Science.gov

Sample records for acc oxidase mrna

  1. ACC oxidase genes expressed in the wood-forming tissues of loblolly pine (Pinus taeda L.) include a pair of nearly identical paralogs (NIPs).

    PubMed

    Yuan, S; Wang, Y; Dean, J F D

    2010-03-15

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final reaction of the ethylene biosynthetic pathway, converting the unusual cyclic amino acid, ACC, into ethylene. Past studies have shown a possible link between ethylene and compression wood formation in conifers, but the relationship has received no more than modest study at the gene expression level. In this study, a cDNA clone encoding a putative ACC oxidase, PtACO1, was isolated from a cDNA library produced using mRNA from lignifying xylem of loblolly pine (Pinus taeda) trunk wood. The cDNA clone comprised an open reading frame of 1461 bp encoding a protein of 333 amino acids. Using PCR amplification techniques, a genomic clone corresponding to PtACO1 was isolated and shown to contain three introns with typical GT/AG boundaries defining the splice junctions. The PtACO1 gene product shared 70% identity with an ACC oxidase from European white birch (Betula pendula), and phylogenetic analyses clearly placed the gene product in the ACC oxidase cluster of the Arabidopsis thaliana 2-oxoglutarate-dependent dioxygenase superfamily tree. The PtACO1 sequence was used to identify additional ACC oxidase clones from loblolly pine root cDNA libraries characterized as part of an expressed sequence tag (EST) discovery project. The PtACO1 sequence was also used to recover additional paralogous sequences from genomic DNA, one of which (PtACO2) turned out to be >98% identical to PtACO1 in the nucleotide coding sequence, leading to its classification as a "nearly identical paralog" (NIP). Quantitative PCR analyses showed that the expression level of PtACO1-like transcripts varied in different tissues, as well as in response to hormonal treatments and bending. Possible roles for PtACO1 in compression wood formation in loblolly pine and the discovery of its NIP are discussed in light of these results.

  2. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    PubMed Central

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  3. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana.

    PubMed

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-09-26

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were 'catalytic activity' (1327, 56.4%), 'heme binding' (65, 2.76%), 'tetrapyrrole binding' (66, 2.81%), and 'oxidoreductase activity' (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis.

  4. [Prolonging the vase life of carnation "Mabel" through integrating repeated ACC oxidase genes into its genome].

    PubMed

    Yu, Yi-Xun; Bao, Man-Zhu

    2004-10-01

    Carnation (Dianthus caryophyllus L.) is one of the most important cut flowers. The cultivar "Mabel" of carnation was transformed with direct repeat gene of ACC oxidase, the key enzyme in ethylene synthesis, driven by the CaMV35S promoter mediated by Agrobacterium tumefacien. Hygromycin phosphotransferase (HPT) gene was used as selection marker. Leaf explants were pre-cultured on shoot-inducing medium for 2 d, then immersed in Agrobacterium suspension for 8-12 min. Co-cultivation was carried out on the medium (MS+BA 1.0 mg/L+NAA 0.3 mg/L +Acetosyringone 100 micromol/L, pH 5.8-6.0) for 3 d. After that transformants were obtained by transferring explants to selection medium supplemented with 5 mg/L hygromycin (Hyg) and 400 mg/L cefotaxime (Cef). Southern blotting detection showed that a foreign gene was integrated into the carnation genome and 3 transgenic lines (T257, T299 and T273 line) obtained. Addition of acetosyringone and the time of co-culture were the main factors that influenced transformation frequency. After being transplanted to soil, transgenic plants were grew normally in greenhouse. Ethylene production of cut flower of transgenic T257 line was 95% lower than that of the control, and that of T299 line was reduced by 90% than that of the control, while that of transgenic T273 line has no of significantly different from control. Vase life of transgenic T257 line was 5 d longer than that of the control line at 25 degrees C.

  5. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway.

    PubMed

    Jafari, Zohreh; Haddad, Raheem; Hosseini, Ramin; Garoosi, Ghasemali

    2013-02-01

    1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe(2+) as a cofactor, ascorbate as a cosubstrate and CO(2) as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77-98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 β-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.

  6. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    PubMed

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato.

  7. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs).

    PubMed

    Clouse, Ronald M; Carraro, Nicola

    2014-01-01

    The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived.

  8. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs)

    PubMed Central

    Clouse, Ronald M.; Carraro, Nicola

    2014-01-01

    The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus, we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and derived. PMID

  9. Dynamic 1-Aminocyclopropane-1-Carboxylate-Synthase and -Oxidase Transcript Accumulation Patterns during Pollen Tube Growth in Tobacco Styles1

    PubMed Central

    Weterings, Koen; Pezzotti, Mario; Cornelissen, Marc; Mariani, Celestina

    2002-01-01

    In flowering plants, pollination of the stigma sets off a cascade of responses in the distal flower organs. Ethylene and its biosynthetic precursor 1-aminocyclopropane-1-carboxylate (ACC) play an important role in regulating these responses. Because exogenous application of ethylene or ACC does not invoke the full postpollination syndrome, the pollination signal probably consists of a more complex set of stimuli. We set out to study how and when the pollination signal moves through the style of tobacco (Nicotiana tabacum) by analyzing the expression patterns of pistil-expressed ACC-synthase and -oxidase genes. Results from this analysis showed that pollination induces high ACC-oxidase transcript levels in all cells of the transmitting tissue. ACC-synthase mRNA accumulated only in a subset of transmitting tract cells and to lower levels as compared with ACC-oxidase. More significantly, we found that although ACC-oxidase transcripts accumulate to uniform high levels, the ACC-synthase transcripts accumulate in a wave-like pattern in which the peak coincides with the front of the ingrowing pollen tube tips. This wave of ACC-synthase expression can also be induced by incongruous pollination and (partially) by wounding. This indicates that wounding-like features of pollen tube invasion might be part of the stimuli evoking the postpollination response and that these stimuli are interpreted differently by the regulatory mechanisms of the ACC-synthase and -oxidase genes. PMID:12427986

  10. [Integration of different T-DNA structures of ACC oxidase gene into carnation genome extended cut flower vase-life differently].

    PubMed

    Yu, Yi-Xun; Bao, Man-Zhu

    2004-09-01

    The cultivar 'Master' of carnation (Dianthus caryophyllus L.) was transformed with four T-DNA structures containing sense, antisense, sense direct repeat and antisense direct repeat gene of ACC oxidase mediated by Agrobacterium tumefaciens. Southern blotting detection showed that foreign gene was integrated into the carnation genome and 14 transgenic lines were obtained. The transgenic plants were transplanted to soil and grew normally in greenhouse. Of the 12 transgenic lines screened, the cut flower vase life of 8 transgenic lines is up to 11 days and the longest one is 12.8 days while the vase life of the control is 5.8 days under 25 degrees C. The vase life of 2 lines out of 3 with single sense ACO gene is same as that of the control, while the vase life of 3 lines out of 4 with single antisense ACO gene is prolonged. The vase life of cut flowers of 5 lines with direct repeat ACO genes is all prolonged by about 6 days, while the vase life of 3 out of 7 lines with single ACO gene is same as that of the control. During the senescence of cut flowers, the ethylene production of the most of the transgenic lines decreased significantly, and the production of ethylene is not detectable in lines T456, T556 and T575. The results of the research demonstrate that antisense foreign gene inhibits expression of endogenesis gene more significantly than sense one. Both sense direct repeat and antisense direct repeat foreign genes can suppress endogenous gene expression more significantly comparing to single foreign genes. The transgenic lines obtained from this research are useful to minimize carnation cut flower transportation and storage expenses.

  11. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation

  12. Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Fleischer, Jennifer G; Woster, Patrick M; Casero, Robert A

    2005-03-15

    The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30-90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA.

  13. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  14. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA

    PubMed Central

    2004-01-01

    Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354→Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [35S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria. PMID:15139850

  15. Effect of Cheonggukjang supplementation upon hepatic acyl-CoA synthase, carnitine palmitoyltransferase I, acyl-CoA oxidase and uncoupling protein 2 mRNA levels in C57BL/6J mice fed with high fat diet

    PubMed Central

    Soh, Ju-Ryoun; Shin, Dong-Hwa; Kwon, Dae Young

    2007-01-01

    This study investigated the effect of Cheonggukjang on mRNA levels of hepatic acyl-CoA synthase (ACS), carnitine palmitoyltransferase I (CPT-I), acyl-CoA oxidase (ACO) and uncoupling protein 2 (UCP2), and on serum lipid profiles in C57BL/6J mice. Thirty male C57BL/6J mice were divided into three groups; normal diet (ND), high fat diet (HD) and high fat diet with 40% Cheonggukjang (HDC). Energy intake was significantly higher in the HDC group than in the ND and HD groups. The HDC group normalized in weight gain, epididymal and back fat (g/100 g) accumulation which are increased by high fat diet. Serum concentrations of triglyceride and total cholesterol in the HDC were significantly lower than those in the HD group. These results were confirmed by hepatic mRNA expression of enzymes and protein (ACS, CPT-1, ACO, UCP2) which is related with lipid metabolism by RT-PCR. Hepatic CPT-I, ACO and UCP2 mRNA expression was increased by Cheonggukjang supplementation. We demonstrated that Cheonggukjang supplement leads to increased mRNA expressions of enzymes and protein involved in fatty acid oxidation in liver, reduced accumulation of body fat and improvement of serum lipids in high fat diet fed mice. PMID:18850232

  16. Pear ACO genes encoding putative 1-aminocyclopropane-1-carboxylate oxidase homologs are functionally expressed during fruit ripening and involved in response to salicylic acid.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2012-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final reaction of the ethylene biosynthetic pathway, converting ACC into ethylene. Past studies have shown a possible link between ACC oxidase and salicylic acid during fruit ripening in pear, but the relationship has received no more than modest study at the gene expression level. In this study, two cDNA clones encoding putative ACC oxidase, PpACO1 and PpACO2, were isolated from a cDNA library constructed by our own laboratory and produced using mRNA from mesocarp of pear (Pyrus pyrifolia Nakai. cv.Whangkeumbae). One cDNA clone, designated PpACO1 (GenBank accession No. JN807390), comprised an open reading frame of 945 bp encoding a protein of 314 amino acids. The other cDNA, designated PpACO2 (GenBank accession No. JN807392), encodes a protein with 322 amino acids that shares high similarity with the known plant ACOs. Using PCR amplification techniques, two genomic clones corresponding to PpACO1 and PpACO2 were isolated and shown to contain independently three introns with typical GT/AG boundaries defining the splice junctions. The PpACO1 gene product shared 99 % identity with an ACC oxidase from pear (Pyrus × bretschneideri Rehd.cv.Yali), and phylogenetic analyses clearly placed the gene product in the ACC oxidase cluster of the pear 2-oxoglutarate-dependent dioxygenase superfamily tree. Quantitative RT-PCR analysis indicated that the two PpACO genes are differentially expressed in pear tissues. PpACO1 and PpACO2 were predominantly expressed in fruit. The transcripts of PpACO1 were accumulated at relatively low levels in early fruit, but strongly high levels in fruit ripening and senescence stages, while the transcripts of PpACO2 were accumulated at higher levels in early fruit and much lower levels with further fruit cell development than the transcripts of PpACO1. In addition, PpACO1 gene was down-regulated in fruit by salicylic acid (SA). Nevertheless, PpACO2 gene was dramatically up-regulated in

  17. Evaluating Performance Portability of OpenACC

    SciTech Connect

    Sabne, Amit J; Sakdhnagool, Putt; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    Accelerator-based heterogeneous computing is gaining momentum in High Performance Computing arena. However, the increased complexity of the accelerator architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle the problem. While the abstraction endowed by OpenACC offers productivity, it raises questions on its portability. This paper evaluates the performance portability obtained by OpenACC on twelve OpenACC programs on NVIDIA CUDA, AMD GCN, and Intel MIC architectures. We study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.

  18. Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease.

    PubMed

    Meissner, Wassilios; Guigoni, Celine; Cirilli, Laetitia; Garret, Maurice; Bioulac, Bernard H; Gross, Christian E; Bezard, Erwan; Benazzouz, Abdelhamid

    2007-03-01

    The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets.

  19. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  20. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  1. ACC Effectiveness Review, 1999-2002.

    ERIC Educational Resources Information Center

    Wallace, Roslyn, Ed.

    2002-01-01

    These newsletters on Institutional Effectiveness (IE) at Austin Community College (ACC) in Texas include the following articles: (1) "The 'Fast Track'...Students Say It Works!" (2) "Are Students Successfully Completing Distance Learning Courses at ACC?" (3) "Tracking Transfers"; (4) "Math Pilot: Study Skills…

  2. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence

    PubMed Central

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.

    1999-01-01

    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  3. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  4. GENERAL: The effect of ACC vehicles to mixed traffic flow consisting of manual and ACC vehicles

    NASA Astrophysics Data System (ADS)

    Xie, Dong-Fan; Gao, Zi-You; Zhao, Xiao-Mei

    2008-12-01

    This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity direrence (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles. Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region II the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region III serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.

  5. 1-MCP EFFECTS ON ANTIOXIDANT ACTIVITY AND GENE EXPRESSION OF ACC-SYNTHASE AND ACC-OXIDASE IN COTTON FLOWERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton remains an important cash crop for farmers in the southern United States. When temperatures rise above 32oC the in vivo fertilization efficiency of cotton is reduced resulting in decreased seed production and potentially decreased yields. Under stress, the plant hormone ethylene is manufact...

  6. ACC forum looks at 'burning' questions

    SciTech Connect

    Carter, R.

    2005-06-01

    The American Coal Council's (ACC) Spring Coal Forum had as its theme: Coal's renaissance: prospects for regenerating coal generation'. It explored US coal demand, supply, end-user technology and market trends. The article gives an overview of the conference, highlighting several presentations. 2 figs., 1 tab.

  7. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment

    PubMed Central

    Libé, Rossella

    2015-01-01

    Adrenocortical carticnoma (ACC) is a rare malignancy with an incidence of 0.7–2.0 cases/million habitants/year. The diagnosis of malignancy relies on careful investigations of clinical, biological, and imaging features before surgery and pathological examination after tumor removal. Most patients present with steroid hormone excess or abdominal mass effects, but 15% of patients with ACC is initially diagnosed incidentally. After the diagnosis, in order to assess the ACC prognosis and establish an adequate basis for treatment decisions different tools are proposed. The stage classification proposed by the European Network for the Study of Adrenal Tumors (ENSAT) is recommended. Pathology reports define the Weiss score, the resection status and the proliferative index, including the mitotic count and the Ki67 index. As far as the treatment is concerned, in case of tumor limited to the adrenal gland, the complete resection of the tumor is the first option. Most patients benefit from adjuvant mitotane treatment. In metastatic disease, mitotane is the cornerstone of initial treatment, and cytotoxic drugs should be added in case of progression. Recently, the First International Randomized (FIRM-ACT) Trial in metastatic ACC reported the association between mitotane and etoposide/doxorubicin/cisplatin (EDP) as the new standard in first line treatment of ACC. In last years, new targeted therapies, including the IGF-1 receptor inhibitors, have been investigated, but their efficacy remains limited. Thus, new treatment concepts are urgently needed. The ongoing “omic approaches” and next-generation sequencing will improve our understanding of the pathogenesis and hopefully will lead to better therapies. PMID:26191527

  8. Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-04-01

    Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.

  9. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  10. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  11. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine.

  12. In silico structural and functional analysis of Mesorhizobium ACC deaminase.

    PubMed

    Pramanik, Krishnendu; Soren, Tithi; Mitra, Soumik; Maiti, Tushar Kanti

    2017-02-11

    Nodulation is one of the very important processes of legume plants as it is the initiating event of fixing nitrogen. Although ethylene has essential role in normal plant metabolism but it has also negative impact on plants particularly in nodule formation in legume plants. It is also produced due to a variety of biotic or abiotic stresses. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is a rhizobial enzyme which cleaves ACC (immediate precursor of ethylene) into α-ketobutyrate and ammonia. As a result, the level of ethylene from the plant cells is decreased and the negative impact of ethylene on nodule formation is reduced. ACC deaminase is widely studied in several plant growth promoting rhizobacterial (PGPR) strains including many legume nodulating bacteria like Mesorhizobium sp. It is an important symbiotic nitrogen fixer belonging to the class - alphaproteobacteria under the order Rhizobiales. ACC deaminase has positive role in Legume-rhizobium symbiosis. Rhizobial ACC deaminase has the potentiality to reduce the adverse effects of ethylene, thereby triggering the nodulation process. The present study describes an in silico comparative structural (secondary structure prediction, homology modeling) and functional analysis of ACC deaminase from Mesorhizobium spp. to explore physico-chemical properties using a number of bio-computational tools. M. loti was selected as a representative species of Mesorhizobium genera for 3D modelling of ACC deaminase protein. Correlation by the phylogenetic relatedness on the basis of both ACC deaminase enzymes and respective acdS genes of different strains of Mesorhizobium has also studied.

  13. Acc homoeoloci and the evolution of wheat genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed the DNA sequences of BACs from many wheat libraries containing the Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, to gain understanding of the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Mor...

  14. Characterization of a Decapentapletic Gene (AccDpp) from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress

    PubMed Central

    Wang, Hongfang; Guo, Xulei; Guo, Xingqi; Sun, Qinghua; Xu, Baohua

    2016-01-01

    To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ) signal pathway. Decapentapletic gene (Dpp) belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana). In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp. PMID:26881804

  15. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.

  16. Increase in ACC oxidase levels and activities during paradormancy release of leafy spurge (Euphorbia esula) buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about ethylene’s role during paradormancy break in adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the eth...

  17. 24 CFR 969.105 - Extension of ACC upon payment of operating subsidy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for which Operating Subsidy is paid with respect to the project. (b) Consolidated ACC. Where a single... Consolidated ACC. In any event, no Operating Subsidy payable under a Consolidated ACC or otherwise shall...

  18. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers.

  19. Silencing the NR2B gene in rat ACC neurons by lentivirus-delivered shRNA alleviates pain-related aversion.

    PubMed

    Guo, Shou-Gang; Lv, Xiu-Hua; Guan, Shan-Hui; Li, Hui-Lu; Qiao, Yong; Feng, Hao; Cong, Lin; Wang, Gong-Ming

    2015-01-01

    The N-methyl-D-aspartate (NMDA) receptor NR2B subunit on neurons in the anterior cingulate cortex (ACC) is implicated in the affective response to noxious stimuli. Selectively silencing this NR2B subunit in ACC neurons could therefore alleviate pain-related aversion. However, to date, there is no optimal approach to selectively silence the NR2B gene in ACC neurons. In the present study, we constructed lentiviral vectors and delivered shRNA (NR2B-RNAi-LV) to effectively silence the NR2B gene in ACC neurons. The use of lentivirus resulted in 95% transfection efficiency and 83% silencing of the NR2B gene in ACC neurons. Electrophysiological experiments showed that the total INMDA was similarly reduced by 48% in lentivirus-transfected ACC neurons. The biochemical and functional data demonstrated that lentiviral shRNA delivery produced a high transfection and silencing efficiency in the ACC neurons. SNI rats weighting 220-250 g were randomly divided into three groups: normal saline group (NS), lenti-siRNA/NC (LV-NC) group, and lenti-siRNA/NR2B (LV-NR2B) group, and conditioned place avoidance was conducted. The results indicated that NR2B-RNAi-LV decreased greatly the conditioning scores of F-CPA while NC-GFP-LV has no effects. NR2B mRNA expression in the NR2B-RNAi-LV group was significantly lower than that in the control group and NC-GFP-LV group. This novel approach of silencing the NR2B gene in ACC neuron could potentially be used to alleviate pain-related aversion.

  20. 24 CFR 905.302 - Timely submission of the CF ACC amendment by the PHA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Timely submission of the CF ACC... Requirements § 905.302 Timely submission of the CF ACC amendment by the PHA. Upon being provided with a CF ACC Amendment from HUD, the PHA must sign and date the CF ACC Amendment and return it to HUD by the...

