engineered, only the PPOX20/H20P-GFP construct abolished mitochondrial targeting, presumably through disruption of the protoporphyrinogen oxidase alpha-helix. Based on our results we propose a mechanism for protoporphyrinogen oxidase targeting to the mitochondrion.

  6. Immunoblot analyses of the elicited Sanguinaria canadensis enzyme, dihydrobenzophenanthridine oxidase: evidence for resolution from a polyphenol oxidase isozyme.

    PubMed

    Ignatov, A; Neuman, M C; Barg, R; Krueger, R J; Coscia, C J

    1997-11-15

    In our initial purification of dihydrobenzophenanthridine oxidase from Sanguinaria canadensis plant cell cultures, we reported that our most purified preparations contained a major band at 77 kDa and minor lower Mr bands. Here we present evidence on highly purified dihydrobenzophenanthridine oxidase from elicited S. canadensis cultures to indicate that this enzyme is the 77-kDa protein and that lower Mr bands include an isozyme(s) of the polyphenol oxidase family that copurifies with it. An antibody raised against the 77-kDa protein and an anti-polyphenol oxidase antibody that recognizes a 70-kDa band were used to monitor chromatographic fractions by immunoblot analysis of the oxidases. Oxidase-containing eluates from DEAE-Sephadex, CM, and HiTrap blue were compared to corresponding flow-through fractions. Bands at 77 and 88 kDa were detected with anti-dihydrobenzophenanthridine oxidase antibody in eluates displaying high dihydrobenzophenanthridine oxidase activity. Polyphenol oxidase specific activity and immunoreactivity partitioned both in flow-through and eluate fractions of the CM and HiTrap columns. Estimation of the dihydrobenzophenanthridine oxidase and polyphenol oxidase specific activities for each step showed increasing enrichment of alkaloidal enzyme accompanied by variable dihydrobenzophenanthridine oxidase/polyphenol oxidase activity ratios. Taken together these observations indicate that the dihydrobenzophenanthridine and polyphenol oxidases have Mr values of 77 and 70 kDa, respectively, and the two enzymes are different entities.

  7. Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-04-01

    Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.

  8. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    PubMed

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems.

  9. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    PubMed

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems. PMID:27296962

  10. Xanthine oxidase inhibitors from Brandisia hancei.

    PubMed

    Kong, L D; Wolfender, J L; Cheng, C H; Hostettmann, K; Tan, R X

    1999-12-01

    Xanthine oxidase is a key enzyme associated with the incidence of hyperuricemia-related disorders. Repeated chromatography of the enzyme inhibitory part of the water extract of the twigs and leaves of Brandisia hancei (Scrophulariaceae) gave a flavone luteolin, an iridoid glycoside mussaenoside, two beta-sitosterol glycosides daucosterol and beta-sitosterol gentiobioside, and five phenylethanoids arenarioside, brandioside, acteoside, 2'-O-acetylacteoside and isoacteoside. Luteolin and isoacteoside inhibited the xanthine oxidase (XO, EC 1.2.3.2) with the IC50 values at 7.83 and 45.48 microM, respectively. Isoacteoside was found to be the first phenylethanoid that decreased substantially the formation of uric acid by inhibiting competitively xanthine oxidase (Ki value: 10.08 microM). Furthermore, the study suggested that the caffeoylation of the 6'-hydroxyl group of the phenylethanoids was essential for the enzyme inhibitory action.

  11. ALTERNATIVE OXIDASE: From Gene to Function.

    PubMed

    Vanlerberghe, Greg C.; McIntosh, Lee

    1997-06-01

    Plants, some fungi, and protists contain a cyanide-resistant, alternative mitochondrial respiratory pathway. This pathway branches at the ubiquinone pool and consists of an alternative oxidase encoded by the nuclear gene Aox1. Alternative pathway respiration is only linked to proton translocation at Complex 1 (NADH dehydrogenase). Alternative oxidase expression is influenced by stress stimuli-cold, oxidative stress, pathogen attack-and by factors constricting electron flow through the cytochrome pathway of respiration. Control is exerted at the levels of gene expression and in response to the availability of carbon and reducing potential. Posttranslational control involves reversible covalent modification of the alternative oxidase and activation by specific carbon metabolites. This dynamic system of coarse and fine control may function to balance upstream respiratory carbon metabolism and downstream electron transport when these coupled processes become imbalanced as a result of changes in the supply of, or demand for, carbon, reducing power, and ATP.

  12. Capteurs monopodes pour mesures accélérométriques

    NASA Astrophysics Data System (ADS)

    Delaite, R.; Valentin, J.-P.

    1993-08-01

    A new design for accelerometric measurements sensors is described. It uses a plate vibrating in thickness shear mode, maintained by the means of a single holder located at the crystal edge. This mounting does cancel the mechanical and thermal stresses which generally modify the sensor output signal. So the ratio signal/noise of a thickness shear accelerometer is improved and the intrinsic sensitivity is multiplied by a factor 40, by comparison with the sensitivity of a thickness shear plate bonded by the means of two opposite holders. Un nouveau dispositif destiné aux mesures d'accélération est présenté. Il met en œuvre une lame vibrant en cisaillement d'épaisseur, fixée à sa structure de maintien par l'intermédiaire d'une unique liaison. Ce montage permet d'éliminer les contraintes mécaniques et thermiques qui perturbent habituellement le signal de mesure, et qui sont liées soit au montage des éléments du capteur, soit aux variations rapides de température qui interviennent lors de la mise en fonctionnement du capteur. Le rapport signal/bruit d'un accéléromètre à lame vibrant en cisaillement d'épaisseur s'en trouve amélioré et la sensibilité à l'accélération est multipliée par un facteur 40, comparée à celle d'un capteur qui serait constitué d'une lame vibrant en cisaillement d'épaisseur, fixée par deux liaisons diamétralement opposées.

  13. BACCHUS: Brussels Automatic Code for Characterizing High accUracy Spectra

    NASA Astrophysics Data System (ADS)

    Masseron, Thomas; Merle, Thibault; Hawkins, Keith

    2016-05-01

    BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) derives stellar parameters (Teff, log g, metallicity, microturbulence velocity and rotational velocity), equivalent widths, and abundances. The code includes on the fly spectrum synthesis, local continuum normalization, estimation of local S/N, automatic line masking, four methods for abundance determinations, and a flagging system aiding line selection. BACCHUS relies on the grid of MARCS model atmospheres, Masseron's model atmosphere thermodynamic structure interpolator, and the radiative transfer code Turbospectrum (ascl:1205.004).

  14. Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39

    SciTech Connect

    Shinton, I.R.R.; Jones, R.M.; Li, Z.; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY

    2012-09-14

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  15. Changes in oxidative stress in transgenic RNAi ACO1 tomato fruit during ripening

    NASA Astrophysics Data System (ADS)

    Eglous, Najat Mohamed; Ali, Zainon Mohd; Hassan, Maizom; Zainal, Zamri

    2013-11-01

    Tomato (Solanum Lycopersicum L.) is the second most cultivated vegetable in the world and widely used as a system for studying the role of ethylene during fruit ripening. Our objective was to study the oxidative stress and antioxidative metabolism during ripening of non transgenic tomato and transgenic line-21 tomato which reduced ethylene. The line-21 of transgenic tomato plants (RNAi ACO1) had lower ethylene production and longer shelf-life more than 32 days as compared to the wild-type fruits which have very short shelf-life. In this study, tomato fruit were divided into five different stages (MG: mature green 5%, B: breaker 25%, T: turning 50%, O: orange75%, RR: red ripe100%). The activity of lipoxygenase (LOX) and lipid peroxidation (MDA) were measured to assess changes in oxidative stress. The LOX activity and MDA content decreased significantly obtaining 2.6-fold and 1.2-fold, respectively, as compared to the wild type fruit. However, superoxide dismutase (SOD) and catalase (CAT) activities were increased to 1.9 and 1.2 folds from the mature green to the fully ripe stage in transgenic tomatoes. Furthermore, the wild type tomato increases 1.3 in SOD and 1.6 in CAT activities. The overall results indicate that the wild type tomato fruit showed a faster rate of ripening, parallel to decline in the rate of enzymatic antioxidative systems as compared to the transgenic line-21 tomato fruit. In addition, the results show that the antioxidant capacity is improved during the ripening process and is accompanied by an increase in the oxidative stress.

  16. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  17. How to achieve performance portable code using OpenACC compiler directives?

    NASA Astrophysics Data System (ADS)

    Lapillonne, Xavier; Fuhrer, Oliver

    2014-05-01

    In view of adapting the weather and climate model COSMO to future architectures a new version of the model capable of running on graphics processing units (GPUs) has been developed. A large part of the code has been ported using compiler directives based on the OpenACC programming model. In order to achieve the best performance on GPUs several optimizations have been introduced for time critical components, mostly in the so-called physical parameterizations. Some of these modifications unfortunately degrade performance on traditional CPUs. Being a large community code, the COSMO model is required to perform well on both hybrid and CPU-only supercomputers. The current practical solution is to have separate source files for GPU and CPU execution, which may in the long-term result in maintenance issues. Considering the physical parameterization responsible for the atmospheric radiative transfer computations, we first present the restructuring techniques necessary to achieve performance on the GPU. We then show that some parts of the code are compute bound on the CPU while memory bound limited on the GPU, leading to different requirements in terms of optimization. We finally discuss various solutions to achieve a portable and maintainable code, both in terms of possible improvement of the OpenACC standard or in terms of programming strategy.

  18. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique. PMID:25983132

  19. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique.

  20. Waste-ACC: A computer model for radiological analysis of waste management

    SciTech Connect

    Nabelssi, B.K.; Folga, S.; Kohout, E.

    1996-06-01

    WASTE-ACC, a computational framework and integrated PC-based database system, has been developed by Argonne National Laboratory to assess radiological atmospheric releases from facility accidents in support of the U.S. Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental. Impact Statement, (PEIS). WASTE-ACC facilitates the many calculations required in the accident analyses by the numerous combinations of waste types, treatment technologies, facility locations, and site consolidation strategies in the WM PEIS alternatives for each waste type across the DOE complex. This paper focuses on the computational framework used to assess atmospheric releases and health risk impacts from potential waste management accidents that may affect on-site workers and off-site members of the public. The computational framework accesses several relational databases as needed to calculate radiological releases for the risk dominant accidents. The databases contain throughput volumes, treatment process parameters, radionuclide characteristics, radiological profiles of the waste, site-specific dose conversion factors, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses.

  1. The 2013 ACC/AHA Cholesterol Treatment Guidelines: Applicability to Patients with Diabetes.

    PubMed

    Ziaeian, Boback; Dinkler, John; Guo, Yuanlin; Watson, Karol

    2016-02-01

    Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide and the management of blood cholesterol is a cornerstone of medical therapy for the primary and secondary prevention of cardiovascular disease. Patients with diabetes represent an important high-risk group in whom clinicians should advocate the use of statins and lifestyle modification for the reduction of ASCVD. The recent 2013 ACC/AHA guidelines on managing blood cholesterol provide an important framework for the effective implementation of this important risk reduction strategy. The guidelines identify four groups of individuals who have been shown to benefit from statin therapy and update the dosing and monitoring recommendations based on evidence from published, large-scale randomized controlled trials (RCTs) with clinical hard endpoints. Primary care physicians and specialists play key roles in identifying populations at elevated ASCVD risk and providing effective care for patients, especially those with diabetes. This article will summarize the 2013 ACC/AHA guidelines on managing blood cholesterol and provide a practical management overview in order to facilitate implementation of these guidelines for patients with diabetes.

  2. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  3. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  4. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine. PMID:26676358

  5. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).

    PubMed

    Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

    2013-10-15

    To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species.

  6. Opine-based Agrobacterium competitiveness: dual expression control of the agrocinopine catabolism (acc) operon by agrocinopines and phosphate levels.

    PubMed

    Kim, H Stanley; Yi, Hyojeong; Myung, Jaehee; Piper, Kevin R; Farrand, Stephen K

    2008-05-01

    Agrobacterium tumefaciens strain C58 can transform plant cells to produce and secrete the sugar-phosphate conjugate opines agrocinopines A and B. The bacterium then moves in response to the opines and utilizes them as exclusive sources of carbon, energy, and phosphate via the functions encoded by the acc operon. These privileged opine-involved activities contribute to the formation of agrobacterial niches in the environment. We found that the expression of the acc operon is induced by agrocinopines and also by limitation of phosphate. The main promoter is present in front of the first gene, accR, which codes for a repressor. This operon structure enables efficient repression when opine levels are low. The promoter contains two putative operators, one overlapping the -10 sequence and the other in the further upstream from it; two partly overlapped putative pho boxes between the two operators; and two consecutive transcription start sites. DNA fragments containing either of the operators bound purified repressor AccR in the absence of agrocinopines but not in the presence of the opines, demonstrating the on-off switch of the promoter. Induction of the acc operon can occur under low-phosphate conditions in the absence of agrocinopines and further increases when the opines also are present. Such opine-phosphate dual regulatory system of the operon may ensure maximum utilization of agrocinopines when available and thereby increase the chances of agrobacterial survival in the highly competitive environment with limited general food sources. PMID:18344359

  7. Extracellular oxidases of the lignin-degrading fungus Panus tigrinus.

    PubMed

    Cadimaliev, D A; Revin, V V; Atykyan, N A; Samuilov, V D

    2005-06-01

    Two extracellular oxidases (laccases) were isolated from the extracellular fluid of the fungus Panus (Lentinus) tigrinus cultivated in low-nitrogen medium supplemented with birch sawdust. The enzymes were purified by successive chromatography on columns with TEAE-cellulose and DEAE-Toyopearl 650M. Both oxidases catalyze oxidation of pyrocatechol and ABTS. Moreover, oxidase 1 also catalyzes oxidation of guaiacol, o-phenylenediamine, and syringaldazine. The enzymes have identical pH (7.0) and temperature (60-65 degrees C) optimums. Absorption spectra of the oxidases differ from the spectra of typical "blue" laccases and are similar to the spectrum of yellow oxidase. PMID:16038613

  8. Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana.

    PubMed

    Yan, Huiru; Jia, Haihong; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-07-01

    Glutathione S-transferases (GSTs) are members of a multifunctional antioxidant enzyme superfamily that play pivotal roles in both detoxification and protection against oxidative damage caused by reactive oxygen species. In this study, a complementary DNA (cDNA) encoding a sigma class GST was identified in the Chinese honey bee, Apis cerana cerana (AccGSTS1). AccGSTS1 was constitutively expressed in all tissues of adult worker bees, including the brain, fat body, epidermis, muscle, and midgut, with particularly robust transcription in the fat body. Relative messenger RNA expression levels of AccGSTS1 at different developmental stages varied, with the highest levels of expression observed in adults. The potential function of AccGSTS1 in cellular defenses against abiotic stresses (cold, heat, UV, H2O2, HgCl2, and insecticides) was investigated. AccGSTS1 was significantly upregulated in response to all of the treatment conditions examined, although the induction levels were varied. Recombinant AccGSTS1 protein showed characteristic glutathione-conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene. Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage. Escherichia coli overexpressing AccGSTS1 showed long-term resistance under conditions of oxidative stress. Together, these results suggest that AccGSTS1 is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.

  9. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    NASA Astrophysics Data System (ADS)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  10. AccR Is a Master Regulator Involved in Carbon Catabolite Repression of the Anaerobic Catabolism of Aromatic Compounds in Azoarcus sp. CIB*

    PubMed Central

    Valderrama, J. Andrés; Shingler, Victoria; Carmona, Manuel; Díaz, Eduardo

    2014-01-01

    Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp60 phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp60 of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria. PMID:24302740

  11. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB.

    PubMed

    Valderrama, J Andrés; Shingler, Victoria; Carmona, Manuel; Díaz, Eduardo

    2014-01-24

    Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp(60) phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp(60) of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria. PMID:24302740

  12. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings.

    PubMed

    Li, Qiaosi; Saleh-Lakha, Saleema; Glick, Bernard R

    2005-06-01

    Carnation cuttings treated with non-transformed and 1-aminocyclopropane (ACC) deaminase-containing Azospirillum brasilense Cd1843 produced significantly more roots than untreated controls and fewer roots than cuttings treated with 0.1% indolebutyric acid (IBA). The roots produced by cuttings treated with ACC deaminase-containing Azospirillum brasilense Cd1843 were the longest roots resulting from any of the treatments, followed by non-transformed Azospirillum brasilense Cd1843, 0.1% IBA, and treatment with water. The results are interpreted in terms of a previously proposed model of bacterial promotion of plant growth by ACC deaminase and indoleacetic acid, and may have implications for the use of plant growth-promoting bacteria in the flower industry. PMID:16121231

  13. Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain.

    PubMed

    Koga, Kohei; Descalzi, Giannina; Chen, Tao; Ko, Hyoung-Gon; Lu, Jinshan; Li, Shermaine; Son, Junehee; Kim, TaeHyun; Kwak, Chuljung; Huganir, Richard L; Zhao, Ming-Gao; Kaang, Bong-Kiun; Collingridge, Graham L; Zhuo, Min

    2015-01-21

    Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors. Pre-LTP also involves adenylyl cyclase and protein kinase A and is expressed via a mechanism involving hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Interestingly, chronic pain and anxiety both result in selective occlusion of pre-LTP. Significantly, microinjection of the HCN blocker ZD7288 into the ACC in vivo produces both anxiolytic and analgesic effects. Our results provide a mechanism by which two forms of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain. PMID:25556835

  14. Zonal Variations of Eddy Diffusivities in an ACC-like Channel: Discrete Transport Corridors.

    NASA Astrophysics Data System (ADS)

    Lazar, A.; Thompson, A. F.

    2014-12-01

    The meridional overturning circulation in a wind-driven re-entrant channel arises from a balance between an Eulerian mean overturning and an eddy overturning. These cancel to leading order in the Southern Ocean's Antarctic Circumpolar Current (ACC). An ACC-like flow, with realistic stratification, zonal transport and distributions of eddy kinetic energy, develops even when these two overturning components cancel completely. Many studies have noted that an enhancement of the Eulerian overturning circulation, which tends to steepen isopycnals, is balanced in part by an enhancement of the eddy circulation that relaxes isopycnal tilt. Thus the domain-averaged isopycnal slope and zonal transport are relatively insensitive to changes in wind forcing. However, the response of the system's mesoscale variability and eddy fluxes is not uniform throughout the domain. We present a process study of an idealized eddy-resolving ACC-like channel with negligible residual overturning to explore how the along-stream distribution of eddy characteristics establishes a balance between wind and eddy overturning circulations. For each simulation, we decompose the overturning circulation into mean, standing and transient components. As the surface wind stress increases, the standing component balances a larger portion of the mean overturning. This in turn leads to an increasing departure from zonally-symmetric eddy characteristics. A zonal-mean, or net, eddy diffusivity Κnet is defined as the eddy diffusivity required to exactly balance the mean overturning based on the zonal-mean isopycnal slope, s. This gives Κnet=τ/ρ0fs, where τ is the wind stress, ρ0 is a reference density and f is the Coriolis parameter. Κnet is compared to local eddy diffusivities, Κlocal, diagnosed directly from the divergent component of the eddy buoyancy flux divided by the local isopycnal slope. We find that with a simple topographic ridge and moderate wind forcing, along-stream averages of

  15. NADPH oxidases in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-01-01

    ABSTRACT Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  16. Lysyl oxidase isoforms in gastric cancer.

    PubMed

    Añazco, Carolina; Delgado-López, Fernando; Araya, Paulina; González, Ileana; Morales, Erik; Pérez-Castro, Ramón; Romero, Jacqueline; Rojas, Armando

    2016-09-01

    Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention. PMID:27564724

  17. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  18. Monoamine oxidase inhibitors from Gentiana lutea.

    PubMed

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  19. [2013 Guidelines ACC/AHA cardiovascular risk. Incomplete evidence and failed attempt at simplification].

    PubMed

    Corral, Pablo

    2015-01-01

    After almost a decade, finally Guidelines for the management of hypercholesterolemia in adults by the AHA/ACC were published. The substantial change in the paradigm of this new recommendation is the treatment decision basically statin, based on a recalculation of cardiovascular risk. Four groups were identified and based on them different statins indication, according to the power applied. As is apparent, have been used only randomized clinical trials (RCT) as the sole basis for the drafting of these new guidelines. Two basic issues are reviewed and revised in the following article: leaving aside other types of evidence to generate the recommendation and on the other hand the attempt to simplify the interpretation and management of this condition. We stress the need for any recommendation to clinical reasoning to interpret different scenarios involved in each patient. PMID:25496959

  20. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    PubMed

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

  1. [2013 Guidelines ACC/AHA cardiovascular risk. Incomplete evidence and failed attempt at simplification].

    PubMed

    Corral, Pablo

    2015-01-01

    After almost a decade, finally Guidelines for the management of hypercholesterolemia in adults by the AHA/ACC were published. The substantial change in the paradigm of this new recommendation is the treatment decision basically statin, based on a recalculation of cardiovascular risk. Four groups were identified and based on them different statins indication, according to the power applied. As is apparent, have been used only randomized clinical trials (RCT) as the sole basis for the drafting of these new guidelines. Two basic issues are reviewed and revised in the following article: leaving aside other types of evidence to generate the recommendation and on the other hand the attempt to simplify the interpretation and management of this condition. We stress the need for any recommendation to clinical reasoning to interpret different scenarios involved in each patient.

  2. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  3. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  4. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  5. Increased xanthine oxidase in the skin of preeclamptic women.

    PubMed

    Bainbridge, Shannon A; Deng, Jau-Shyong; Roberts, James M

    2009-05-01

    Xanthine oxioreductase is the holoenzyme responsible for terminal purine catabolism. Under conditions of metabolic stress or heightened proinflammatory cytokine production, this enzyme is preferentially in its oxidized form, xanthine oxidase, with catalytic action that generates uric acid and the free radical superoxide. As preeclampsia is characterized by heightened inflammation, oxidative stress, and hyperuricemia, it has been proposed that xanthine oxidase plays a pivotal role in this hypertensive disorder of pregnancy. We sought to determine whether xanthine oxidase protein content was higher in maternal tissue of preeclamptic mothers, compared to healthy pregnant controls, using immunohistochemical analysis of skin biopsies. We further compared xanthine oxidase immunoreactivity in skin biopsies from preeclamptic women and patients with several inflammatory conditions. In preeclamptic women, intense xanthine oxidase immunoreactivity was present within the epidermis. By contrast, only very faint xanthine oxidase staining was observed in skin biopsies from healthy pregnant controls. Further, a role for inflammation in the increase of xanthine oxidase was suggested by similar findings of heightened xanthine oxidase immunoreactivity in the skin biopsies from nonpregnant individuals diagnosed with conditions of systemic inflammation. The finding of increased xanthine oxidase in maternal tissue, most likely as the result of heightened maternal inflammation, suggests maternal xanthine oxidase as a source of free radical and uric acid generation in preeclampsia.

  6. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and

  7. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    PubMed

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed. PMID:10092944

  8. Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84.