  1. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    PubMed

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation.

  2. Discovery and optimization of antibacterial AccC inhibitors

    SciTech Connect

    Cheng, Cliff C.; Shipps, Jr., Gerald W.; Yang, Zhiwei; Sun, Binyuan; Kawahata, Noriyuki; Soucy, Kyle A.; Soriano, Aileen; Orth, Peter; Xiao, Li; Mann, Paul; Black, Todd

    2010-09-17

    The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS). The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC{sub 50} of 20 nM and a MIC of 0.8 {micro}g/mL against a sensitized strain of Escherichia coli (HS294 E. coli).

  3. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  4. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC.

    PubMed

    Fedorov, Dmitry N; Ekimova, Galina A; Doronina, Nina V; Trotsenko, Yuri A

    2013-06-01

    The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.

  5. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium

    PubMed Central

    Pawelczyk, Jakub; Viljoen, Albertus; Kremer, Laurent; Dziadek, Jaroslaw

    2017-01-01

    Malonyl-coenzyme A (CoA) is a crucial extender unit for the synthesis of mycolic and other fatty acids in mycobacteria, generated in a reaction catalyzed by acetyl-CoA carboxylase. We previously reported on the essentiality of accD6Mtb encoding the functional acetyl-CoA carboxylase subunit in Mycobacterium tuberculosis. Strikingly, the homologous gene in the fast-growing, non-pathogenic Mycobacterium smegmatis - (accD6Msm) appeared to be dispensable, and its deletion did not influence the cell lipid content. Herein, we demonstrate that, despite the difference in essentiality, accD6Msm and accD6Mtb encode proteins of convergent catalytic activity in vivo. To identify an alternative, AccD6-independent, malonyl-CoA synthesis pathway in M. smegmatis, a complex genetic approach combined with lipid analysis was applied to screen all five remaining carboxyltransferase genes (accD1-accD5) with respect to their involvement in mycolic acid biosynthesis and ability to utilize acetyl-CoA as the substrate for carboxylation. This approach revealed that AccD1Msm, AccD2Msm and AccD3Msm are not essential for mycolic acid biosynthesis. Furthermore, we confirmed in vivo the function of AccD4Msm as an essential, long-chain acyl-CoA carboxyltransferase, unable to carboxylate short-chain substrate. Finally, our comparative studies unambiguously demonstrated between-species difference in in vivo ability of AccD5 carboxyltransferase to utilize acetyl-CoA that influences AccD6 essentiality in pathogenic and non-pathogenic mycobacteria. PMID:28205597

  6. The formation of ACC and competition between polyamines and ethylene for SAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene biosynthesis involves the conversion of S-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS). ACC is then converted to ethylene. The genes that encode enzymes in this pathway all belong to a family of genes. Differential transcriptional regulation ...

  7. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    SciTech Connect

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan; Krejci, Minna R.; Weigand, Steven; Joester, Derk

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  8. 24 CFR 905.304 - CF ACC term and covenant to operate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false CF ACC term and covenant to operate... URBAN DEVELOPMENT THE PUBLIC HOUSING CAPITAL FUND PROGRAM General Program Requirements § 905.304 CF ACC... operate all public housing projects in accordance with the CF ACC, as amended, and applicable...

  9. Succinate oxidase in Neurospora.

    PubMed

    West, D J; Woodward, D O

    1973-02-01

    Two kinetically distinct states of succinate oxidase have been detected in the mitochondria of Neruospora crassa. One state has a K(m) for succinate of 4.1 x 10(-3)m, and the other has a K(m) for succinate of 3.5 x 10(-4)m. The high K(m) state was found in freshly extracted mitochondria from either 20- or 72-hr mycelium. However, the succinate oxidase activity in mitochondria from 20-hr mycelium rapidly deteriorated in vitro, leaving a stable residual activity with the lower K(m) for succinate. Adenosine triphosphate (ATP) plus Mg(2+) stabilized the high K(m) state in these preparations. The high K(m) state of succinate oxidase was further characterized by a two- to threefold increase in activity over the pH range 6.6 to 8.0 and by classical competitive inhibition by fumarate and malonate. By contrast, the low K(m) state of succinate oxidase showed a relatively flat response to pH over the range 6.6 to 8.0 and a nonclassical pattern of inhibition by fumarate and malonate, as shown by nonlinear plots of reciprocal velocity versus reciprocal substrate concentration in the presence of inhibitor or reciprocal velocity versus inhibitor concentration at fixed substrate concentrations. The relationship of mycelial age to the in vitro stability of succinate oxidase is considered with reference to probable changes in the relative pool sizes of extra- and intramitochondrial ATP in response to changes in the rate of glycolysis.

  10. Reward salience and risk aversion underlie differential ACC activity in substance dependence

    PubMed Central

    Alexander, William H.; Fukunaga, Rena; Finn, Peter; Brown, Joshua W.

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed. PMID:26106528

  11. Expression studies of gibberellin oxidases in developing pumpkin seeds.

    PubMed

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-03-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA(12)-aldehyde, GA(12), GA(15), GA(24), GA(25), and GA(9) to GA(14)-aldehyde, GA(14), GA(37), GA(36), GA(13), and GA(4), respectively. Recombinant 2-ox protein oxidized GA(9), GA(4), and GA(1) to GA(51), GA(34), and GA(8), respectively. Previously cloned GA 7-oxidase revealed additional 3beta-hydroxylation activity of GA(12). Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2beta,3beta-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed.

  12. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase.

    PubMed

    Velada, Isabel; Cardoso, Hélia G; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit

    2016-01-01

    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  13. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase

    PubMed Central

    Velada, Isabel; Cardoso, Hélia G.; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit

    2016-01-01

    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  14. Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.) 1

    PubMed Central

    Lin, Liang-Shiou; Varner, Joseph E.

    1991-01-01

    The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall “loosening.” ImagesFigure 3Figure 4Figure 5 PMID:16668145

  15. Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) Reduces Proliferation and De Novo Lipogenesis of EGFRvIII Human Glioblastoma Cells

    PubMed Central

    Jones, Jessica E. C.; Esler, William P.; Patel, Rushi; Lanba, Adhiraj; Vera, Nicholas B.; Pfefferkorn, Jeffrey A.; Vernochet, Cecile

    2017-01-01

    Tumor cell proliferation and migration processes are regulated by multiple metabolic pathways including glycolysis and de novo lipogenesis. Since acetyl-CoA carboxylase (ACC) is at the junction of lipids synthesis and oxidative metabolic pathways, we investigated whether use of a dual ACC inhibitor would provide a potential therapy against certain lipogenic cancers. The impact of dual ACC1/ACC2 inhibition was investigated using a dual ACC1/ACC2 inhibitor as well as dual siRNA knock down on the cellular viability and metabolism of two glioblastoma multiform cancer cell lines, U87 and a more aggressive form, U87 EGFRvIII. We first demonstrated that while ACCi inhibited DNL in both cell lines, ACCi preferentially blunted the U87 EGFRvIII cellular proliferation capacity. Metabolically, chronic treatment with ACCi significantly upregulated U87 EGFRvIII cellular respiration and extracellular acidification rate, a marker of glycolytic activity, but impaired mitochondrial health by reducing maximal respiration and decreasing mitochondrial ATP production efficiency. Moreover, ACCi treatment altered the cellular lipids content and increased apoptotic caspase activity in U87 EGFRvIII cells. Collectively these data indicate that ACC inhibition, by reducing DNL and increasing cellular metabolic rate, may have therapeutic utility for the suppression of lipogenic tumor growth and warrants further investigation. PMID:28081256

  16. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  17. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  18. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients.

  19. Freeze-drying yields stable and pure amorphous calcium carbonate (ACC).

    PubMed

    Ihli, Johannes; Kulak, Alexander N; Meldrum, Fiona C

    2013-04-18

    A simple synthetic method is presented for the precipitation of high purity, dry amorphous calcium carbonate (ACC) based on freeze-drying saturated, counter ion free CaCO3 solutions, where the ACC produced shows an extended atmospheric stability. Translation of the methodology to amorphous calcium phosphate demonstrates the generality of the approach.

  20. ACCE/ACS National Educator and Leader of the Year Winners: AEC Congratulates These Outstanding Educators

    ERIC Educational Resources Information Center

    Australian Educational Computing, 2012

    2012-01-01

    This article presents the ACCE/ACS National Educator and Leader of the Year winners. Anne Mirtschin is the recipient of the ACCE/ACS 2012 Educator of the Year Award. Mirtschin is an innovative teacher at Hawkesdale P-12 College a small rural school that is isolated culturally and geographically. She uses online tools and technology to create…

  1. 24 CFR 882.805 - HA application process, ACC execution, and pre-rehabilitation activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (4) The owner is responsible for selecting a competent contractor to undertake the rehabilitation...; (ii) Assure that the owner has selected a contractor in accordance with paragraph (c)(4) of this... ACC for an additional 10 years. (3) Section 882.403(a) (Maximum Total ACC Commitments) applies to...

  2. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  3. Lysyl oxidase in colorectal cancer.

    PubMed

    Cox, Thomas R; Erler, Janine T

    2013-11-15

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.

  4. Respiratory burst oxidase of fertilization.

    PubMed Central

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product. PMID:2537493

  5. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  6. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  7. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  8. Recalibration of the ACC/AHA Risk Score in Two Population-Based German Cohorts

    PubMed Central

    de las Heras Gala, Tonia; Geisel, Marie Henrike; Peters, Annette; Thorand, Barbara; Baumert, Jens; Lehmann, Nils; Jöckel, Karl-Heinz; Moebus, Susanne; Erbel, Raimund; Meisinger, Christine

    2016-01-01

    Background The 2013 ACC/AHA guidelines introduced an algorithm for risk assessment of atherosclerotic cardiovascular disease (ASCVD) within 10 years. In Germany, risk assessment with the ESC SCORE is limited to cardiovascular mortality. Applicability of the novel ACC/AHA risk score to the German population has not yet been assessed. We therefore sought to recalibrate and evaluate the ACC/AHA risk score in two German cohorts and to compare it to the ESC SCORE. Methods We studied 5,238 participants from the KORA surveys S3 (1994–1995) and S4 (1999–2001) and 4,208 subjects from the Heinz Nixdorf Recall (HNR) Study (2000–2003). There were 383 (7.3%) and 271 (6.4%) first non-fatal or fatal ASCVD events within 10 years in KORA and in HNR, respectively. Risk scores were evaluated in terms of calibration and discrimination performance. Results The original ACC/AHA risk score overestimated 10-year ASCVD rates by 37% in KORA and 66% in HNR. After recalibration, miscalibration diminished to 8% underestimation in KORA and 12% overestimation in HNR. Discrimination performance of the ACC/AHA risk score was not affected by the recalibration (KORA: C = 0.78, HNR: C = 0.74). The ESC SCORE overestimated by 5% in KORA and by 85% in HNR. The corresponding C-statistic was 0.82 in KORA and 0.76 in HNR. Conclusions The recalibrated ACC/AHA risk score showed strongly improved calibration compared to the original ACC/AHA risk score. Predicting only cardiovascular mortality, discrimination performance of the commonly used ESC SCORE remained somewhat superior to the ACC/AHA risk score. Nevertheless, the recalibrated ACC/AHA risk score may provide a meaningful tool for estimating 10-year risk of fatal and non-fatal cardiovascular disease in Germany. PMID:27732641

  9. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  10. c-fos mRNA in mouse brain after MPTP treatment.

    PubMed

    Duchemin, A M; Gudehithlu, K P; Neff, N H; Hadjiconstantinou, M

    1992-04-01

    The neurotoxin, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces a transient increase of mRNA for the immediate-early gene c-fos in the mouse brain. The c-fos mRNA level is MPTP dose-dependent and is evident in all brain regions tested including striatum, hypothalamus, cortex, hippocampus, cerebellum and midbrain. There are regional differences in the time-course for the rise of c-fos mRNA. Pretreatment with deprenyl, a selective monoamine oxidase B inhibitor, pargyline, a nonselective monoamine oxidase inhibitor, or mazindol, a dopamine uptake transport inhibitor, does not prevent the c-fos mRNA increase, suggesting that the elevation is due to the action of MPTP and not its neurotoxic metabolite MPP+.

  11. Report of the American College of Cardiology (ACC) Scientific Sessions 2015, San Diego.

    PubMed

    Murohara, Toyoaki

    2015-01-01

    The 64th Annual Scientific Sessions and Exposition of the American College of Cardiology (ACC) were held at the San Diego Convention Center from March 14-16, 2015. The ACC Scientific Sessions are 1 of 2 major scientific cardiology meetings in the United States, with nearly 20,000 attendees, including 15,000 cardiovascular professionals. There were over 2,100 oral and poster abstracts, and more than 15 late-breaking clinical trials (LBCTs) abstructs. This report presents the highlights and several key presentations, especially the LBCTs, from the ACC Scientific Sessions 2015. I hope this review will help cardiologists update to the latest information.

  12. Report of the American College of Cardiology (ACC) Scientific Sessions 2016, Chicago.

    PubMed

    Mano, Toshiaki; Yamamoto, Kazuhiro

    2016-05-25

    The 65(th)Annual Scientific Sessions of the American College of Cardiology (ACC) were held at McCormick Place, Chicago, from April 2-4, 2016. The ACC Scientific Sessions are one of the 2 major scientific cardiology meetings in the USA and one of the major scientific meetings of cardiology in the world. It had an attendance of 18,769 and over 2,000 oral and poster abstracts, including 8 late-breaking clinical trials. This report presents the key presentations and the highlights from the ACC Scientific Sessions 2016 in Chicago. (Circ J 2016; 80: 1308-1313).

  13. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  14. [Alternative oxidase in industrial fungi].

    PubMed

    Gu, Shuai; Liu, Qiang; He, Hao; Li, Shuang

    2015-01-01

    Filamentous fungi have been used in industrial fermentation extensively. Based on non-phosphorylating electron transport process, alternative respiration pathway (ARP) acts as an energy overflow, which can balance carbon metabolism and electron transport, allow the continuance of tricarboxylic acid cycle without the formation of ATP, and permit the turnover of carbon skeletons. Alternative respiration pathway also plays an important role in the stress response of fungi and the physiological function of conditioned pathogen. Alternative oxidase (AOX) is the terminal oxidase responsible for the activity of alternative respiration pathway, which exists widely in higher plants, parts of fungi and algae. Owing to the property that alternative oxidase (AOX) is sensitive to salicylhydroxamic acid (SHAM) and insensitive to conventional inhibitors of cytochrome respiration, alternative respiration pathway by AOX is also named as cyanide-resistant respiration (CRR). In recent years, the study of the alternative respiration pathway and alternative oxidase has been a hot topic in the area involving cellular respiration metabolism. In this review we summarized the latest research advances about the functions of alternative respiration pathway and alternative oxidase in industrial fungi.

  15. IMPACC: A Tightly Integrated MPI+OpenACC Framework Exploiting Shared Memory Parallelism

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2016-01-01

    We propose IMPACC, an MPI+OpenACC framework for heterogeneous accelerator clusters. IMPACC tightly integrates MPI and OpenACC, while exploiting the shared memory parallelism in the target system. IMPACC dynamically adapts the input MPI+OpenACC applications on the target heterogeneous accelerator clusters to fully exploit target system-specific features. IMPACC provides the programmers with the unified virtual address space, automatic NUMA-friendly task-device mapping, efficient integrated communication routines, seamless streamlining of asynchronous executions, and transparent memory sharing. We have implemented IMPACC and evaluated its performance using three heterogeneous accelerator systems, including Titan supercomputer. Results show that IMPACC can achieve easier programming, higher performance, and better scalability than the current MPI+OpenACC model.

  16. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  17. OpenACC programs of the Swendsen-Wang multi-cluster spin flip algorithm

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro

    2015-12-01

    We present sample OpenACC programs of the Swendsen-Wang multi-cluster spin flip algorithm. OpenACC is a directive-based programming model for accelerators without requiring modification to the underlying CPU code itself. In this paper, we deal with the classical spin models as with the sample CUDA programs (Komura and Okabe, 2014), that is, two-dimensional (2D) Ising model, three-dimensional (3D) Ising model, 2D Potts model, 3D Potts model, 2D XY model and 3D XY model. We explain the details of sample OpenACC programs and compare the performance of the present OpenACC implementations with that of the CUDA implementations for the 2D and 3D Ising models and the 2D and 3D XY models.

  18. Ozone stress induces the expression of ACC synthase in potato plants

    SciTech Connect

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. )

    1993-05-01

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACC synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.

  19. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  20. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    PubMed

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  1. Cloning and Analysis of the Alternative Oxidase Gene of Neurospora Crassa

    PubMed Central

    Li, Q.; Ritzel, R. G.; McLean, LLT.; McIntosh, L.; Ko, T.; Bertrand, H.; Nargang, F. E.

    1996-01-01

    Mitochondria of Neurospora crassa contain a cyanide-resistant alternative respiratory pathway in addition to the cytochrome pathway. The alternative oxidase is present only when electron flow through the cytochrome chain is restricted. Both genomic and cDNA copies for the alternative oxidase gene have been isolated and analyzed. The sequence of the predicted protein is homologous to that of other species. The mRNA for the alternative oxidase is scarce in wild-type cultures grown under normal conditions, but it is abundant in cultures grown in the presence of chloramphenicol, an inhibitor of mitochondrial protein synthesis, or in mutants deficient in mitochondrial cytochromes. Thus, induction of alternative oxidase appears to be at the transcriptional level. Restriction fragment length polymorphism mapping of the isolated gene demonstrated that it is located in a position corresponding to the aod-1 locus. Sequence analysis of mutant aod-1 alleles reveals mutations affecting the coding sequence of the alternative oxidase. The level of aod-1 mRNA in an aod-2 mutant strain that had been grown in the presence of chloramphenicol was reduced several fold relative to wild-type, supporting the hypothesis that the product of aod-2 is required for optimal expression of aod-1. PMID:8770590

  2. The function of ascorbate oxidase in tobacco.

    PubMed

    Pignocchi, Cristina; Fletcher, John M; Wilkinson, Joy E; Barnes, Jeremy D; Foyer, Christine H

    2003-07-01

    The function of the apoplastic enzyme ascorbate oxidase (AO) was investigated in tobacco (Nicotiana tabacum). The abundance of AO mRNA was up-regulated by light. Cytosolic ascorbate peroxidase (APX1) transcripts were also highest in the light. In contrast, L-galactono-gamma-lactone dehydrogenase, stromal APX, and thylakoid APX transcripts remained constant over the day/night cycle. Salicylic acid inhibited growth, increased expression of the pathogenesis-related protein (PR) 1a, and decreased AO transcript abundance. In contrast, the application of auxin enhanced growth and increased AO and PR 1a gene expression. Therefore, AO transcript abundance varied in a manner similar to hormone-mediated changes in plant growth. To study the effects of modified AO expression on growth, transformed tobacco plants expressing AO in the sense and antisense orientations were generated. The resultant large changes in apoplastic AO activity in the transformed tobacco plants had little effect on whole leaf ascorbate (AA) content, but they had dramatic effects on apoplastic AA levels. Enhanced AO activity oxidized the apoplastic AA pool, whereas decreased AO activity increased the amount of AA compared with dehydroascorbate. A relationship was observed between AO activity and plant height and biomass. Native AO transcript levels were no longer subject to light/dark regulation in AO sense and antisense plants. Taken together, these data show that there is an interaction between hormone, redox, and light signals at the level of the apoplast via modulation of ion of AA content.

  3. Evidence for cancer-associated expression of NADPH oxidase 1 (Nox1)-based oxidase system in the human stomach.

    PubMed

    Tominaga, Kumiko; Kawahara, Tsukasa; Sano, Toshiaki; Toida, Kazunori; Kuwano, Yuki; Sasaki, Hideyuki; Kawai, Tomoko; Teshima-Kondo, Shigetada; Rokutan, Kazuhito

    2007-12-15

    Helicobacter pylori infection has been suggested to stimulate expression of the NADPH oxidase 1 (Nox1)-based oxidase system in guinea pig gastric epithelium, whereas Nox1 mRNA expression has not yet been documented in the human stomach. PCR of human stomach cDNA libraries showed that Nox1 and Nox organizer 1 (NOXO1) messages were absent from normal stomachs, while they were specifically coexpressed in intestinal- and diffuse-type adenocarcinomas including signet-ring cell carcinoma. Immunohistochemistry showed that Nox1 and NOXO1 proteins were absent from chronic atrophic gastritis (15 cases), adenomas (4 cases), or surrounding tissues of adenocarcinomas (45 cases). In contrast, Nox1 and its partner proteins were expressed in intestinal-type adenocarcinomas (19/21 cases), diffuse-type adenocarcinomas (15/15 cases), and signet-ring cell carcinomas (9/9 cases). Confocal microscopy revealed that Nox1, NOXO1, Nox activator 1, and p22(phox) were predominantly associated with Golgi apparatus in these cancer cells, while diffuse-type adenocarcinomas also contained cancer cells having Nox1 and its partner proteins in their nuclei. Nox1-expressing cancer cells exhibited both gastric and intestinal phenotypes, as assessed by expression of mucin core polypeptides. Thus, the Nox1-base oxidase may be a potential marker of neoplastic transformation and play an important role in oxygen radical- and inflammation-dependent carcinogenesis in the human stomach.

  4. Positive coping styles and perigenual ACC volume: two related mechanisms for conferring resilience?

    PubMed

    Holz, Nathalie E; Boecker, Regina; Jennen-Steinmetz, Christine; Buchmann, Arlette F; Blomeyer, Dorothea; Baumeister, Sarah; Plichta, Michael M; Esser, Günter; Schmidt, Martin; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2016-05-01

    Stress exposure has been linked to increased rates of depression and anxiety in adults, particularly in females, and has been associated with maladaptive changes in the anterior cingulate cortex (ACC), which is an important brain structure involved in internalizing disorders. Coping styles are important mediators of the stress reaction by establishing homeostasis, and may thus confer resilience to stress-related psychopathology. Anatomical scans were acquired in 181 healthy participants at age 25 years. Positive coping styles were determined using a self-report questionnaire (German Stress Coping Questionnaire, SVF78) at age 22 years. Adult anxiety and depression symptoms were assessed at ages 22, 23 and 25 years with the Young Adult Self-Report. Information on previous internalizing diagnoses was obtained by diagnostic interview (2-19 years). Positive coping styles were associated with increased ACC volume. ACC volume and positive coping styles predicted anxiety and depression in a sex-dependent manner with increased positive coping and ACC volume being related to lower levels of psychopathology in females, but not in males. These results remained significant when controlled for previous internalizing diagnoses. These findings indicate that positive coping styles and ACC volume are two linked mechanisms, which may serve as protective factors against internalizing disorders.

  5. OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing

    SciTech Connect

    Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S

    2016-01-01

    This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, this design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.

  6. Digenic inheritance of mutations in the coproporphyrinogen oxidase and protoporphyrinogen oxidase genes in a unique type of porphyria.

    PubMed

    van Tuyll van Serooskerken, Anne Moniek; de Rooij, Felix W; Edixhoven, Annie; Bladergroen, Reno S; Baron, Jens M; Joussen, Sylvia; Merk, Hans F; Steijlen, Peter M; Poblete-Gutiérrez, Pamela; te Velde, Kornelis; Wilson, J H Paul; Koole, Rita H; van Geel, Michel; Frank, Jorge

    2011-11-01

    The simultaneous dysfunction of two enzymes within the heme biosynthetic pathway in a single patient is rare. Not more than 15 cases have been reported. A woman with a transient episode of severe photosensitivity showed a biochemical porphyrin profile suggestive of hereditary coproporphyria (HCP), whereas some of her relatives had a profile that was suggestive of variegate porphyria (VP). HCP and VP result from a partial enzymatic deficiency of coproporphyrinogen oxidase (CPOX) and protoporphyrinogen oxidase (PPOX), respectively. DNA analysis in the index patient revealed mutations in both the CPOX and PPOX genes, designated as c.557-15C>G and c.1289dupT, respectively. The CPOX mutation leads to a cryptic splice site resulting in retention of 14 nucleotides from intron 1 in the mRNA transcript. Both mutations encode null alleles and were associated with nonsense-mediated mRNA decay. Given the digenic inheritance of these null mutations, coupled with the fact that both HCP and VP can manifest with life-threatening acute neurovisceral attacks, the unusual aspect of this case is a relatively mild clinical phenotype restricted to dermal photosensitivity.

  7. [Alternative oxidase - never ending story].

    PubMed

    Szal, Bożena; Rychter, Anna M

    2016-01-01

    Investigations of plant cyanide resistant respiration lead to the discovery in mitochondrial respiratory chain of the second terminal oxidase, alternative oxidase (AOX). AOX transfers electrons from reduced ubiquinone to oxygen omitting two coupling places thus lowering energetic efficiency of respiration. The presence of AOX was shown in all plants and also in some fungi, mollusca and protista. In termogenic plants the activity of AOX is connected with heat production. In other organisms AOX activity is important for maintaining metabolic homeostasis (carbon metabolism, cell redox state and energy demand) and ROS homeostasis. In this article structure of plant AOX protein and the regulation on molecular levels was described. Possible role of AOX as stress marker was pointed and the possibility of using AOX in human gene therapy was discussed.

  8. Lysyl oxidase in cancer research.

    PubMed

    Perryman, Lara; Erler, Janine T

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.

  9. An ACC Design Method for Achieving Both String Stability and Ride Comfort

    NASA Astrophysics Data System (ADS)

    Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi

    An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.

  10. Precipitation of ACC in liposomes-a model for biomineralization in confined volumes

    SciTech Connect

    Tester, Chantel C; Wu, Ching-Hsuan; Weigand, Steven; Joester, Derk

    2013-01-10

    Biomineralizing organisms frequently precipitate minerals in small phospholipid bilayer-delineated compartments. We have established an in vitro model system to investigate the effect of confinement in attoliter to femtoliter volumes on the precipitation of calcium carbonate. In particular, we analyze the growth and stabilization of liposome-encapsulated amorphous calcium carbonate (ACC) nanoparticles using a combination of in situ techniques, cryo-transmission electron microscopy (Cryo-TEM), and small angle X-ray scattering (SAXS). Herein, we discuss ACC nanoparticle growth rate as a function of liposome size, carbon dioxide flux across the liposome membrane, pH, and osmotic pressure. Based on these experiments, we argue that the stabilization of ACC nanoparticles in liposomes is a consequence of a low nucleation rate (high activation barrier) of crystalline polymorphs of calcium carbonate.

  11. The terminal oxidases of Paracoccus denitrificans.

    PubMed

    de Gier, J W; Lübben, M; Reijnders, W N; Tipker, C A; Slotboom, D J; van Spanning, R J; Stouthamer, A H; van der Oost, J

    1994-07-01

    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (delta ctaDI, delta ctaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. This protohaem-containing oxidase, called cytochrome bb3, is the only quinol oxidase expressed under the conditions used. In a triple oxidase mutant (delta ctaDI, delta ctaDII, cyoB::KmR) an alternative cytochrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.

  12. A feasibility study on porting the community land model onto accelerators using OpenACC

    SciTech Connect

    Wang, Dali; Wu, Wei; Winkler, Frank; Ding, Wei; Hernandez, Oscar R.

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflow procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.

  13. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; ...

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  14. 5th International ACC Symposium: Future and Current Therapeutic Trials in Adrenocortical Carcinoma.

    PubMed

    Hoff, Ana O; Berruti, Alfredo

    2016-02-01

    Adrenocortical carcinoma (ACC) is a rare and complex disease associated with a high mortality rate. Despite intensive translational and clinical research, prognosis remains poor. Over the past decade, a significant effort has been made to develop multinational, collaborative studies to better understand the pathogenesis and clinical features of this rare disease in attempt to improve the therapeutic strategies and patient outcome. The results of both standard and newer treatments are discussed in this review as well as the recent discovery of pathways involved in ACC pathogenesis that provide the rationale to introduce new molecular target therapies. Finally, remaining issues regarding how to improve available therapies in adjuvant setting are raised and addressed.

  15. Synthesis of stable ACC using mesoporous silica gel as a support

    PubMed Central

    2014-01-01

    Stable amorphous calcium carbonate supported by mesoporous silica gel was successfully synthesized. The silica gel support is prepared through the hydrolytic polycondensation of ethyl silicate under suitable conditions. Laser scanning confocal microscopy (LSCM) observations reveal that the morphology of the products is branched with cruciform-like and flower-like structure. Raman spectroscopic analysis and scanning electron microscopy (SEM) observation of the products confirm the combination of stable amorphous calcium carbonate (ACC) nanoparticles and mesoporous silica gel. A possible growth mechanism for the branched structure has been proposed. Results indicate potential application of this work to ACC storage, crystal engineering, biomimetic synthesis, etc. PMID:25246865

  16. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    SciTech Connect

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  17. Characterization of the multicopper oxidase gene family in Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Dittmer, Neal T.; Marshall, Jeremy L.; Kanost, Michael R.

    2008-01-01

    The multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including diphenols, and several oxidases with specific substrates such as iron, copper or ascorbic acid. We have identified five putative MCO genes in the genome of Anopheles gambiae and have cloned cDNAs encompassing the full coding region for each gene. MCO1 mRNA was detected in all developmental stages and in all of the larval and adult tissues tested. We observed an increase in MCO1 transcript abundance in the midguts and Malphighian tubules of adult females following a blood meal and in adult abdominal carcasses in response to an immune challenge. Two alternatively spliced isoforms of MCO2 mRNA were identified. The A isoform of MCO2 was previously detected in larval and pupal cuticle where it probably catalyzes sclerotization reactions (He et al., 2007). The B isoform was transcriptionally upregulated in ovaries in response to a blood meal. MCO3 mRNA was detected in the adult midgut, Malpighian tubules, and male reproductive tissues; like MCO1, it was upregulated in response to an immune challenge or a blood meal. MCO4 and MCO5 were observed primarily in eggs and in the abdominal carcass of larvae. A phylogenetic analysis of insect MCO genes identified putative orthologs of MCO1 and MCO2 in all of the insect genomes tested, whereas MCO3, MCO4 and MCO5 were found only in the two mosquito species analyzed. MCO2 orthologs have especially high sequence similarity, suggesting that they are under strong purifying selection; the A isoforms are more conserved than the B isoforms. The mosquito specific group shares a common ancestor with MCO2. This initial study of mosquito MCOs suggests that MCO2 may be required for egg development or eggshell tanning in addition to cuticle tanning, while MCO1 and MCO3 may be involved in metal metabolism or immunity. PMID:18675911

  18. Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L. )

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. )

    1991-05-01

    The expression of ascorbic acid oxidase was studied in zuchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, the authors have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall loosening.

  19. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  20. Usability of AcceSS for Web Site Accessibility. Research Report

    ERIC Educational Resources Information Center

    Hackett, Stephanie; Parmanto, Bambang

    2006-01-01

    The standard display of web pages is inadequate for users who are visually impaired. Most visually impaired people obtain information from a web page in a linear fashion via a screen reader, whereas sighted users can immediately obtain a bird's-eye view of a web page's organization and content by quickly scanning the page. AcceSS (which stands for…

  1. AccesSports: A Model for Adapting Mainstream Sports Activities for Individuals with Visual Impairments.

    ERIC Educational Resources Information Center

    Ponchilla, Paul E.

    1995-01-01

    The AccesSports Model allows professionals with basic knowledge of visual impairments and mainstream sports to analyze any sports activity and design adaptations needed for targets or goals, boundaries, and rules to enable individuals with visual impairments to participate. Suggestions for modifying baseball, table tennis, swim racing, wrestling,…

  2. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  3. A functional tomato ACC synthase expressed in Escherichia coli demonstrates suicidal inactivation by its substrate S-adenosylmethionine.

    PubMed

    Li, N; Wiesman, Z; Liu, D; Mattoo, A K

    1992-07-20

    1-Aminocyclopropane-1-carboxylate (ACC) synthase is a key enzyme in the biosynthesis of the plant hormone, ethylene. We have isolated, sequenced and expressed a functional tomato (cv Pik-Red) ACC synthase gene in Escherichia coli. ACC synthase expressed in E. coli was inactivated by incubation with S-adenosylmethionine (SAM), the half-time of which was concentration dependent. Mixing the tomato fruit protein extract with the cell-free extract from transformed E. coli did not affect SAM-dependent inactivation of ACC synthase activity. Thus, single isoforms of the ACC synthase enzyme, which demonstrate the biochemical features expected of the tomato fruit enzyme, can be expressed in E. coli and their structure-function relationships investigated.

  4. Real-time dynamic optical imaging of ACC-M tumor cells killed by HSV-tk/ACV system.

    PubMed

    Xiong, Tao; Li, Yongjin; Li, Zhiyang; Xie, Xiangmo; Lu, Lisha

    2013-01-01

    HSV-tk/ACV induced and killed human adenoid cystic carcinoma cell (ACC-M) in vivo and in vitro, which were observed through optical imaging and green fluorescence protein (GFP) tagging technique. ACC-M was transfected with TK-GFP, and the single clone cell ACC-M-TK-GFP was selected by G418. With fluorescent stereomicroscope, whole-body fluorescent imaging system and fluorescent microscope, we could observe ACV treated ACC-M-TK-GFP cells in cell level and nude mice. The therapies of tumor were visualized clearly with optical imaging. This study proves that optical imaging is a very good approach for studying the effect of HSV-tk/ACV on the ACC-M tumor cells and decreasing the amount of vessel about tumors cell. Optical imaging will become a visual groundwork for monitoring tumor growth and evaluating in vivo curative effect of antitumor drugs.

  5. Mitochondrial cytochrome c oxidase deficiency.

    PubMed

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-03-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  6. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  7. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  8. Involvement of Polyamine Oxidase in Wound Healing12[W

    PubMed Central

    Angelini, Riccardo; Tisi, Alessandra; Rea, Giuseppina; Chen, Martha M.; Botta, Maurizio; Federico, Rodolfo; Cona, Alessandra

    2008-01-01

    Hydrogen peroxide (H2O2) is involved in plant defense responses that follow mechanical damage, such as those that occur during herbivore or insect attacks, as well as pathogen attack. H2O2 accumulation is induced during wound healing processes as well as by treatment with the wound signal jasmonic acid. Plant polyamine oxidases (PAOs) are H2O2 producing enzymes supposedly involved in cell wall differentiation processes and defense responses. Maize (Zea mays) PAO (ZmPAO) is a developmentally regulated flavoprotein abundant in primary and secondary cell walls of several tissues. In this study, we investigated the effect of wounding on ZmPAO gene expression in the outer tissues of the maize mesocotyl and provide evidence that ZmPAO enzyme activity, protein, and mRNA levels increased in response to wounding as well as jasmonic acid treatment. Histochemically detected ZmPAO activity especially intensified in the epidermis and in the wound periderm, suggesting a tissue-specific involvement of ZmPAO in wound healing. The role played by ZmPAO-derived H2O2 production in peroxidase-mediated wall stiffening events was further investigated by exploiting the in vivo use of N-prenylagmatine (G3), a selective and powerful ZmPAO inhibitor, representing a reliable diagnostic tool in discriminating ZmPAO-mediated H2O2 production from that generated by peroxidase, oxalate oxidase, or by NADPH oxidase activity. Here, we demonstrate that G3 inhibits wound-induced H2O2 production and strongly reduces lignin and suberin polyphenolic domain deposition along the wound, while it is ineffective in inhibiting the deposition of suberin aliphatic domain. Moreover, ZmPAO ectopic expression in the cell wall of transgenic tobacco (Nicotiana tabacum) plants strongly enhanced lignosuberization along the wound periderm, providing evidence for a causal relationship between PAO and peroxidase-mediated events during wound healing. PMID:17993545

  9. Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were 2-fold: to determine the effect of dietary linoleate on milk fat composition and on transcript abundance of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL), and stearoyl-CoA desaturase (SCD) mRNA in mammary tissue, and to evaluate milk somatic ce...

  10. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  11. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  12. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    PubMed

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  13. Dietary inhibitors of monoamine oxidase A.

    PubMed

    Dixon Clarke, Sarah E; Ramsay, Rona R

    2011-07-01

    Inhibition of monoamine oxidase is one way to treat depression and anxiety. The information now available on the pharmacokinetics of flavonoids and of the components of tobacco prompted an exploration of whether a healthy diet (with or without smoking) provides active compounds in amounts sufficient to partially inhibit monoamine oxidase. A literature search was used to identify dietary monoamine oxidase inhibitors, the levels of these compounds in foods, the pharmacokinetics of the absorption and distribution, and tissue levels observed. An estimated daily intake and the expected tissue concentrations were compared with the measured efficacies of the compounds as inhibitors of monoamine oxidases. Norharman, harman and quercetin dietary presence, pharmacokinetics, and tissue levels were consistent with significant levels reaching neuronal monoamine oxidase from the diet or smoking; 1,2,3,4-tetrahydroisoquinoline, eugenol, 1-piperoylpiperidine, and coumarin were not. Quercetin was equipotent with norharman as a monoamine oxidase A inhibitor and its metabolite, isorhamnetin, also inhibits. Total quercetin was the highest of the compounds in the sample diet. Although bioavailability was variable depending on the source, a healthy diet contains amounts of quercetin that might give sufficient amounts in brain to induce, by monoamine oxidase A inhibition, a small decrease in neurotransmitter breakdown.

  14. Assessing driver's mental representation of Adaptive Cruise Control (ACC) and its possible effects on behavioural adaptations.

    PubMed

    Piccinini, Giulio Francesco; Simões, Anabela; Rodrigues, Carlos Manuel; Leitão, Miguel

    2012-01-01

    The introduction of Adaptive Cruise Control (ACC) could be very helpful for making the longitudinal driving task more comfortable for the drivers and, as a consequence, it could have a global beneficial effect on road safety. However, before or during the usage of the device, due to several reasons, drivers might generate in their mind incomplete or flawed mental representations about the fundamental operation principles of ACC; hence, the resulting usage of the device might be improper, negatively affecting the human-machine interaction and cooperation and, in some cases, leading to negative behavioural adaptations to the system that might neutralise the desirable positive effects on road safety. Within this context, this paper will introduce the methodology which has been developed in order to analyse in detail the topic and foresee, in the future, adequate actions for the recovery of inaccurate mental representations of the system.

  15. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  16. Structural insights into sulfite oxidase deficiency.

    PubMed

    Karakas, Erkan; Wilson, Heather L; Graf, Tyler N; Xiang, Song; Jaramillo-Busquets, Sandra; Rajagopalan, K V; Kisker, Caroline

    2005-09-30

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  17. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits

  18. Genistein effect on xanthine oxidase activity.

    PubMed

    Sumbayev, V V

    2001-01-01

    Genistein was defined to be an allosteric xanthine oxidase inhibitor in the concentrations 0.1-4.0 microM and xanthine oxidase activator with superoxide scavenging activity in the concentrations 5.0 microM and higher. But the most effective allosteric binding with the highest affinity was observed in the genistein concentrations 0.1-1.0 microM. Intraperitoneum injections of genistein (500 micrograms/kg) during three days with the interval 24 hours decrease xanthine oxidase activity in the liver, lung and brain of the Vistar rats.

  19. Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms.

    PubMed

    Patil, Chandrashekhar; Suryawanshi, Rahul; Koli, Sunil; Patil, Satish

    2016-12-01

    Aminocyclopropane-1-carboxylate deaminase (ACCD) producing microorganisms support plant growth under a variety of biotic and abiotic stress conditions such as drought, soil salinity, flooding, heavy metal pollution and phyto-pathogen attack. Available screening methods for ACCD give idea only about its primary microbial ACCD activity than the actual potential. In the present investigation, we have simply improved screening method by incorporating pH indicator dyes (phenol red and bromothymol blue) in ACC containing medium. This modification is based on the basic principle that ACCD action releases ammonia which can be detected by color change and zone around the bacterial colony. High color intensity and zone around the colony indicates most potent producer, colony showing only a color change indicates moderate potential and no change in colony color indicates least efficiency. Enzymatic bioassays as well as root elongation studies revealed that ACC-deaminase activity of Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Bacillus subtilis clearly corresponds to their growth on dye incorporated ACC medium. This method could be used to complement the existing screening methods and to speed up the targeted isolation of agriculturally important microorganisms.