    PubMed

    Kim, H; Farrand, S K

    1997-12-01

    The acc locus from the Ti plasmid pTiC58 confers utilization of and chemotaxis toward agrocinopines A and B (A+B), as well as susceptibility to a highly specific antiagrobacterial antibiotic, agrocin 84. DNA sequence analyses revealed that acc is composed of eight open reading frames, accR and accA through accG. Previous work showed that accR encodes the repressor which regulates this locus, and accA codes for the periplasmic binding protein of the agrocinopine transport system (S. Beck Von Bodman, G. T. Hayman, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 89:643-647, 1992; G. T. Hayman, S. Beck Von Bodman, H. Kim, P. Jiang, and S. K. Farrand, J. Bacteriol. 175:5575-5584, 1993). The predicted proteins from accA through accE, as a group, have homology to proteins that belong to the ABC-type transport system superfamily. The predicted product of accF is related to UgpQ of Escherichia coli, which is a glycerophosphoryl diester phosphodiesterase, and also to agrocinopine synthase coded for by acs located on the T-DNA. The translated product of accG is related to myoinositol 1 (or 4) monophosphatases from various eucaryotes. Analyses of insertion mutations showed that accA through accE are required for transport of both agrocin 84 and agrocinopines A+B, while accF and accG are required for utilization of the opines as the sole source of carbon. Mutations in accF or accG did not abolish transport of agrocin 84, although we observed slower removal of the antibiotic from the medium by the accF mutant compared to the wild type. However, the insertion mutation in accF abolished detectable uptake of agrocinopines A+B. A mutation in accG had no effect on transport of the opines. The accF mutant was not susceptible to agrocin 84 although it took up the antibiotic. This finding suggests that agrocin 84 is activated by AccF after being transported into the bacterial cell. PMID:9393724

  9. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  10. Sound the Alarm: The Effect of Narcissism on Retaliatory Aggression Is Moderated by dACC Reactivity to Rejection.

    PubMed

    Chester, David S; DeWall, C Nathan

    2016-06-01

    Narcissists behave aggressively when their egos are threatened by interpersonal insults. This effect has been explained in terms of narcissists' motivation to reduce the discrepancy between their grandiose self and its threatened version, though no research has directly tested this hypothesis. If this notion is true, the link between narcissism and retaliatory aggression should be moderated by neural structures that subserve discrepancy detection, such as the dorsal anterior cingulate cortex (dACC). This study tested the hypothesis that narcissism would only predict greater retaliatory aggression in response to social rejection when the dACC was recruited by the threat. Thirty participants (15 females; Mage  = 18.86, SD = 1.25; 77% White) completed a trait narcissism inventory, were socially accepted and then rejected while undergoing fMRI, and then could behave aggressively toward one of the rejecters by blasting him or her with unpleasant noise. When narcissists displayed greater dACC activation during rejection, they behaved aggressively. But there was only a weak or nonsignificant relation between narcissism and aggression among participants with a blunted dACC response. Narcissism's role in aggressive retaliation to interpersonal threats is likely determined by the extent to which the brain's discrepancy detector registers the newly created gap between the grandiose and threatened selves.

  11. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Allocation of budget authority for renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT (CONTINUED) OFFICE OF ASSISTANT...

  12. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Allocation of budget authority for renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT (CONTINUED) OFFICE OF ASSISTANT...

  13. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Allocation of budget authority for renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN DEVELOPMENT (CONTINUED) OFFICE OF ASSISTANT...

  14. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-06-15

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  15. Basement membrane heparan sulfate proteoglycan (perlecan) synthesized by ACC3, adenoid cystic carcinoma cells of human salivary gland origin.

    PubMed

    Kimura, S; Cheng, J; Toyoshima, K; Oda, K; Saku, T

    1999-02-01

    The biosynthesis of basement membrane heparan sulfate proteoglycan (HSPG), known as perlecan, in ACC3 cells established from a adenoid cystic carcinoma of the human salivary gland was studied using metabolic labeling and immunoprecipitation with discriminative antibodies specific for HSPG core protein. Treatment of immunoprecipitated HSPG with HNO2, heparitinase, and chondroitinase ABC revealed that ACC3 cells synthesized HSPG molecules composed of 470-kDa core protein and heparan sulfate but not of chondroitin sulfate. The core protein was shown to contain complex type N-linked oligosaccharides by digestion with N-glycanase and endoglycosidase H. Pulse-chase experiments showed that the mature form of HSPG was formed in the cells in 30 min and released into the medium thereafter. Degradation of HSPG was also found in the chase period of 3 h. In time course experiments, HSPG was found to be synthesized maximally at day 4 after plating, deposited in the cell layer maximally at day 6, and secreted maximally at day 8. This was also confirmed by immunofluorescence, Northern blotting, and in-situ hybridization. The results indicate that ACC3 cells synthesize, secrete and degrade basement membrane type HSPG, which is analogous to those produced by other cell types, and that the biosynthesis and secretion of HSPG in ACC3 cells are strictly regulated by the cell growth, that may be reflected in the characteristic histology of adenoid cystic carcinomas. PMID:9990141

  16. Pathological changes in platelet histamine oxidases in atopic eczema

    PubMed Central

    Ionescu, Gruia

    1993-01-01

    Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE) patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+) but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+) are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase. PMID:18475554

  17. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  18. In vitro antimalarial and xanthine oxidase inhibition of 2-Aminoanthraquinone.

    PubMed

    Rauf, Abdur; Khan, Rehan; Khan, Haroon; Jehan, Noor; Akram, Mohammad; Ahmad, Zarka; Muhammad, Naveed; Farooq, Umar; Khan, Ajmal

    2016-03-01

    In the present research study 2-Aminoanthraquinone were scrutinized for their antimalarial and Xanthine oxidase inhibitor potential. It demonstrated marked concentration dependent antimalarial activity with maximum effect of 89.06% and with IC50 of 34.17 µM. Regarding Xanthine oxidase inhibitor activity, it evoked significant effect with 57.45% activity with IC50 value of 81.57.19 μM. In conclusion, 2-Aminoanthraquinone showed potent antimalarial and xanthine oxidase inhibitory activity. PMID:27087090

  19. Gram-scale, low-cost, rapid synthesis of highly stable Mg-ACC nanoparticles and their long-term preservation

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Gao, Min-Rui; Qiu, Yun-Hao; Yu, Shu-Hong

    2010-11-01

    A simple chemistry route is reported for the gram-scale, low-cost, rapid synthesis of highly stable Mg-ACC nanoparticles. The possible structure of Mg-ACC can be defined as Mg0.15Ca0.85CO3.H2O0.85. The molar ratio of Mg2+:Ca2+:CO32- and the concentrations of the reactants (CaCl2, Na2CO3, and MgCl2) play important roles in the Mg:Ca molar ratio of the obtained Mg-ACC nanoparticles. In particular, Mg-ACC can be preserved for over one year without crystallization by either storing its dry powder at -5 °C or storing it in ethanol at 5 °C. The ability to synthesize Mg-ACC nanoparticles on a large scale is useful for biomineralization studies and industrial applications.

  20. Gram-scale, low-cost, rapid synthesis of highly stable Mg-ACC nanoparticles and their long-term preservation.

    PubMed

    Jiang, Jun; Gao, Min-Rui; Qiu, Yun-Hao; Yu, Shu-Hong

    2010-11-01

    A simple chemistry route is reported for the gram-scale, low-cost, rapid synthesis of highly stable Mg-ACC nanoparticles. The possible structure of Mg-ACC can be defined as Mg₀.₁₅Ca₀.₈₅CO₃·H₂O₀.₈₅. The molar ratio of Mg²(+):Ca²(+):CO₃²⁻and the concentrations of the reactants (CaCl₂, Na₂CO₃, and MgCl₂) play important roles in the Mg:Ca molar ratio of the obtained Mg-ACC nanoparticles. In particular, Mg-ACC can be preserved for over one year without crystallization by either storing its dry powder at -5°C or storing it in ethanol at 5°C. The ability to synthesize Mg-ACC nanoparticles on a large scale is useful for biomineralization studies and industrial applications.

  1. Source challenges resulting of the first applications of a UV storage ring FEL on Super-ACO

    SciTech Connect

    Couprie, M.E.; Bakker, R.; Nahon, L. |

    1995-12-31

    Since 1992, significant progresses were achieved on the Super-ACO (S-ACO) storage ring Free Electron Laser (FEL) in the UV. The operation at the nominal energy 800 MeV has several consequences: higher average power in the UV (25 mW at 60 mA and more recently 100 mW at 100 mA available for the users), 10 hours of lasing for the same injection of positrons, providing enough time for performing an user experiment, compatibility with the users of synchrotron radiation (SR) in the temporal structure mode for 120 mA with the possibility of closing the four insertion devices of S-ACO. The main difficulties to extend the FEL optical performances come from the small gain (2%), limiting a rapid extention of the spectral range (either in the laser mode or by coherent harmonic generation from the FEL itself in the undulator) or linewidth narrowing. The installation of a 500 MHz harmonic cavity for bunch length reduction and gain increase is under consideration{hor_ellipsis} The stability of the FEL temporal and spectral was systematically followed versus time, for various scales (from ns to half an hour) with different detectors. The stability of the laser source has been significantly improved with a longitudinal feedback system allowing the jitter of the 25 ps RMS laser micropulse to be reduced from 150-200 ps down to 10-20 ps. the intensity fluctuations to be damped down 1% and the spectral drift to be smaller than the resolution of the scanning Fabry-Perot (0.01{angstrom}) at perfect synchronism. The laser can work during more than 3 consecutive hours without readjustments. In addition, according to the ring current, the positron beam is submitted to coherent modes of synchrotron oscillations. Right now, a Pedersen type longitudinal feedback damps the dipolar modes of such oscillation. The quadrupolar modes in the 120-60 mA range leading to a rather unstable FEL are on the way to be damped with an additional feedback.

  2. Crystal Structure of a Two-domain Multicopper Oxidase

    PubMed Central

    Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C.

    2009-01-01

    The two-domain multicopper oxidases are proposed to be key intermediates in the evolution of three-domain multicopper oxidases. A number of two-domain multicopper oxidases have been identified from genome sequences and are classified as type A, type B, or type C on the basis of the predicted location of the type 1 copper center. The crystal structure of blue copper oxidase, a type C two-domain multicopper oxidase from Nitrosomonas europaea, has been determined to 1.9 Å resolution. Blue copper oxidase is a trimer, of which each subunit comprises two cupredoxin domains. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The coordination geometry at the trinuclear copper site is consistent with reduction of the copper ions. Although the overall architecture of blue copper oxidase is similar to nitrite reductases, detailed structural alignments show that the fold and domain orientation more closely resemble the three-domain multicopper oxidases. These observations have important implications for the evolution of nitrite reductases and multicopper oxidases. PMID:19224923

  3. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2016-02-01

    The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog. PMID:26603554

  4. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2016-02-01

    The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog.

  5. Successful treatment of c-kit-positive metastatic Adenoid Cystic Carcinoma (ACC) with a combination of curcumin plus imatinib: A case report.

    PubMed

    Demiray, M; Sahinbas, H; Atahan, S; Demiray, H; Selcuk, D; Yildirim, I; Atayoglu, A T

    2016-08-01

    Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the secretory glands. Conventional chemotherapy has poor effectiveness against metastatic ACC. Thus, a novel effective therapy is needed against metastatic ACC. A majority of ACCs (up to 94%) express c-kit. Imatinib is monoclonal antibody with specific activity against c-kit but has not been found to be effective in treating patients with ACC in which c-kit is overexpressed and activated. The NF-κB and mTOR pathways have been shown that ubiquitously and concurrently activated, indicating that the inhibition of these pathways may represent a novel treatment approach for patients with ACC. Curcumin has been shown to inhibit NF-κB and NF-κB-related pathways. 43-year-old patient was diagnosed ACC from submandibular salivary gland. After complete resection of tumor adjuvant radiotherapy was initiated. Seven years later multiple lung metastases were detected and ACC was confirmed by re-biopsy. First-line chemotherapy failed. NF-κB and c-kit were overexpressed in the metastatic specimens. Therefore, we treated the patient with metastatic chemoresistant ACC with imatinib 400mg/day and intravenous curcumin 225mg/m(2) twice a week plus oral bioavailable curcumin Arantal(®) 2×84mg/day. At 24 months, we observed near complete anatomic and complete metabolic response. To our knowledge, this is the first report of a patient with a c-kit-positive ACC that is successfully treated with the combination of imatinib and curcumin in an integrative approach. PMID:27515884

  6. Hybridisations Of Simulated Annealing And Modified Simplex Algorithms On A Path Of Steepest Ascent With Multi-Response For Optimal Parameter Settings Of ACO

    NASA Astrophysics Data System (ADS)

    Luangpaiboon, P.

    2009-10-01

    Many entrepreneurs face to extreme conditions for instances; costs, quality, sales and services. Moreover, technology has always been intertwined with our demands. Then almost manufacturers or assembling lines adopt it and come out with more complicated process inevitably. At this stage, products and service improvement need to be shifted from competitors with sustainability. So, a simulated process optimisation is an alternative way for solving huge and complex problems. Metaheuristics are sequential processes that perform exploration and exploitation in the solution space aiming to efficiently find near optimal solutions with natural intelligence as a source of inspiration. One of the most well-known metaheuristics is called Ant Colony Optimisation, ACO. This paper is conducted to give an aid in complicatedness of using ACO in terms of its parameters: number of iterations, ants and moves. Proper levels of these parameters are analysed on eight noisy continuous non-linear continuous response surfaces. Considering the solution space in a specified region, some surfaces contain global optimum and multiple local optimums and some are with a curved ridge. ACO parameters are determined through hybridisations of Modified Simplex and Simulated Annealing methods on the path of Steepest Ascent, SAM. SAM was introduced to recommend preferable levels of ACO parameters via statistically significant regression analysis and Taguchi's signal to noise ratio. Other performance achievements include minimax and mean squared error measures. A series of computational experiments using each algorithm were conducted. Experimental results were analysed in terms of mean, design points and best so far solutions. It was found that results obtained from a hybridisation with stochastic procedures of Simulated Annealing method were better than that using Modified Simplex algorithm. However, the average execution time of experimental runs and number of design points using hybridisations were

  7. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  8. Emission "Off-On" effect from europium complexes triggered by AcO anion: synthesis, characterization and sensing performance.

    PubMed

    Li, Xiaogang; Zhang, Dong; Li, Jing

    2014-06-01

    In this paper, a series of Eu(III) complexes based on four diamine ligands and two diketone ligands were synthesized. Their single crystal structures were studied, where intermolecular π-π stacking was found. The photophysical parameters of these Eu(III) complexes were measured, along with their ligand triplet levels. The energy transfer mechanism between ligand and metal center was discussed in detail. Energy transfer roll-back was found in Eu(III) complexes owing large-conjugated diamine ligands, compromising emissive performance. This energy transfer roll-back, however, could be stopped by the presence of AcO anion, leading to Eu(III) complex emission enhancement. The sensing performance of such Eu(III) complexes was thus investigated in detail. High sensitivity and selectivity were observed.

  9. CO2 Measurements from Space: Lessons Learned from the Collaboration between the ACOS/OCO-2 and GOSAT Teams

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Eldering, A.; Gunson, M. R.

    2012-12-01

    The NASA Orbiting Carbon Observatory (OCO) and the Japanese Greenhouse gases Observing SATellite (GOSAT) were the first two missions designed to collect space-based observations of the column-averaged CO2 dry air mole fraction, XCO2, with the sensitivity, coverage, and resolution needed to quantify CO2 fluxes on regional scales over the globe. The OCO and GOSAT teams formed a close collaboration during the development phases of these missions. After the loss of OCO, the GOSAT project team invited the OCO team to contribute to the analysis of measurements collected by the GOSAT Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS). NASA responded by reformulating the OCO science team under the Atmospheric CO2 Observations from Space (ACOS) task to exploit this opportunity. This collaboration is providing an independent GOSAT XCO2 product, and valuable insights into the retrieval algorithms, calibration methods, and validation techniques that are being developed to analyze data anticipated the NASA Orbiting Carbon Observatory-2 (OCO-2). The ACOS/OCO-2 and GOSAT teams have conducted four, joint, vicarious calibration campaigns at Railroad Valley, Nevada to track the long-term radiometric performance of the TANSO-FTS instrument. The methods used in these campaigns evolved from those used to characterize the radiometric performance of high spatial resolution, imaging spectroradiometers. For TANSO-FTS, the conventional, surface based radiometric measurements have been augmented with surface and aircraft measurements of atmospheric temperature and trace gas profiles, as well as surface observations from MODIS and ASTER to characterize spatial variations of the surface reflectance within the (relatively large) sounding footprints. Similar methods will be needed for OCO-2. The ACOS/OCO-2 retrieval algorithm and associated data screening methods have been modified to estimate XCO2 from TANSO-FTS observations. Comparisons of TANSO

  10. NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis

    PubMed Central

    Röhm, Marc; Grimm, Melissa J.; D'Auria, Anthony C.; Almyroudis, Nikolaos G.

    2014-01-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47phox−/−) mice which had resolved in wild-type mice by day 5 but progressed in p47phox−/− mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47phox−/− mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  11. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    PubMed

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  12. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  13. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  14. Endothelins and NADPH oxidases in the cardiovascular system.

    PubMed

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  15. Influence of gossypol acetic acid on the growth of human adenoid cystic carcinoma ACC-M cells and the expression of DNA methyltransferase 1.

    PubMed

    Wu, Y; Wei, Y-N; Yue, W-Y; Chen, W-F; Fu, S

    2015-10-28

    We investigated the effects of gossypol acetic acid (GAA) on the proliferation, apoptosis, and expression of DNA methyltransferase 1 (DNMT1) mRNA in human adenoid cystic carcinoma (ACC-M) cells in vitro. The proliferation and apoptosis of ACC-M cells after treatment with different concentrations of GAA were detected using Cell Counting Kit-8 and flow cytometry, respectively. DNMT1 mRNA expression was measured by real-time fluorescence quantitative polymerase chain reaction. The growth of ACC-M cells was inhibited after treatment with GAA for 24, 48, and 72 h. The apoptotic rates of ACC-M cells after treatment with GAA for 72 h were higher than those of control cells (without treatment) (P < 0.05). DNMT1 mRNA expression in ACC-M after treatment with GAA for 72 h was lower than that in control cells (P < 0.05). GAA had inhibitory effects on the proliferation and induced apoptosis of human ACC-M cells, while GAA also reduced the expression level of DNMT1 mRNA in ACC-M cells.

  16. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line.

    PubMed

    Shen, Lirong; Zhang, Weiguang; Jin, Feng; Zhang, Liwen; Chen, Zhengxian; Liu, Liang; Parnell, Laurence D; Lai, Chao-Qiang; Li, Duo

    2010-08-25

    Major royal jelly protein 1 (MRJP1) is the most abundant member of the major royal jelly protein (MRJP) family of honeybee. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in molecular weight to the glycosylated AmMRJP1 from the Western honeybee (Apis mellifera). Western blots probed with anti-AccMRJP1 antibody demonstrated that recombinant AccMRJP1 and soluble protein of the Western honeybee RJ (AmSPRJ) contained immunoreactive MRJP1. The 57 kDa protein in AmSPRJ contained an N-terminal amino sequence of N-I-L-R-G-E, which is identical to that previously characterized in AmMRJP1. The molecular weight of recombinant AccMRJP1 was decreased from 57 to 48 kDa after deglycosylation, indicating that AccMRJP1 was glycosylated. The recombinant AccMRJP1 significantly stimulated Tn-5B-4 cell growth, similar to AmSPRJ and fetal bovine serum, and affected cell shape and adhesion to the substrate.

  17. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  18. Characterization of ascorbate oxidase from Acremonium sp. HI-25.

    PubMed

    Hirose, J; Sakurai, T; Imamura, K; Watanabe, H; Iwamoto, H; Hiromi, K; Itoh, H; Shin, T; Murao, S

    1994-05-01

    The ascorbate oxidase obtained from a microorganism, Acremonium sp. HI-25 (molecular weight, 80 kDa; monomeric protein), was studied with respect to atomic absorption, EPR, absorption spectra, circular dichroism (CD) spectra, and steady-state kinetics. The enzyme was found to be a multicopper protein, containing four copper atoms of three kinds, types 1, 2, and 3 copper, in the ratio of 1:1:2. The EPR parameters of the type 1 and 2 copper atoms in the ascorbate oxidase are very similar to those in the case of the ascorbate oxidase obtained from cucumber, which is a dimeric protein. The apparent Km and kcat values for ascorbic acid of the ascorbate oxidase from Acremonium sp. HI-25 are almost the same as those of the monomeric unit of the ascorbate oxidase from cucumber. PMID:7961590

  19. Characterization of a Decapentapletic Gene (AccDpp) from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress

    PubMed Central

    Wang, Hongfang; Guo, Xulei; Guo, Xingqi; Sun, Qinghua; Xu, Baohua

    2016-01-01

    To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ) signal pathway. Decapentapletic gene (Dpp) belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana). In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp. PMID:26881804

  20. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana.

    PubMed

    Shin, Kihye; Lee, Sumin; Song, Won-Yong; Lee, Rin-A; Lee, Inhye; Ha, Kyungsun; Koo, Ja-Choon; Park, Soon-Ki; Nam, Hong-Gil; Lee, Youngsook; Soh, Moon-Soo

    2015-03-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana. PMID:25520403

  1. PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2.

    PubMed

    German, Natalie J; Yoon, Haejin; Yusuf, Rushdia Z; Murphy, J Patrick; Finley, Lydia W S; Laurent, Gaëlle; Haas, Wilhelm; Satterstrom, F Kyle; Guarnerio, Jlenia; Zaganjor, Elma; Santos, Daniel; Pandolfi, Pier Paolo; Beck, Andrew H; Gygi, Steven P; Scadden, David T; Kaelin, William G; Haigis, Marcia C

    2016-09-15

    While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition. PMID:27635760

  2. 2016 ESC and ACC/AHA/HFSA heart failure guideline update - what is new and why is it important?

    PubMed

    Jessup, Mariell; Marwick, Thomas H; Ponikowski, Piotr; Voors, Adriaan A; Yancy, Clyde W

    2016-09-14

    Heart failure (HF) is a global epidemic affecting millions of individuals worldwide. Although important progress has been made in the management of HF, this condition remains a common cause of morbidity and death. Since the publication of the previous sets of guidelines for the management of HF, new diagnostic and therapeutic options for HF have emerged. Now, both the ESC and the ACC/AHA/HFSA have simultaneously published an update of their guidelines incorporating, among others, recommendations for the use of new pharmacological therapies for the treatment of HF. For this Viewpoint article, we have asked the chairs of the ESC Task Force, the chairs of the ACC/AHA/HFSA Writing Committee, and an independent opinion leader in the field to offer their expert insight into the new guidelines, highlighting what is new, what the main differences are between the two sets of guidelines, and what steps should be taken to improve the guidelines in future updates.

  3. Report of the American College of Cardiology (ACC) Scientific Sessions 2013, San Francisco--highlighting late-breaking trials.

    PubMed

    Yamada, Hirotsugu

    2013-01-01

    The American College of Cardiology's (ACC) 62nd Annual Scientific Session was held at the Moscone Center, San Francisco, from March 9-11, 2013. The meeting focused on the "transformation of cardiovascular care, from discovery to delivery", featured over 20 late-breaking clinical trials and 2,000 abstracts. These sessions gave notable exposure and recognition of studies likely to significantly affect clinical practice. There were 21 trials scheduled for presentation in 5 featured Late-Breaking Clinical Trial sessions, but one, the PREVAIL trial, was not presented because of a failure to observe an embargo. I summarize and overview both the late-breaking trials presented at ACC 2013 and the PREVAIL trial.  