  20. The ACC strategy in biomineralization: the case of earthworm's amorphous spherulites

    NASA Astrophysics Data System (ADS)

    Briones, Maria J. I.; Alvarez-Otero, Rosa; Méndez, Jesús; Gago Duport, Luis

    2010-05-01

    The occurrence of amorphous calcium carbonate (ACC), an hydrated and highly soluble form of solid CaCO3, seems to be a common feature in all carbonate forming organisms such as mollusks, corals, echinoderms and crustaceans. The ubiquity of ACC in these Ca-carbonate biomineralizing systems, as a precursor of further crystalline phases, has recently open the interesting question about if the formation of an amorphous phase is a necessary step in the calcification process of all organisms and consequently, whether it would be possible to define the "amorphous precursor estategy" as a general mechanism in biomineralization. Neverthelees, although ACC appears to be widespread in these organisms very little is known about its particular role in the biomineralization scheme of the different phyla. The formation of CaCO3 spherulites in the calciferous glands of earthworms is a particular case of calcareous biomineralization involving the presence of ACC as a transient precursor phase [2]. Interestingly, the formation of crystalline carbonates via ACC in these organisms is not connected with skeleton building so it must play another functional role. In addition, the transient transformation stages can be followed by in situ spectrometric techniques and therefore, earthworms provide and adequate model to analyse the mutual interactions between ACC-solvent-and crystalline phases. In this study, we have analysed the morphological and structural transformations from the initial ACC spherulites until the formation of the crystalline phases: vaterite (and/or aragonite) and finally calcite, is accomplished. The characterization of ACC was done by performing in situ FT-IR, together with and HREM and Debye scherrer -XRD. The structural results were interpreted in the light of the histological study of the gland. The geometry of the secretory epithelium of the calciferous gland, as evidenced by TEM [2], shows the presence of irregulary shaped cells with their apical surface

  1. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  2. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    PubMed

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  3. Bacteria with ACC deaminase can promote plant growth and help to feed the world.

    PubMed

    Glick, Bernard R

    2014-01-20

    To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.

  4. Cloning and expression of the 1-aminocyclopropane-1-carboxylic oxidase gene from Agrostis stolonifera.

    PubMed

    Xiao, G Z; Li, L J; Teng, K; Chao, Y H; Han, L B

    2016-11-03

    A gene encoding 1-aminocyclopropane-1-carboxylic oxidase (ACO), which catalyzes the terminal step in ethylene biosynthesis, was isolated from Agrostis stolonifera. The AsACO gene is composed of 975 bp, encoding 324 amino acids. Three exons interspersed by two introns form AsACO gDNA. A BLAST search of the nucleotide sequence revealed a high level of similarity (79-91%) between AsACO and ACO genes of other plants. A phylogenetic tree was constructed via BLAST in the NCBI, and revealed the highest homology with wheat TaACO. The calculated molecular mass and predicted isoelectric point of AsACO were 36.25 and 4.89 kDa, respectively. Analysis of subcellular localization revealed that AsACO is located in the nucleus and cytoplasm. The Fe(II)-binding cofactors and cosubstrate were identified, pertaining to the ACO family. The expression patterns of AsACO were determined by quantitative real time PCR. AsACO expression was highest in the stem, and was strongly up-regulated in response to ethephon, methyl jasmonate, salicylic acid, and cold temperature, but down-regulated in response to drought and NaCl treatment. The protein encoded by AsACO exhibited ACC oxidase activity in vitro. Taken together, these findings suggest that AsACO contains domains common to the ACO family, and is induced in response to exogenous hormones. Conversely, some abiotic stress conditions can inhibit AsACO expression.

  5. Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress.

    PubMed

    Sanmartin, Maite; Pateraki, Irene; Chatzopoulou, Fani; Kanellis, Angelos K

    2007-03-01

    Ascorbate oxidase (AO, EC 1.10.3.3) is a member of the multicopper oxidases family. It catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbate (MDHA), with the concomitant reduction of molecular oxygen to water. In melon (Cucumis melo), ascorbate oxidase is encoded by a multigene family comprising at least four genes. Here, we present the detailed characterization of two melon AO genes, CmAO1 and CmAO4. Gene-specific expression studies of the AO gene family in melon revealed that only CmAO1 and CmAO4 are transcriptionally active and differentially regulated dependent on tissue, developmental stage and external stimuli. Transcripts of the CmAO1 gene are present in floral and fruit tissues, whereas CmAO4 mRNA preferentially accumulates in vegetative tissues. CmAO genes were not detected in melon seeds, but CmAO4 expression is activated upon germination. CmAO4 mRNA steady-state levels are also regulated in response to wounding and heat stress, by hormones (abscisic acid, salicylic acid and jasmonates), AA and copper. These findings suggest that AO gene expression is transcriptionally regulated during fruit development and in response to hormonal cues associated with the control of cell growth and the stress response.

  6. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes.

    PubMed

    Finnegan, Patrick M; Umbach, Ann L; Wilce, Jackie A

    2003-12-18

    The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.

  7. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response.

    PubMed

    Pan, Gang; Lou, Chengfu

    2008-07-31

    Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.

  8. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  9. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  10. Azide inhibition of urate oxidase.

    PubMed

    Gabison, Laure; Colloc'h, Nathalie; Prangé, Thierry

    2014-07-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX-UA or UOX-8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site.

  11. Azide inhibition of urate oxidase

    PubMed Central

    Gabison, Laure; Colloc’h, Nathalie; Prangé, Thierry

    2014-01-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site. PMID:25005084

  12. Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1

    PubMed Central

    Shi, Shuobo; Chen, Yun; Siewers, Verena

    2014-01-01

    ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of transcription and repression by Snf1 protein kinase at the protein level. Here, we demonstrate a strategy for improving the activity of ACCase in S. cerevisiae by abolishing posttranslational regulation of Acc1 via site-directed mutagenesis. It was found that introduction of two site mutations in Acc1, Ser659 and Ser1157, resulted in an enhanced activity of Acc1 and increased total fatty acid content. As Snf1 regulation of Acc1 is particularly active under glucose-limited conditions, we evaluated the effect of the two site mutations in chemostat cultures. Finally, we showed that our modifications of Acc1 could enhance the supply of malonyl-CoA and therefore successfully increase the production of two industrially important products derived from malonyl-CoA, fatty acid ethyl esters and 3-hydroxypropionic acid. PMID:24803522

  13. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    PubMed

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems.

  14. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B.; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-05-01

    The use of biophysical assays permitted the identification of a specific human ACC2 carboxyl transferase (CT) domain mutant that binds inhibitors and crystallizes in their presence. This mutant led to determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed differences in the inhibitor conformation from the yeast protein complex that are caused by differing residues in the binding pocket. Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  15. Effects of red grape juice polyphenols in NADPH oxidase subunit expression in human neutrophils and mononuclear blood cells.

    PubMed

    Dávalos, Alberto; de la Peña, Gema; Sánchez-Martín, Carolina C; Teresa Guerra, M; Bartolomé, Begoña; Lasunción, Miguel A

    2009-10-01

    The NADPH oxidase enzyme system is the main source of superoxide anions in phagocytic and vascular cells. NADPH oxidase-dependent superoxide generation has been found to be abnormally enhanced in several chronic diseases. Evidence is accumulating that polyphenols may have the potential to improve cardiovascular health, although the mechanism is not fully established. Consumption of concentrated red grape juice, rich in polyphenols, has been recently shown to reduce NADPH oxidase activity in circulating neutrophils from human subjects. In the present work we studied whether red grape juice polyphenols affected NADPH oxidase subunit expression at the transcription level. For this, we used human neutrophils and mononuclear cells from peripheral blood, HL-60-derived neutrophils and the endothelial cell line EA.hy926.Superoxide production was measured with 2'7'-dichlorofluorescein diacetate or lucigenin, mRNA expression by real-time RT-PCR and protein expression by Western blot. Each experiment was performed at least three times. In all cell types tested, red grape juice, dealcoholised red wine and pure polyphenols decreased superoxide anion production. Red grape juice and dealcoholised red wine selectively reduced p47phox, p22phox and gp91phox expression at both mRNA and protein levels, without affecting the expression of p67phox. Pure polyphenols, particularly quercetin, also reduced NADPH oxidase subunit expression, especially p47phox, in all cell types tested. The present results showing that red grape juice polyphenols reduce superoxide anion production provide an alternative mechanism by which consumption of grape derivatives may account for a reduction of oxidative stress associated with cardiovascular and/or inflammatory diseases related to NADPH oxidase superoxide overproduction.

  16. Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion.

    PubMed Central

    Vujcic, Slavoljub; Liang, Ping; Diegelman, Paula; Kramer, Debora L; Porter, Carl W

    2003-01-01

    In the polyamine back-conversion pathway, spermine and spermidine are first acetylated by spermidine/spermine N1 -acetyltransferase (SSAT) and then oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine respectively. Although PAO was first purified more than two decades ago, the protein has not yet been linked to genomic sequences. In the present study, we apply a BLAST search strategy to identify novel oxidase sequences located on human chromosome 10 and mouse chromosome 7. Homologous mammalian cDNAs derived from human brain and mouse mammary tumour were deduced to encode proteins of approx. 55 kDa having 82% sequence identity. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by approx. 30%, whereas spermidine increased 2-4-fold. Lysates of human PAO cDNA-transfected HEK-293 cells, but not vector-transfected cells, rapidly oxidized N1-acetylspermine to spermidine. Substrate specificity determinations with the lysate assay revealed a preference ranking of N1-acetylspermine= N1-acetylspermidine> N1,N12-diacetylspermine>>spermine; spermidine was not acted upon. This ranking is identical to that reported for purified PAO and distinctly different from the recently identified spermine oxidase (SMO), which prefers spermine over N1-acetylspermine. Monoethyl- and diethylspermine analogues also served as substrates for PAO, and were internally cleaved adjacent to a secondary amine. We deduce that the present oxidase sequences are those of the FAD-dependent PAO involved in the polyamine back-conversion pathway. In Northern blot analysis, PAO mRNA was much less abundant in HEK-293 cells than SMO or SSAT mRNA, and all three were differentially induced in a similar manner by selected polyamine analogues. The identification of PAO sequences, together with the recently identified SMO sequences, provides new opportunities for understanding the dynamics of polyamine homoeostasis and for interpreting metabolic

  17. Organochlorine Pesticide-Mediated Induction of NADPH Oxidase and Nitric-Oxide Synthase in Endothelial Cell

    PubMed Central

    Ghosh, Rishila; Siddharth, Manushi; Singh, Neeru; Kare, Pawan Kumar; Banerjee, Basu Dev; Wadhwa, Neelam

    2017-01-01

    Introduction Organochlorine Pesticides (OCPs) are detected ubiquitously in human and have been shown to be associated with Cardiovascular Disease (CVD) and atherosclerosis. Aim To find out the effect of organochlorine pesticides in endothelial cell with regard to oxidative stress and associated expression of enzymes producing superoxide and Nitric Oxide (NO). Materials and Methods Human Umbilical Vein Endothelial Cells (HUVEC) were cultured and treated with four OCPs which were found in human blood at a concentration of 0.1μM. The cells were tested for Reactive Oxygen Species (ROS) generation, NO production and mRNA expression of NAPDH oxidase (p47phox) and endothelial Nitric Oxide Synthase (eNOS). ROS generation was measured by using 2’, 7’-dichlorodihydrofluorescein diacetate (H2DCFDA) method. NO was analysed by Bioxytech nitric oxide assay kit method and mRNA of NADPH oxidase and eNOS was quantified by real time PCR. Data were expressed as the mean±SEM. Comparison between the groups were made by student’s t-test (2-tailed) or one-way ANOVA with Tukey’s post-hoc analysis depending on number of groups. For all statistical tests, p< 0.05 was considered to be significant. Results All the four pesticides generated ROS accompanied by enhanced expression of NADPH oxidase. Maximum effect was observed with β-endosulfan. Level of NO was found to be decreased significantly in endothelial cells treated with these pesticides accompanied by enhanced expression of eNOS. The antioxidant N-acetylcysteine (NAC) reduced ROS generation and enhanced NO formation. Pesticide-mediated ROS generation possibly reacts with NO forming peroxinitrite and thereby reducing the bioavailability of NO although eNOS expression is increased. Conclusion OCPs induce endothelial dysfunction through increased ROS generation via NADPH oxidase expression and reduced bioavailability of nitric oxide. PMID:28273962

  18. Capteurs monopodes pour mesures accélérométriques

    NASA Astrophysics Data System (ADS)

    Delaite, R.; Valentin, J.-P.

    1993-08-01

    A new design for accelerometric measurements sensors is described. It uses a plate vibrating in thickness shear mode, maintained by the means of a single holder located at the crystal edge. This mounting does cancel the mechanical and thermal stresses which generally modify the sensor output signal. So the ratio signal/noise of a thickness shear accelerometer is improved and the intrinsic sensitivity is multiplied by a factor 40, by comparison with the sensitivity of a thickness shear plate bonded by the means of two opposite holders. Un nouveau dispositif destiné aux mesures d'accélération est présenté. Il met en œuvre une lame vibrant en cisaillement d'épaisseur, fixée à sa structure de maintien par l'intermédiaire d'une unique liaison. Ce montage permet d'éliminer les contraintes mécaniques et thermiques qui perturbent habituellement le signal de mesure, et qui sont liées soit au montage des éléments du capteur, soit aux variations rapides de température qui interviennent lors de la mise en fonctionnement du capteur. Le rapport signal/bruit d'un accéléromètre à lame vibrant en cisaillement d'épaisseur s'en trouve amélioré et la sensibilité à l'accélération est multipliée par un facteur 40, comparée à celle d'un capteur qui serait constitué d'une lame vibrant en cisaillement d'épaisseur, fixée par deux liaisons diamétralement opposées.

  19. Characterization of three members of the ACC synthase gene family in Solanum tuberosum L.

    PubMed

    Destéfano-Beltrán, L J; van Caeneghem, W; Gielen, J; Richard, L; van Montagu, M; van der Straeten, D

    1995-02-20

    Two genomic clones corresponding to three members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene family in potato (Solanum tuberosum L.) have been isolated and sequenced. Two highly homologous genes, ST-ACS1A and ST-ACS1B, transcribed in opposite directions were found in an 8.9 kb region. Their coding sequences are interrupted by two introns at identical positions. Their closest relative in tomato is the LE-ACS3 gene. The third gene in potato, ST-ACS2, was found in a 4 kb region and shows a gene structure similar to that of the tomato LE-ACS4 gene and to the mung bean VR-ACS4 and VR-ACS5 genes. Based on its lack of significant homology to the tomato gene family and its closeness to the VR-ACS4 and VR-ACS5 genes, we propose that LE-ACS7 represents an additional isoform in the tomato genome. Moreover, in a phylogenetic comparison of known ACC synthases, the ST-ACS2 isoform was grouped in a separate lineage together with the mung bean VR-ACS4 and VR-ACS5, and the moth orchid DS-ACS1A and DS-ACS1B gene products. Expression of the three potato genes was studied by reverse transcription-polymerase chain reaction on total RNA. The twin genes are positively regulated by indole-3-acetic acid in hypocotyls and expression is modulated by wounding in the leaves. The third gene is responsive to ethylene and wounding mainly in tubers. The roles of these three genes and of other members of the ACC synthase gene family in vegetative processes of potato such as tuberization, dormancy, and sprouting have yet to be determined.

  20. Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice.

    PubMed

    Vassena, Eliana; Krebs, Ruth M; Silvetti, Massimo; Fias, Wim; Verguts, Tom

    2014-07-01

    Acting in an uncertain environment requires estimating the probability and the value of potential outcomes. These computations are typically ascribed to various parts of the medial prefrontal cortex (mPFC), but the functional architecture of this region remains debated. The anterior cingulate cortex (ACC) encodes reward prediction and outcome (i.e. win vs lose, Silvetti, Seurinck, & Verguts, 2013. Cortex, 49(6), 1627-35. doi:10.1016/j.cortex.2012.05.008). An outcome-related value signal has also been reported in the ventromedial Prefrontal Cortex (vmPFC, Rangel & Hare, 2010. Current Opinion in Neurobiology, 20(2), 262-70. doi:10.1016/j.conb.2010.03.001). Whether a functional dissociation can be traced in these regions with respect to reward prediction and outcome has been suggested but not rigorously tested. Hence an fMRI study was designed to systematically examine the contribution of ACC and vmPFC to reward prediction and outcome. A striking dissociation was identified, with ACC coding for positive prediction errors and vmPFC responding to outcome, irrespective of probability. Moreover, ACC has been assigned a crucial role in the selection of intentional actions (decision-making) and computing the value associated to these actions (action-based value). Conversely, vmPFC seems to implement stimulus-based value processing (Rudebeck et al., 2008. Journal of Neuroscience, 28(51), 13775-85. doi:10.1523/JNEUROSCI.3541-08.2008; Rushworth, Behrens, Rudebeck, & Walton, 2007. Trends in Cognitive Sciences, 11(4), 168-76. doi:10.1016/j.tics.2007.01.004). Therefore, a decision-making factor (choice vs. no choice condition) was also implemented in the present paradigm to distinguish stimulus-based versus action-based value coding in the mPFC during both decision and outcome phase. We found that vmPFC was more activated during the outcome phase in the no-choice than in the choice condition, potentially confirming the role of this area in stimulus-based (more than action

  1. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia

    PubMed Central

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-01-01

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2− were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2−, and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2− generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress. PMID:26656460

  2. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia.

    PubMed

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-12-10

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.

  3. A curving ACC system with coordination control of longitudinal car-following and lateral stability

    NASA Astrophysics Data System (ADS)

    Zhang, Dezhao; Li, Keqiang; Wang, Jianqiang

    2012-07-01

    The paper presents a curving adaptive cruise control (ACC) system that is coordinated with a direct yaw-moment control (DYC) system and gives consideration to both longitudinal car-following capability and lateral stability on curved roads. A model including vehicle longitudinal and lateral dynamics is built first, which is as discrete as the predictive model of the system controller. Then, a cost function is determined to reflect the contradictions between vehicle longitudinal and lateral dynamics. Meanwhile, some I/O constraints are formulated with a driver permissible longitudinal car-following range and the road adhesion condition. After that, desired longitudinal acceleration and desired yaw moment are obtained by a linear matrix inequality based robust constrained state feedback method. Finally, driver-in-the-loop tests on a driving simulator are conducted and the results show that the developed control system provides significant benefits in weakening the impact of DYC on ACC longitudinal car-following capability while also improving lateral stability.

  4. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon.

    PubMed

    Zhang, Wei; Wen, Chi-Kuang

    2010-01-01

    Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.

  5. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique.

  6. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats

    PubMed Central

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A.; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S.

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense. PMID:27847553

  7. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.

    PubMed

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.

  8. Knock out of the NADPH oxidase Nox4 has no impact on life span in mice.

    PubMed

    Rezende, Flavia; Schürmann, Christoph; Schütz, Susanne; Harenkamp, Sabine; Herrmann, Eva; Seimetz, Michael; Weißmann, Norbert; Schröder, Katrin

    2017-04-01

    The free radical theory of aging suggests reactive oxygen species as a main reason for accumulation of damage events eventually leading to aging. Nox4, a member of the family of NADPH oxidases constitutively produces ROS and therefore has the potential to be a main driver of aging. Herein we analyzed the life span of Nox4 deficient mice and found no difference when compared to their wildtype littermates. Accordingly neither Tert expression nor telomere length was different in cells isolated from those animals. In fact, Nox4 mRNA expression in lungs of wildtype mice dropped with age. We conclude that Nox4 has no influence on lifespan of healthy mice.

  9. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  10. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; Cono, Violetta La; Denaro, Renata

    2009-05-01

    The autotrophic and ammonia-oxidizing crenarchaeal assemblage at offshore site located in the deep Mediterranean (Tyrrhenian Sea, depth 3000 m) water was studied by PCR amplification of the key functional genes involved in energy (ammonia mono-oxygenase alpha subunit, amoA) and central metabolism (acetyl-CoA carboxylase alpha subunit, accA). Using two recently annotated genomes of marine crenarchaeons, an initial set of primers targeting archaeal accA-like genes was designed. Approximately 300 clones were analyzed, of which 100% of amoA library and almost 70% of accA library were unambiguously related to the corresponding genes from marine Crenarchaeota. Even though the acetyl-CoA carboxylase is phylogenetically not well conserved and the remaining clones were affiliated to various bacterial acetyl-CoA/propionyl-CoA carboxylase genes, the pool of archaeal sequences was applied for development of quantitative PCR analysis of accA-like distribution using TaqMan ® methodolgy. The archaeal accA gene fragments, together with alignable gene fragments from the Sargasso Sea and North Pacific Subtropical Gyre (ALOHA Station) metagenome databases, were analyzed by multiple sequence alignment. Two accA-like sequences, found in ALOHA Station at the depth of 4000 m, formed a deeply branched clade with 64% of all archaeal Tyrrhenian clones. No close relatives for residual 36% of clones, except of those recovered from Eastern Mediterranean, was found, suggesting the existence of a specific lineage of the crenarchaeal accA genes in deep Mediterranean water. Alignment of Mediterranean amoA sequences defined four cosmopolitan phylotypes of Crenarchaeota putative ammonia mono-oxygenase subunit A gene occurring in the water sample from the 3000 m depth. Without exception all phylotypes fell into Deep Marine Group I cluster that contain the vast majority of known sequences recovered from global deep-sea environment. Remarkably, three phylotypes accounted for 91% of all Mediterranean

  11. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  12. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  13. Purification of the Alpha Glycerophosphate Oxidase From Trypanosomes.

    DTIC Science & Technology

    1992-08-01

    is the purifica- tion of the glycerphosphate oxidase from the terminal oxidase in bloodstream trypanosomes. African trypanosomiasis remains one of the...oxidase from the terminal oxidase in bloodstream trypanosomes. African trypanosomiasis remains one of the major diseases in the world today, affecting...interest as a possible target for drug chemotherapy . At present only suramin and organic arsenicals remain as the mainstay of chemotherapy , despite their

  14. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    NASA Astrophysics Data System (ADS)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  15. Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain

    PubMed Central

    Koga, Kohei; Descalzi, Giannina; Chen, Tao; Ko, Hyoung-Gon; Lu, Jinshan; Li, Shermaine; Son, Junehee; Kim, TaeHyun; Kwak, Chuljung; Huganir, Richard L.; Zhao, Ming-gao; Kaang, Bong-Kiun; Collingridge, Graham L.; Zhuo, Min

    2015-01-01

    SUMMARY Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a postsynaptic form (post-LTP) that requires N-methyl-D-aspartate receptors. Pre-LTP also involves adenylyl cyclase and protein kinase A and is expressed via a mechanism involving hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Interestingly, chronic pain and anxiety both result in selective occlusion of pre-LTP. Significantly, microinjection of the HCN blocker ZD7288 into the ACC in vivo produces both anxiolytic and analgesic effects. Our results provide a mechanism by which two forms of LTP in the ACC may converge to mediate the interaction between anxiety and chronic pain. PMID:25556835

  16. Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC

    NASA Astrophysics Data System (ADS)

    Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin

    2015-04-01

    We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify

  17. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress.

    PubMed

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee (Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  18. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    NASA Astrophysics Data System (ADS)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  19. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  20. An oxidase road to platelet adhesion.

    PubMed

    Krause, Diane S

    2016-03-17

    Platelet adhesion to collagen via collagen receptors is an important part of thrombosis. In this issue of Blood, Matsuura et al identify collagen receptors as previously unrecognized targets of the extracellular enzyme lysyl oxidase (LOX), the level of which is increased in myeloproliferative neoplasms (MPNs) and other conditions associated with pathological thromboses.

  1. Polyphenol oxidase activity in annual forage clovers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO)-mediated phenol reactions in red clover (Trifolium pratense L.) bind forage protein and reduce proteolysis, producing beneficial effects on forage protein degradability, silage fermentation, and soil-N cycling. We evaluated PPO activity in seven previously untested annual c...

  2. A colorimetric assay for cytokinin oxidase.

    PubMed

    Libreros-Minotta, C A; Tipton, P A

    1995-11-01

    A simple and rapid colorimetric assay for cytokinin oxidase is described. The assay is based on the formation of a Schiff base between the enzymatic reaction product 3-methyl-2-butenal and p-aminophenol. The assay is effective in the submicromolar concentration range and can be used in crude plant extracts as well as in more highly purified preparations.

  3. Exploiting algal NADPH oxidase for biophotovoltaic energy.

    PubMed

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K; Bombelli, Paolo; Howe, Christopher J; Merchant, Sabeeha S; Davies, Julia M; Smith, Alison G

    2016-01-01

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.

  4. Molecular cloning and characterisation of banana fruit polyphenol oxidase.

    PubMed

    Gooding, P S; Bird, C; Robinson, S P

    2001-09-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.

  5. Passive monitoring of VOC in air using ACC. Final report, revised edition

    SciTech Connect

    Gesser, H.D.

    1997-12-31

    The report describes a project that developed a method of using activated carbon cloth (ACC) as a sampler for measuring volatile organic compounds (VOCs) in air. Strips of carbon cloth mounted in slide holders were tested as diffusive samplers exposed to known concentrations of standard chemicals in test chambers. Adsorbed chemicals were extracted with solvents and analyzed, and comparison was made between the results obtained with the cloths and with passive samplers. Preliminary tests were carried out to determine the effects on carbon cloth performance of relative humidity, methods of extraction, materials for storing the cloth strips, and the type of cloth. Appendices include tables of experimental data and a report on a novel method of solventless extraction based on a combination of solid phase micro-extraction and purge/trap methods.

  6. Overview of the arthritis Cost Consequence Evaluation System (ACCES): a pharmacoeconomic model for celecoxib.

    PubMed

    Pettitt, D; Goldstein, J L; McGuire, A; Schwartz, J S; Burke, T; Maniadakis, N

    2000-12-01

    Pharmacoeconomic analyses have become useful and essential tools for health care decision makers who increasingly require such analyses prior to placing a drug on a national, regional or hospital formulary. Previous health economic models of non-steroidal anti-inflammatory drugs (NSAIDs) have been restricted to evaluating a narrow range of agents within specific health care delivery systems using medical information derived from homogeneous clinical trial data. This paper summarizes the Arthritis Cost Consequence Evaluation System (ACCES)--a pharmacoeconomic model that has been developed to predict and evaluate the costs and consequences associated with the use of celecoxib in patients with arthritis, compared with other NSAIDs and NSAIDs plus gastroprotective agents. The advantage of this model is that it can be customized to reflect local practice patterns, resource utilization and costs, as well as provide context-specific health economic information to a variety of providers and/or decision makers.

  7. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    PubMed

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

  8. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  9. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  10. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  11. Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates.

    PubMed

    Visentin, Virgile; Prévot, Danielle; Marti, Luc; Carpéné, Christian

    2003-04-18

    It has been demonstrated that amine oxidase substrates stimulate glucose transport in cardiomyocytes and adipocytes, promote adipogenesis in pre-adipose cell lines and lower blood glucose in diabetic rats. These insulin-like effects are dependent on amine oxidation by semicarbazide-sensitive amine oxidase or by monoamine oxidase. The present study aimed to investigate whether amine oxidase substrates also exhibit another insulin-like property, the inhibition of lipolysis. We therefore tested the influence of tyramine and benzylamine on lipolytic activity in rat adipocytes. These amines did not modify basal lipolysis but dose-dependently counteracted the stimulation induced by lipolytic agents. The response to 10 nM isoprenaline was totally inhibited by tyramine 1 mM. The blockade produced by inhibition of amine oxidase activity or by 1 mM glutathione suggested that the generation of oxidative species, which occurs during amine oxidation, was involved in tyramine antilipolytic effect. Among the products resulting from amine oxidation, only hydrogen peroxide was antilipolytic in a manner that was potentiated by vanadate, as for tyramine or benzylamine. Antilipolytic responses to tyramine and to insulin were sensitive to wortmannin. These data suggest that inhibition of lipolysis is a novel insulin-like effect of amine oxidase substrates which is mediated by hydrogen peroxide generated during amine oxidation.

  12. Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1.

    PubMed

    Bareth, Bettina; Nikolov, Miroslav; Lorenzi, Isotta; Hildenbeutel, Markus; Mick, David U; Helbig, Christin; Urlaub, Henning; Ott, Martin; Rehling, Peter; Dennerlein, Sven

    2016-05-15

    The mitochondrial cytochrome c oxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle in which translation of COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we isolate a cytochrome c oxidase assembly intermediate in preparatory scale from coa1Δ mutant cells, using Mss51 as bait. We demonstrate that at this stage of assembly, the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we define the protein composition of the assembly intermediate and unexpectedly identify the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochrome c oxidase assembly by stabilizing newly synthesized Cox1.

  13. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization.

    PubMed Central

    Purschke, W G; Schmidt, C L; Petersen, A; Schäfer, G

    1997-01-01

    A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation. PMID:9023221

  14. Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells.

    PubMed

    Rodríguez, C; Cabrero, A; Roglans, N; Adzet, T; Sánchez, R M; Vázquez, M; Ciudad, C J; Laguna, J C

    2001-02-01

    We studied whether two typical effects of fibrates, induction of stearoyl-CoA desaturase (EC 1.14.99.5) and peroxisome proliferation, are related. The effect of bezafibrate on the activity and mRNA of stearoyl-CoA desaturase and acyl-CoA oxidase in the liver and epididymal white adipose tissue of male Sprague-Dawley rats was determined. The same parameters were measured in HepG2 cells, a cell line resistant to peroxisome proliferation, following incubation with ciprofibrate. Bezafibrate increased the hepatic mRNA levels (14.5-fold on day 7) and activity (9.3-fold on day 15) of acyl-CoA oxidase. Stearoyl-CoA desaturase mRNA levels were transiently increased (2.7-fold on day 7), while its activity remained increased at the end of the treatment (2.4-fold). In white adipose tissue, bezafibrate increased the mRNA (5-fold) and activity (1.9-fold) of acyl-CoA oxidase, while stearoyl-CoA desaturase was not modified. Ciprofibrate addition to HepG2 cells cultured in 7% fetal bovine serum (FBS) only increased the stearoyl-CoA desaturase mRNA (1.9-fold). When cells were cultured in 0.5% FBS, ciprofibrate increased acyl-CoA oxidase mRNA (2.2-fold), while the increase in stearoyl-CoA desaturase mRNA was identical (1.9-fold). Further, its activity was also increased (1.5-fold). Incubation of HepG2 cells in the presence of cycloheximide did not alter the capacity of ciprofibrate to induce stearoyl-CoA desaturase mRNA, whereas the presence of actinomycin abolished the induction. In addition, preincubation of HepG2 cells with ciprofibrate increased the rate of stearoyl-CoA desaturase mRNA degradation. The results presented in this study suggest that fibrates induce stearoyl-CoA desaturase activity and mRNA levels independently of peroxisome proliferation.

  15. The anorexigenic effect of serotonin is mediated by the generation of NADPH oxidase-dependent ROS.

    PubMed

    Fang, Xin-Ling; Shu, Gang; Yu, Jian-Jian; Wang, Li-Na; Yang, Jing; Zeng, Qing-Jie; Cheng, Xiao; Zhang, Zhi-Qi; Wang, Song-Bo; Gao, Ping; Zhu, Xiao-Tong; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2013-01-01

    Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway.

  16. Low expression of the antibacterial factor L-amino acid oxidase in bovine mammary gland.

    PubMed

    Nagaoka, Kentaro; Zhang, Haolin; Arakuni, Masahiro; Taya, Kazuyoshi; Watanabe, Gen

    2014-12-01

    In the mouse, L-amino acid oxidase (LAO) produces hydrogen peroxide by utilizing free amino acids and is a proven antibacterial factor in mammary glands. Mastitis, a bacterial infection of the mammary gland, is the most frequent disease in dairy cattle. Here, we investigate whether LAO is expressed in the mammary gland of dairy cattle and is antibacterial. In dairy cattle, the expression level of LAO mRNA in the mammary gland was considerably lower than that in mice, and LAO activity was not observed in cattle milk that produced hydrogen peroxide. The expression of LAO mRNA was also low in Japanese Black cattle, the same as in Holstein cattle. A higher LAO mRNA expression was observed in the mastitis glands than in the lactating glands. Furthermore, spleen and lymph nodes expressed high levels of LAO mRNA in dairy cattle. We conclude that mammary glands in dairy cattle have lower ability to express the LAO gene compared to that in mice, which may result in a high incidence of mastitis.

  17. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  18. 24 CFR 884.105 - Maximum total ACC commitment and project account (private-owner/PHA projects).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maximum total ACC commitment and project account (private-owner/PHA projects). 884.105 Section 884.105 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF THE ASSISTANT SECRETARY...

  19. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    PubMed Central

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B.; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-01-01

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is com­prised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket. PMID:19390150

  20. Draft Genome Sequence of Edwardsiellapiscicida Strain ACC35.1 Isolated from Diseased Turbot (Scophthalmus maximus) in Europe.

    PubMed

    Buján, Noemí; Toranzo, Alicia E; Magariños, Beatriz

    2017-02-16

    Edwardsiella piscicida is a bacterial fish pathogen with a high degree of virulence. The strain ACC35.1 was isolated from diseased turbot in Europe. The draft genome sequence comprises 3.84 Mb with a G+C content of 59.8% and >3,450 protein-coding genes.

  1. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.

    PubMed

    Kamala-Kannan, Seralathan; Lee, Kui-Jae; Park, Seung-Moon; Chae, Jong-Chan; Yun, Bong-Sik; Lee, Yong Hoon; Park, Yool-Jin; Oh, Byung-Taek

    2010-04-01

    The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase cleaves the ethylene precursor ACC into alpha-ketobutyrate and ammonia. The decreased level of ethylene allows the plant to be more resistant to a wide environmental stress including plant pathogens. In the present study, we characterized the ACC deaminase activity of a Pseudomonas entomophila strain PS-PJH isolated from the red pepper rhizosphere region of red pepper grown at Jinan, Korea. The isolate produced 23.8 +/- 0.4 micromol of alpha-ketobutyrate/mg of protein/h during ACC deamination under in vitro conditions. Polymerase chain reaction for acdS gene showed that the isolated P. entomophila strain PS-PJH carry sequences similar to the known acdS genes. Results of the multiple sequence alignment revealed >99% identity (nucleotide and amino acid) with acdS gene of Pseudomonas putida strains AM15 and UW4. The isolated bacteria promoted 43.3 and 34.1% of growth in Raphanus sativus and Lactuca sativa plants, respectively. Based on the 16S-23S internal transcribed spacer region sequences, the isolate was identified as P. entomophila. To the best of our knowledge this is the first study to report the acdS gene in P. entomophila.

  2. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA

    SciTech Connect

    Davis, Robert G.; Wilkerson, Andrea M.

    2016-08-31

    This report summarizes the results from a trial installation of light-emitting diode (LED) lighting systems in several spaces within the ACC Care Center in Sacramento, CA. The Sacramento Municipal Utility District (SMUD) coordinated the project and invited the U.S. Department of Energy (DOE) to document the performance of the LED lighting systems as part of a GATEWAY evaluation. DOE tasked the Pacific Northwest National Laboratory (PNNL) to conduct the investigation. SMUD and ACC staff coordinated and completed the design and installation of the LED systems, while PNNL and SMUD staff evaluated the photometric performance of the systems. ACC staff also track behavioral and health measures of the residents; some of those results are reported here, although PNNL staff were not directly involved in collecting or interpreting those data. The trial installation took place in a double resident room and a single resident room, and the corridor that connects those (and other) rooms to the central nurse station. Other spaces in the trial included the nurse station, a common room called the family room located near the nurse station, and the ACC administrator’s private office.

  3. Implementation and efficiency analysis of parallel computation using OpenACC: a case study using flow field simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Shanghong; Yuan, Rui; Wu, Yu; Yi, Yujun

    2016-01-01

    The Open Accelerator (OpenACC) application programming interface is a relatively new parallel computing standard. In this paper, particle-based flow field simulations are examined as a case study of OpenACC parallel computation. The parallel conversion process of the OpenACC standard is explained, and further, the performance of the flow field parallel model is analysed using different directive configurations and grid schemes. With careful implementation and optimisation of the data transportation in the parallel algorithm, a speedup factor of 18.26× is possible. In contrast, a speedup factor of just 11.77× was achieved with the conventional Open Multi-Processing (OpenMP) parallel mode on a 20-kernel computer. These results demonstrate that optimised feature settings greatly influence the degree of speedup, and models involving larger numbers of calculations exhibit greater efficiency and higher speedup factors. In addition, the OpenACC parallel mode is found to have good portability, making it easy to implement parallel computation from the original serial model.

  4. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-06-15

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  5. Draft Genome Sequence of Edwardsiella piscicida Strain ACC35.1 Isolated from Diseased Turbot (Scophthalmus maximus) in Europe

    PubMed Central

    Toranzo, Alicia E.; Magariños, Beatriz

    2017-01-01

    ABSTRACT   Edwardsiella piscicida is a bacterial fish pathogen with a high degree of virulence. The strain ACC35.1 was isolated from diseased turbot in Europe. The draft genome sequence comprises 3.84 Mb with a G+C content of 59.8% and >3,450 protein-coding genes. PMID:28209828

  6. NATO Network Enabled Capability (NNEC) challenges: Why NATO Air Command and Control System (ACCS) might be a good case?

    DTIC Science & Technology

    2011-06-01

    Picture ( RAP ), Air Tasking Order (ATO), Air Coordination order (ACO), etc. 2. Non Functional: providing all other functionalities, e.g. IA/security...with their respective characteristics in the project management behavior and environmental parameters. It should be noted that SOA implementation... influence its transformation. The roles and perspectives of the main ACCS transformation actors are described in this section. Several stakeholders

  7. Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria.

    PubMed

    Perez-Martinez, Xochitl; Butler, Christine A; Shingu-Vazquez, Miguel; Fox, Thomas D

    2009-10-01

    Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.

  8. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  9. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  10. Natural Compounds as Modulators of NADPH Oxidases

    PubMed Central

    2013-01-01

    Reactive oxygen species (ROS) are cellular signals generated ubiquitously by all mammalian cells, but their relative unbalance triggers also diseases through intracellular damage to DNA, RNA, proteins, and lipids. NADPH oxidases (NOX) are the only known enzyme family with the sole function to produce ROS. The NOX physiological functions concern host defence, cellular signaling, regulation of gene expression, and cell differentiation. On the other hand, increased NOX activity contributes to a wide range of pathological processes, including cardiovascular diseases, neurodegeneration, organ failure, and cancer. Therefore targeting these enzymatic ROS sources by natural compounds, without affecting the physiological redox state, may be an important tool. This review summarizes the current state of knowledge of the role of NOX enzymes in physiology and pathology and provides an overview of the currently available NADPH oxidase inhibitors derived from natural extracts such as polyphenols. PMID:24381714

  11. Lysyl Oxidase and the Tumor Microenvironment

    PubMed Central

    Wang, Tong-Hong; Hsia, Shih-Min; Shieh, Tzong-Ming

    2016-01-01

    The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated. PMID:28036074

  12. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  13. Lysyl oxidase mediates hypoxic control of metastasis.

    PubMed

    Erler, Janine T; Giaccia, Amato J

    2006-11-01

    Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia-induced metastasis. In an orthotopic rodent model of breast cancer, a small-molecule or antibody inhibitor of LOX abolished metastasis, offering preclinical validation of this enzyme as a therapeutic target.