  4. PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2.

    PubMed

    German, Natalie J; Yoon, Haejin; Yusuf, Rushdia Z; Murphy, J Patrick; Finley, Lydia W S; Laurent, Gaëlle; Haas, Wilhelm; Satterstrom, F Kyle; Guarnerio, Jlenia; Zaganjor, Elma; Santos, Daniel; Pandolfi, Pier Paolo; Beck, Andrew H; Gygi, Steven P; Scadden, David T; Kaelin, William G; Haigis, Marcia C

    2016-09-15

    While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.

  5. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress.

    PubMed

    Gontia-Mishra, Iti; Sasidharan, Shaly; Tiwari, Sharad

    2014-05-01

    Ethylene is an essential plant hormone also known as a stress hormone because its synthesis is accelerated by induction of a variety of biotic and abiotic stress. The plant growth promoting bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase enhances plant growth by decreasing plant ethylene levels under stress conditions. The expression of ACC deaminase (acdS) gene in transgenic plants is an alternative approach to overcome the ethylene-induced stress. Several transgenic plants have been engineered to express both bacterial/plant acdS genes which then lowers the stress-induced ethylene levels, thus efficiently combating the deleterious effects of environmental stresses. This review summarizes the current knowledge of various transgenic plants overexpressing microbial and plant acdS genes and their potential under diverse biotic and abiotic stresses. Transcription regulation mechanism of acdS gene from different bacteria, with special emphasis to nitrogen fixing bacteria is also discussed in this review.

  6. 2016 ESC and ACC/AHA/HFSA heart failure guideline update - what is new and why is it important?

    PubMed

    Jessup, Mariell; Marwick, Thomas H; Ponikowski, Piotr; Voors, Adriaan A; Yancy, Clyde W

    2016-09-14

    Heart failure (HF) is a global epidemic affecting millions of individuals worldwide. Although important progress has been made in the management of HF, this condition remains a common cause of morbidity and death. Since the publication of the previous sets of guidelines for the management of HF, new diagnostic and therapeutic options for HF have emerged. Now, both the ESC and the ACC/AHA/HFSA have simultaneously published an update of their guidelines incorporating, among others, recommendations for the use of new pharmacological therapies for the treatment of HF. For this Viewpoint article, we have asked the chairs of the ESC Task Force, the chairs of the ACC/AHA/HFSA Writing Committee, and an independent opinion leader in the field to offer their expert insight into the new guidelines, highlighting what is new, what the main differences are between the two sets of guidelines, and what steps should be taken to improve the guidelines in future updates. PMID:27625120

  7. The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin.

    PubMed

    Kim, Young-Mi; Kim, Eun-Cheol; Kim, Youngho

    2011-01-01

    The lysyl oxidase-like 2 (LOXL2) protein is a human paralogue of lysyl oxidase (LOX) that functions as an amine oxidase for formation of lysine-derived cross-links found in collagen and elastin. In addition to the C-terminal domains characteristic to the LOX family members, LOXL2 contains four scavenger receptor cysteine-rich (SRCR) domains in the N-terminus. In order to assess the amine oxidase activity of LOXL2, we expressed a series of recombinant LOXL2 proteins with deletions in the SRCR domains, using an Escherichia coli expression system. All of the purified recombinant LOXL2 proteins, with or without the SRCR domains in the N-terminus, showed significant amine oxidase activity toward several different types of collagen and elastin in in vitro amine oxidase assays, indicating deletion of the SRCR domains does not interfere with amine oxidase activity of LOXL2. Further, amine oxidase activity of LOXL2 was not susceptible to inhibition by β-aminopropionitrile, an irreversible inhibitor of LOX, suggesting a different enzymatic mechanism between these two paralogues.

  8. A comparison of native GPU computing versus OpenACC for implementing flow-routing algorithms in hydrological applications

    NASA Astrophysics Data System (ADS)

    Rueda, Antonio J.; Noguera, José M.; Luque, Adrián

    2016-02-01

    In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.

  9. Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C

    2005-04-11

    Alternative oxidase (AOX) represents a non-energy conserving branch in mitochondrial electron transport while plastoquinol terminal oxidase (PTOX) represents a potential branch in photosynthetic electron transport. Using a metagenomics dataset, we have uncovered numerous and diverse AOX and PTOX genes from the Sargasso Sea. Sequence similarity, synteny and phylogenetic analyses indicate that the large majority of these genes are from prokaryotes. AOX appears to be widely distributed among marine Eubacteria while PTOX is widespread among strains of cyanobacteria closely related to the high-light adapted Prochlorococcus marinus MED4, as well as Synechococcus. The wide distribution of AOX and PTOX in marine prokaryotes may have important implications for productivity in the world's oceans.

  10. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase.

    PubMed

    Khlupova, M E; Vasil'eva, I S; Shumakovich, G P; Morozova, O V; Chertkov, V A; Shestakova, A K; Kisin, A V; Yaropolov, A I

    2015-02-01

    Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.

  11. [NADPH oxidases, Nox: new isoenzymes family].

    PubMed

    Chuong Nguyen, Minh Vu; Lardy, Bernard; Paclet, Marie-Hélène; Rousset, Francis; Berthier, Sylvie; Baillet, Athan; Grange, Laurent; Gaudin, Philippe; Morel, Françoise

    2015-01-01

    NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.

  12. Degradation of pentachlorophenol by potato polyphenol oxidase.

    PubMed

    Hou, Mei-Fang; Tang, Xiao-Yan; Zhang, Wei-De; Liao, Lin; Wan, Hong-Fu

    2011-11-01

    In this study, polyphenol oxidase (PPO) was extracted from commercial potatoes. Degradation of pentachlorophenol by potato PPO was investigated. The experimental results show that potato PPO is more active in weak acid than in basic condition and that the optimum pH for the reaction is 5.0. The degradation of pentachlorophenol by potato PPO reaches a maximum at 298 K. After reaction for 1 h, the removal of both pentachlorophenol and total organic carbon is >70% with 6.0 units/mL potato PPO at pH 5.0 and 298 K. Pentachlorophenol can be degraded through dechlorination and ring-opening by potato PPO. The work demonstrates that pentachlorophenol can be effectively eliminated by crude potato PPO. PMID:21967325

  13. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  14. Drugs related to monoamine oxidase activity.

    PubMed

    Fišar, Zdeněk

    2016-08-01

    Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.

  15. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  16. ROS signalling, NADPH oxidases and cancer.

    PubMed

    Landry, William D; Cotter, Thomas G

    2014-08-01

    ROS (reactive oxygen species) have long been regarded as a series of destructive molecules that have a detrimental effect on cell homoeostasis. In support of this are the myriad antioxidant defence systems nearly all eukaryotic cells have that are designed to keep the levels of ROS in check. However, research data emerging over the last decade have demonstrated that ROS can influence a range of cellular events in a manner similar to that seen for traditional second messenger molecules such as cAMP. Hydrogen peroxide (H2O2) appears to be the main ROS with such signalling properties, and this molecule has been shown to affect a wide range of cellular functions. Its localized synthesis by the Nox (NADPH oxidase) family of enzymes and how these enzymes are regulated is of particular interest to those who work in the field of tumour biology.

  17. Circumpolar Estimates of Isopycnal Mixing in the ACC from Argo Floats

    NASA Astrophysics Data System (ADS)

    Roach, C. J.; Balwada, D.; Speer, K. G.

    2015-12-01

    There are few direct observations of cross-stream isopycnal mixing in the interior of the Southern Ocean, yet such measurements are needed to determine the role of eddies transporting properties across the ACC, and key to progress toward testing theories of meridional overturning. In light of this we examine if it is possible to obtain estimates of mixing from Argo float trajectories. We divided the Southern Ocean into overlapping 15ο longitude bins before estimating mixing. Resulting diffusivities ranged from 300 to 3000 m2s-1, with peaks corresponding to the Scotia Sea; Kerguelen and Campbell Plateaus. Comparison of our diffusivities with previous regional studies demonstrated good agreement. Tests of the methodology in the DIMES region found that mixing from Argo floats agreed closely with mixing from RAFOS floats. To further test the method we used the Southern Ocean State Estimate velocity fields to advect particles with Argo and RAFOS float like behaviours. Stirring estimates from the particles agreed well with each other in the Kerguelen Island region, South Pacific and Scotia Sea, despite the differences in the imposed behaviour. Finally, these estimates were compared to mixing length suppression theory presented in Ferrari and Nikurashin 2010. This mixing length suppression theory quantifies horizontal diffusivity similar to Prandtl (1925), but the mixing length is suppressed in the presence of mean flows and eddy phase speeds. Our results suggest that the theory can explain both the structure and magnitude of mixing using mean flow data. An exception is near the Kerguelen and Campbell Plateaus where theory under-estimates mixing relative to our results.

  18. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5

    PubMed Central

    Liu, Taibo; Wook Kim, Dong; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2014-01-01

    POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins localize to the cytosol. A loss-of-function Arabidopsis mutant, Atpao5–2, was hypersensitive to low doses of exogenous thermospermine but this phenotype could be rescued by introduction of the wild-type AtPAO5 gene. Introduction of OsPAO1, under the control of a constitutive promoter, into Atpao5–2 mutants also restored normal thermospermine sensitivity, allowing growth in the presence of low levels of thermospermine, along with a concomitant decrease in thermospermine content in plants. By contrast, introduction of OsPAO3, which encodes a peroxisome-localized polyamine oxidase, into Atpao5–2 plants could not rescue any of the mutant phenotypes in the presence of thermospermine. These results suggest that OsPAO1 is the functional ortholog of AtPAO5. PMID:25763711

  19. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process. PMID:27295021

  20. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas

    PubMed Central

    Houille-Vernes, Laura; Rappaport, Fabrice; Wollman, Francis-André; Alric, Jean; Johnson, Xenie

    2011-01-01

    By homology with the unique plastid terminal oxidase (PTOX) found in plants, two genes encoding oxidases have been found in the Chlamydomonas genome, PTOX1 and PTOX2. Here we report the identification of a knockout mutant of PTOX2. Its molecular and functional characterization demonstrates that it encodes the oxidase most predominantly involved in chlororespiration in this algal species. In this mutant, the plastoquinone pool is constitutively reduced under dark-aerobic conditions, resulting in the mobile light-harvesting complexes being mainly, but reversibly, associated with photosystem I. Accordingly, the ptox2 mutant shows lower fitness than wild type when grown under phototrophic conditions. Single and double mutants devoid of the cytochrome b6f complex and PTOX2 were used to measure the oxidation rates of plastoquinols via PTOX1 and PTOX2. Those lacking both the cytochrome b6f complex and PTOX2 were more sensitive to light than the single mutants lacking either the cytochrome b6f complex or PTOX2, which discloses the role of PTOX2 under extreme conditions where the plastoquinone pool is overreduced. A model for chlororespiration is proposed to relate the electron flow rate through these alternative pathways and the redox state of plastoquinones in the dark. This model suggests that, in green algae and plants, the redox poise results from the balanced accumulation of PTOX and NADPH dehydrogenase. PMID:22143777

  1. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  2. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  3. Current status of NADPH oxidase research in cardiovascular pharmacology

    PubMed Central

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new

  4. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  5. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    PubMed

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  6. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  7. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  8. NADPH oxidase deficiency in X-linked chronic granulomatous disease.

    PubMed Central

    Hohn, D C; Lehrer, R I

    1975-01-01

    We measured the cyanide-insensitive pyridine nucleotide oxidase activity of fractionated resting and phagocytic neutrophils from 11 normal donors, 1 patient with hereditary deficiency of myeloperoxidase, and 7 patients with X-linked chronic granulomatous disease (CGD). When measured under optimal conditions (at pH 5.5 and in the presence of 0.5 mM Mn++), NADPH oxidase activity increased fourfold with phagocytosis and was six-fold higher than with NADH. Phagocytic neutrophils from patients with CGD were markedly deficient in NADPH oxidase activity. Images PMID:235560

  9. Identification of yeasts from clinical specimens by oxidase test.

    PubMed

    Kumar, S; Arora, B S; Mathur, M D

    2000-10-01

    A total of 100 yeasts and yeast like fungi isolates from clinical specimens were negative for oxidase production on Sabouraud dextrose agar. When grown on Columbia agar, chocolate agar, tryptose agar, Mueller-Hinton agar, brain heart infusion and a medium resembling Sabouraud's dextrose agar but with starch instead of dextrose, all the isolate of Candida albicans (55), C. guilliermondii (6), C. parapsilosis (14), C. tropicalis (6), C. pseudotropicalis (6) and Crytococcus neoformans (2) were positive for oxidase producation. Torulopsis glabrata (2), Saccharomyces cervisiae (2) and two out of seven isolates of C. krusei were negative for oxidase test. PMID:11344606

  10. Cardiac-specific deletion of acetyl CoA carboxylase 2 (ACC2) prevents metabolic remodeling during pressure-overload hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Olson, David P.; Marney, Luke C.; Garcia-Menendez, Lorena; Synovec, Robert E.; Tian, Rong

    2012-01-01

    Rationale Decreased fatty acid oxidation (FAO) with increased reliance on glucose are hallmarks of metabolic remodeling that occurs in pathological cardiac hypertrophy and is associated with decreased myocardial energetics and impaired cardiac function. To date, it has not been tested whether prevention of the metabolic switch that occurs during the development of cardiac hypertrophy has unequivocal benefits on cardiac function and energetics. Objectives Since malonyl CoA production via acetyl CoA carboxylase 2 (ACC2) inhibits mitochondrial fatty acid transport, we hypothesized that mice with a cardiac-specific deletion of ACC2 (ACC2H−/−) would maintain cardiac fatty acid oxidation (FAO) and improve function and energetics during the development of pressure-overload hypertrophy. Methods and Results ACC2 deletion led to a significant reduction in cardiac malonyl CoA levels. In isolated perfused heart experiments, left ventricular (LV) function and oxygen consumption were similiar in ACC2H−/− mice despite an ~60% increase in FAO compared to controls (CON). After 8 weeks of pressure-overload via transverse aortic constriction (TAC), ACC2H−/− mice exhibited a substrate utilization profile similar to sham animals while CON-TAC hearts had decreased FAO with increased glycolysis and anaplerosis. Myocardial energetics, assessed by 31P NMR spectroscopy, and cardiac function were maintained in ACC2H−/− after 8 weeks of TAC. Furthermore, ACC2H−/−-TAC demonstrated an attenuation of cardiac hypertrophy with a significant reduction in fibrosis relative to CON-TAC. Conclusions These data suggest that reversion to the fetal metabolic profile in chronic pathological hypertrophy is associated with impaired myocardial function and energetics and maintenance of the inherent cardiac metabolic profile and mitochondrial oxidative capacity is a viable therapeutic strategy. PMID:22730442

  11. Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using Lepidium sativum and Arabidopsis thaliana[W][OA

    PubMed Central

    Linkies, Ada; Müller, Kerstin; Morris, Karl; Turečková, Veronika; Wenk, Meike; Cadman, Cassandra S.C.; Corbineau, Françoise; Strnad, Miroslav; Lynn, James R.; Finch-Savage, William E.; Leubner-Metzger, Gerhard

    2009-01-01

    The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae. PMID:20023197

  12. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana.

    PubMed

    Linkies, Ada; Müller, Kerstin; Morris, Karl; Turecková, Veronika; Wenk, Meike; Cadman, Cassandra S C; Corbineau, Françoise; Strnad, Miroslav; Lynn, James R; Finch-Savage, William E; Leubner-Metzger, Gerhard

    2009-12-01

    The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae.

  13. A novel 1-Cys thioredoxin peroxidase gene in Apis cerana cerana: characterization of AccTpx4 and its role in oxidative stresses.

    PubMed

    Huaxia, Yifeng; Wang, Fang; Yan, Yan; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2015-07-01

    Thioredoxin peroxidase (Tpx), also named peroxiredoxin (Prx), is an important peroxidase that can protect organisms against stressful environments. AccTpx4, a 1-Cys thioredoxin peroxidase gene from the Chinese honey bee Apis cerana cerana, was cloned and characterized. The AccTpx4 gene encodes a protein that is predicted to contain the conserved PVCTTE motif from 1-Cys peroxiredoxin. Quantitative real-time PCR (Q-PCR) and Western blotting revealed that AccTpx4 was induced by various oxidative stresses, such as cold, heat, insecticides, H(2)O(2), and HgCl(2). The in vivo peroxidase activity assay showed that recombinant AccTpx4 protein could efficiently degrade H(2)O(2) in the presence of DL-dithiothreitol (DTT). In addition, disc fusion assays revealed that AccTpx4 could function to protect cells against oxidative stresses. These results indicate that AccTpx4 plays an important role in oxidative stress responses and may contribute to the conservation of honeybees. PMID:25971604

  14. Structural Evidence for Direct Interactions Between the BRCT Domains of Human BRCA1 and a Phospho-Peptide from Human ACC1

    SciTech Connect

    Shen,Y.; Tong, L.

    2008-01-01

    The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 Angstroms resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.

  15. Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening.

    PubMed

    Han, Yan-Chao; Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Xiao, Yun-Yi; Fu, Chang-Chun; Wang, Jun-Ning; Wu, Ke-Qiang; Lu, Wang-Jin

    2016-06-01

    Phytohormone ethylene controls diverse developmental and physiological processes such as fruit ripening via modulation of ethylene signaling pathway. Our previous study identified that ETHYLENE RESPONSE FACTOR11 (MaERF11), a transcription factor in the ethylene signaling pathway, negatively regulates the ripening of banana, but the mechanism for the MaERF11-mediated transcriptional regulation remains largely unknown. Here we showed that MaERF11 has intrinsic transcriptional repression activity in planta. Electrophoretic mobility shift assay and chromatin immunoprecipitation analyses demonstrated that MaERF11 binds to promoters of three ripening-related Expansin genes, MaEXP2, MaEXP7 and MaEXP8, as well as an ethylene biosynthetic gene MaACO1, via the GCC-box motif. Furthermore, expression patterns of MaACO1, MaEXP2, MaEXP7, and MaEXP8 genes are correlated with the changes of histone H3 and H4 acetylation level during fruit ripening. Moreover, we found that MaERF11 physically interacts with a histone deacetylase, MaHDA1, which has histone deacetylase activity, and the interaction significantly strengthens the MaERF11-mediated transcriptional repression of MaACO1 and Expansins Taken together, these findings suggest that MaERF11 may recruit MaHDA1 to its target genes and repress their expression via histone deacetylation. PMID:27208241

  16. Temporal and spectral evolution of a storage ring FEL source: Experimental results on Super-ACO and new theoretical approach

    SciTech Connect

    Hara, T.; Couprie, M.E. ||

    1995-12-31

    The Super-ACO FEL source in UV is now used for applications like a time-resolved fluorescence in biology and two colors experiments coupling FEL and Synchrotron Radiation, which are naturally synchronized. The stability of the FEL is then a critical issue for the users. Detailed experimental studies conducted on the temporal characteristics of the laser micropulse showed various phenomena, such as a longitudinal micropulse jitter and a deformation of a longitudinal micropulse distribution. A similar analysis has been performed on the laser spectral evolution with a scanning Fabry-Perot interferometer, showing a spectrum narrowing, and a wavelength drift. A longitudinal feedback system developed after the first user experiment, allowed to reduce significantly the longitudinal jitter, the intensity fluctuation and the spectral drift. Nevertheless, the stability of the FEL is very dependent on any perturbation, and the observed phenomena can not be described by former models like super-mode assuming a stationary regime. A new theoretical model has then been developed, in order to simulate dynamic behaviors. A simple iterative method is employed to obtain the laser spectrum. The access to the temporal distribution requires additional complexity, because the Fourier transformation has to be performed for each pass. The comparison between the experimental data and the simulation results will be given.

  17. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  18. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    PubMed Central

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase) and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more “biosynthetic” PPOs. PMID:25642234

  19. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed Central

    Hampton, K D; Wasilauskas, B L

    1979-01-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented. PMID:225349

  20. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.

    PubMed

    Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M

    1996-02-01

    It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.

  1. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.

    PubMed

    Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M

    1996-02-01

    It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity. PMID:8882384

  2. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    SciTech Connect

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E. )

    1990-09-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with ({sup 14}C)iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 ({plus minus} 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked.

  3. Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity.

    PubMed

    Bartl, Jasmin; Müller, Thomas; Grünblatt, Edna; Gerlach, Manfred; Riederer, Peter

    2014-04-01

    Patients with Parkinson's disease receive selective irreversible monoamine oxidase (MAO)-B inhibitors, but their effects on MAO-A activity are not known during long-term application. We determined MAO-A inhibition in plasma samples from patients with MAO-B inhibitor intake or without MAO-B inhibitor treatment and from healthy controls. We detected a 70 % reduction of MAO-A activity in patients with MAO-B inhibitor therapy in comparison to the other groups. Our results suggest that treatment with MAO-B inhibitor may also influence MAO-A activity in vivo, when administered daily.

  4. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    SciTech Connect

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  5. Origin and evolution of lysyl oxidases.

    PubMed

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-05-29

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes.

  6. Monoamine oxidase: radiotracer chemistry and human studies.

    PubMed

    Fowler, Joanna S; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serotonin, norepinephrine, and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson's disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 years since the first radiotracers were developed and the first positron emission tomography (PET) images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables that have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe the following: (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological, and psychiatric disorders; and (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers that are currently used and possible new applications.

  7. Inhibition of monoamine oxidase by benzoxathiolone analogues.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2016-02-15

    Inhibitors of the monoamine oxidase (MAO) enzymes are considered useful therapeutic agents, and are used in the clinic for the treatment of depressive illness and Parkinson's disease. In addition, MAO inhibitors are also under investigation for the treatment of certain cardiovascular pathologies and as possible aids to smoking cessation. In an attempt to discover novel classes of compounds that inhibit the MAOs, the current study examines the human MAO inhibitory properties of a small series of 2H-1,3-benzoxathiol-2-one analogues. The results show that the benzoxathiolones are potent MAO-B inhibitors with IC50 values ranging from 0.003 to 0.051 μM. Although the benzoxathiolones are selective for the MAO-B isoform, two compounds display good MAO-A inhibition with IC50 values of 0.189 and 0.424 μM. Dialysis studies show that a selected compound inhibits the MAOs reversibly. It may thus be concluded that the benzoxathiolone class is suitable for the design and development of MAO-B inhibitors, and that in some instances good MAO-A inhibition may also be achieved.

  8. Monoamine oxidase inhibitory activities of heterocyclic chalcones.

    PubMed

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U

    2015-11-15

    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values <1 μM for the inhibition of MAO-B, with all compounds exhibiting higher affinities for MAO-B compared to the MAO-A isoform. The most potent MAO-B inhibitor (4h) displays an IC50 value of 0.067 μM while the most potent MAO-A inhibitor (4e) exhibits an IC50 value of 3.81 μM. It was further established that selected heterocyclic chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders.