  14. Ligand interactions with galactose oxidase: mechanistic insights.

    PubMed Central

    Whittaker, M M; Whittaker, J W

    1993-01-01

    Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme. PMID:8386015

  15. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  16. Tetrazolium Oxidase Polymorphism in Rainbow Trout

    PubMed Central

    Cederbaum, Stephen D.; Yoshida, Akira

    1972-01-01

    Tetrazolium oxidase from the blood and liver of rainbow trout was found to be genetically polymorphic. The inheritance pattern of the liver enzyme was compatible only with a one locus-two allele hypothesis. The enzymes in the blood while having an electrophoretically identical polymorphism could differ genotypically from that of the liver in a given fish. The significance of these findings to the understanding of the evolution of the salmonid genome is discussed. PMID:4675090

  17. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  18. Xanthine dehydrogenase to xanthine oxidase conversion in ischemic rat intestine

    SciTech Connect

    McKelvey, T.G.; Engerson, T.D.; Elmore, C.R.; Jones, H.P. )

    1990-02-26

    The ischemic conversion of the NADH-producing xanthine dehydrogenase (XDH) to an oxidase form, that produces both superoxide radical and hydrogen peroxide, has been proposed as an important step in initiating oxygen radical-mediated ischemia-reperfusion injury. It has also been reported that two forms of converted oxidase are produced in ischemic rat liver; a reversible xanthine oxidase produced through sulfhydryl oxidation, that can be reconverted to XDH by incubation with 10mM dithiothreitol (Dtt) at 37{degrees}C, and a Dtt-irreversible oxidase produced via proteolysis. The authors report that increased oxidase in the ischemic rat intestine results from significant increases in both the Dtt-reversible and Dtt-irreversible forms of xanthine oxidase. Total oxidase activity (Irreversible + Dtt-reversible) was 19% of the total enzyme activity (XDH + XO) in control ileum and distal jejunum, increased to 26% after 1 hour of ischemia at 37{degrees}C, and significantly to 36% after 1.5 hours. After 3 hours 73% of the activity was in the oxidase form. Irreversible oxidase comprised 15% of the total activity in control intestine, significantly increased to 25% after 2 hours, and further to 42% after 3 hours. Dtt-reversible oxidase was 3% of the total activity in controls, increased to 13% after 1.5 hours, and significantly to 29% after 2 hours.

  19. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2016-02-01

    The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog.

  20. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes.

    PubMed

    Veskoukis, Aristidis S; Kouretas, Demetrios; Panoutsopoulos, Georgios I

    2006-01-01

    Both aldehyde oxidase and xanthine oxidase catalyze the oxidation of a wide range of N-heterocycles and aldehydes. These enzymes are important in the oxidation of N-heterocyclic xenobiotics, whereas their role in the oxidation of xenobiotic aldehydes is usually ignored. The present investigation describes the interaction of methyl- and nitrosubstituted benzaldehydes, in the ortho-, meta- and parapositions, with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase. The kinetic constants showed that most substituted benzaldehydes are excellent substrates of aldehyde oxidase with lower affinities for xanthine oxidase. Low Km values for aldehyde oxidase were observed with most benzaldehydes tested, with 3-nitrobenzaldehyde having the lowest Km value and 3-methylbenzaldehyde being the best substrate in terms of substrate efficiency (Ks). Additionally, low Km values for xanthine oxidase were found with most benzaldehydes tested. However, all benzaldehydes also had low Vmax values, which made them poor substrates of xanthine oxidase. It is therefore possible that aldehyde oxidase may be critical in the oxidation of xenobiotic and endobiotic derived aldehydes and its role in such reactions should not be ignored.

  1. Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V.

    PubMed Central

    Sachs, M S; Bertrand, H; Metzenberg, R L; RajBhandary, U L

    1989-01-01

    The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA. Images PMID:2540423

  2. Improving derivatization efficiency of BMAA utilizing AccQ-Tag in a complex cyanobacterial matrix.

    PubMed

    Eriksson, Johan; Jonasson, Sara; Papaefthimiou, Dimitra; Rasmussen, Ulla; Bergman, Birgitta

    2009-01-01

    Two different assays have been developed and used in order to investigate the optimal conditions for derivatization and detection of acid beta-N-methyl-amino-L-alanine (BMAA) in a cyanobacterial sample. BMAA was extracted from cyanobacterial cultures both from the cytosolic ("free") fraction and in the precipitated ("protein") fraction using a newly developed extraction scheme and the sample matrix was standardized according to protein concentration to ensure the highest possible derivative yield. A rapid and sensitive HPLC method for fluorescence detection of the non-protein amino acid BMAA in cyanobacteria, utilizing the Waters AccQ-Tag chemistry and Chromolith Performance RP-18e columns was developed. Using this new method and utilizing a different buffer system and column than that recommended by Waters, we decreased the time between injections by 75%. The limit of quantification was determined to be 12 nmol and limit of detection as 120 fmol. The linear range was in the range of 8.5 nmol-84 pmol. Accuracy and precision were well within FDA guidelines for bioanalysis.

  3. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    PubMed

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.

  4. A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.

    2016-10-01

    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.

  5. NAD(P)H oxidase and renal epithelial ion transport

    PubMed Central

    Schreck, Carlos

    2011-01-01

    A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na+ and K+ transport. Finally, we will review the relationship between tubular H+ efflux and NADPH oxidase activity. PMID:21270341

  6. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.

    PubMed

    Shi, Shuobo; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2014-05-06

    ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of transcription and repression by Snf1 protein kinase at the protein level. Here, we demonstrate a strategy for improving the activity of ACCase in S. cerevisiae by abolishing posttranslational regulation of Acc1 via site-directed mutagenesis. It was found that introduction of two site mutations in Acc1, Ser659 and Ser1157, resulted in an enhanced activity of Acc1 and increased total fatty acid content. As Snf1 regulation of Acc1 is particularly active under glucose-limited conditions, we evaluated the effect of the two site mutations in chemostat cultures. Finally, we showed that our modifications of Acc1 could enhance the supply of malonyl-CoA and therefore successfully increase the production of two industrially important products derived from malonyl-CoA, fatty acid ethyl esters and 3-hydroxypropionic acid. IMPORTANCE ACCase is responsible for carboxylation of acetyl-CoA to produce malonyl-CoA, which is a crucial step in the control of fatty acid metabolism. ACCase opened the door for pharmaceutical treatments of obesity and diabetes as well as the development of new herbicides. ACCase is also recognized as a promising target for developing cell factories, as its malonyl-CoA product serves as a universal precursor for a variety of high-value compounds in white biotechnology. Yeast ACCase is a good model in understanding the enzyme's catalysis, regulation, and inhibition. The present study describes the importance of protein phosphorylation in regulation of yeast ACCase and identifies potential regulation sites. This study led to the generation of a more efficient ACCase, which

  7. AccERK2, a map kinase gene from Apis cerana cerana, plays roles in stress responses, developmental processes, and the nervous system.

    PubMed

    Li, Yuzhen; Zhang, Liang; Kang, Mingjiang; Guo, Xingqi; Baohua Xu

    2012-03-01

    Extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase (MAPK), plays roles in a variety of cellular responses. However, limited information is available on the relationship between ERKs and environmental stresses. In this report, an ERK gene, AccERK2, was cloned and characterized from Apis cerana cerana. Polypeptide sequence alignment revealed that the single-copied AccERK2 shares high identity with other known ERKs and contains the typical conserved Thr-Glu-Tyr (TEY) motif in its activation loop. Genomic sequence analysis revealed that the seven exons of AccERK2 are interrupted by six introns, and the seventh intron is located in the 3' untranslated region. Semi-quantitative reverse transcription (RT-PCR) indicated that AccERK2 was expressed at higher levels in the larval and pupal stages than in the adult stage. AccERK2 was also most highly expressed in the brain. The expression of AccERK2 was induced by abiotic stresses, including heat, ion irradiation, oxidative stress, and heavy metal ions. Based on these results, it appears that AccERK2 in A. cerana cerana participates in developmental processes, the nervous system, and responses to environmental stressors.

  8. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  9. Bringing measurement and management science to the cath laboratory: the National Cardiovascular Data Registry (ACC-NCDR) and the Cardiac Catheterization Laboratory Continuous Quality Improvement Toolkit (ACC-CathKIT).

    PubMed

    Dehmer, Gregory J; Elma, MaryAnne; Hewitt, Kathleen; Brindis, Ralph G

    2004-01-01

    Diagnostic cardiac catheterization and percutaneous coronary interventions are widely performed for the evaluation and treatment of patients with cardiac disease. Because of high utilization, cost, and complication rates, invasive cardiac procedures are closely monitored and frequently measured using national benchmark databases and public reports. Before decision makers can accept these data and reports as accurate, it is necessary that the measurement process be performed correctly. However, collecting and measuring data is only the first step and does not automatically lead to improvements in quality. For an improvement to occur, a continuous quality improvement effort must exist to transform data into improved outcomes for patients. Recognizing the need to supply healthcare providers with methods and standards for measurement reporting and tools to assist facilities in the development of effective continuous quality improvement efforts, the American College of Cardiology developed the National Cardiovascular Data Registry (ACC-NCDR). Subsequently, the American College of Cardiology Foundation, in cooperation with the Society for Cardiovascular Angiography and Interventions, the American College of Cardiovascular Administrators, and several other professional organizations, developed the ACC-Cardiac Catheterization Laboratory Continuous Quality Improvement Toolkit (ACC-CathKIT). The development and usefulness of these products is described in this paper.

  10. PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2.

    PubMed

    German, Natalie J; Yoon, Haejin; Yusuf, Rushdia Z; Murphy, J Patrick; Finley, Lydia W S; Laurent, Gaëlle; Haas, Wilhelm; Satterstrom, F Kyle; Guarnerio, Jlenia; Zaganjor, Elma; Santos, Daniel; Pandolfi, Pier Paolo; Beck, Andrew H; Gygi, Steven P; Scadden, David T; Kaelin, William G; Haigis, Marcia C

    2016-09-15

    While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.

  11. NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease

    PubMed Central

    Sasaki, Yu; Dehnad, Ali; Fish, Sarah; Sato, Ai; Jiang, Joy; Tian, Jijing; Schröder, Kathrin; Brandes, Ralf; Török, Natalie J.

    2017-01-01

    Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines. PMID:28383062

  12. Individual variation in hepatic aldehyde oxidase activity.

    PubMed

    Al-Salmy, H S

    2001-04-01

    Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.

  13. Respiratory Deficiency Mediates the Regulation of CHO1-encoded Phosphatidylserine Synthase by mRNA Stability in Saccharomyces cerevisiae*

    PubMed Central

    Choi, Hyeon-Son; Carman, George M.

    2007-01-01

    The CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) is one of the most highly regulated phospholipid biosynthetic enzymes in the yeast Saccharomyces cerevisiae. CHO1 expression is regulated by nutrient availability through a regulatory circuit involving a UASINO cis-acting element in the CHO1 promoter, the positive transcription factors Ino2p and Ino4p, and the transcriptional repressor Opi1p. In this work, we examined the posttranscriptional regulation of CHO1 by mRNA stability. CHO1 mRNA was stabilized in mutants defective in deadenylation (ccr4Δ), mRNA decapping (dcp1), and the 5’-3’ exonuclease (xrn1) indicating that the CHO1 transcript is primarily degraded through the general 5’-3’ mRNA decay pathway. In respiratory sufficient cells, the CHO1 transcript was moderately stable with a half-life of 12 min. However, the CHO1 transcript was stabilized to a half-life of greater than 45 min in respiratory deficient (rho− and rho°) cells, the cox4Δ mutant defective in the cytochrome c oxidase, and wild type cells treated with KCN (a cytochorome c oxidase inhibitor). The increased CHO1 mRNA stability in response to respiratory deficiency caused increases in CHO1 mRNA abundance, phosphatidylserine synthase protein and activity, and the synthesis of phosphatidylserine in vivo. Respiratory deficiency also caused increases in the activities of CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, and the phospholipid methyltransferases. Phosphatidylinositol synthase and choline kinase activities were not affected by respiratory deficiency. This work advances our understanding of phosphatidylserine synthase regulation and underscores the importance of mitochondrial respiration to the regulation of phospholipid synthesis in S. cerevisiae. PMID:17761681

  14. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Purpose Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Methods Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. Results In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. Conclusion The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls. PMID:28060873

  15. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488.

    PubMed

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed.

  16. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  17. A comparison of native GPU computing versus OpenACC for implementing flow-routing algorithms in hydrological applications

    NASA Astrophysics Data System (ADS)

    Rueda, Antonio J.; Noguera, José M.; Luque, Adrián

    2016-02-01

    In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.

  18. Separation of putrescine oxidase and spermidine oxidase in foetal bovine serum with the aid of a specific radioactive assay of spermidine oxidase.

    PubMed Central

    Gahl, W A; Vale, A M; Pitot, H C

    1980-01-01

    1. A sensitive and specific assay for spermidine oxidase is described. The method involves the separation of [14C]spermidine (substrate) from [14C]putrescine (product) and other 14C-labelled products on a Dowex 50 cation-exchange column: 92% of the putrescine applied to the column was eluted by 2.3 M-HCl, but this treatment left 96% of the spermidine bound to the column. Unchanged spermidine could be removed from the column by elution with 6 M-HCl. 2. By means of this assay, foetal and adult bovine serum were each shown to contain spermidine oxidase activity, putrescine being a major product of the oxidation of spermidine by the serum enzymes. 3. In foetal bovine serum, spermidine oxidase activity is separable from putrescine oxidase activity by chromatography on a cadaverine-Sephadex column, by gel filtration and by ion-exchange column chromatography. Putrescine oxidase was purified 1900-fold and spermidine oxidase 130-fold by these procedures. The former oxidized putrescine but not spermidine, and spermidine oxidase exhibited no activity with putrescine as substrate. PMID:7406861

  19. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise

    PubMed Central

    Li, Mengyao; Verdijk, Lex B.; Sakamoto, Kei; Ely, Brian; van Loon, Luc J.C.; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. PMID:23000302

  20. Circumpolar Estimates of Isopycnal Mixing in the ACC from Argo Floats

    NASA Astrophysics Data System (ADS)

    Roach, C. J.; Balwada, D.; Speer, K. G.

    2015-12-01

    There are few direct observations of cross-stream isopycnal mixing in the interior of the Southern Ocean, yet such measurements are needed to determine the role of eddies transporting properties across the ACC, and key to progress toward testing theories of meridional overturning. In light of this we examine if it is possible to obtain estimates of mixing from Argo float trajectories. We divided the Southern Ocean into overlapping 15ο longitude bins before estimating mixing. Resulting diffusivities ranged from 300 to 3000 m2s-1, with peaks corresponding to the Scotia Sea; Kerguelen and Campbell Plateaus. Comparison of our diffusivities with previous regional studies demonstrated good agreement. Tests of the methodology in the DIMES region found that mixing from Argo floats agreed closely with mixing from RAFOS floats. To further test the method we used the Southern Ocean State Estimate velocity fields to advect particles with Argo and RAFOS float like behaviours. Stirring estimates from the particles agreed well with each other in the Kerguelen Island region, South Pacific and Scotia Sea, despite the differences in the imposed behaviour. Finally, these estimates were compared to mixing length suppression theory presented in Ferrari and Nikurashin 2010. This mixing length suppression theory quantifies horizontal diffusivity similar to Prandtl (1925), but the mixing length is suppressed in the presence of mean flows and eddy phase speeds. Our results suggest that the theory can explain both the structure and magnitude of mixing using mean flow data. An exception is near the Kerguelen and Campbell Plateaus where theory under-estimates mixing relative to our results.

  1. NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis

    PubMed Central

    Röhm, Marc; Grimm, Melissa J.; D'Auria, Anthony C.; Almyroudis, Nikolaos G.

    2014-01-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47phox−/−) mice which had resolved in wild-type mice by day 5 but progressed in p47phox−/− mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47phox−/− mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  2. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    PubMed

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.

  3. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  4. Xanthine oxidase inhibitors from Garcinia esculenta twigs.

    PubMed

    Zhu, Lun-Lun; Fu, Wen-Wei; Watanabe, Shimpei; Shao, Yi-Nuo; Tan, Hong-Sheng; Zhang, Hong; Tan, Chang-Heng; Xiu, Yan-Feng; Norimoto, Hisayoshi; Xu, Hong-Xi

    2014-12-01

    The EtOAc-soluble portion of the 80 % (v/v) EtOH extract from the twigs of Garcinia esculenta exhibited strong xanthine oxidase inhibition in vitro. Bioassay-guided purification led to the isolation of 1,3,6,7-tetrahydroxyxanthone (3) and griffipavixanthone (8) as the main xanthine oxidase inhibitors, along with six additional compounds (1, 2, 4-7), including two new compounds (1 and 2). This enzyme inhibition was dose dependent with an IC50 value of approximately 1.2 µM for 3 and 6.3 µM for 8. The inhibitory activity of 3 was stronger than the control allopurinol (IC50 value: 5.3 µM). To our knowledge, compound 8 is the first bixanthone that demonstrated potent XO inhibitory activity in vitro. The structures of the new compounds were established by spectroscopic analysis, and the optical properties and absolute stereochemistry of racemic (±) esculentin A (2) were further determined by the calculation of the DP4 probability and analysis of its MTPA ester derivatives.

  5. Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii.

    PubMed

    Jurtshuk, P; Mueller, T J; Wong, T Y

    1981-09-14

    A membrane-bound cytochrome oxidase for Azobacter vinelandii was purified 20-fold using a detergent-solubilization procedure. Activity was monitored using as ascorbate-TMPD oxidation assay. The oxidase was 'solubilized' from a sonic-type electron-transport particle (R3 fraction) using Triton X-100 and deoxycholate. Low detergent concentrations first solubilized the flavoprotein oxidoreductases, then higher concentrations of Triton X-100 and KCl solubilized the oxidase, which was precipitated at 27-70% (NH4)2SO4. The highly purified cytochrome oxidase has a V of 60-78 microgatom O consumed/min per mg protein. TMPD oxidation by the purified enzyme was inhibited by CO, KCN, NaN3 and NH2OH; NaNO2 (but not NaNO3) also had a potent inhibitory effect. Spectral analyses revealed two major hemoproteins, the c-type cytochrome c4 and cytochrome o; cytochromes a1 and d were not detected. The Azotobacter cytochrome oxidase is an integrated cytochrome c4-o complex, TMPD-dependent cytochrome oxidase activity being highest in preparations having a high c-type cytochrome content. This TMPD-dependent cytochrome oxidase serves as a major oxygen-activation site for the A. vinelandii respiratory chain. It appears functionally analogous to cytochrome a+a3 oxidase of mammalian mitochondria.

  6. Molecular Evolution of Cytochrome bd Oxidases across Proteobacterial Genomes

    PubMed Central

    Degli Esposti, Mauro; Rosas-Pérez, Tania; Servín-Garcidueñas, Luis Eduardo; Bolaños, Luis Manuel; Rosenblueth, Monica; Martínez-Romero, Esperanza

    2015-01-01

    This work is aimed to resolve the complex molecular evolution of cytochrome bd ubiquinol oxidase, a nearly ubiquitous bacterial enzyme that is involved in redox balance and bioenergetics. Previous studies have created an unclear picture of bd oxidases phylogenesis without considering the existence of diverse types of bd oxidases. Integrated approaches of genomic and protein analysis focused on proteobacteria have generated a molecular classification of diverse types of bd oxidases, which produces a new scenario for interpreting their evolution. A duplication of the original gene cluster of bd oxidase might have occurred in the ancestors of extant α-proteobacteria of the Rhodospirillales order, such as Acidocella, from which the bd-I type of the oxidase might have diffused to other proteobacterial lineages. In contrast, the Cyanide-Insensitive Oxidase type may have differentiated into recognizable subtypes after another gene cluster duplication. These subtypes are widespread in the genomes of α-, β-, and γ-proteobacteria, with occasional instances of lateral gene transfer. In resolving the evolutionary pattern of proteobacterial bd oxidases, this work sheds new light on the basal taxa of α-proteobacteria from which the γ-proteobacterial lineage probably emerged. PMID:25688108

  7. Detection and characterization of a multicopper oxidase from Nitrosomonas europaea.

    PubMed

    Lawton, Thomas J; Rosenzweig, Amy C

    2011-01-01

    Blue copper oxidase (BCO) is a multicopper oxidase (MCO) found in Nitrosomonas europaea as well as in other ammonia-oxidizing organisms. In this chapter, we detail methods used to detect, isolate, and characterize BCO from N. europaea. A method for identifying and classifying MCOs commonly found in nitrifiers based on primary sequence is also described.