  9. Origin and evolution of lysyl oxidases

    PubMed Central

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-01-01

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea – which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes. PMID:26024311

  10. Xanthine oxidase inhibitory lanostanoids from Ganoderma tsugae.

    PubMed

    Lin, Kai-Wei; Chen, Yen-Ting; Yang, Shyh-Chyun; Wei, Bai-Luh; Hung, Chi-Feng; Lin, Chun-Nan

    2013-09-01

    Two new lanostanoids, 3α-acetoxy-22-oxo-5α-lanosta-8,24-dien-21-oic acid, named tsugaric acid D (1) and 16α-hydroxy-3-oxo-5α-lanosta-6,8,24(24(1))-trien-21-oic acid, named tsugaric acid E (2) were isolated from the fruit bodies of Ganoderma tsugae. The structures 1 and 2 were determined by spectroscopic methods. Compound 1 and known compounds 3 and 6 exhibited significant inhibitory effects on xanthine oxidase (XO) activity with an IC50 values of 90.2±24.2, 116.1±3.0, and 181.9±5.8 μM, respectively. Known compound 5 was able to protect human keratinocytes against damage induced by UVB light, which showed 5 could protect keratinocytes from photodamage. The 1 and 5 μM 1 combined with 5 μM cisplatin, respectively, enhanced the cytotoxicity induced by cisplatin. It suggested that 1 and 5 μM 1 combined with low dose of cisplatin may enhance the therapeutic efficacy of cisplatin and reduce side effect and cisplatin resistant.

  11. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    PubMed

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function. PMID:26299850

  12. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE PAGES

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  13. Monoamine oxidase: Radiotracer chemistry and human studies

    SciTech Connect

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.

  14. Crystallization of beef heart cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa, Kyoko; Tsukihara, Tomitake; Abe, Toshio; Caughey, Winslow S.

    1991-03-01

    The three-dimensional structure of cytochrome c oxidase, a complex (multimetal, multisubunit) membrane protein is critical to elucidation of the mechanism of the enzymic reactions and their control. Our recent developments in the crystallization of the enzyme isolated from beef hearts are presented. The crystals appeared more readily at higher protein concentration, lower ionic strength, higher detergent concentration (Brij-35) and lower temperature. Large crystals were obtained by changing one of these parameters to the crystallization point as slowly as possible, keeping the other parameters constant. Increasing the detergent concentration was the most successful method, producing green crystals of the resting oxidized form as hexagonal bipyramids with typical dimensions of 0.6 mm. The usual procedures for crystallization of water soluble proteins, such as increasing ionic strength by vapor diffusion, were not applicable for this enzyme. Crystals of the resting oxidized enzyme belong to a space group of P6 2 or P6 4 with cell dimensions, a = b = 208.7 Å and c = 282.3 Å. The Patterson function shows that the crystal exhibited a non-crystallographic two-fold axis parallel to the c-axis in the asymmetric unit.

  15. Impact of the New ACC/AHA Guidelines on the Treatment of High Blood Cholesterol in a Managed Care Setting

    PubMed Central

    Tran, Josephine N.; Caglar, Toros; Stockl, Karen M.; Lew, Heidi C.; Solow, Brian K.; Chan, Paul S.

    2014-01-01

    Background In November 2013, the American College of Cardiology (ACC) and the American Heart Association (AHA) together issued new guidelines for the treatment of patients with high cholesterol, providing a new paradigm for the management of cholesterol in the primary and secondary prevention of coronary artery disease. Objective To examine the impact of the 2013 ACC/AHA cholesterol treatment guidelines on pharmacy utilization of cholesterol-lowering drugs in a real-world managed care setting. Methods Pharmacy claims from OptumRx, a national pharmacy benefit management provider, for the period between January 1, 2013, and December 31, 2013 (baseline period), were used to identify candidates for cholesterol-lowering therapy and to estimate the number of potential patients who will be starting or intensifying statin therapy based on the updated cholesterol treatment guidelines. Potential candidates for cholesterol-lowering treatments included patients with diabetes or hypertension aged 40 to 75 years who were not already receiving a cholesterol-lowering medication, as well as patients receiving cholesterol-lowering therapies during the baseline period. The baseline cholesterol-lowering medication market share was used to project changes in pharmacy utilization over the next 3 years. Results Based on the 2013 ACC/AHA cholesterol treatment guidelines, there will be a 25% increase in the proportion of the overall population that is treated with statins over the next 3 years, increasing from 3,909,407 (27.7%) patients to 4,892,668 (34.7%) patients. The largest proportion of the increase in statin utilization is projected to be for primary prevention in patients aged 40 to 75 years who were not receiving any cholesterol-lowering treatment at baseline. These projected changes will increase the overall number of statin prescriptions by 25% and will decrease the number of nonstatin cholesterol-lowering medication prescriptions by 68% during the next 3 years. Conclusion The

  16. Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses.

    PubMed

    Zhu, Ming; Zhang, Weixing; Liu, Feng; Chen, Xiaobo; Li, Han; Xu, Baohua

    2016-06-15

    Cytochrome P450 monooxygenases (P450), widely distributed multifunctional enzymes, that play an important role in the oxidative metabolism of endogenous compounds and xenobiotics. Studies have found that these enzymes show peroxidase-like activity and may thus be involved in protecting organisms against reactive oxygen species (ROS). In this work, Apis cerana cerana was used to investigate the molecular mechanisms of P450 family genes in resisting ROS damage. A cytochrome P450 gene was isolated, AccCYP336A1. The open reading frame (ORF) of AccCYP336A1 is 1491bp in length and encodes a predicted protein of 496 amino acids. The obtained amino acid sequence of AccCYP336A1 shared a high sequence identity with homologous proteins and contained the highly conserved features of this protein family. Quantitative real-time PCR (qRT-PCR) analysis showed that AccCYP336A1 was present in some fast developmental stages and had a higher expression in the epidermis than in other tissues. Additionally, the expression levels of AccCYP336A1 were up-regulated by cold (4 °C), heat (42 °C), ultraviolet (UV) radiation, H2O2 and pesticide (thiamethoxam, deltamethrin, methomyl and phoxim) treatments. These results were confirmed by the western blot assays. Furthermore, the recombinant AccCYP336A1 protein acted as an antioxidant that resisted paraquat-induced oxidative stress. Taken together, these results suggest that AccCYP336A1 may play a very significant role in antioxidant defense against ROS damage. PMID:26877110

  17. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

    PubMed Central

    Zhang, Mei; Yuan, Bing; Leng, Ping

    2009-01-01

    In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence of tomato, two cDNAs (LeNCED1 and LeNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, two cDNAs (LeACS2 and LeACS4) which encode 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and one cDNA (LeACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from tomato fruit using a reverse transcription-PCR (RT-PCR) approach. The relationship between ABA and ethylene during ripening was also investigated. Among six sampling times in tomato fruits, the LeNCED1 gene was highly expressed only at the breaker stage when the ABA content becomes high. After this, the LeACS2, LeACS4, and LeACO1 genes were expressed with some delay. The change in pattern of ACO activity was in accordance with ethylene production reaching its peak at the pink stage. The maximum ABA content preceded ethylene production in both the seeds and the flesh. The peak value of ABA, ACC, and ACC oxidase activity, and ethylene production all started to increase earlier in seeds than in flesh tissues, although they occurred at different ripening stages. Exogenous ABA treatment increased the ABA content in both flesh and seed, inducing the expression of both ACS and ACO genes, and promoting ethylene synthesis and fruit ripening, while treatment with fluridone or nordihydroguaiaretic acid (NDGA) inhibited them, delaying fruit ripening and softening. Based on the results obtained in this study, it was concluded that LeNCED1 initiates ABA biosynthesis at the onset of fruit ripening, and might act as an original inducer, and ABA accumulation might play a key role in the regulation of ripeness and senescence of tomato fruit. PMID:19246595

  18. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    PubMed

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  19. Monoamine oxidase and agitation in psychiatric patients.

    PubMed

    Nikolac Perkovic, Matea; Svob Strac, Dubravka; Nedic Erjavec, Gordana; Uzun, Suzana; Podobnik, Josip; Kozumplik, Oliver; Vlatkovic, Suzana; Pivac, Nela

    2016-08-01

    Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses. PMID:26851573

  20. Specification of Dendritogenesis Site in Drosophila aCC Motoneuron by Membrane Enrichment of Pak1 through Dscam1.

    PubMed

    Kamiyama, Daichi; McGorty, Ryan; Kamiyama, Rie; Kim, Michael D; Chiba, Akira; Huang, Bo

    2015-10-12

    Precise positioning of dendritic branches is a critical step in the establishment of neuronal circuitry. However, there is limited knowledge on how environmental cues translate into dendrite initiation or branching at a specific position. Here, through a combination of mutation, RNAi, and imaging experiments, we found that a Dscam-Dock-Pak1 hierarchical interaction defines the stereotypical dendrite growth site in the Drosophila aCC motoneuron. This interaction localizes the Cdc42 effector Pak1 to the plasma membrane at the dendrite initiation site before the activation of Cdc42. Ectopic expression of membrane-anchored Pak1 overrides this spatial specification of dendritogenesis, confirming its function in guiding Cdc42 signaling. We further discovered that Dscam1 localization in aCC occurs through an inter-neuronal contact that involves Dscam1 in the partner MP1 neuron. These findings elucidate a mechanism by which Dscam1 controls neuronal morphogenesis through spatial regulation of Cdc42 signaling and, subsequently, cytoskeletal remodeling.

  1. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    SciTech Connect

    Xia, Yidong; Lou, Jialin; Luo, Hong; Edwards, Jack; Mueller, Frank

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementation of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.

  2. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    DOE PAGES

    Xia, Yidong; Lou, Jialin; Luo, Hong; Edwards, Jack; Mueller, Frank

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementationmore » of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.« less

  3. Expression of Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity.

    PubMed

    Shen, Lirong; Ding, Meihui; Zhang, Liwen; Jin, Feng; Zhang, Weiguang; Li, Duo

    2010-02-24

    Royalisin is an antibacterial peptide found in Royal Jelly. Two gene fragments of Chinese honeybee (Apis cerana cerana) head, 280 bp cDNA encoding pre-pro-Acc-royalisin (PPAR) of 95 amino acid residues, and 165 bp cDNA encoding mature Acc-royalisin (MAR) of 51 amino acid residues were cloned into the pGEX-4T-2 vector. They were then transformed individually into Escherichia coli for expression. Two expressed fusion proteins, glutathione S-transferase (GST)-PPAR of 36 kDa and GST-MAR of 32 kDa were obtained, which were cross reacted with GST antibody accounting for up to 16.3% and 15.4% of bacterial protein, respectively. In addition, 41% of GST-PPAR and nearly 100% of GST-MAR were soluble proteins. Both lysates of the two purified fusion proteins displayed antibacterial activities, similar to that of nisin against Gram-positive bacteria strains, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus. MAR peptide released from the thrombin-cleaved GST-MAR fusion protein has a stronger antibacterial activity than that of GST-MAR fusion protein.

  4. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion. PMID:22846334

  5. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  6. Opine-Based Agrobacterium Competitiveness: Dual Expression Control of the Agrocinopine Catabolism (acc) Operon by Agrocinopines and Phosphate Levels ▿ †

    PubMed Central

    Kim, H. Stanley; Yi, Hyojeong; Myung, Jaehee; Piper, Kevin R.; Farrand, Stephen K.

    2008-01-01

    Agrobacterium tumefaciens strain C58 can transform plant cells to produce and secrete the sugar-phosphate conjugate opines agrocinopines A and B. The bacterium then moves in response to the opines and utilizes them as exclusive sources of carbon, energy, and phosphate via the functions encoded by the acc operon. These privileged opine-involved activities contribute to the formation of agrobacterial niches in the environment. We found that the expression of the acc operon is induced by agrocinopines and also by limitation of phosphate. The main promoter is present in front of the first gene, accR, which codes for a repressor. This operon structure enables efficient repression when opine levels are low. The promoter contains two putative operators, one overlapping the −10 sequence and the other in the further upstream from it; two partly overlapped putative pho boxes between the two operators; and two consecutive transcription start sites. DNA fragments containing either of the operators bound purified repressor AccR in the absence of agrocinopines but not in the presence of the opines, demonstrating the on-off switch of the promoter. Induction of the acc operon can occur under low-phosphate conditions in the absence of agrocinopines and further increases when the opines also are present. Such opine-phosphate dual regulatory system of the operon may ensure maximum utilization of agrocinopines when available and thereby increase the chances of agrobacterial survival in the highly competitive environment with limited general food sources. PMID:18344359

  7. Ethylene is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress.

    PubMed

    Wei, Li-Jie; Deng, Xing-Guang; Zhu, Tong; Zheng, Ting; Li, Peng-Xu; Wu, Jun-Qiang; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Effects of brassinosteroids (BRs) on cucumber (Cucumis sativus L.) abiotic stresses resistance to salt, polyethylene glycol (PEG), cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX) pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 μM brassinolide (BL, the most active BRs) relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (C S ACS1), ripening-related ACC synthase2 (C S ACS2), ripening-related ACC synthase3 (C S ACS3), 1-aminocyclopropane-1-carboxylate oxidase1 (C S ACO1), 1-aminocyclopropane-1-carboxylate oxidase2 (C S ACO2), and C S AOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor) and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings.

  8. Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants1[OA

    PubMed Central

    Iwai, Takayoshi; Miyasaka, Atsushi; Seo, Shigemi; Ohashi, Yuko

    2006-01-01

    The role of ethylene (ET) in resistance to infection with blast fungus (Magnaporthe grisea) in rice (Oryza sativa) is poorly understood. To study it, we quantified ET levels after inoculation, using young rice plants at the four-leaf stage of rice cv Nipponbare (wild type) and its isogenic plant (IL7), which contains the Pi-i resistance gene to blast fungus race 003. Small necrotic lesions by hypersensitive reaction (HR) were formed at 42 to 72 h postinoculation (hpi) in resistant IL7 leaves, and whitish expanding lesions at 96 hpi in susceptible wild-type leaves. Notable was the enhanced ET emission at 48 hpi accompanied by increased 1-aminocyclopropane-1-carboxylic acid (ACC) levels and highly elevated ACC oxidase (ACO) activity in IL7 leaves, whereas only an enhanced ACC increase at 96 hpi in wild-type leaves. Among six ACC synthase (ACS) and seven ACO genes found in the rice genome, OsACS2 was transiently expressed at 48 hpi in IL7 and at 96 hpi in wild type, and OsACO7 was expressed at 48 hpi in IL7. Treatment with an inhibitor for ACS, aminooxyacetic acid, suppressed enhanced ET emission at 48 hpi in IL7, resulting in expanding lesions instead of HR lesions. Exogenously supplied ACC compromised the aminooxyacetic acid-induced breakdown of resistance in IL7, and treatment with 1-methylcyclopropene and silver thiosulfate, inhibitors of ET action, did not suppress resistance. These findings suggest the importance of ET biosynthesis and, consequently, the coproduct, cyanide, for HR-accompanied resistance to blast fungus in young rice plants and the contribution of induced OsACS2 and OsACO7 gene expression to it. PMID:17012402

  9. Sulfide inhibition of and metabolism by cytochrome c oxidase.

    PubMed

    Nicholls, Peter; Marshall, Doug C; Cooper, Chris E; Wilson, Mike T

    2013-10-01

    Hydrogen sulfide (H2S), a classic cytochrome c oxidase inhibitor, is also an in vitro oxidase substrate and an in vivo candidate hormonal ('gasotransmitter') species affecting sleep and hibernation. H2S, nitric oxide (NO) and carbon monoxide (CO) share some common features. All are low-molecular-mass physiological effectors and also oxidase inhibitors, capable of binding more than one enzyme site, and each is an oxidizable 'substrate'. The oxidase oxidizes CO to CO2, NO to nitrite and sulfide to probable persulfide species. Mitochondrial cytochrome c oxidase in an aerobic steady state with ascorbate and cytochrome c is rapidly inhibited by sulfide in a biphasic manner. At least two successive inhibited species are involved, probably partially reduced. The oxidized enzyme, in the absence of turnover, occurs in at least two forms: the 'pulsed' and 'resting' states. The pulsed form reacts aerobically with sulfide to form two intermediates, 'P' and 'F', otherwise involved in the reaction of oxygen with reduced enzyme. Sulfide can directly reduce the oxygen-reactive a3CuB binuclear centre in the pulsed state. The resting enzyme does not undergo such a step, but only a very slow one-electron reduction of the electron-transferring haem a. In final reactivation phases, both the steady-state inhibition of catalysis and the accumulation of P and F states are reversed by slow sulfide oxidation. A model for this complex reaction pattern is presented. PMID:24059525

  10. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  11. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  12. Forage polyphenol oxidase and ruminant livestock nutrition

    PubMed Central

    Lee, Michael R. F.

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated

  13. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency

    PubMed Central

    Kemppainen, Kia K.; Rinne, Juho; Sriram, Ashwin; Lakanmaa, Matti; Zeb, Akbar; Tuomela, Tea; Popplestone, Anna; Singh, Satpal; Sanz, Alberto; Rustin, Pierre; Jacobs, Howard T.

    2014-01-01

    Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof. PMID:24293544

  14. Regulation of Ascorbate Oxidase Expression in Pumpkin by Auxin and Copper 1

    PubMed Central

    Esaka, Muneharu; Fujisawa, Kouichi; Goto, Miwa; Kisu, Yasutomo

    1992-01-01

    Ascorbate oxidase expression in pumpkin (Cucurbita spp.) tissues was studied. Specific ascorbate oxidase activities in pumpkin leaf and stem tissues were about 2 and 1.5 times that in the fruit tissues, respectively. In seeds, little ascorbate oxidase activity was detected. Northern blot analyses showed an abundant ascorbate oxidase mRNA in leaf and stem tissues. Fruit tissues had lower levels of ascorbate oxidase mRNA than leaf and stem tissues. Ascorbate oxidase mRNA was not detected in seeds. Specific ascorbate oxidase activity gradually increased during early seedling growth of pumpkin seeds. The increase was accompanied by an increase in ascorbate oxidase mRNA. When ascorbate oxidase activity in developing pumpkin fruits was investigated, the activities in immature fruits that are rapidly growing at 0, 2, 4, and 7 d after anthesis were much higher than those in mature fruits at 14 and 30 d after anthesis. The specific activity and mRNA of ascorbate oxidase markedly increased after inoculation of pumpkin fruit tissues into Murashige and Skoog's culture medium in the presence of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D) but not in the absence of 2,4-D. In the presence of 10 mg/L of 2,4-D, ascorbate oxidase mRNA was the most abundant. Thus, ascorbate oxidase is induced by 2,4-D. These results indicate that ascorbate oxidase is involved in cell growth. In pumpkin callus, ascorbate oxidase activity could be markedly increased by adding copper. Furthermore, immunological blotting showed that the amount of ascorbate oxidase protein was also increased by adding copper. However, northern blot analyses showed that ascorbate oxidase mRNA was not increased by adding copper. We suggest that copper may control ascorbate oxidase expression at translation or at a site after translation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:16652952

  15. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  16. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  17. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  18. The use of galactose oxidase in lipid labeling

    SciTech Connect

    Radin, N.S.; Evangelatos, G.P.

    1981-03-01

    Galactose oxidase can be used to oxidize the terminal carbon atom of lipids containing galactose or N-acetylgalactosamine, and the resultant aldehyde group can be reduced back to the original carbinol with radioactive borohydride. The efficiency of the first reaction has been investigated systematically by using (6-/sup 3/H)galactosyl ceramide as substrate and measuring the amount of radioactive water formed. This enabled us to establish that the addition of catalase and peroxidase greatly speeded the oxidation, that phosphate and PIPES buffers were the best among those tested, that the reaction continued for 24 hr without a second addition of galactose oxidase, and that the optimum concentration of organic solvent (tetrahydrofuran) was 50%. The suggestion if made that a similar set of variables be studied for each lipid or nonlipid by the same basic technique: labeling by the oxidase/borohydride method and use of the resultant compound as substrate.

  19. Composition of partially purified NADPH oxidase from pig neutrophils.

    PubMed Central

    Bellavite, P; Jones, O T; Cross, A R; Papini, E; Rossi, F

    1984-01-01

    The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity. PMID:6439185

  20. Improved operational stability of peroxidases by coimmobilization with glucose oxidase.

    PubMed

    van de Velde, F; Lourenço, N D; Bakker, M; van Rantwijk, F; Sheldon, R A

    2000-08-01

    The operational stability of peroxidases was considerably enhanced by generating hydrogen peroxide in situ from glucose and oxygen. For example, the total turnover number of microperoxidase-11 in the oxidation of thioanisole was increased sevenfold compared with that obtained with continuous addition of H(2)O(2). Coimmobilization of peroxidases with glucose oxidase into polyurethane foams afforded heterogeneous biocatalysts in which the hydrogen peroxide is formed inside the polymeric matrix from glucose and oxygen. The total turnover number of chloroperoxidase in the oxidation of thioanisole and cis-2-heptene was increased to new maxima of 250. 10(3) and 10. 10(3), respectively, upon coimmobilization with glucose oxidase. Soybean peroxidase, which normally shows only classical peroxidase activity, was transformed into an oxygen-transfer catalyst when coimmobilized with glucose oxidase. The combination catalyst mediated the enantioselective oxidation of thioanisole [50% ee (S)] with 210 catalyst turnovers. PMID:10861408

  1. The mechanism of cytochrome C oxidase inhibition by nitric oxide.

    PubMed

    Antunes, Fernando; Cadenas, Enrique

    2007-01-01

    The basic biochemistry of the inhibition of cytochrome oxidase by NO is reviewed. Three possible mechanisms that include the binding of NO to the fully reduced Fe(a3)-Cu(B) site, to the semi-reduced Fe(a3)-Cu(B) site, and to the fully oxidized Fe(a3)-Cu(B) site are confronted with the experimental data. Mathematical models are used to facilitate the analysis and to solve puzzling observations concerning the NO inhibition of cytochrome oxidase. It is concluded that the inhibition of cytochrome oxidase by NO is mixed, having both competitive and uncompetitive components, but under physiological electron flows the competitive component is largely predominant. The physiological and pathological relevance of this inhibition is briefly discussed.

  2. Oxidation of polymines by diamine oxidase from human seminal plasma.

    PubMed Central

    Hölttä, E; Pulkkinen, P; Elfving, K; Jänne, J

    1975-01-01

    1. Diamine oxidase [amine-oxygen oxidoreductase (deaminating)(pyridoxal-containing), EC 1.4.3.6] was purified from human seminal plasma more than 1,700-fold. The enzyme appeared to be homogeneous on polyacrylamide-gel electrophoresis at two different pH values. 2. The general properties of the enzyme were comparable with those described for other diamine oxidases from different mammalian sources. The molecular weight of the enzyme was calculated to be about 182,000. 3. The enzyme had highest affinity for diamines, but polyamines spermidine and spermine were also degraded at concentrations that can be considered physiological in human semen. 3. The possible degradation of spermine by diamine oxidase in human semen in vivo may give rise to the formation of cytotoxic aldehydes that conceivably can influence the motility and survival of the spermatozoa. PMID:239684

  3. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants.

    PubMed

    Onofre-Lemus, Janette; Hernández-Lucas, Ismael; Girard, Lourdes; Caballero-Mellado, Jesús

    2009-10-01

    The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are plant associated, representing 20 well-known Burkholderia species. The results demonstrated that ACC deaminase activity is a widespread feature in the genus Burkholderia, since 18 species exhibited ACC deaminase activities in the range from 2 to 15 mumol of alpha-ketobutyrate/h/mg protein, which suggests that these species may be able to modulate ethylene levels and enhance plant growth. In these 18 Burkholderia species the acdS gene sequences were highly conserved (76 to 99% identity). Phylogenetic analysis of acdS gene sequences in Burkholderia showed tight clustering of the Bcc species, which were clearly distinct from diazotrophic plant-associated Burkholderia species. In addition, an acdS knockout mutant of the N(2)-fixing bacterium Burkholderia unamae MTl-641(T) and a transcriptional acdSp-gusA fusion constructed in this strain showed that ACC deaminase could play an important role in promotion of the growth of tomato plants. The widespread ACC deaminase activity in Burkholderia species and the common association of these species with plants suggest that this genus could be a major contributor to plant growth under natural conditions.

  4. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology. PMID:26164855

  5. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.

  6. The STS-ACC transcatheter valve therapy national registry: a new partnership and infrastructure for the introduction and surveillance of medical devices and therapies.

    PubMed

    Carroll, John D; Edwards, Fred H; Marinac-Dabic, Danica; Brindis, Ralph G; Grover, Frederick L; Peterson, Eric D; Tuzcu, E Murat; Shahian, David M; Rumsfeld, John S; Shewan, Cynthia M; Hewitt, Kathleen; Holmes, David R; Mack, Michael J

    2013-09-10

    The Society of Thoracic Surgeons (STS) and American College of Cardiology (ACC) transcatheter valve therapy (TVT) registry is a novel, national registry for all new TVT devices created through a partnership of the STS and the ACC in close collaboration with the Food and Drug Administration, the Center for Medicare and Medicaid Services, and the Duke Clinical Research Institute. The registry will serve as an objective, comprehensive, and scientifically based resource to improve the quality of patient care, to monitor the safety and effectiveness of TVT devices, to serve as an analytic resource for TVT research, and to enhance communication among key stakeholders. PMID:23644082

  7. The STS-ACC transcatheter valve therapy national registry: a new partnership and infrastructure for the introduction and surveillance of medical devices and therapies.

    PubMed

    Carroll, John D; Edwards, Fred H; Marinac-Dabic, Danica; Brindis, Ralph G; Grover, Frederick L; Peterson, Eric D; Tuzcu, E Murat; Shahian, David M; Rumsfeld, John S; Shewan, Cynthia M; Hewitt, Kathleen; Holmes, David R; Mack, Michael J

    2013-09-10

    The Society of Thoracic Surgeons (STS) and American College of Cardiology (ACC) transcatheter valve therapy (TVT) registry is a novel, national registry for all new TVT devices created through a partnership of the STS and the ACC in close collaboration with the Food and Drug Administration, the Center for Medicare and Medicaid Services, and the Duke Clinical Research Institute. The registry will serve as an objective, comprehensive, and scientifically based resource to improve the quality of patient care, to monitor the safety and effectiveness of TVT devices, to serve as an analytic resource for TVT research, and to enhance communication among key stakeholders.

  8. Effect of solvents on the fumonisins analysis by high-performance liquid chromatography with AccQ.Fluor as the derivatizing reagent.

    PubMed

    Velázquez, C; Llovera, M; Plana, J; Canela, R

    2000-02-18

    The effect of several solvent systems on the chromatographic response of fumonisin B1 and B2 derived with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ.Fluor) is described. Naturally contaminated corn samples were extracted and purified by a standard method. Then, samples were dissolved in different solvents, derived with AccQ.Fluor reagent and analysed using HPLC. Results were solvent dependent, methanol being the best one among all assayed solvents for both fumonisins studied and acetonitrile the poorest. o-Phthaldialdehyde (OPA) reagent was used as a reference method.

  9. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase.

    PubMed

    Velada, Isabel; Cardoso, Hélia G; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit

    2016-01-01

    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  10. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase

    PubMed Central

    Velada, Isabel; Cardoso, Hélia G.; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit

    2016-01-01

    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  11. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  12. Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L.

    PubMed

    Pimenta Lange, Maria João; Liebrandt, Anja; Arnold, Linda; Chmielewska, Sara-Miriam; Felsberger, André; Freier, Eduard; Heuer, Monika; Zur, Doreen; Lange, Theo

    2013-06-01

    Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.

  13. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design

    NASA Astrophysics Data System (ADS)

    Bonneté, Françoise

    2013-02-01

    Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.

  14. SCAI/AATS/ACC/STS operator and institutional requirements for transcatheter valve repair and replacement, Part III: Pulmonic valve.

    PubMed

    Hijazi, Ziyad M; Ruiz, Carlos E; Zahn, Evan; Ringel, Richard; Aldea, Gabriel S; Bacha, Emile A; Bavaria, Joseph; Bolman, R Morton; Cameron, Duke E; Dean, Larry S; Feldman, Ted; Fullerton, David; Horlick, Eric; Mack, Michael J; Miller, D Craig; Moon, Marc R; Mukherjee, Debabrata; Trento, Alfredo; Tommaso, Carl L

    2015-07-01

    With the evolution of transcatheter valve replacement, an important opportunity has arisen for cardiologists and surgeons to collaborate in identifying the criteria for performing these procedures. Therefore, The Society for Cardiovascular Angiography and Interventions (SCAI), American Association for Thoracic Surgery (AATS), American College of Cardiology (ACC), and The Society of Thoracic Surgeons (STS) have partnered to provide recommendations for institutions to assess their potential for instituting and/or maintaining a transcatheter valve program. This article concerns transcatheter pulmonic valve replacement (tPVR). tPVR procedures are in their infancy with few reports available on which to base an expert consensus statement. Therefore, many of these recommendations are based on expert consensus and the few reports available. As the procedures evolve, technology advances, experience grows, and more data accumulate, there will certainly be a need to update this consensus statement. The writing committee and participating societies believe that the recommendations in this report serve as appropriate requisites. In some ways, these recommendations apply to institutions more than to individuals. There is a strong consensus that these new valve therapies are best performed using a Heart Team approach; thus, these credentialing criteria should be applied at the institutional level. Partnering societies used the ACC's policy on relationships with industry (RWI) and other entities to author this document (http://www.acc.org/guidelines/about-guidelines-and-clinical-documents). To avoid actual, potential, or perceived conflicts of interest due to industry relationships or personal interests, all members of the writing committee, as well as peer reviewers of the document, were asked to disclose all current healthcare-related relationships including those existing 12 months before the initiation of the writing effort. A committee of interventional cardiologists and

  15. Removal of Asbestos-Containing Coatings (ACC) from gas transmission pipelines. Final report, January 1991-October 1993

    SciTech Connect

    Petersen, L.E.; Blackburn, M.L.

    1994-01-01

    Corrosion control coatings on transmission pipelines may contain asbestos as a secondary component of the coating. Current environmental and health regulations require a wet removal process for asbestos materials that provides close control of airborne emissions and asbestos fibers in effluent water. Modification of current line-traveling, water jet equipment was successfully completed in developing an economic removal process for asbestos-containing coatings (ACC). Materials handling components were added in yard experiments that permitted water jet removal, slurry filtration, and residue containerization meeting emission control levels, while providing pipe cleanliness suitable for recoating. Field evaluations under in-the-ditch and over-the-ditch conditions on 16-, 26- and 30-inch pipelines verified the achievement of design coating removal rates and asbestos emission control that meets current regulations.

  16. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase

    PubMed Central

    Le Laz, Sébastien; kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  17. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  18. 2015 ACC Health Policy Statement on Cardiovascular Team-Based Care and the Role of Advanced Practice Providers.

    PubMed

    Brush, John E; Handberg, Eileen M; Biga, Cathleen; Birtcher, Kim K; Bove, Alfred A; Casale, Paul N; Clark, Michael G; Garson, Arthur; Hines, Jerome L; Linderbaum, Jane A; Rodgers, George P; Shor, Robert A; Thourani, Vinod H; Wyman, Janet F

    2015-05-19

    The mission of the American College of Cardiology is "to transform cardiovascular care and improve heart health." Cardiovascular team-based care is a paradigm for practice that can transform care, improve heart health, and help meet the demands of the future. One strategic goal of the College is to help members successfully transition their clinical practices to the future, with all its complexity, challenges, and opportunities. The ACC's strategic plan is aligned with the triple aim of improved care, improved population health, and lower costs per capita. The traditional understanding of quality, access, and cost is that you cannot improve one component without diminishing the others. With cardiovascular team-based care, it is possible to achieve the triple aim of improving quality, access, and cost simultaneously to also improve cardiovascular health. Striving to serve the best interests of patients is the true north of our guiding principles. Cardiovascular team-based care is a model that can improve care coordination and communication and allow each team member to focus more on the quality of care. In addition, the cardiovascular team-based care model increases access to cardiovascular care and allows expansion of services to populations and geographic areas that are currently underserved. This document will increase awareness of the important components of cardiovascular team-based care and create an opportunity for more discussion about the most creative and effective means of implementing it. We hope that this document will stimulate further discussions and activities within the ACC and beyond about team-based care. We have identified areas that need improvement, specifically in APP education and state regulation. The document encourages the exploration of collaborative care models that should enable team members to optimize their education, training, experience, and talent. Improved team leadership, coordination, collaboration, engagement, and efficiency

  19. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  20. Structural Changes and Proton Transfer in Cytochrome c Oxidase.

    PubMed

    Vilhjálmsdóttir, Jóhanna; Johansson, Ann-Louise; Brzezinski, Peter

    2015-08-27

    In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.

  1. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  2. Polyphenol oxidase activity in co-ensiled temperate grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) and its o-diphenol substrates have been shown to effectively decrease proteolytic activity during the ensiling of forages such as red clover. Orchardgrass and smooth bromegrass both contain high levels of PPO activity, but lack appropriate levels of o-diphenols to adequately...

  3. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.

  4. Energy-Dependent Reversal of the Cytochrome Oxidase Reaction

    NASA Astrophysics Data System (ADS)

    Wikstrom, Marten

    1981-07-01

    Energization of isolated rat liver mitochondria with ATP under conditions in which cytochrome c is poised in a highly oxidized state shifts the state of cytochrome oxidase (cytochrome c oxidase; ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) from fully oxidized to two new spectroscopically distinguishable states depending on the applied phosphorylation potential and redox potential at cytochrome c. Both new states are spectrally similar or identical to two previously described intermediates in the reaction between reduced enzyme and O2. The data suggest that the energy-dependent transitions are due to reversed electron transfer from water to ferricytochrome c linked to accumulation of intermediates of O2 reduction at the catalytic heme a3/copper center. Titrations with redox potential indicate that each transition is a one-electron step, a finding that would identify the second observed compound as enzyme-bound peroxide or its equivalent. This is consistent with this compound being spectrally identical to ``Compound C,'' previously described as the reaction product between half-reduced oxidase (two electrons) and O2. On the basis of these data a catalytic scheme of O2 reduction is proposed for the heme a3/copper center of cytochrome oxidase.

  5. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    SciTech Connect

    Bossis, Fabrizio; Palese, Luigi L.

    2011-01-07

    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  6. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols. PMID:26305170

  7. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  8. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  9. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  10. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  11. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  12. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  13. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  14. NADPH oxidases in Eukaryotes: red algae provide new hints!

    PubMed

    Hervé, Cécile; Tonon, Thierry; Collén, Jonas; Corre, Erwan; Boyen, Catherine

    2006-03-01

    The red macro-alga Chondrus crispus is known to produce superoxide radicals in response to cell-free extracts of its green algal pathogenic endophyte Acrochaete operculata. So far, no enzymes involved in this metabolism have been isolated from red algae. We report here the isolation of a gene encoding a homologue of the respiratory burst oxidase gp91(phox) in C. crispus, named Ccrboh. This single copy gene encodes a polypeptide of 825 amino acids. Search performed in available genome and EST algal databases identified sequences showing common features of NADPH oxidases in other algae such as the red unicellular Cyanidioschyzon merolae, the economically valuable red macro-alga Porphyra yezoensis and the two diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Domain organization and phylogenetic relationships with plant, animal, fungal and algal NADPH oxidase homologues were analyzed. Transcription analysis of the C. crispus gene revealed that it was over-transcribed during infection of C. crispus gametophyte by the endophyte A. operculata, and after incubation in presence of atrazine, methyl jasmonate and hydroxyperoxides derived from C20 polyunsaturated fatty acids (PUFAs). These results also illustrate the interest of exploring the red algal lineage for gaining insight into the deep evolution of NADPH oxidases in Eukaryotes.

  15. Lead optimization of isocytosine-derived xanthine oxidase inhibitors.

    PubMed

    Bajaj, Komal; Burudkar, Sandeep; Shah, Pranay; Keche, Ashish; Ghosh, Usha; Tannu, Prashant; Khanna, Smriti; Srivastava, Ankita; Deshmukh, Nitin J; Dixit, Amol; Ahire, Yogesh; Damre, Anagha; Nemmani, Kumar V S; Kulkarni-Almeida, Asha; B-Rao, Chandrika; Sharma, Rajiv; Sivaramakrishnan, H

    2013-02-01

    We report our attempts at improving the oral efficacy of low-nanomolar inhibitors of xanthine oxidase from isocytosine series through chemical modifications. Our lead compound had earlier shown good in vivo efficacy when administered intraperitoneally but not orally. Several modifications are reported here which achieved more than twofold improvement in exposure. A compound with significant improvement in oral efficacy was also obtained.

  16. [Synthesis and localization of L-lactate oxidase in yeasts].

    PubMed

    Arinbasarova, A Iu; Biriukova, E N; Suzina, N E; Medentsev, A G

    2014-01-01

    Conditions for L-lactate oxidase synthesis by the yeast Yarrowia lpolytica were investigated. The enzyme was found to be synthesized during growth on L-lactate in the exponential growth phase. L-lactate oxidase synthesis was observed, also on glucose after adaptation to stress conditions (oxidative or thermal stress) r during the stationary growth phase after glucose consumption. The cells grown on L-lactate exhibited high levels of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase), which exceeded those of glucose-grown cells. The ultrastructure of L-lactate-grown cellsand of those grown on glucose and adapted to various stress.conditions was also found to besimilar, with increased mitochondria, elevated number and size ofperoxisomes, and formation of lipid and polyphosphate inclusions. In order to determine the intracellular localization of L-lactate oxidase, the cells were disintegrated by the lytic enzyme complex from Helix pomatia. Centrifugation of the homogenate in Percoll gradient resulted in the isolation of purified fractions of the native mitochondria and peroxisomes. L-Lactate oxidase was shown to be localized in peroxisomes. PMID:25844463

  17. Alternative oxidase and uncoupling protein: thermogenesis versus cell energy balance.

    PubMed

    Jarmuszkiewicz, W; Sluse-Goffart, C M; Vercesi, A E; Sluse, F E

    2001-04-01

    The physiological role of an alternative oxidase and an uncoupling protein in plant and protists is discussed in terms of thermogenesis and energy metabolism balance in the cell. It is concluded that thermogenesis is restricted not only by a lower-limit size but also by a kinetically-limited stimulation of the mitochondrial respiratory chain.

  18. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens (Ara h 1 and Ara h 2). Because high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts were treated with each of th...

  19. CHARACTERISTICS OF POLYPHENOL OXIDASES FROM RED CLOVER (TRIFOLIUM PRATENSE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones which cause browning reactions in many wounded fruits, vegetables, and plants including the forage crop red clover (Trifolium pratense). Production of o-quinones in red clover inhibits post-har...

  20. Pig kidney diamine oxidase. A new method of purification.

    PubMed

    Floris, G; Fadda, M B

    1979-07-15

    Diamine oxidase has been purified from pig kidney by a new method to rapidly obtain larger amounts of pure enzyme with a good yield. The enzyme obtained gives only one band in SDS gel electrophoresis. The specific activity and the absorption spectra were identical to those of already preparations homogeneous reported by different methods of purification. PMID:121960

  1. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    SciTech Connect

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  2. The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme A carboxylase in the biosynthesis of cuticular waxes by Arabidopsis.

    PubMed

    Lü, Shiyou; Zhao, Huayan; Parsons, Eugene P; Xu, Changcheng; Kosma, Dylan K; Xu, Xiaojing; Chao, Daiyin; Lohrey, Gregory; Bangarusamy, Dhinoth K; Wang, Guangchao; Bressan, Ray A; Jenks, Matthew A

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C(20:0) or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  3. The TOF-ACC flight electronics for the fast trigger and time of flight of the AMS-02 cosmic ray spectrometer

    NASA Astrophysics Data System (ADS)

    Basili, A.; Bindi, V.; Casadei, D.; Castellini, G.; Contin, A.; Kounine, A.; Lolli, M.; Palmonari, F.; Quadrani, L.

    2013-04-01

    The AMS-02 experiment has been installed in May 2011 on the international space station (ISS) where it will measure, with an unprecedented accuracy, cosmic rays up to the TeV energy region for several years. The AMS-02 time of flight (TOF) and the anti-coincide counters (ACC) sub-detectors provide respectively the fast trigger and the veto for the data taking to the experiment. The TOF measures the particle crossing time and the absolute charge with very high precision and provides the fast trigger to AMS-02, whereas the ACC detects and vetoes particles which enter the AMS-02 volume from outside of the main detector acceptance. The electronics of the AMS-02 TOF and ACC sub-detectors have been designed to operate in space for a very long time, in extreme conditions and without any human intervention. In this paper the main design concepts of the TOF-ACC electronics, the space qualification tests and the performance are presented.

  4. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway.

    PubMed

    Chen, Lin; Dodd, Ian C; Theobald, Julian C; Belimov, Andrey A; Davies, William J

    2013-04-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant-microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana.

  5. Inheritance of polyphenol oxidase activity in wheat breeding lines derived from matings of low polyphenol oxidase parents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) in grain plays a major role in time-dependent discoloration of wheat (Triticum aestivum L.) products, especially fresh noodles. Breeding wheat cultivars with low or nil PPO activity can reduce the undesirable product darkening. The low PPO line PI 117635 was crossed to two...

  6. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina.

    PubMed

    Krause, Frank; Scheckhuber, Christian Q; Werner, Alexandra; Rexroth, Sascha; Reifschneider, Nicole H; Dencher, Norbert A; Osiewacz, Heinz D

    2004-06-18

    To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging.

  7. Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria.

    PubMed

    Matsutani, Minenosuke; Fukushima, Kota; Kayama, Chiho; Arimitsu, Misato; Hirakawa, Hideki; Toyama, Hirohide; Adachi, Osao; Yakushi, Toshiharu; Matsushita, Kazunobu

    2014-10-01

    The bacterial aerobic respiratory chain has a terminal oxidase of the heme-copper oxidase superfamily, comprised of cytochrome c oxidase (COX) and ubiquinol oxidase (UOX); UOX evolved from COX. Acetobacter pasteurianus, an α-Proteobacterial acetic acid bacterium (AAB), produces UOX but not COX, although it has a partial COX gene cluster, ctaBD and ctaA, in addition to the UOX operon cyaBACD. We expressed ctaB and ctaA genes of A. pasteurianus in Escherichia coli and demonstrated their function as heme O and heme A synthases. We also found that the absence of ctaD function is likely due to accumulated mutations. These COX genes are closely related to other α-Proteobacterial COX proteins. However, the UOX operons of AAB are closely related to those of the β/γ-Proteobacteria (γ-type UOX), distinct from the α/β-Proteobacterial proteins (α-type UOX), but different from the other γ-type UOX proteins by the absence of the cyoE heme O synthase. Thus, we suggest that A. pasteurianus has a functional γ-type UOX but has lost the COX genes, with the exception of ctaB and ctaA, which supply the heme O and A moieties for UOX. Our results suggest that, in AAB, COX was replaced by β/γ-Proteobacterial UOX via horizontal gene transfer, while the COX genes, except for the heme O/A synthase genes, were lost. PMID:24862920

  8. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape.

    PubMed

    Zhang, Yan-feng; He, Lin-yan; Chen, Zhao-jin; Zhang, Wen-hui; Wang, Qing-ya; Qian, Meng; Sheng, Xia-fang

    2011-02-28

    Forty-nine lead (Pb)-resistant endophytic bacteria were isolated from metal-tolerant Commelina communis plants grown on lead and zinc mine tailing, of which, seven 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were initially obtained and characterized with respect to heavy metal resistance and production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores. Two isolates (Q2BJ2 and Q2BG1) showing higher ACC deaminase activity were evaluated for promoting plant growth and Pb uptake of rape grown in quartz sand containing 0 and 100 mg kg(-1) of Pb in pot experiments. The seven Pb-resistant and ACC deaminase-producing endophytic bacterial isolates were found to exhibit different multiple heavy metal resistance characteristics and to show different levels of ACC deaminase activity (ranging from 12.8 μM α-KB mg(-1) h(-1) to 121 μM α-KB mg(-1) h(-1)). Among the seven isolates, six isolates produced indole acetic acid, whilst five isolates produced siderophores. In experiments involving rape plants grown in quartz sand containing 100 mg kg(-1) of Pb, inoculation with the isolates resulted in the increased dry weights of above-ground tissues (ranging from 39% to 71%) and roots (ranging from 35% to 123%) compared to the uninoculated control. Increases in above-ground tissue Pb contents of rape cultivated in 100 mg kg(-1) of Pb-contaminated substrates varied from 58% to 62% in inoculated-rape plants compared to the uninoculated control.

  9. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.

    PubMed

    Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2011-03-01

    One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment. PMID:21315404

  10. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape.

    PubMed

    Zhang, Yan-feng; He, Lin-yan; Chen, Zhao-jin; Zhang, Wen-hui; Wang, Qing-ya; Qian, Meng; Sheng, Xia-fang

    2011-02-28

    Forty-nine lead (Pb)-resistant endophytic bacteria were isolated from metal-tolerant Commelina communis plants grown on lead and zinc mine tailing, of which, seven 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were initially obtained and characterized with respect to heavy metal resistance and production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores. Two isolates (Q2BJ2 and Q2BG1) showing higher ACC deaminase activity were evaluated for promoting plant growth and Pb uptake of rape grown in quartz sand containing 0 and 100 mg kg(-1) of Pb in pot experiments. The seven Pb-resistant and ACC deaminase-producing endophytic bacterial isolates were found to exhibit different multiple heavy metal resistance characteristics and to show different levels of ACC deaminase activity (ranging from 12.8 μM α-KB mg(-1) h(-1) to 121 μM α-KB mg(-1) h(-1)). Among the seven isolates, six isolates produced indole acetic acid, whilst five isolates produced siderophores. In experiments involving rape plants grown in quartz sand containing 100 mg kg(-1) of Pb, inoculation with the isolates resulted in the increased dry weights of above-ground tissues (ranging from 39% to 71%) and roots (ranging from 35% to 123%) compared to the uninoculated control. Increases in above-ground tissue Pb contents of rape cultivated in 100 mg kg(-1) of Pb-contaminated substrates varied from 58% to 62% in inoculated-rape plants compared to the uninoculated control. PMID:21227577

  11. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence.

    PubMed

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3(+)) and defective mutant (BL3(-)) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3(-) than in the wild-type, but was stronger in BL3(+). The inoculation of BL3(-) into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3(+) had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3(+) increased in a time-dependent manner. Nodules occupied by BL3(-) formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3(-). This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence.

  12. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  13. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes.