  8. Immunological identification of the alternative oxidase of Neurospora crassa mitochondria.

    PubMed Central

    Lambowitz, A M; Sabourin, J R; Bertrand, H; Nickels, R; McIntosh, L

    1989-01-01

    Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species. Images PMID:2524649

  9. Lysyl oxidase activity in human normal skins and postburn scars.

    PubMed

    Hayakawa, T; Hino, N; Fuyamada, H; Nagatsu, T; Aoyama, H

    1976-09-06

    Lysyl oxidase activity of human normal skins derived from the frontal thighs of 33 subjects showed large variations and the mean value was 11 455 +/- 7 172 (S.D.) cpm/g of wet weight tissue. The age of lesion affected the lysyl oxidase activity in postburn scars. Granulation tissues showed a fairly low activity; however, the activity increased sharply within 2--3 months, and reached a significantly higher value than that of normal skin. The high level of activity continued for up to 2--3 years, then gradually decreased to normal range after 5 years or so. Lysyl oxidase activity was detected only after 4 M urea treatment of tissues. Benzylamine oxidase activity also showed large variations in both normal skins and postburn scars, with mean values of: 0.128 +/- 0.077 (S.D.) and 0.145 +/- 0.090 (S.D.) mmol/g of wet weight/h, respectively. No correlation was observed between lysyl oxidase and benzylamine oxidase activities. The granulation tissues showed significantly high values of benzylamine oxidase activity in contrast to the low values of lysyl oxidase activity.

  10. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  11. The NADH oxidase-Prx system in Amphibacillus xylanus.

    PubMed

    Niimura, Youichi

    2007-01-01

    Amphibacillus NADH oxidase belongs to a growing new family of peroxiredoxin-linked oxidoreductases including alkyl hydroperoxide reductase F (AhpF). Like AhpF it displays extremely high hydroperoxide reductase activity in the presence of a Prx, thus making up the NADH oxidase-Prx system. The NADH oxidase primarily catalyzes the reduction of oxygen by NADH to form H2O2, while the Prx immediately reduces H2O2 (or ROOH) to water (or ROH). Consequently, the NADH oxidase-Prx system catalyzes the reduction of both oxygen and hydrogen peroxide to water with NADH as the preferred electron donor. The NADH oxidase-Prx system is widely distributed in aerobically growing bacteria lacking a respiratory chain and catalase, and plays an important role not only in scavenging hydroperoxides but also in regenerating NAD in these bacteria.

  12. Angiotensin II and NADPH oxidase increase ADMA in vascular smooth muscle cells.

    PubMed

    Luo, Zaiming; Teerlink, Tom; Griendling, Kathy; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2010-09-01

    Asymmetrical dimethylarginine inhibits nitric oxide synthase, cationic amino acid transport, and endothelial function. Patients with cardiovascular risk factors often have endothelial dysfunction associated with increased plasma asymmetrical dimethylarginine and markers of reactive oxygen species. We tested the hypothesis that reactive oxygen species, generated by nicotinamide adenine dinucleotide phosphate oxidase, enhance cellular asymmetrical dimethylarginine. Incubation of rat preglomerular vascular smooth muscle cells with angiotensin II doubled the activity of nicotinamide adenine dinucleotide phosphate oxidase but decreased the activities of dimethylarginine dimethylaminohydrolase by 35% and of cationic amino acid transport by 20% and doubled cellular (but not medium) asymmetrical dimethylarginine concentrations (P<0.01). This was blocked by tempol or candesartan. Cells stably transfected with p22(phox) had a 50% decreased protein expression and activity of dimethylarginine dimethylaminohydrolase despite increased promoter activity and mRNA. The decreased DDAH protein expression and the increased asymmetrical dimethylarginine concentration in p22(phox)-transfected cells were prevented by proteosomal inhibition. These cells had enhanced protein arginine methylation, a 2-fold increased expression of protein arginine methyltransferase-3 (P<0.05) and a 30% reduction in cationic amino acid transport activity (P<0.05). Asymmetrical dimethylarginine was increased from 6+/-1 to 16+/-3 micromol/L (P<0.005) in p22(phox)-transfected cells. Thus, angiotensin II increased cellular asymmetrical dimethylarginine via type 1 receptors and reactive oxygen species. Nicotinamide adenine dinucleotide phosphate oxidase increased cellular asymmetrical dimethylarginine by increasing enzymes that generate it, enhancing the degradation of enzymes that metabolize it, and reducing its cellular transport. This could underlie increases in cellular asymmetrical dimethylarginine during

  13. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    PubMed Central

    Hidalgo, María A.; Carretta, María D.; Teuber, Stefanie E.; Zárate, Cristian; Cárcamo, Leonardo; Concha, Ilona I.; Burgos, Rafael A.

    2015-01-01

    N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils. PMID:26634216

  14. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils.

    PubMed

    Hidalgo, María A; Carretta, María D; Teuber, Stefanie E; Zárate, Cristian; Cárcamo, Leonardo; Concha, Ilona I; Burgos, Rafael A

    2015-01-01

    N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na(+)/H(+) exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  15. ACC GABA levels are associated with functional activation and connectivity in the fronto-striatal network during interference inhibition in patients with borderline personality disorder.

    PubMed

    Wang, Guo-Ying; van Eijk, Julia; Demirakca, Traute; Sack, Markus; Krause-Utz, Annegret; Cackowski, Sylvia; Schmahl, Christian; Ende, Gabriele

    2017-02-15

    Impulsivity often develops from disturbed inhibitory control, a function mainly regulated by γ-Aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC) and the fronto-striatal system. In this study, we combined MRS GABA measurements and fMRI to investigate neurochemical and neurofunctional correlates of interference inhibition, further emphasizing the direct relationship between those two systems, as well as their relations to impulsivity in patients with BPD. In addition to BOLD activation, task-dependent functional connectivity was assessed by a generalized psychophysiological interactions approach. Full factorial analyses were performed via SPM to examine the main effect (within-group associations) as well as the interaction term (group differences in the association slope). The UPPS scales were used to evaluate impulsivity traits. Compared to healthy controls (HCs), BPD patients exhibited significantly less ACC-caudate functional connectivity during interference inhibition. ACC GABA levels in BPD patients but not in HCs were positively related to the magnitude of activation in several fronto-striatal regions (e.g. ACC, frontal regions, putamen, caudate,) and the strength of ACC-caudate functional connectivity during interference inhibition. The strength of the correlations of GABA with connectivity significantly differs between the two groups. Moreover, among all the UPPS impulsivity subscales, UPPS sensation seeking in the BPD group was related to GABA and was also negatively related to the task-dependent BOLD activation and functional connectivity in the fronto-striatal network. Finally, mediation analyses revealed that the magnitude of activation in the caudate and the strength of ACC-caudate functional connectivity mediated the relationship between ACC GABA levels and UPPS sensation seeking in patients with BPD. Our findings suggest a disconnectivity of the fronto-striatal network in BPD patients during interference inhibition, particularly

  16. Genotypic Variation in Cytokinin Oxidase from Phaseolus Callus Cultures 1

    PubMed Central

    Kaminek, Miroslav; Armstrong, Donald J.

    1990-01-01

    Genotypic variation in cytokinin oxidase has been detected in enzyme preparations from Phaseolus vulgaris L. cv Great Northern and Phaseolus lunatus L. cv Kingston callus cultures. Although cytokinin oxidase preparations from Great Northern and Kingston callus tissues appear to have very similar substrate specificities, the cytokinin oxidase activities from the two callus tissues were found to differ in a number of other properties. The cytokinin oxidase from P. vulgaris cv Great Northern callus tissue exhibited a pH optimum of 6.5 (bisTris) and had a strong affinity for the lectin concanavalin A. The cytokinin oxidase from P. lunatus cv Kingston callus tissue exhibited a pH optimum of 8.4 (Taps) and did not bind to concanavalin A. The two enzymes also differed in position of elution when chromatographed on DEAE-cellulose. Both cytokinin oxidase activities exhibited enhanced activity and lower pH optima in the presence of copper-imidazole complexes, but the optimum copper-imidazole ratio and the magnitude of enhancement differed for the two activities. In both callus tissues, transient increases in the supply of exogenous cytokinins induced increases in cytokinin oxidase activity. The differences in pH optima and in glycosylation (as evidenced by the observed difference in lectin affinity) of the cytokinin oxidases from Great Northern and Kingston callus tissues suggest that the compartmentation of cytokinin oxidase may differ in the two callus tissues. The possibility that enzyme compartmentation and isozyme variation in cytokinin oxidase may play a role in the regulation of cytokinin degradation in plant tissues is discussed in relation to known differences in the rates of cytokinin degradation in Great Northern and Kingston callus tissues. Images Figure 6 PMID:16667652

  17. Identification of the Atlantic cod L-amino acid oxidase and its alterations following bacterial exposure.

    PubMed

    Kitani, Yoichiro; Fernandes, Jorge M O; Kiron, Viswanath

    2015-06-01

    Antibacterial factors that are present in epidermal mucus of fish have a potential role in the first line of host defence to bacterial pathogens. This study reports the identification of L-amino acid oxidase (LAO) in Atlantic cod (GmLao) and the changes in the molecule following bacterial exposure. The gmlao transcripts and LAO activity were present on both the body surface and in the internal organs of the fish. Relative mRNA level of gmlao increased significantly in the gills, the spleen and the head kidney (up to 8-fold) of fish that were challenged with the pathogen Vibrio anguillarum. The gmlao expression in skin was 4-fold higher in challenged fish. Our data indicate that LAO may be an important effector of antibacterial defence in Atlantic cod.

  18. Differential Expression of Alternative Oxidase Genes in Soybean Cotyledons during Postgerminative Development1

    PubMed Central

    McCabe, Tulene C.; Finnegan, Patrick M.; Harvey Millar, A.; Day, David A.; Whelan, James

    1998-01-01

    The expression of the alternative oxidase (AOX) was investigated during cotyledon development in soybean (Glycine max [L.] Merr.) seedlings. The total amount of AOX protein increased throughout development, not just in earlier stages as previously thought, and was correlated with the increase in capacity of the alternative pathway. Each AOX isoform (AOX1, AOX2, and AOX3) showed a different developmental trend in mRNA abundance, such that the increase in AOX protein and capacity appears to involve a shift in gene expression from AOX2 to AOX3. As the cotyledons aged, the size of the mitochondrial ubiquinone pool decreased. We discuss how this and other factors may affect the alternative pathway activity that results from the developmental regulation of AOX expression. PMID:9765553

  19. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  20. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line.

    PubMed

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar; Blemings, Kenneth P

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 +/- 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.

  1. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    PubMed Central

    Cleveland, Beth M; Leonard, Stephen S; Klandorf, Hillar

    2009-01-01

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress. PMID:20357931

  2. The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

    PubMed Central

    El Hajj, H. I.; Vluggens, A.; Andreoletti, P.; Ragot, K.; Mandard, S.; Kersten, S.; Waterham, H. R.; Lizard, G.; Wanders, R. J. A.; Reddy, J. K.

    2012-01-01

    Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids (VLCFA) and inflammatory demyelination. However, the components of this inflammatory process in P-NALD remain elusive. In this study, we used transcriptomic profiling and PCR array analyses to explore inflammatory gene expression in patient fibroblasts. Our results show the activation of IL-1 inflammatory pathway accompanied by the increased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. Human fibroblasts exposed to very-long-chain fatty acids exhibited increased mRNA expression of IL-1α and IL-1β cytokines. Furthermore, expression of IL-6 and IL-8 cytokines in patient fibroblasts was down-regulated by MAPK, p38MAPK, and Jun N-terminal kinase inhibitors. Thus, the absence of acyl-coenzyme A oxidase 1 activity in P-NALD fibroblasts triggers an inflammatory process, in which the IL-1 pathway seems to be central. The use of specific kinase inhibitors may permit the modulation of the enhanced inflammatory status. PMID:22508517

  3. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  4. Structural Evidence for Direct Interactions Between the BRCT Domains of Human BRCA1 and a Phospho-Peptide from Human ACC1

    SciTech Connect

    Shen,Y.; Tong, L.

    2008-01-01

    The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 Angstroms resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.

  5. Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells

    PubMed Central

    Dassa, Emmanuel P; Dufour, Eric; Gonçalves, Sérgio; Paupe, Vincent; Hakkaart, Gertjan A J; Jacobs, Howard T; Rustin, Pierre

    2009-01-01

    Cytochrome c oxidase (COX) deficiency is associated with a wide spectrum of clinical conditions, ranging from early onset devastating encephalomyopathy and cardiomyopathy, to neurological diseases in adulthood and in the elderly. No method of compensating successfully for COX deficiency has been reported so far. In vitro, COX-deficient human cells require additional glucose, pyruvate and uridine for normal growth and are specifically sensitive to oxidative stress. Here, we have tested whether the expression of a mitochondrially targeted, cyanide-resistant, alternative oxidase (AOX) from Ciona intestinalis could alleviate the metabolic abnormalities of COX-deficient human cells either from a patient harbouring a COX15 pathological mutation or rendered deficient by silencing the COX10 gene using shRNA. We demonstrate that the expression of the AOX, well-tolerated by the cells, compensates for both the growth defect and the pronounced oxidant-sensitivity of COX-deficient human cells. PMID:20049701

  6. Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C

    2005-04-11

    Alternative oxidase (AOX) represents a non-energy conserving branch in mitochondrial electron transport while plastoquinol terminal oxidase (PTOX) represents a potential branch in photosynthetic electron transport. Using a metagenomics dataset, we have uncovered numerous and diverse AOX and PTOX genes from the Sargasso Sea. Sequence similarity, synteny and phylogenetic analyses indicate that the large majority of these genes are from prokaryotes. AOX appears to be widely distributed among marine Eubacteria while PTOX is widespread among strains of cyanobacteria closely related to the high-light adapted Prochlorococcus marinus MED4, as well as Synechococcus. The wide distribution of AOX and PTOX in marine prokaryotes may have important implications for productivity in the world's oceans.

  7. [NADPH oxidases, Nox: new isoenzymes family].

    PubMed

    Chuong Nguyen, Minh Vu; Lardy, Bernard; Paclet, Marie-Hélène; Rousset, Francis; Berthier, Sylvie; Baillet, Athan; Grange, Laurent; Gaudin, Philippe; Morel, Françoise

    2015-01-01

    NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.

  8. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  9. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  10. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.

  11. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  12. MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly.

    PubMed

    Dennerlein, Sven; Oeljeklaus, Silke; Jans, Daniel; Hellwig, Christin; Bareth, Bettina; Jakobs, Stefan; Deckers, Markus; Warscheid, Bettina; Rehling, Peter

    2015-09-08

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.

  13. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  14. Characterization of two amine oxidases from Aspergillus carbonarius AIU 205.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2015-06-01

    We have reported that Aspergillus carbonarius AIU 205, which was isolated by our group, produced three enzymes exhibiting oxidase activity for 4-aminobutanamide (4-ABAD) (J. Biosci. Bioeng., 117, 263-268, 2014). Among three enzymes, characteristics of enzyme I have been revealed, but those of the other two enzymes have not. In this study, we purified enzymes II and III, and compared their characteristics with those of enzyme I. Enzymes II and III also oxidized aliphatic monoamines, aromatic amines, and aliphatic aminoalcohols. In addition, the oxidase activity of both enzymes was strongly inhibited by carbonyl reagents and specific inhibitors for copper-containing amine oxidases. Thus, enzymes II and III were also classified into the copper-containing amine oxidase group (EC 1.4.3.6) along with enzyme I. However, these three enzymes differed from each other in their enzymatic, kinetic, and physicochemical properties. The N-terminal amino acid sequences also differed from each other; that of enzyme I was modified, that of enzyme II was similar to those of peroxisomal copper-containing amine oxidases, and that of enzyme III was similar to those of copper-containing amine oxidases from the genus Aspergillus. Therefore, we concluded that A. carbonarius AIU 205 produced three different types of amine oxidase in the mycelia.

  15. THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE

    PubMed Central

    Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.

    1944-01-01

    1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382

  16. Assessment of adherence to ACC/AHA guidelines in primary management of patients with NSTEMI in a referral cardiology hospital.

    PubMed

    Farahzadi, Mohammadreza; Shafiee, Akbar; Bozorgi, Ali; Mahmoudian, Mehran; Sadeghian, Saeed

    2015-03-01

    Acute coronary syndromes are considered as a global major health-care problem, and Iran as a developing country is of no exception. We aimed to investigate the degree of adherence to American College of Cardiology and American Heart Association (ACC/AHA) guideline for the management of non-ST-segment elevation myocardial infarction (NSTEMI) in patients who presented to the emergency department at Tehran Heart Center. Data of the patients who presented with acute chest pain to the emergency department of Tehran Heart Center within 1 year and were diagnosed as NSTEMI by the cardiologist in charge were included. The details of the initial managements based on the ACC/AHA guideline for NSTEMI of the patients were recorded from the patients' files in the emergency department for this study. Then, the frequency of guideline-related management in the study population was calculated and reported. A total of 684 patients [mean age = 62.95 ± 12.19 years; male gender = 460 (67.3%)] were diagnosed as NSTEMI at the emergency department of our center. Initial management based on the current guideline including administration of aspirin and clopidogrel was performed in 98.4% and 95.0%, respectively. Intravenous heparin was administered in 67.0% of the patients, whereas 30.8% of patients received enoxaparin. Following the initial management, coronary angiography was performed in 563 (82.3%) patients within 48 hours from the admission. Adherence to ACC/AHA guideline for the management of NSTEMI in patients who presented to a tertiary health-care center was in a high degree.

  17. Assessment of Coronary Artery Calcium Scoring for Statin Treatment Strategy according to ACC/AHA Guidelines in Asymptomatic Korean Adults

    PubMed Central

    Han, Donghee; Ó Hartaigh, Bríain; Lee, Ji Hyun; Rizvi, Asim; Park, Hyo Eun; Choi, Su-Yeon; Sung, Jidong

    2017-01-01

    Purpose The 2013 American College of Cardiology (ACC)/American Heart Association (AHA) cholesterol management guidelines advocate the use of statin treatment for prevention of cardiovascular disease. We aimed to assess the usefulness of coronary artery calcium (CAC) for stratifying potential candidates of statin use among asymptomatic Korean individuals. Materials and Methods A total of 31375 subjects who underwent CAC scoring as part of a general health examination were enrolled in the current study. Statin eligibility was categorized as statin recommended (SR), considered (SC), and not recommended (SN) according to ACC/AHA guidelines. Cox regression analysis was employed to estimate hazard ratios (HR) with 95% confidential intervals (CI) after stratifying the subjects according to CAC scores of 0, 1–100, and >100. Number needed to treat (NNT) to prevent one mortality event during study follow up was calculated for each group. Results Mean age was 54.4±7.5 years, and 76.3% were male. During a 5-year median follow-up (interquartile range; 3–7), there were 251 (0.8%) deaths from all-causes. A CAC >100 was independently associated with mortality across each statin group after adjusting for cardiac risk factors (e.g., SR: HR, 1.60; 95% CI, 1.07–2.38; SC: HR, 2.98; 95% CI, 1.09–8.13, and SN: HR, 3.14; 95% CI, 1.08–9.17). Notably, patients with CAC >100 displayed a lower NNT in comparison to the absence of CAC or CAC 1–100 in SC and SN groups. Conclusion In Korean asymptomatic individuals, CAC scoring might prove useful for reclassifying patient eligibility for receiving statin therapy based on updated 2013 ACC/AHA guidelines. PMID:27873499

  18. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  19. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    PubMed

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  20. Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines.