    PubMed

    Ma, Nan; Cai, Lei; Lu, Wangjin; Tan, Hui; Gao, Junping

    2005-10-01

    The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, 'Samantha', whose opening process is promoted, and 'Kardinal', whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in 'Samantha', and they were much more dramatically enhanced and peaked at the later stage (stage 4) in 'Kardinal' than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in 'Kardinal' than that of 'Samantha'. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in 'Kardinal'. Our results suggests that 'Kardinal' is more sensitive to ethylene than 'Samantha'; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in 'Samantha' and the inhibition in 'Kardinal'. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding

  14. Evidence for pyrroloquinolinequinone as the carbonyl cofactor in lysyl oxidase by absorption and resonance Raman spectroscopy.

    PubMed

    Williamson, P R; Moog, R S; Dooley, D M; Kagan, H M

    1986-12-15

    The present study investigated the possibility that pyrroloquinolinequinone (PQQ), an aromatic carbonyl recently indicated to be the carbonyl cofactor in bovine plasma amine oxidase, may also be present at the active site of lysyl oxidase. The absorption and resonance Raman spectra of the phenylhydrazones of bovine plasma amine oxidase, of peptides derived from the active site of bovine aorta lysyl oxidase, and of PQQ were very similar, indicating that the carbonyl cofactor of lysyl oxidase is PQQ or a compound which closely resembles PQQ.

  15. Amino acid oxidase of leukocytes in relation to H2O2-mediated bacterial killing

    PubMed Central

    Eckstein, Marlene R.; Baehner, Robert L.; Nathan, David G.

    1971-01-01

    D-Amino acid oxidase and L-amino acid oxidase have been measured in sucrose homogenates of polymorphonuclear leukocytes (PMN) obtained from guinea pigs and humans. Subcellular distribution patterns and studies on latency indicate that these oxidases are soluble enzymes. Their hydrogen peroxide-generating capacity was verified. Chronic granulomatous disease PMN, which lack a respiratory burst and fail to generate H2O2 during phagocytosis and do not kill catalase positive bacteria, had peroxide-generating amino acid oxidase activity equal to that found in PMN homogenates from patients with bacterial infections. The precise metabolic and bactericidal role of amino acid oxidases in PMN remains uncertain. PMID:4397948

  16. Consistent Evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC Through Comparisons to TCCON

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan; Wunch, Debra; O’Dell, Christopher; Frankenberg, Christian; Reuter, Maximilian; Chevallier, Frederic; Oda, Tomohiro; Sherlock, Vanessa; Buchwitz, Michael; Osterman, Greg; Miller, Charles E.; Iraci, Laura T.; Wolf, Joyce

    2016-01-01

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (X(sub CO2)) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 parts per million vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to (error(sup 2) equals a(sup 2) plus b(sup 2) divided by n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year

  17. Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON

    NASA Astrophysics Data System (ADS)

    Kulawik, Susan; Wunch, Debra; O'Dell, Christopher; Frankenberg, Christian; Reuter, Maximilian; Oda, Tomohiro; Chevallier, Frederic; Sherlock, Vanessa; Buchwitz, Michael; Osterman, Greg; Miller, Charles E.; Wennberg, Paul O.; Griffith, David; Morino, Isamu; Dubey, Manvendra K.; Deutscher, Nicholas M.; Notholt, Justus; Hase, Frank; Warneke, Thorsten; Sussmann, Ralf; Robinson, John; Strong, Kimberly; Schneider, Matthias; De Mazière, Martine; Shiomi, Kei; Feist, Dietrich G.; Iraci, Laura T.; Wolf, Joyce

    2016-02-01

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (XCO2) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 ppm vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to error2 = a2 + b2/n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year-to-year variability of ˜ 0.3 ppm, with biases larger than the TCCON

  18. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.

  19. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo. PMID:26976571

  20. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  1. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  2. Engineering Human Urate Oxidase: Towards Reactivating It as an Important Therapeutic Enzyme.

    PubMed

    Dabbagh, Fatemeh; Ghoshoon, Mohammad B; Hemmati, Shiva; Zamani, Mozhdeh; Mohkam, Milad; Ghasemi, Younes

    2015-01-01

    Urate oxidase is considered as an important therapeutic enzyme used to control hyperuricemia. In spite of widespread distribution in numerous (micro)organisms, active urate oxidase is absent in higher primates (humans and apes) due to gene mutations. Considering the therapeutic significance of urate oxidase, further understanding on the inactivation process of the enzyme during primate evolution is critical. This study, therefore, aims to express genetically modified human urate oxidase in the methylotrophic yeast Pichia pastoris. Accordingly, the genetically modified human urate oxidase was successfully expressed intracellularly and extracellularly under the control of an alcohol oxidase promoter and was subjected to the enzyme activity assay. The results demonstrated that reactivating the non-functional human urate oxidase gene fully or even moderately by simply replacing the premature stop codons is impossible. This finding confirms the idea that a number of successive loss-of-function missense mutations occurred during evolution, making higher primates functional uricase-deficit and vulnerable to hyperuricemic disorders.

  3. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.

  4. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1. PMID:27110861

  5. Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides.

    PubMed Central

    Shapleigh, J P; Hill, J J; Alben, J O; Gennis, R B

    1992-01-01

    It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1313003

  6. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  7. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.

  8. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  9. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    PubMed

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities. PMID:26773413

  10. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  11. Alternative oxidase expression in aged potato tuber slices

    SciTech Connect

    Hiser, C.; Herdies, L.; McIntosh, L. )

    1989-04-01

    Higher plant mitochondria posses a cyanide-resistant, hydroxamate-sensitive alternative pathway of electron transport that does not conserve energy. Aging of potato tuber slices for 24 hours leads to the development of an alternative pathway capacity. We have shown that a monoclonal antibody raised against the alternative pathway terminal oxidase of Sauromatum guttatum crossreacts with a protein of similar size in aged potato slice mitochondria. This protein was partially purified and characterized by two-dimensional gel electrophoresis, and its relative levels parallel the rise in cyanide-resistant respiration. We are using a putative clone of the S. guttatum alternative oxidase gene to isolate the equivalent gene from potato and to examine its expression.

  12. Cloning and expression of the potato alternative oxidase gene

    SciTech Connect

    Hiser, C.; McIntosh, L. Michigan State Univ., East Lansing )

    1990-05-01

    Mitochondria from 24-hour-aged potato slices possess an alternative path capacity and a 36kD protein not present in fresh potato mitochondria. This 36kD protein was identified by a monoclonal antibody against the Sauromatum guttatum alternative oxidase. These results suggest de novo synthesis of the 36kD protein during the aging process. To investigate this phenomenon, a clone containing a potato alternative oxidase gene was isolated from a cDNA library using the S. guttatum gene as a probe. This clone shows areas of high homology to the S. guttatum gene. Norther blots of RNA from fresh and 24-hour-aged potato slices are being probed with the potato gene to examine its expression in relation to the appearance of the 36kD protein.

  13. The 2013 ACC/AHA cardiovascular prevention guidelines improve alignment of statin therapy with coronary atherosclerosis as detected by coronary computed tomography angiography.

    PubMed

    Pursnani, Amit; Mayrhofer, Thomas; Ferencik, Maros; Hoffmann, Udo

    2014-11-01

    The recently released 2013 ACC/AHA guidelines for management of blood cholesterol have substantially increased the number of adults who are eligible for preventive statin therapy. We sought to determine whether eligibility for statin therapy as determined by the 2013 ACC/AHA guideline recommendation is better aligned with the actual presence of coronary artery disease (CAD) as detected by coronary CT angiography (CCTA) when compared to prior guidelines including the 2004 NCEP ATP III and 2011 ESC/EAS guidelines. In this secondary analysis of the prospective observational ROMICAT I (Rule Out Myocardial Infarction with Computer Assisted Tomography) cohort study, we included all men and women aged 40-79 years presenting with acute chest pain but not diagnosed with acute coronary syndrome nor on admission statin. Based on risk factor assessment and lipid data, we determined guideline-based eligibility for statin therapy by the 2013 ACC/AHA, the 2004 NCEP ATP III, and the 2011 ESC/EAS guidelines. We determined the presence and severity of CAD as detected by CCTA. The 2013 ACC/AHA algorithm identified nearly twice as many individuals as eligible for statins (n = 77/189; 41%) as compared to the 2004 ATP III criteria: (n = 41/189; 22%), (p < .0001) In addition, the 2013 ACC/AHA guidelines were more sensitive for treatment of CCTA-detected CAD than the 2004 ATP III guidelines [53.4% (42.5-64.1) vs 27.3% (18.3-37.8), p < .001] and the 2011 ESC/EAE guidelines [53.4% (42.5-64.1) vs 34.1% (24.3-45.0), p < .001]. However, the specificity of these guidelines was modestly reduced compared to the 2004 ATP III guidelines [70.3 (60.4-79.0) vs 83.2 (74.4-89.9), p < .001] and the 2011 ESC/EAE guidelines [70.3 (60.4-79.0) vs 86.1 (77.8-92.2), p < .001], suggesting increased treatment of subjects without CCTA-detected CAD. Overall, the 2013 ACC/AHA guidelines are more sensitive to identify patients who have CAD detected by CCTA eligible for statin therapy as compared with prior

  14. ACC Neuro-over-Connectivity Is Associated with Mathematically Modeled Additional Encoding Operations of Schizophrenia Stroop-Task Performance

    PubMed Central

    Taylor, Reggie; Théberge, Jean; Williamson, Peter C.; Densmore, Maria; Neufeld, Richard W. J.

    2016-01-01

    Functional magnetic resonance imaging at 7.0 Tesla was undertaken among Schizophrenia participants (Sz), and clinical (major mood disorder; MDD) and healthy controls (HC), during performance of the Stoop task. Stroop conditions included congruent and incongruent word color items, color-only items, and word-only items. Previous modeling results extended to this most widely used selective-attention task. All groups executed item-encoding operations (subprocesses of the item encoding process) at the same rate (performance accuracy being similarly high throughout), thus displaying like processing capacity; Sz participants, however, employed more subprocesses for item completions than did the MDD participants, who in turn used more subprocesses than the HC group. The reduced efficiency in deploying cognitive-workload capacity among the Sz participants was paralleled by more diffuse neuroconnectivity (Blood-Oxygen-Level-Dependent co-activation) with the anterior cingulate cortex (ACC) (Broadman Area 32), spreading away from this encoding-intensive region; and by less evidence of network dissociation across Stroop conditions. Estimates of cognitive work done to accomplish item completion were greater for the Sz participants, as were estimates of entropy in both the modeled trial-latency distribution, and its associated neuro-circuitry. Findings are held to be symptom and assessment significant, and to have potential implications for clinical intervention.

  15. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  16. ACC Neuro-over-Connectivity Is Associated with Mathematically Modeled Additional Encoding Operations of Schizophrenia Stroop-Task Performance

    PubMed Central

    Taylor, Reggie; Théberge, Jean; Williamson, Peter C.; Densmore, Maria; Neufeld, Richard W. J.

    2016-01-01

    Functional magnetic resonance imaging at 7.0 Tesla was undertaken among Schizophrenia participants (Sz), and clinical (major mood disorder; MDD) and healthy controls (HC), during performance of the Stoop task. Stroop conditions included congruent and incongruent word color items, color-only items, and word-only items. Previous modeling results extended to this most widely used selective-attention task. All groups executed item-encoding operations (subprocesses of the item encoding process) at the same rate (performance accuracy being similarly high throughout), thus displaying like processing capacity; Sz participants, however, employed more subprocesses for item completions than did the MDD participants, who in turn used more subprocesses than the HC group. The reduced efficiency in deploying cognitive-workload capacity among the Sz participants was paralleled by more diffuse neuroconnectivity (Blood-Oxygen-Level-Dependent co-activation) with the anterior cingulate cortex (ACC) (Broadman Area 32), spreading away from this encoding-intensive region; and by less evidence of network dissociation across Stroop conditions. Estimates of cognitive work done to accomplish item completion were greater for the Sz participants, as were estimates of entropy in both the modeled trial-latency distribution, and its associated neuro-circuitry. Findings are held to be symptom and assessment significant, and to have potential implications for clinical intervention. PMID:27695425

  17. Structures and Mechanism of the Monoamine Oxidase Family

    PubMed Central

    Gaweska, Helena; Fitzpatrick, Paul F.

    2011-01-01

    Members of the monoamine oxidase family of flavoproteins catalyze the oxidation of primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins. The enzymes have similar overall structures, with conserved FAD-binding domains and varied substrate-binding sites. Multiple mechanisms have been proposed for the catalytic reactions of these enzymes. The present review compares the structures of different members of the family and the various mechanistic proposals. PMID:22022344

  18. Characterization of two brassinosteroid C-6 oxidase genes in pea.

    PubMed

    Jager, Corinne E; Symons, Gregory M; Nomura, Takahito; Yamada, Yumiko; Smith, Jennifer J; Yamaguchi, Shinjiro; Kamiya, Yuji; Weller, James L; Yokota, Takao; Reid, James B

    2007-04-01

    C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea. PMID:17322341

  19. Studies of GA sub 53 oxidase from spinach

    SciTech Connect

    Wilson, T.; Zeevaart, J.A.D. )

    1990-05-01

    GA{sub 53} oxidase was purified 1,750-fold with 1% recovery of activity from spinach after exposure to 8 long days. This preparation was injected into balb/c mice and hybridomas from spleen cells were produced. Upon preliminary screening by immunoprecipitation of enzyme activity, three positive cell lines were selected. These are being cloned to select a true monoclonal antibody cell line. This antibody will be used to study the light/dark regulation of this enzyme.

  20. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  1. NADPH oxidase-dependent acid production in airway epithelial cells.

    PubMed

    Schwarzer, Christian; Machen, Terry E; Illek, Beate; Fischer, Horst

    2004-08-27

    The purpose of this study was to determine the role of NADPH oxidase in H(+) secretion by airway epithelia. In whole cell patch clamp recordings primary human tracheal epithelial cells (hTE) and the human serous gland cell line Calu-3 expressed a functionally similar zinc-blockable plasma membrane H(+) conductance. However, the rate of H(+) secretion of confluent epithelial monolayers measured in Ussing chambers was 9-fold larger in hTE compared with Calu-3. In hTE H(+) secretion was blocked by mucosal ZnCl(2) and the NADPH oxidase blockers acetovanillone and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), whereas these same blockers had no effect in Calu-3. We determined levels of transcripts for the NADPH oxidase transmembrane isoforms (Nox1 through -5, Duox1 and -2, and p22(phox)) and found Duox1, -2, and p22(phox) to be highly expressed in hTE, as well as the intracellular subunits p40(phox), p47(phox), and p67(phox). In contrast, Calu-3 lacked transcripts for Duox1, p40(phox), and p47(phox). Anti-Duox antibody staining resulted in prominent apical staining in hTE but no significant staining in Calu-3. When treated with amiloride to block the Na(+)/H(+) exchanger, intracellular pH in hTE acidified at significantly higher rates than in Calu-3, and treatment with AEBSF blocked acidification. These data suggest a role for an apically located Duox-based NADPH oxidase during intracellular H(+) production and H(+) secretion, but not in H(+) conduction.

  2. The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity.

    PubMed

    VanOrsdel, Caitlin E; Bhatt, Shantanu; Allen, Rondine J; Brenner, Evan P; Hobson, Jessica J; Jamil, Aqsa; Haynes, Brittany M; Genson, Allyson M; Hemm, Matthew R

    2013-08-01

    Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.

  3. Polyphenol oxidase and peroxidase in fruits and vegetables.

    PubMed

    Vámos-Vigyázó, L

    1981-01-01

    Polyphenol oxidases and peroxidases are among the most studied enzymes in fruits and vegetables. Owing to the deleterious effects of discoloration and off-flavor formation induced by their actions, these enzymes have not ceased to be a matter of concern to food technologists, while their versatility as catalyst and their diversity as protein present a challenge to the biochemist. This article gives an account on the present state of knowledge in this field. The occurrence of polyphenol oxidases and peroxidases in food and food raw materials, and their role and importance in food processing are briefly outlined. Results of biochemical research including catalytic properties, substrate specificity, susceptibility towards pH and temperature, action of inhibitors, isolation, purification, and characteristics of the enzymes are given, with special emphasis on recent achievements based on high resolution separation and isoenzyme techniques. Finally, the behavior of polyphenol oxidase and peroxidase in selected major groups of fruits and vegetables is discussed. Some contradictions found in the literature are pointed out and some questions that have not been given the necessary attention by researchers so far are mentioned.

  4. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae.

    PubMed

    Kapoor, Neha; Saxena, Sanjai

    2014-07-01

    Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 μg ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 μg ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity.

  5. Androgen receptor and monoamine oxidase polymorphism in wild bonobos.

    PubMed

    Garai, Cintia; Furuichi, Takeshi; Kawamoto, Yoshi; Ryu, Heungjin; Inoue-Murayama, Miho

    2014-12-01

    Androgen receptor gene (AR), monoamine oxidase A gene (MAOA) and monoamine oxidase B gene (MAOB) have been found to have associations with behavioral traits, such as aggressiveness, and disorders in humans. However, the extent to which similar genetic effects might influence the behavior of wild apes is unclear. We examined the loci AR glutamine repeat (ARQ), AR glycine repeat (ARG), MAOA intron 2 dinucleotide repeat (MAin2) and MAOB intron 2 dinucleotide repeat (MBin2) in 32 wild bonobos, Pan paniscus, and compared them with those of chimpanzees, Pan troglodytes, and humans. We found that bonobos were polymorphic on the four loci examined. Both loci MAin2 and MBin2 in bonobos showed a higher diversity than in chimpanzees. Because monoamine oxidase influences aggressiveness, the differences between the polymorphisms of MAin2 and MBin2 in bonobos and chimpanzees may be associated with the differences in aggression between the two species. In order to understand the evolution of these loci and AR, MAOA and MAOB in humans and non-human primates, it would be useful to conduct future studies focusing on the potential association between aggressiveness, and other personality traits, and polymorphisms documented in bonobos. PMID:25606465

  6. Quantitative analysis of phenol oxidase activity in insect hemolymph.

    PubMed

    Sorrentino, Richard Paul; Small, Chiyedza N; Govind, Shubha

    2002-04-01

    We describe a simple, inexpensive, and robust protocol for the quantification of phenol oxidase activity in insect hemolymph. Discrete volumes of hemolymph from Drosophila melanogaster larvae are applied to pieces of filter paper soaked in an L-3, 4-dihydroxyphenylalanine (L-DOPA) solution. Phenol oxidase present in the samples catalyzes melanin synthesis from the L-DOPA precursor, resulting in the appearance of a roughly circular melanized spot on the filter paper. The filter paper is then scanned and analyzed with image-processing software. Each pixel in an image is assigned a grayscale value. The mean of the grayscale values for a circular region of pixels at the center of the image of each spot is used to compute a melanization index (MI) value, the computation is based on a comparison to an external standard (India ink). Numerical MI values for control and experimental larvae can then be pooled and subjected to statistical analysis. This protocol was used to evaluate phenol oxidase activity in larvae of different backgrounds: wild-type, lozenge, hopscotch(Tumorous-lethal) (which induces the formation of large melanotic tumors), and body-color mutations ebony and yellow. Our results demonstrate that this assay is sensitive enough for use in genetic screens with D. melanogaster and could conceivably be used for evaluation of MI from hemolymph of other insects.

  7. Elicitation of dihydrobenzophenanthridine oxidase in Sanguinaria canadensis cell cultures.

    PubMed

    Ignatov, A; Clark, W G; Cline, S D; Psenak, M; Krueger, J; Coscia, C J

    1996-12-01

    Dihydrobenzophenanthridine (DHBP) oxidase catalyses the last step in the biogenesis of the benzo[c]phenanthridine alkaloid sanguinarine. Addition of autoclaved fungal preparations or putative plant defence signalling intermediates (jasmonic acid (JA), methyl jasmonate (MeJ), acetylsalicylic acid (ASA)) to Sanguinaria canadensis cell suspension cultures elicited an increase in the activity of DHBP oxidase. MeJ and ASA were better inducers of oxidase activity than were the fungal elicitor and JA. Enzyme-specific activity could be induced in a dose- and time-dependent manner up to 4- to 14-fold, respectively, when cells were treated with MeJ or with ASA. A change in total enzyme activity in cultured cells was observed only at the highest concentration of MeJ and not at any level of ASA tested. The results suggest that MeJ and ASA may play a role in the S. canadensis defence against pathogens by eliciting the enzymes involved in the synthesis of the phytoalexin benzophenanthridine alkaloids.

  8. Essential role of lysyl oxidases in notochord development

    PubMed Central

    Gansner, John M.; Mendelsohn, Bryce A.; Hultman, Keith A.; Johnson, Stephen L.; Gitlin, Jonathan D.

    2007-01-01

    Recent studies reveal a critical role for copper in the development of the zebrafish notochord, suggesting that specific cuproenzymes are required for the structural integrity of the notochord sheath. We now demonstrate that β-aminopropionitrile, a known inhibitor of the copper-dependent lysyl oxidases, causes notochord distortion in the zebrafish embryo identical to that seen in copper deficiency. Characterization of the zebrafish lysyl oxidase genes reveals eight unique sequences, several of which are expressed in the developing notochord. Specific gene knockdown demonstrates that loss of loxl1 results in notochord distortion, and that loxl1 and loxl5b have overlapping roles in notochord formation. Interestingly, while notochord abnormalities are not observed following partial knockdown of loxl1 or loxl5b alone, in each case this markedly sensitizes developing embryos to notochord distortion if copper availability is diminished. Likewise, partial knockdown of the lysyl oxidase substrate col2a1 results in notochord distortion when combined with reduced copper availability or partial knockdown of loxl1 or loxl5b. These data reveal a complex interplay of gene expression and nutrient availability critical to notochord development. They also provide insight into specific genetic and nutritional factors that may play a role in the pathogenesis of structural birth defects of the axial skeleton. PMID:17543297

  9. Towards a structural elucidation of the alternative oxidase in plants.

    PubMed

    Albury, Mary S; Elliott, Catherine; Moore, Anthony L

    2009-12-01

    In addition to the conventional cytochrome c oxidase, mitochondria of all plants studied to date contain a second cyanide-resistant terminal oxidase or alternative oxidase (AOX). The AOX is located in the inner mitochondrial membrane and branches from the cytochrome pathway at the level of the quinone pool. It is non-protonmotive and couples the oxidation of ubiquinone to the reduction of oxygen to water. For many years, the AOX was considered to be confined to plants, fungi and a small number of protists. Recently, it has become apparent that the AOX occurs in wide range of organisms including prokaryotes and a moderate number of animal species. In this paper, we provide an overview of general features and current knowledge available about the AOX with emphasis on structure, the active site and quinone-binding site. Characterisation of the AOX has advanced considerably over recent years with information emerging about the role of the protein, regulatory regions and functional sites. The large number of sequences available is now enabling us to obtain a clearer picture of evolutionary origins and diversity.

  10. Monoamine oxidases in major depressive disorder and alcoholism.

    PubMed

    Duncan, Jeremy; Johnson, Shakevia; Ou, Xiao-Ming

    2012-06-01

    Monoamine oxidases play an integral role in brain function. Both monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) regulate neurochemistry by degrading monoamine neurotransmitters (serotonin, dopamine, and norepinephrine). Any alteration in MAO levels can have devastating effects on the brain and behavior by lowering or raising neurotransmitter levels and producing toxic reactive oxygen species. In this review article, MAO is examined in terms of function and genetic organization, with special focus on recent discoveries related to the transcriptional regulation of MAO. In recent studies, transcriptional regulation involves a repressor protein, R1, for MAO-A and an activator protein, KLF11 (a Krüppel-like factor; also referred to as transforming growth factor-beta early inducible gene 2, TIEG2), for both MAO-A and MAO-B, by binding to Sp/KLF sites in the core promoters of MAO and regulating MAO gene expression. Furthermore, KLF11 may influence MAO-B expression and augment glyceraldehyde-3 phosphate dehydrogenase (GAPDH) to upregulate MAO-B transcription upon exposure to ethanol. Finally, we review recent progress in MAO research and highlight the roles that MAOs play in several psychiatric conditions, including chronic stress, major depressive disorder and alcohol dependence. Further research in this area is needed to better understand MAOs, their transcription factors and signaling pathways in psychiatric illnesses in order to develop new strategies for pharmacological advancement.

  11. Partial inactivation of cytochrome c oxidase by nonpolar mercurial reagents

    SciTech Connect

    Mann, A.J.; Auer, H.E.

    1980-01-25

    Purified beef heart cytochrome c oxidase is inactivated to the extent of 35 to 50% by the nonpolar mercurial reagents mercuric chloride and ethylmercuric chloride. The inactivation is complete within 5 min. In titrations of activity, the plateau level of inactivation is attained at added ethylmercuric chloride:heme a ratios of about 1:1. Up to 3 mercury atoms/heme a are bound to the oxidase, although only the first of these affects its enzymatic activity. Incubation of the ethylmercury-modified oxidase with sulfhydryl compounds reverses the inactivation, with 2,3-dimercaptopropanol being most effective of the reagents tested. Spectrophotometric and polarographic assays of enzymatic activity show that K/sub m/ values for the native and the ethylmercury-modified enzymes are practically indistinguishable, and that the partial inactivation observed for the latter is reflected exclusively in a lower value of V/sub max/ compared to that of the native enzyme. Based on these results, we propose that ethylmercuric chloride reacts with a single crucial--SH group per heme a, and that electron transfer processes in the modified product are partially inhibited.

  12. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae.

    PubMed

    Kapoor, Neha; Saxena, Sanjai

    2014-07-01

    Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 μg ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 μg ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity. PMID:24801403

  13. [Respiratory oxidases: the enzymes which use most of the oxygen which living things breathe].

    PubMed

    Toledo-Cuevas, E M

    1997-01-01

    The respiratory oxidases are the last enzymes of the aerobic respiratory chain. They catalize the reduction of molecular oxygen to water, with generation of an electrochemical gradient useful for the energy demanding cellular processes. Most of the oxidases belong to the heme-copper superfamily. They possess a heme-copper center, constituted of a high spin heme and a CuB center, where the reduction of oxygen takes place and probably where the link to proton pumping is located. The superfamily is divided in two classes: the quinol- and the cytochrome c-oxidases. The latter are divided in the aa3 and the cbb3-type cytochrome c oxidases. The main difference between quinol- and the aa3-type cytochrome c-oxidases is the CuA center, which is absent in the quinol oxidases. The cbb3-type cytochrome oxidases have the binuclear center, but lack the CuA center. They also does not have the classical subunits II and III. These differences seem not to affect the oxygen reduction or the proton pumping. Probably the oxidases have evolved from some denitrification enzymes and prior the photosynthetic process. Also is possible that the cbb3-type cytochrome oxidases or others very similar have been the first oxidases to appear. PMID:10932727

  14. Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus.

    PubMed

    von Ballmoos, Christoph; Adelroth, Pia; Gennis, Robert B; Brzezinski, Peter

    2012-04-01

    The respiratory heme-copper oxidases catalyze reduction of O(2) to H(2)O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa(3)-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba(3) oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H(+)/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba(3) oxidases with a focus on mechanisms of proton transfer and pumping.

  15. Alkylamino derivatives of 4-aminomethylpyridine as inhibitors of copper-containing amine oxidases.

    PubMed

    Bertini, Vincenzo; Buffoni, Franca; Ignesti, Giovanni; Picci, Nevio; Trombino, Sonia; Iemma, Francesca; Alfei, Silvana; Pocci, Marco; Lucchesini, Francesco; De Munno, Angela

    2005-02-10

    The first substratelike, reversible inhibitors of different copper amine oxidases (CAOs) with IC50 (M) as low as 2.0 x 10(-8) corresponding to derivatives of 4-aminomethylpyridine with alkoxy (1a-d), alkylthio (2a,b), and alkylamino (3a-e, 4a-j) groups in the positions 3 and 5 have been prepared and studied. The inhibitors 1a-d are active on benzylamine oxidase and semicarbazide-sensitive amine oxidase and are very selective with respect to diamine oxidase, lysyl oxidase, and monoamine oxidases. The inhibitors 2a,b are selective for benzylamine oxidase whereas 2a is also a new type of good substrate of diamine oxidase. The inhibitors 3a-e and 4a-j are substratelike, reversible, nonselective inhibitors of various CAOs including pea seedling amine oxidase and Hansenula polymorpha amine oxidase, whose enzymatic sites are known from X-ray structure determinations. The inhibitors 3b,c and 4b,c are excellent substratelike tools for studies correlating CAOs that afford crystals suitable for X-ray structure determinations with CAOs from mammals.

  16. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  17. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  18. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.

    PubMed

    Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu

    2013-06-01

    Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.

  19. Detection and substrate selectivity of new microbial D-amino acid oxidases.

    PubMed

    Gabler; Hensel; Fischer

    2000-11-01

    In order to screen for new microbial D-amino acid oxidase activities a selective and sensitive peroxidase/o-dianisidine assay, detecting the formation of hydrogen peroxide was developed. Catalase, which coexists with oxidases in the peroxisomes or the microsomes and, which competes with peroxidase for hydrogen peroxide, was completely inhibited by o-dianisidine up to a catalase activity of 500 nkat ml(-)(1). Thus, using the peroxidase/o-dianisidine assay and employing crude extracts of microorganisms in a microplate reader, a detection sensitivity for oxidase activity of 0.6 nkat ml(-)(1) was obtained.Wild type colonies which were grown on a selective medium containing D-alanine as carbon, energy and nitrogen source were examined for D-amino acid oxidase activity by the peroxidase/o-dianisidine assay. The oxidase positive colonies possessing an apparent oxidase activity > 2 nkat g dry biomass(-)(1) were isolated. Among them three new D-amino acid oxidase-producers were found and identified as Fusarium oxysporum, Verticilium lutealbum and Candida parapsilosis. The best new D-amino oxidase producer was the fungus F. oxysporum with a D-amino acid oxidase activity of about 900 nkat g dry biomass(-)(1) or 21 nkat mg protein(-)(1). With regard to the use as a biocatalytic tool in biotechnology the substrate specificities of the three new D-amino acid oxidases were compared with those of the known D-amino acid oxidases from Trigonopsis variabilis, Rhodotorula gracilis and pig kidney under the same conditions. All six D-amino acid oxidases accepted the D-enantiomers of alanine, valine, leucine, proline, phenylalanine, serine and glutamine as substrates and, except for the D-amino acid oxidase from V. luteoalbum, D-tryptophane, D-tyrosine, D-arginine and D-histidine were accepted as well. The relative highest activities (>95%) were measured versus D-alanine (C. parapsilosis, F. oxysporum, T. variabilis), D-methionine (V. luteoalbum, R. gracilis), D-valine (T. variabilis, R

  20. [Les inégalités dans l'accès aux soins du cancer au Canada: un point de vue éthique].

    PubMed

    Purificacion, Sunshine J; French, John G; d'Agincourt-Canning, Lori

    2015-11-01

    La capacité d'offrir des soins du cancer de qualité dépend en grande partie de l'accessibilité des services à ceux qui en ont besoin. Dans l'état actuel des choses, on constate des disparités en matière d'accès aux services de cancérologie au Canada, ce qui constitue un problème sur le plan de l'éthique. Le présent article fait ressortir les points de vue éthiques et stratégiques liés à l'équité dans l'accès aux soins du cancer au Canada. S'inspirant des principes de la bioéthique, soit la bénéficience, la non-maléficience et la justice, plusieurs stratégies sont recommandées pour améliorer l'accès aux soins du cancer au pays.

  1. Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psbA-trnH and single-copy nuclear gene Acc1.

    PubMed

    Yan, Hong-Hai; Baum, Bernard R; Zhou, Ping-Ping; Zhao, Jun; Wei, Yu-Ming; Ren, Chang-Zhong; Xiong, Fang-Qiu; Liu, Gang; Zhong, Lin; Zhao, Gang; Peng, Yuan-Ying

    2014-05-01

    Two uncorrelated nucleotide sequences, chloroplast intergenic spacer psbA-trnH and acetyl CoA carboxylase gene (Acc1), were used to perform phylogenetic analyses in 75 accessions of the genus Avena, representing 13 diploids, seven tetraploid, and four hexaploids by maximum parsimony and Bayesian inference. Phylogenic analyses based on the chloroplast intergenic spacer psbA-trnH confirmed that the A genome diploid might be the maternal donor of species of the genus Avena. Two haplotypes of the Acc1 gene region were obtained from the AB genome tetraploids, indicating an allopolyploid origin for the tetraploid species. Among the AB genome species, both gene trees revealed differences between Avena agadiriana and the other species, suggesting that an AS genome diploid might be the A genome donor and the other genome diploid donor might be the Ac genome diploid Avena canariensis or the Ad genome diploid Avena damascena. Three haplotypes of the Acc1 gene have been detected among the ACD genome hexaploid species. The haplotype that seems to represent the D genome clustered with the tetraploid species Avena murphyi and Avena maroccana, which supported the CD genomic designation instead of AC for A. murphyi and A. maroccana.

  2. Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus.

    PubMed

    Matsushita, K; Takahashi, K; Takahashi, M; Ameyama, M; Adachi, O

    1992-06-01

    Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study

    PubMed Central

    Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi

    2013-01-01

    Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg2+), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg2+/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg2+/kg DSW); and 2 × DSW (equivalent to 75 mg Mg2+/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5′-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis. PMID:23774889

  4. Deep sea water modulates blood pressure and exhibits hypolipidemic effects via the AMPK-ACC pathway: an in vivo study.

    PubMed

    Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi

    2013-06-17

    Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg²⁺), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg²⁺/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg²⁺/kg DSW); and 2 × DSW (equivalent to 75 mg Mg²⁺/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5'-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis.

  5. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.

  6. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.

    PubMed

    Forte, Elena; Borisov, Vitaliy B; Falabella, Micol; Colaço, Henrique G; Tinajero-Trejo, Mariana; Poole, Robert K; Vicente, João B; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  7. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  8. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.

    PubMed

    Girotti, A W; Thomas, J P; Jordan, J E

    1986-12-01

    Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible

  9. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions.

    PubMed

    Rogov, A G; Sukhanova, E I; Uralskaya, L A; Aliverdieva, D A; Zvyagilskaya, R A

    2014-12-01

    The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.

  10. The Role of Monoamine Oxidase Inhibitors in Current Psychiatric Practice

    PubMed Central

    Fiedorowicz, Jess G.; Swartz, Karen L.

    2007-01-01

    The use of monoamine oxidase inhibitors (MAOIs) by psychiatrists has declined over the past several decades with the expansion of psychiatrists’ pharmacologic armamentarium. This trend has also been driven by concern about food and drug interactions and side effects, as well as waning physician experience with these medications. Many psychiatrists, in fact, never prescribe MAOIs. Recent research has liberalized the MAOI diet and identified symptom presentations more likely to respond to these medications. Thus, clinicians must continue to familiarize themselves with the properties of and indications for prescribing MAOIs. PMID:15552546

  11. Dopamine-beta-hydroxylase, monoamine oxidase, and schizophrenia.

    PubMed

    DeLisi, L E; Wise, C D; Potkin, S G; Zalcman, S; Phelps, B H; Lovenberg, W; Wyatt, R J

    1980-12-01

    Plasma dopamine-beta-hydroxylase (DBH) activity was studied in two different populations of chronic schizophrenic patients and assayed by two independent laboratories. No significant difference between schizophrenic patients and normal controls was found although in both groups chronic undifferentiated schizophrenics with paranoid features had a trend towards lower DBH activity than the other patients and controls. In addition, DBH and monoamine oxidase (MAO) activities were studied in 13 schizophrenic patients and available first degree-relatives. There was no association of low MAO and low DBH activities within the schizophrenic families.

  12. Reductive trapping of substrate to bovine plasma amine oxidase

    SciTech Connect

    Hartmann, C.; Klinman, J.P.

    1987-01-25

    Plasma amine oxidases catalyze the oxidative deamination of amines to aldehydes, followed by a 2e- reduction of O/sub 2/ to H/sub 2/O/sub 2/. Pyrroloquinoline quinone (PQQ), previously believed to be restricted to prokaryotes, has recently been proposed to be the cofactor undergoing reduction in the first half-reaction of bovine plasma amine oxidase (Ameyama, M., Hayashi, U., Matsushita, K., Shinagawa, E., and Adachi, O. (1984) Agric. Biol. Chem. 48, 561-565; Lobenstein-Verbeek, C. L., Jongejan, J. A., Frank, J., and Duine, J. A. (1984) FEBS Lett. 170, 305-309). This result is unexpected, since model studies with PQQ implicate Schiff's base formation between a reactive carbonyl and substrates, whereas experiments with bovine plasma amine oxidase have failed to provide evidence for a carbonyl cofactor. We have, therefore, re-examined putative adducts between substrate and enzyme-bound cofactor, employing a combination of (/sup 14/C)benzylamine and (/sup 3/H)NaCNBH/sub 3/. The use of the relatively weak reductant, NaCNBH/sub 3/, affords Schiff's base specificity and permits the study of enzyme below pH 7.0. As we show, enzyme can only be inactivated by NaCNBH/sub 3/ in the presence of substrate, leading to the incorporation of 1 mol of (/sup 14/C)benzylamine/mol of enzyme subunit at complete inactivation. By contrast, we are unable to detect any labeling with (/sup 3/H)NaCNBH/sub 3/, analogous to an earlier study with (/sup 3/H)NaCNBH/sub 4/ (Suva, R. H., and Abeles, R. H. (1978) Biochemistry 17, 3538-3545). We conclude, first, that our inability to obtain adducts containing both carbon 14 and tritium rules out the reductive trapping either of amine substrate with pyridoxal phosphate or of aldehyde product with a lysyl side chain and, second, that the observed pattern of labeling is fully consistent with the presence of PQQ at the active site of bovine plasma amine oxidase.

  13. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase

    PubMed Central

    Rich, Peter R.; Maréchal, Amandine

    2013-01-01

    The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored. PMID:23864498

  14. Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L.

    PubMed

    Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung

    2012-08-01

    From the MeOH extract of the aerial part of Blumea balsamifera L., a new dihydroflavonol, (2R,3S)-(-)-4'-O-methyldihydroquercetin (1), together with seven known compounds has been isolated. Their structures were elucidated on the basis of spectroscopic data. Compounds 1-4 and 6-8 displayed significant xanthine oxidase inhibitory activity in a concentration-dependent manner, and compounds 1, 6 and 8 showed more potent inhibitory activity, with IC₅₀ values ranging from 0.23 to 1.91 µM, than that of a positive control allopurinol (IC₅₀ 2.50 µM). PMID:22821854

  15. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.

    PubMed

    Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B

    2016-01-15

    A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein.

  16. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae.

    PubMed

    Zhu, Xiangfei; Wang, Aiping; Zhu, Shijiang; Zhang, Lubin

    2011-09-15

    The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon. PMID:21511361

  17. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae.

    PubMed

    Zhu, Xiangfei; Wang, Aiping; Zhu, Shijiang; Zhang, Lubin

    2011-09-15

    The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon.

  18. Identification and biochemical characterization of polyamine oxidases in amphioxus: Implications for emergence of vertebrate-specific spermine and acetylpolyamine oxidases.

    PubMed

    Wang, Huihui; Liu, Baobao; Li, Hongyan; Zhang, Shicui

    2016-01-10

    Polyamine oxidases (PAOs) have been identified in a wide variety of animals, as well as in fungi and plant. Generally, plant PAOs oxidize spermine (Spm), spermidine (Spd) and their acetylated derivatives, N(1)-acetylspermine (N(1)-Aspm) and N(1)-acetylspermidine (N(1)-Aspd), while yeast PAOs oxidize Spm, N(1)-Aspm and N(1)-Aspd, but not Spd. By contrast, two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of Spm and N(1)-Aspm/N(1)-Aspd, respectively. However, our knowledge on the biochemical and structural characterization of PAOs remains rather limited, and their evolutionary history is still enigmatic. In this study, two amphioxus (Branchiostoma japonicum) PAO genes, named Bjpao1 and Bjpao2, were cloned and characterized. Both Bjpao1 and Bjpao2 displayed distinct tissue-specific expression patterns. Notably, rBjPAO1 oxidized both spermine and spermidine, but not N(1)-acetylspermine, whereas rBjPAO2 oxidizes both spermidine and N(1)-acetylspermine, but not spermine. To understand structure-function relationship, the enzymatic activities of mutant BjPAOs that were generated by site-directed mutagenesis and expressed in E. coli were examined, The results indicate that the residues H64, K301 and T460 in rBjPAO1, and H69, K315 and T467 in rBjPAO2 were all involved in substrate binding and enzyme catalytic activity to some extent. Based on our results and those of others, a model depicting the divergent evolution and functional specialization of vertebrate SMO and APAO genes is proposed.

  19. Identification and biochemical characterization of polyamine oxidases in amphioxus: Implications for emergence of vertebrate-specific spermine and acetylpolyamine oxidases.

    PubMed

    Wang, Huihui; Liu, Baobao; Li, Hongyan; Zhang, Shicui

    2016-01-10

    Polyamine oxidases (PAOs) have been identified in a wide variety of animals, as well as in fungi and plant. Generally, plant PAOs oxidize spermine (Spm), spermidine (Spd) and their acetylated derivatives, N(1)-acetylspermine (N(1)-Aspm) and N(1)-acetylspermidine (N(1)-Aspd), while yeast PAOs oxidize Spm, N(1)-Aspm and N(1)-Aspd, but not Spd. By contrast, two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of Spm and N(1)-Aspm/N(1)-Aspd, respectively. However, our knowledge on the biochemical and structural characterization of PAOs remains rather limited, and their evolutionary history is still enigmatic. In this study, two amphioxus (Branchiostoma japonicum) PAO genes, named Bjpao1 and Bjpao2, were cloned and characterized. Both Bjpao1 and Bjpao2 displayed distinct tissue-specific expression patterns. Notably, rBjPAO1 oxidized both spermine and spermidine, but not N(1)-acetylspermine, whereas rBjPAO2 oxidizes both spermidine and N(1)-acetylspermine, but not spermine. To understand structure-function relationship, the enzymatic activities of mutant BjPAOs that were generated by site-directed mutagenesis and expressed in E. coli were examined, The results indicate that the residues H64, K301 and T460 in rBjPAO1, and H69, K315 and T467 in rBjPAO2 were all involved in substrate binding and enzyme catalytic activity to some extent. Based on our results and those of others, a model depicting the divergent evolution and functional specialization of vertebrate SMO and APAO genes is proposed. PMID:26367330

  20. Alternative oxidase in animals: unique characteristics and taxonomic distribution.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C; Staples, James F

    2009-08-01

    Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events. PMID:19648408

  1. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum.

    PubMed

    Sedewitz, B; Schleifer, K H; Götz, F

    1984-10-01

    Pyruvate oxidase (EC 1.2.3.3) was isolated and characterized from Lactobacillus plantarum. The enzyme catalyzes the oxidative decarboxylation of pyruvate in the presence of phosphate and oxygen, yielding acetyl phosphate, carbon dioxide, and hydrogen peroxide. This pyruvate oxidase is a flavoprotein, with the relatively tightly bound cofactors flavin adenine dinucleotide, thiamine pyrophosphate, and a divalent metal ion, with Mn2+ being the most effective. The enzyme is only slightly inhibited by EDTA, implying that the enzyme-bound metal ion is poorly accessible to EDTA. Only under relatively drastic conditions, such as acid ammonium sulfate precipitation, could a colorless and entirely inactive apoenzyme be obtained. A partial reactivation of the enzyme was only possible by the combined addition of flavin adenine dinucleotide, thiamine pyrophosphate, and MnSO4. The enzyme has a molecular weight of ca. 260,000 and consists of four subunits with apparently identical molecular weights of 68,000. For catalytic activity the optimum pH is 5.7, and the optimum temperature is 30 degrees C. The Km values for pyruvate, phosphate, and arsenate are 0.4, 2.3, and 1.2 mM, respectively. The substrate specificity revealed that the enzyme reacts also with certain aldehydes and that phosphate can be replaced by arsenate. In addition to oxygen, several artificial compounds can function as electron acceptors.

  2. A Broad Distribution of the Alternative Oxidase in Microsporidian Parasites

    PubMed Central

    Williams, Bryony A. P.; Elliot, Catherine; Burri, Lena; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Keeling, Patrick J.

    2010-01-01

    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes. PMID:20169184

  3. Xanthine oxidase inhibitory activity of some Indian medical plants.

    PubMed

    Umamaheswari, Muthuswamy; AsokKumar, Kuppusamy; Somasundaram, Arumugam; Sivashanmugam, Thirumalaisamy; Subhadradevi, Varadharajan; Ravi, Thenvungal Kochupapy

    2007-02-12

    Xanthine oxidase inhibitory activity was assayed from six species belonging to different families traditionally used for the treatment of gout and related symptoms by indigenous people of India. The aqueous, methanol-water mixture and methanolic extract of these plants were used for the experiment. Of the 18 extracts assayed, 14 extracts demonstrated xanthine oxidase inhibitory activity at 100 microg/ml, among which 10 extracts showed an inhibition greater than 50% and IC(50) values below 100 microg/ml. The methanolic extracts of Coccinia grandis, Datura metel, Strychnos nux-vomica and Vitex negundo showed more than 50% inhibition, hence, they were screened for their in vivo hypouricaemic activity against potassium oxonate-induced hyperuricaemia in mice. Methanolic extracts of Coccinia grandis and Vitex negundo showed a significant decrease in the serum urate level (3.90+/-0.07 mg/dl, P<0.001) and (6.26+/-0.06 mg/dl, P<0.01), respectively, when compared to hyperuricaemic control (11.42+/-0.14 mg/dl). This effect is almost similar to the serum urate level of allopurinol (3.89+/-0.07 mg/dl).

  4. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  5. Iron regulates xanthine oxidase activity in the lung.

    PubMed

    Ghio, Andrew J; Kennedy, Thomas P; Stonehuerner, Jacqueline; Carter, Jacqueline D; Skinner, Kelly A; Parks, Dale A; Hoidal, John R

    2002-09-01

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreductase activity in cultured V79 cells was increased with exposure to ferric ammonium sulfate and inhibited by deferoxamine. Lung XO and total xanthine oxidoreductase activities were reduced in rats fed an iron-depleted diet and increased in rats supplemented with iron, without change in the ratio of XO to total oxidoreductase. Intratracheal injection of an iron salt or silica-iron, but not aluminum salts or silica-zinc, significantly increased rat lung XO and total xanthine oxidoreductase activities, immunoreactive xanthine oxidoreductase, and the concentration of urate in bronchoalveolar fluid. These results suggest the possibility that the production of uric acid, a major chelator of iron in extracellular fluid, is directly influenced by iron-mediated regulation of the expression and/or activity of its enzymatic source, xanthine oxidase.

  6. Oxidative Half-reaction of Arabidopsis thaliana Sulfite Oxidase

    PubMed Central

    Byrne, Robert S.; Hänsch, Robert; Mendel, Ralf R.; Hille, Russ

    2009-01-01

    Vertebrate forms of the molybdenum-containing enzyme sulfite oxidase possess a b-type cytochrome prosthetic group that accepts reducing equivalents from the molybdenum center and passes them on to cytochrome c. The plant form of the enzyme, on the other hand, lacks a prosthetic group other than its molybdenum center and utilizes molecular oxygen as the physiological oxidant. Hydrogen peroxide is the ultimate product of the reaction. Here, we present data demonstrating that superoxide is produced essentially quantitatively both in the course of the reaction of reduced enzyme with O2 and during steady-state turnover and only subsequently decays (presumably noncatalytically) to form hydrogen peroxide. Rapid-reaction kinetic studies directly following the reoxidation of reduced enzyme demonstrate a linear dependence of the rate constant for the reaction on [O2] with a second-order rate constant of kox = 8.7 × 104 ± 0.5 × 104 m−1s−1. When the reaction is carried out in the presence of cytochrome c to follow superoxide generation, biphasic time courses are observed, indicating that a first equivalent of superoxide is generated in the oxidation of the fully reduced Mo(IV) state of the enzyme to Mo(V), followed by a slower oxidation of the Mo(V) state to Mo(VI). The physiological implications of plant sulfite oxidase as a copious generator of superoxide are discussed. PMID:19875441

  7. Alternative oxidase in animals: unique characteristics and taxonomic distribution.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C; Staples, James F

    2009-08-01

    Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.

  8. Evolution of the primate cytochrome c oxidase subunit II gene.

    PubMed

    Adkins, R M; Honeycutt, R L

    1994-03-01

    We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. PMID:8006990

  9. Functionalized Polyacrylonitrile Nanofibrous Membranes for Covalent Immobilization of Glucose Oxidase.

    PubMed

    Manuel, James; Kim, Miso; Dharela, Rohini; Chauhan, Ghanshyam S; Fapyane, Deby; Lee, Soo-Jin; Chang, In Seop; Kang, Seo-Hee; Kim, Seon-Won; Ahn, Jou-Hyeon

    2015-01-01

    Nanofibrous membrane (NFM) with uniform morphology and large surface area was prepared from 10% solution of polyacrylonitrile (PAN) in N,N-dimethylformamide by electrospinning technique. NFM was chemically modified for use as a support for the immobilization of glucose oxidase. Chemical modification of NFM was carried out by two different methods. In the first method, the cyano groups of PAN were modified to amino groups by a two-step process, while in the second method the carboxylic groups were generated first and then further reacted with hexamethylene diamine to create a reactive spacer arm for the immobilization of enzyme. Scanning electron microscopy studies showed that the surface morphology of NFM was not changed by chemical modification and its mechanical strength was improved. The immobilized glucose oxidase (GOx) retained 54 and 60% of its original activity up to 25 cycles with the PAN NFMs modified by the first and the second method, respectively. The GOx-immobilized NFM from the second method showed promising performance with higher enzyme immobilization, activity retention, and favorable kinetic parameters. PMID:26301308

  10. Partial purification and characterization of polyphenol oxidase from persimmon.

    PubMed

    Navarro, José L; Tárrega, Amparo; Sentandreu, Miguel A; Sentandreu, Enrique

    2014-08-15

    Activity of polyphenol oxidase (PPO) from "Rojo Brillante" persimmon (Diospyros kaki L.) fruits was characterized. Crude extracts were used for characterization of enzyme activity and stability at different temperatures (60, 70 and 80 °C), pHs (from 3.5 to 7.5) and substrate concentrations (catechol from 0 to 0.5M). Maximum enzyme activity was reached at pH 5.5 and 55 °C. Enzyme stability was higher than PPO activities found in other natural sources, since above pH 5.5 the minimum time needed to achieve an enzyme inactivation of 90% was 70 min at 80 °C. However, at pH 4.0 the enzyme stability decreased, reaching inactivation levels above 90% after 10 min even at 60 °C. Thus it was concluded that acidification can circumvent browning problems caused by PPO activity. Moreover, polyacrylamide gel electrophoresis of the enriched extract revealed the presence of at least four bands with strong oxidase activity, suggesting the existence of different PPO isoforms.

  11. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases.

    PubMed

    Kim, Hyo-jin; Chen, Changbin; Kabbage, Mehdi; Dickman, Martin B

    2011-11-01

    Numerous studies have shown both the detrimental and beneficial effects of reactive oxygen species (ROS) in animals, plants, and fungi. These organisms utilize controlled generation of ROS for signaling, pathogenicity, and development. Here, we show that ROS are essential for the pathogenic development of Sclerotinia sclerotiorum, an economically important fungal pathogen with a broad host range. Based on the organism's completed genome sequence, we identified two S. sclerotiorum NADPH oxidases (SsNox1 and SsNox2), which presumably are involved in ROS generation. RNA interference (RNAi) was used to examine the function of SsNox1 and SsNox2. Silencing of SsNox1 expression indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of the SsNox2 gene resulted in limited sclerotial development, but the organism remained fully pathogenic. ΔSsnox1 strains had reduced ROS levels, were unable to develop sclerotia, and unexpectedly correlated with significantly reduced oxalate production. These results are in accordance with previous observations indicating that fungal NADPH oxidases are required for pathogenic development and are consistent with the importance of ROS regulation in the successful pathogenesis of S. sclerotiorum. PMID:21890677

  12. Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening1[OPEN

    PubMed Central

    Han, Yan-Chao; Kuang, Jian-Fei; Xiao, Yun-Yi; Fu, Chang-Chun; Wang, Jun-Ning

    2016-01-01

    Phytohormone ethylene controls diverse developmental and physiological processes such as fruit ripening via modulation of ethylene signaling pathway. Our previous study identified that ETHYLENE RESPONSE FACTOR11 (MaERF11), a transcription factor in the ethylene signaling pathway, negatively regulates the ripening of banana, but the mechanism for the MaERF11-mediated transcriptional regulation remains largely unknown. Here we showed that MaERF11 has intrinsic transcriptional repression activity in planta. Electrophoretic mobility shift assay and chromatin immunoprecipitation analyses demonstrated that MaERF11 binds to promoters of three ripening-related Expansin genes, MaEXP2, MaEXP7 and MaEXP8, as well as an ethylene biosynthetic gene MaACO1, via the GCC-box motif. Furthermore, expression patterns of MaACO1, MaEXP2, MaEXP7, and MaEXP8 genes are correlated with the changes of histone H3 and H4 acetylation level during fruit ripening. Moreover, we found that MaERF11 physically interacts with a histone deacetylase, MaHDA1, which has histone deacetylase activity, and the interaction significantly strengthens the MaERF11-mediated transcriptional repression of MaACO1 and Expansins. Taken together, these findings suggest that MaERF11 may recruit MaHDA1 to its target genes and repress their expression via histone deacetylation. PMID:27208241

  13. Pea (Pisum sativum) diamine oxidase contains pyrroloquinoline quinone as a cofactor.

    PubMed

    Glatz, Z; Kovár, J; Macholán, L; Pec, P

    1987-03-01

    Diamine oxidase was prepared from pea (Pisum sativum) seedlings by a new purification procedure involving two h.p.l.c. steps. We studied the optical and electrochemical properties of the homogeneous enzyme and also analysed the hydrolysed protein by several methods. The data presented here suggest that the carbonyl cofactor of diamine oxidase is firmly bound pyrroloquinoline quinone.

  14. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.

    PubMed

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki

    2009-07-01

    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  15. The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial alternative oxidase (AOX) is a non-energy conserving ubiquinol oxidase found in most fungal genomes studied to date. With the development of fungicides containing cytochrome-dependent respiratory chain (CRC) inhibitors, a strong interest in studying AOX functions in phytopathogenic...

  16. Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin.

    PubMed

    Ueda, Osamu; Kitamura, Shigeyuki; Ohashi, Koji; Sugihara, Kazumi; Ohta, Shigeru

    2003-04-01

    The reductive metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin microsomes and cytosol was investigated. 2-Nitrofluorene was reduced to the corresponding amine by the microsomes with NADPH and by the cytosol with 2-hydroxypyrimidine or 4-hydroxypyrimidine under anaerobic conditions. The cytosolic activity was much higher than that of skin microsomes. The 2- or 4-hydroxypyrimidine-linked nitroreductase activity was inhibited by oxypurinol and (+/-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one (BOF-4272), inhibitors of xanthine oxidase, but not by menadione, chlorpromazine and isovanillin, inhibitors of aldehyde oxidase. When skin cytosol was applied to a DEAE-cellulose column, the fractions containing xanthine oxidase exhibited a marked 2-hydroxypyrimidine-linked nitroreductase activity. In contrast, the aldehyde oxidase fraction showed little activity. Nitroreductase fractions obtained by ion exchange chromatography showed a band in Western blotting analysis using anti-rat xanthine oxidase. Moreover, the xanthine oxidase fraction exhibited a significant nitroreductase activity in the presence of 2-hydroxypyrimidine, 4-hydroxypyrimidine or hypoxanthine, and these activities were inhibited by inhibitors of xanthine oxidase. These results indicated that reduction of 2-nitrofluorene in the skin was mainly catalyzed by xanthine oxidase. PMID:12642461

  17. Safety assessment of bacterial choline oxidase protein introduced in transgenic crops for tolerance against abiotic stress.

    PubMed

    Singh, Abinav K; Singh, Bhanu P; Prasad, G B K S; Gaur, Shailendra N; Arora, Naveen

    2008-12-24

    Genetically modified crops have resistance to abiotic stress by introduction of choline oxidase protein. In the present study, the safety of choline oxidase protein derived from Arthrobacter globiformis was assessed for toxicity and allergenicity. The protein was stable at 90 degrees C for 1 h. Toxicity studies of choline oxidase in mice showed no significant difference (p > 0.05) from control in terms of growth, body weight, food consumption, and blood biochemical indices. Histology of gut tissue of mice fed protein showed normal gastric mucosal lining and villi in jejunum and ileum sections. Specific IgE in serum and IL-4 release in splenic culture supernatant were low in choline oxidase treated mice, comparable to control. Intravenous challenge with choline oxidase did not induce any adverse reaction, unlike ovalbumin group mice. Histology of lung tissues from choline oxidase sensitized mice showed normal airways, whereas ovalbumin-sensitized mice showed inflamed airways with eosinophilic infiltration and bronchoconstriction. ELISA carried out with food allergic patients' sera revealed no significant IgE affinity with choline oxidase. Also, choline oxidase did not show any symptoms of toxicity and allergenicity in mice.

  18. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270

    PubMed Central

    Navarro, Claudio A.; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A.

    2015-01-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  19. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2016-02-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  20. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems

    NASA Technical Reports Server (NTRS)

    Steed, C. L.; Taylor, L. K.; Harrison, M. A.

    2004-01-01

    During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.

  1. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    PubMed

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.

  2. An extracellular quinoprotein oxidase that catalyzes conversion of enacyloxin IVa to enacyloxin IIa.

    PubMed

    Oyama, R; Watanabe, T; Hanzawa, H; Sano, T; Sugiyama, T; Izaki, K

    1994-10-01

    A new extracellular quinoprotein oxidase named enacyloxin oxidase (ENX oxidase), which is involved in biosynthesis of ENX IIa, a congener of ENX, was found in the culture supernatant of Frateuria sp. W-315 and purified as a homogeneous protein on SDS-PAGE. ENX oxidase was shown to have a molecular mass of 73 kDa by SDS-PAGE and 79 kDa by gel filtration. The enzyme was inhibited by various carbonyl reagents and the activity was stimulated by addition of PQQ. This is the first report on a quinoprotein oxidase that is secreted into the culture medium in the logarithmic growth phase, and acts for biosynthesis of the antibiotic.

  3. Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex.

    PubMed

    Vukotic, Milena; Oeljeklaus, Silke; Wiese, Sebastian; Vögtle, F Nora; Meisinger, Chris; Meyer, Helmut E; Zieseniss, Anke; Katschinski, Doerthe M; Jans, Daniel C; Jakobs, Stefan; Warscheid, Bettina; Rehling, Peter; Deckers, Markus

    2012-03-01

    The terminal enzyme of the mitochondrial respiratory chain, cytochrome oxidase, transfers electrons to molecular oxygen, generating water. Within the inner mitochondrial membrane, cytochrome oxidase assembles into supercomplexes, together with other respiratory chain complexes, forming so-called respirasomes. Little is known about how these higher oligomeric structures are attained. Here we report on Rcf1 and Rcf2 as cytochrome oxidase subunits in S. cerevisiae. While Rcf2 is specific to yeast, Rcf1 is a conserved subunit with two human orthologs, RCF1a and RCF1b. Rcf1 is required for growth in hypoxia and complex assembly of subunits Cox13 and Rcf2, as well as for the oligomerization of a subclass of cytochrome oxidase complexes into respirasomes. Our analyses reveal that the cytochrome oxidase of mitochondria displays intrinsic heterogeneity with regard to its subunit composition and that distinct forms of respirasomes can be formed by complex variants.

  4. [Molecular docking analysis of xanthine oxidase inhibition by constituents of cichory].

    PubMed

    Wang, Xue-jie; Lin, Zhi-jian; Zhang, Bing; Zhu, Chun-sheng; Niu, Hong-juan; Zhou, Yue; Nie, An-zheng; Wang, Yu

    2015-10-01

    Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid. PMID:26975108

  5. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  6. Low-temperature kinetics of the reaction of oxygen and solubilized cytochrome oxidase.

    PubMed Central

    Chance, B; Saronio, C; Leigh, J S; Ingledew, W J; King, T E

    1978-01-01

    The reaction of solubilized cytochrome oxidase in the fully reduced state with O2 at low temperatures reveals components with characteristics similar to those observed with the membrane-bound oxidase, namely compounds A and B, which are proposed to be 'oxy' and 'peroxy' compounds respectively. Similar species are identified in both solubilized and membrane-bound oxidases; the reaction velocity constant for the reation with O2 and the dissociation constant are decreased 2-3-fold in the solubilied preparation as compared with the membrane-bound species, owing to decreased reactivity towards O2 in the former. The oxidase prepared in the mixed-valence state shows the distinctive absorption band characteristic of compound C, identified in the membrane-bound oxidase. The assignment of the alpha, beta, gamma and near-i.r. absorption bands to possible valence states of these compounds is made. PMID:208516

  7. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

    PubMed Central

    Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

    2014-01-01

    Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair. PMID:24669283

  8. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  9. [Molecular docking analysis of xanthine oxidase inhibition by constituents of cichory].

    PubMed

    Wang, Xue-jie; Lin, Zhi-jian; Zhang, Bing; Zhu, Chun-sheng; Niu, Hong-juan; Zhou, Yue; Nie, An-zheng; Wang, Yu

    2015-10-01

    Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid.

  10. Digenic inheritance of mutations in the coproporphyrinogen oxidase and protoporphyrinogen oxidase genes in a unique type of porphyria.

    PubMed

    van Tuyll van Serooskerken, Anne Moniek; de Rooij, Felix W; Edixhoven, Annie; Bladergroen, Reno S; Baron, Jens M; Joussen, Sylvia; Merk, Hans F; Steijlen, Peter M; Poblete-Gutiérrez, Pamela; te Velde, Kornelis; Wilson, J H Paul; Koole, Rita H; van Geel, Michel; Frank, Jorge

    2011-11-01

    The simultaneous dysfunction of two enzymes within the heme biosynthetic pathway in a single patient is rare. Not more than 15 cases have been reported. A woman with a transient episode of severe photosensitivity showed a biochemical porphyrin profile suggestive of hereditary coproporphyria (HCP), whereas some of her relatives had a profile that was suggestive of variegate porphyria (VP). HCP and VP result from a partial enzymatic deficiency of coproporphyrinogen oxidase (CPOX) and protoporphyrinogen oxidase (PPOX), respectively. DNA analysis in the index patient revealed mutations in both the CPOX and PPOX genes, designated as c.557-15C>G and c.1289dupT, respectively. The CPOX mutation leads to a cryptic splice site resulting in retention of 14 nucleotides from intron 1 in the mRNA transcript. Both mutations encode null alleles and were associated with nonsense-mediated mRNA decay. Given the digenic inheritance of these null mutations, coupled with the fact that both HCP and VP can manifest with life-threatening acute neurovisceral attacks, the unusual aspect of this case is a relatively mild clinical phenotype restricted to dermal photosensitivity.

  11. Spatiotemporal Localization of d-Amino Acid Oxidase and d-Aspartate Oxidases during Development in Caenorhabditis elegans

    PubMed Central

    Saitoh, Yasuaki; Katane, Masumi; Kawata, Tomonori; Maeda, Kazuhiro; Sekine, Masae; Furuchi, Takemitsu; Kobuna, Hiroyuki; Sakamoto, Taro; Inoue, Takao; Arai, Hiroyuki; Nakagawa, Yasuhito

    2012-01-01

    Recent investigations have shown that a variety of d-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. d-Amino acid oxidase (DAO) and d-aspartate oxidase (DDO) are degradative enzymes stereospecific for d-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of d-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several d- and l-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and d-amino acids in multicellular organisms. PMID:22393259

  12. A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript.

    PubMed

    Robbins, John C; Heller, Wade P; Hanson, Maureen R

    2009-06-01

    Several nuclear-encoded proteins containing pentatricopeptide repeat (PPR) motifs have previously been identified to be trans-factors essential for particular chloroplast RNA editing events through analysis of mutants affected in chloroplast biogenesis or function. Other PPR genes are known to encode proteins involved in other aspects of organelle RNA metabolism. A function has not been assigned to most members of the large plant PPR gene family. Arabidopsis and rice each contain over 400 PPR genes, of which about a fifth exhibit a C-terminal DYW domain. We describe here a comparative genomics approach that will facilitate identification of the role of RNA-binding proteins in organelle RNA metabolism. We have implemented this strategy to identify an Arabidopsis nuclear-encoded gene RARE1 that is required for editing of the chloroplast accD transcript. RARE1 carries 15 PPR motifs, an E/E+ and a DYW domain, whereas previously reported editing factors CRR4, CRR21, and CLB19 lack a DYW domain. The accD gene encodes the beta carboxyltransferase subunit of acetyl coA carboxylase, which catalyzes the first step in fatty acid biosynthesis in chloroplasts. Despite a lack of accD C794 editing and lack of restoration of an evolutionarily conserved leucine residue in the beta carboxyltransferase protein, rare1 mutants are unexpectedly robust and reproduce under growth room conditions. Previously the serine-to-leucine alteration caused by editing was deemed essential in the light of the finding that a recombinantly expressed "unedited" form of the pea acetyl coA carboxylase was catalytically inactive.

  13. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin.

    PubMed

    Salman-Minkov, Ayelet; Levi, Amnon; Wolf, Shmuel; Trebitsh, Tova

    2008-05-01

    The flowering pattern of watermelon species (Citrullus spp.) is either monoecious or andromonoecious. Ethylene is known to play a critical role in floral sex determination of cucurbit species. In contrast to its feminizing effect in cucumber and melon, in watermelon ethylene promotes male flower development. In cucumber, the rate-limiting enzyme of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), regulates unisexual flower development. To investigate the role of ethylene in flower development, we isolated four genomic sequences of ACS from watermelon (CitACS1-4). Both CitACS1 and CitACS3 are expressed in floral tissue. CitACS1 is also expressed in vegetative tissue and it may be involved in cell growth processes. Expression of CitACS1 is up-regulated by exogenous treatment with auxin, gibberellin or ACC, the immediate precursor of ethylene. No discernible differential floral sex-dependent expression pattern was observed for this gene. The CitACS3 gene is expressed in open flowers and in young staminate floral buds (male or hermaphrodite), but not in female flowers. CitACS3 is also up-regulated by ACC, and is likely to be involved in ethylene-regulated anther development. The expression of CitACS2 was not detected in vegetative or reproductive organs but was up-regulated by auxin. CitACS4 transcript was not detected under our experimental conditions. Restriction fragment length polymorphism (RFLP) and sequence tagged site (STS) marker analyses of the CitACS genes showed polymorphism among and within the different Citrullus groups, including watermelon cultivars, Citrullus lanatus var. lanatus, the central subspecies Citrullus lanatus var. citroides, and the desert species Citrullus colocynthis (L).

  14. Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus.

    PubMed

    Liu, Tong-Jian; Zhang, Cai-Yun; Yan, Hai-Fei; Zhang, Lu; Ge, Xue-Jun; Hao, Gang

    2016-01-01

    Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36-rps8, rps16-trnQ, trnH-psbA and ndhC-trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.

  15. Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus

    PubMed Central

    Liu, Tong-Jian; Zhang, Cai-Yun; Yan, Hai-Fei; Zhang, Lu

    2016-01-01

    Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis. PMID:27375965

  16. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice.

    PubMed

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-04-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.

  17. Resolution of thylakoid polyphenol oxidase and a protein kinase

    SciTech Connect

    Race, H.L.; Davenport, J.W.; Hind, G.

    1995-12-31

    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  18. Partial characterization of polyphenol oxidase activity in raspberry fruits.

    PubMed

    González, E M; de Ancos, B; Cano, M P

    1999-10-01

    A partial characterization of polyphenol oxidase (PPO) activity in raspberry fruits is described. Two early cultivars harvested in May/June (Heritage and Autumm Bliss) and two late cultivars harvested in October-November (Ceva and Rubi) were analyzed for PPO activity. Stable and highly active PPO extracts were obtained using insoluble poly(vinylpyrrolidone) (PVP) and Triton X-100 in sodium phosphate, pH 7.0 buffer. Polyacrylamide gel electrophoresis of raspberry extracts under nondenaturing conditions resolved in one band (R(f)()(1) = 0.25). Raspberry PPO activity has pH optima of 8.0 and 5.5, both with catechol (0.1 M). Maximum activity was with D-catechin (catecholase activity), followed by p-coumaric acid (cresolase activity). Heritage raspberry also showed PPO activity toward 4-methylcatechol. Ceva and Autumm Bliss raspberries showed the higher PPO activity using catechol as substrate.

  19. Traumatic brain injury and NADPH oxidase: a deep relationship.

    PubMed

    Angeloni, Cristina; Prata, Cecilia; Dalla Sega, Francesco Vieceli; Piperno, Roberto; Hrelia, Silvana

    2015-01-01

    Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  20. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ("Arnica").

    PubMed

    Filha, Z S Ferraz; Vitolo, I F; Fietto, L G; Lombardi, J A; Saúde-Guimarães, D A

    2006-08-11

    Twenty-two extracts from five Lychnophora species and one Lychnophoriopsis species, traditionally used in Brazil as analgesic, anti-inflammatory, and to treat bruise and rheumatism were examined for the inhibition of xanthine oxidase (XO), the enzyme that catalyses the metabolism of hypoxanthine and xanthine into uric acid. Sixteen extracts were tested. All of them were found to have excellent XO inhibitory activity, with inhibitions greater than 38% at 100 microg/mL in the assay mixture. The most active plants examined were Lychnophora trichocarpha, Lychnophora ericoides, Lychnophora staavioides and Lychnophoriopsis candelabrum, with inhibitions of 77%, 78%, 66% and 63% at 100 microg/mL, respectively, and IC(50) values of 6.16, 8.28, 33.97 and 37.70 microg/mL, respectively.