    PubMed

    Pledgie, Allison; Huang, Yi; Hacker, Amy; Zhang, Zhe; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2005-12-02

    The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.

  1. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  2. Impact of the New ACC/AHA Guidelines on the Treatment of High Blood Cholesterol in a Managed Care Setting

    PubMed Central

    Tran, Josephine N.; Caglar, Toros; Stockl, Karen M.; Lew, Heidi C.; Solow, Brian K.; Chan, Paul S.

    2014-01-01

    Background In November 2013, the American College of Cardiology (ACC) and the American Heart Association (AHA) together issued new guidelines for the treatment of patients with high cholesterol, providing a new paradigm for the management of cholesterol in the primary and secondary prevention of coronary artery disease. Objective To examine the impact of the 2013 ACC/AHA cholesterol treatment guidelines on pharmacy utilization of cholesterol-lowering drugs in a real-world managed care setting. Methods Pharmacy claims from OptumRx, a national pharmacy benefit management provider, for the period between January 1, 2013, and December 31, 2013 (baseline period), were used to identify candidates for cholesterol-lowering therapy and to estimate the number of potential patients who will be starting or intensifying statin therapy based on the updated cholesterol treatment guidelines. Potential candidates for cholesterol-lowering treatments included patients with diabetes or hypertension aged 40 to 75 years who were not already receiving a cholesterol-lowering medication, as well as patients receiving cholesterol-lowering therapies during the baseline period. The baseline cholesterol-lowering medication market share was used to project changes in pharmacy utilization over the next 3 years. Results Based on the 2013 ACC/AHA cholesterol treatment guidelines, there will be a 25% increase in the proportion of the overall population that is treated with statins over the next 3 years, increasing from 3,909,407 (27.7%) patients to 4,892,668 (34.7%) patients. The largest proportion of the increase in statin utilization is projected to be for primary prevention in patients aged 40 to 75 years who were not receiving any cholesterol-lowering treatment at baseline. These projected changes will increase the overall number of statin prescriptions by 25% and will decrease the number of nonstatin cholesterol-lowering medication prescriptions by 68% during the next 3 years. Conclusion The

  3. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  4. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase.

    PubMed

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A M; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.

  5. Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-{beta}/Smad activation

    SciTech Connect

    Pan Xinjuan; Dai Yujie; Li Xing; Niu Nannan; Li Wenjie; Liu Fangli; Zhao Yang; Yu Zengli

    2011-08-01

    Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3 phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and

  6. [An endogenous inhibitor of monoamine oxidase A (tribulin A) from brain: purification and structure identification].

    PubMed

    Medvedev, A E; Kamyshanskaia, N S; Halket, J; Glover, V; Sandler, A

    1995-05-01

    The endogenous monoamine oxidase inhibitor, tribulin, contains several components which selectively (or nonselectively) inhibit monoamine oxidases A and B. The pig brain tribulin component selectively inhibiting monoamine oxidase A was purified and identified as 4-hydroxyphenylethanol using gas chromatography-mass spectrometry. This compound was also found in the rabbit brain tribulin fraction which selectively inhibits monoamine oxidase A but has no influence on monoamine oxidase B. 4-Hydroxyphenylethanol inhibits monoamine oxidase A in an incompetitive manner with respect to the substrate, serotonin (Ki = 1.4 mM). Possible pathways of 4-hydroxyphenylethanol synthesis and its biological importance as the monoamine oxidase A inhibiting component of tribulin are discussed.

  7. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility.

    PubMed

    Thipyapong, Piyada; Hunt, Michelle D; Steffens, John C

    2004-11-01

    Polyphenol oxidases (PPOs; EC 1.14.18.1 or EC 1.10.3.2) catalyze the oxidation of phenolics to quinones, highly reactive intermediates whose secondary reactions are responsible for much of the oxidative browning that accompanies plant senescence, wounding, and responses to pathogens. To assess the impact of PPO expression on resistance to Pseudomonas syringae pv. tomato we introduced a chimeric antisense potato PPO cDNA into tomato (Lycopersicon esculentum L.). Oxidation of caffeic acid, the dominant o-diphenolic aglycone of tomato foliage, was decreased ca. 40-fold by antisense expression of PPO. All members of the PPO gene family were downregulated: neither immunoreactive PPO nor PPO-specific mRNA were detectable in the transgenic plants. In addition, the antisense PPO construct suppressed inducible increases in PPO activity. Downregulation of PPO in antisense plants did not affect growth, development, or reproduction of greenhouse-grown plants. However, antisense PPO expression dramatically increased susceptibility to P. syringae expressing the avirulence gene avrPto in both Pto and pto backgrounds. In a compatible (pto) interaction, plants constitutively expressing an antisense PPO construct exhibited a 55-fold increase in bacterial growth, three times larger lesion area, and ten times more lesions cm(-2) than nontransformed plants. In an incompatible (Pto) interaction, antisense PPO plants exhibited 100-fold increases in bacterial growth and ten times more lesions cm(-2) than nontransformed plants. Although it is not clear whether hypersusceptibility of antisense plants is due to low constitutive PPO levels or failure to induce PPO upon infection, these findings suggest a critical role for PPO-catalyzed phenolic oxidation in limiting disease development. As a preliminary effort to understand the role of induced PPO in limiting disease development, we also examined the response of PPO promoter::beta-glucuronidase constructs when plants are challenged with P

  8. Aldehyde-induced xanthine oxidase activity in raw milk.

    PubMed

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  9. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  10. Polyphenol oxidase produced during encystation of Acanthamoeba castellanii.

    PubMed

    Sykes, D E; Band, R N

    1985-08-01

    Acanthamoeba castellanii has a phenol oxidase activity that is believed to be a laccase. Enzyme activity was found in the outer cyst wall, in the cytoplasm of encysting amoebae and in the encystment medium. Encystment procedures were modified to promote an increase in the amount of soluble enzyme secreted during encystation. Acanthamoeba polyphenol oxidase has a pH optimum of 6.0 and a Km value of 0.21 mM with dihydroxyphenylalanine. The enzyme does not oxidize tyrosine, and it is inhibited by chloride but not by inhibitors of peroxidase. Its synthesis coincides with encystation, and known inhibitors of polyphenol oxidase prevent encystation. Polyphenol oxidase may have a role in making the cyst resistant to mechanical and chemical breakdown.

  11. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism.

    PubMed

    Sullivan, Michael L

    2014-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase) and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more "biosynthetic" PPOs.

  12. Dose reduction in orthodontic lateral cephalography: dosimetric evaluation of a novel cephalographic thyroid protector (CTP) and anatomical cranial collimation (ACC)

    PubMed Central

    Rottke, D; van der Stelt, P F; Berkhout, W E R

    2015-01-01

    Objectives: To test the dose-reducing capabilities of a novel thyroid protection device and a recently introduced cranial collimator to be used in orthodontic lateral cephalography. Methods: Cephalographic thyroid protector (CTP) was designed to shield the thyroid while leaving the cervical vertebrae depicted. Using a RANDO® head phantom (The Phantom Laboratory, Salem, NY) equipped with dosemeters and a Proline XC (Planmeca, Helsinki, Finland) cephalograph, lateral cephalograms were taken, and the effective dose (ED) was calculated for four protocols: (1) without shielding; (2) with CTP; (3) with CTP and anatomical cranial collimator (ACC); and (4) with a thyroid collar (TC). Results: The ED for the respective protocols was (1) 8.51; (2) 5.39; (3) 3.50; and (4) 4.97 µSv. The organ dose for the thyroid was reduced from 30.17 to 4.50 µSv in Protocols 2 and 3 and to 3.33 µSv in Protocol 4. Conclusions: The use of just the CTP (Protocol 2) resulted in a 36.8% reduction of the ED of a lateral cephalogram. This was comparable to the classical TC (Protocol 4). A 58.8% reduction of the ED was obtained when combining CTP and ACC (Protocol 3). The dose to the radiosensitive thyroid gland was reduced by 85% in Protocols 2 and 3 and by 89% in Protocol 4. PMID:25564885

  13. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    DOE PAGES

    Xia, Yidong; Lou, Jialin; Luo, Hong; ...

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementationmore » of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.« less

  14. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    SciTech Connect

    Xia, Yidong; Lou, Jialin; Luo, Hong; Edwards, Jack; Mueller, Frank

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementation of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.

  15. Mitochondrial electron transport regulation of nuclear gene expression. Studies with the alternative oxidase gene of tobacco.

    PubMed Central

    Vanlerberghe, G C; McIntosh, L

    1994-01-01

    We have isolated a cDNA representing the tobacco (Nicotiana tabacum L. cv Bright Yellow) nuclear gene Aox1, which encodes the alternative oxidase of plant mitochondria. The clone contains the complete coding region (1059 base pairs) of a precursor protein of 353 amino acids with a calculated molecular mass of 39.8 kD. A putative transit peptide contains common signals believed to be important for import and processing of mitochondrially localized proteins. We have studied changes in Aox1 gene expression in tobacco in response to changes in cytochrome pathway activity. Inhibition of the cytochrome pathway by antimycin A resulted in a rapid and dramatic accumulation of Aox1 mRNA, whereas the level of mRNAs encoding two proteins of the cytochrome pathway did not change appreciably. This was accompanied by a dramatic increase in alternative pathway capacity and engagement in whole cells. Respiration under these conditions was unaffected by the uncoupler p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, levels of Aox1 mRNA returned to control levels, alternative pathway capacity and engagement declined, and respiration could once again be stimulated by FCCP. The results show that a mechanism involving changes in Aox1 gene expression exists whereby the capacity of the alternative pathway can be adjusted in response to changes in the activity of the cytochrome pathway. PMID:8058837

  16. Gene expression and distribution of antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli.

    PubMed

    Kitani, Yoichiro; Mori, Tsukasa; Nagai, Hiroshi; Toyooka, Keiko; Ishizaki, Shoichiro; Shimakura, Kuniyoshi; Shiomi, Kazuo; Nagashima, Yuji

    2007-12-01

    Antibacterial factors in the epidermal mucus of fish have a potential importance in the first line of the host defense response to bacterial pathogens. We previously isolated a novel antibacterial protein termed SSAP (Sebastes schlegeli antibacterial protein) from the skin mucus of the rockfish S. schlegeli and identified it as a new member of the L-amino acid oxidase (LAO) family. In the present study, the localization of SSAP in S. schlegeli was investigated by reverse transcription (RT)-PCR, quantitative real time RT-PCR, Western blotting and measurements of LAO and antibacterial activities. SSAP mRNA was expressed dominantly in skin and gill and weakly in ovary or kidney as shown by RT-PCR and real time RT-PCR. The quantity of SSAP mRNA in skin varied among the individuals, ranging from 1.1 to 13.9 ng microg(-1) total RNA, although no relationship was found between the size of fish and gene expression. SSAP was exclusively detected in skin and gill by Western blotting using a specific anti-SSAP antiserum. In addition, the extracts of both tissues apparently showed LAO activity and antibacterial activity against Photobacterium damselae subsp. piscicida. This study demonstrates that SSAP is predominantly synthesized in skin and gill and probably functions as an antibacterial LAO in both tissues.

  17. Stimulation of cellular XTT reduction by cytochrome oxidase inhibitors.

    PubMed

    Kunimoto, S; Nosaka, C; Takeuchi, T

    1999-06-01

    XTT reducing activity by CHO and L1210 cells was found to be stimulated by the presence of cytochrome oxidase inhibitors such as NaN3 or KCN. Among the other respiratory chain inhibitors, antimycin A (a complex III inhibitor) and chlorpromazine inhibited cellular XTT reduction, and rotenone and malonate showed slight inhibition and no effect, respectively. It is suggested that XTT reduction is coupled with the respiratory chain via cytochrome c, which is located between complexes III and IV (cytochrome oxidase).

  18. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    PubMed Central

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs. PMID:22279051

  19. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  20. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  1. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    SciTech Connect

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E. )

    1990-09-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with ({sup 14}C)iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 ({plus minus} 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked.

  2. Characterization of monomeric substates of ascorbate oxidase.

    PubMed

    Di Venere, Almerinda; Nicolai, Eleonora; Rosato, Nicola; Rossi, Antonello; Finazzi Agrò, Alessandro; Mei, Giampiero

    2011-05-01

    Ascorbate oxidase (AAO) is a large, multidomain, dimeric protein whose folding/unfolding pathway is characterized by a complex, multistep process. Here we used fluorescence correlation spectroscopy to demonstrate the formation of partially folded monomers by pH-induced full dissociation into subunits. Hence, the structural features of monomeric AAO could be studied by fluorescence and CD spectroscopy. We found that the monomers keep their secondary structure, whereas subtle conformational changes in the tertiary structure become apparent. AAO dissociation has also been studied when unfolding the protein by high hydrostatic pressure at different pH values. A strong protein concentration dependence was observed at pH 8, whereas the enzyme was either monomeric or dimeric at pH 10 and 6, respectively. The calculated volume change associated with the unfolding of monomeric AAO, ΔV ∼ -55 mL·mol(-1), is in the range observed for most proteins of the same size. These findings demonstrate that partially folded monomeric species might populate the energy landscape of AAO and that the overall AAO stability is crucially controlled by a few quaternary interactions at the subunits' interface.

  3. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE PAGES

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; ...

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  4. Monoamine oxidase: Radiotracer chemistry and human studies

    SciTech Connect

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.

  5. Modular assembly of yeast cytochrome oxidase.

    PubMed

    McStay, Gavin P; Su, Chen Hsien; Tzagoloff, Alexander

    2013-02-01

    Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high-molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.

  6. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    PubMed

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C.

  7. Origin and evolution of lysyl oxidases

    PubMed Central

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-01-01

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea – which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes. PMID:26024311

  8. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    PubMed

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function.

  9. Molecular "wiring" glucose oxidase in supramolecular architecture.

    PubMed

    Deng, Liu; Liu, Ying; Yang, Guocheng; Shang, Li; Wen, Dan; Wang, Fuan; Xu, Zhiai; Dong, Shaojun

    2007-07-01

    Supramolecular organized multilayers were constructed by multiwalled carbon nanotubes modified with ferrocene-derivatized poly(allylamine) redox polymer and glucose oxidase by electrostatic self-assembly. From the analysis of voltammetric signals and fluorescence results, a linear increment of the coverage of enzyme per bilayer was estimated, which demonstrated that the multilayer is constructed in a spatially ordered manner. The cyclic voltammograms obtained from the indium tin oxide (ITO) electrodes coated by the (Fc-PAH@CNT/GOx)n multilayers revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers; that is, the sensitivity is tunable by controlling the number of bilayers associated with ITO electrodes. The incorporation of redox-polymer-functionalized carbon nanotubes (CNT) into enzyme films resulted in a 6-10-fold increase in the glucose electrocatalytic current; the bimolecular rate constant of FADH2 oxidation (wiring efficiency) was increased up to 12-fold. Impedance spectroscopy data have yielded the electron diffusion coefficient (De) of this nanostructure to be over 10(-8) cm2 s(-1), which is typically higher than those systems without CNT by at least a factor of 10, indicating that electron transport in the new supramolecular architecture was enhanced by communication of the redox active site of enzyme, redox polymer, and CNT.

  10. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    SciTech Connect

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  11. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  12. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    PubMed

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  13. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  14. Conversion of Escherichia coli pyruvate oxidase to an 'alpha-ketobutyrate oxidase'.

    PubMed Central

    Chang, Y Y; Cronan, J E

    2000-01-01

    Escherichia coli pyruvate oxidase (PoxB), a lipid-activated homotetrameric enzyme, is active on both pyruvate and 2-oxobutanoate ('alpha-ketobutyrate'), although pyruvate is the favoured substrate. By localized random mutagenesis of residues chosen on the basis of a modelled active site, we obtained several PoxB enzymes that had a markedly decreased activity with the natural substrate, pyruvate, but retained full activity with 2-oxobutanoate. In each of these mutant proteins Val-380 had been replaced with a smaller residue, namely alanine, glycine or serine. One of these, PoxB V380A/L253F, was shown to lack detectable pyruvate oxidase activity in vivo; this protein was purified, studied and found to have a 6-fold increase in K(m) for pyruvate and a 10-fold lower V(max) with this substrate. In contrast, the mutant had essentially normal kinetic constants with 2-oxobutanoate. The altered substrate specificity was reflected in a decreased rate of pyruvate binding to the latent conformer of the mutant protein owing to the V380A mutation. The L253F mutation alone had no effect on PoxB activity, although it increased the activity of proteins carrying substitutions at residue 380, as it did that of the wild-type protein. The properties of the V380A/L253F protein provide new insights into the mode of substrate binding and the unusual activation properties of this enzyme. PMID:11104678

  15. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.

  16. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity.

    PubMed

    Diwadkar, Vaibhav A; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition.

  17. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    PubMed Central

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  18. Identification of the alternative terminal oxidase of higher plant mitochondria

    PubMed Central

    Elthon, Thomas E.; McIntosh, Lee

    1987-01-01

    In addition to cytochrome oxidase, plant mitochondria have a second terminal oxidase called the alternative oxidase. The alternative oxidase is of great interest in that energy is not conserved when electrons flow through it. The potential energy of the system is thus lost as heat, and, in plants with high levels of the alternative oxidase, this results in thermogenesis. We have purified the alternative oxidase from mitochondria of the thermogenic spadix of Sauromatum guttatum and have identified its polypeptide constituents by using polyclonal antibodies. A 166-fold purification was achieved through a combination of cation-exchange (carboxymethyl-Sepharose) and hydrophobic-interaction (phenyl-Sepharose) chromatography. Polyclonal antibodies raised to the CM-Sepharose fractions readily immunoprecipitated alternative oxidase activity and immunoprecipitated four of the proteins that copurify with the activity. These proteins have apparent molecular masses of 37, 36, 35.5, and 35 kDa. Polyclonal antibodies raised individually to the 37-, 36-, and 35.5- plus 35-kDa proteins cross-reacted with all of these proteins, indicating the presence of common antigenic sites. The 37-kDa protein appears to be constitutive in Sauromatum, whereas expression of the 36- and 35-kDa proteins was correlated with presence of alternative pathway activity. The 35.5-kDa protein appears with loss of alternative pathway activity during senescence, indicating that this protein may be a degradation product of the 36-kDa protein. Binding of anti-36-kDa protein antibodies to total mitochondrial protein blots of five plant species indicated that similar proteins were always present when alternative pathway activity was observed. Images PMID:16593898

  19. Cytokinin Oxidase from Phaseolus vulgaris Callus Tissues 1

    PubMed Central

    Chatfield, J. Mark; Armstrong, Donald J.

    1987-01-01

    The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N6-(Δ2-isopentenyl)-adenine-2,8-3H (i6 Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, as judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N6-side chain of i6Ade. PMID:16665511

  20. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species.

    PubMed

    Goyal, Parag; Weissmann, Norbert; Grimminger, Friedrich; Hegel, Cornelia; Bader, Lucius; Rose, Frank; Fink, Ludger; Ghofrani, Hossein A; Schermuly, Ralph T; Schmidt, Harald H H W; Seeger, Werner; Hänze, Jörg

    2004-05-15

    Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.

  1. Pentamines as substrate for human spermine oxidase

    PubMed Central

    Takao, Koichi; Shirahata, Akira; Samejima, Keijiro; Casero, Robert A.; Igarashi, Kazuei; Sugita, Yoshiaki

    2013-01-01

    Substrate activities of various linear polyamines to human spermine oxidase (hSMO) were investigated. The activities were evaluated by monitoring the amount of H2O2 released from sample polyamines by hSMO. H2O2 was measured by a HPLC method that analyzed fluorescent dimers derived from the oxidation of homovanillic acid in the presence of horseradish peroxidase. Six triamines were tested and were found not to be hSMO substrates. Of sixteen tetramines tested, spermine (Spm) was the most active substrate, followed by homospermine and N-butylated Spm. Pentamines showed a characteristic pattern of substrate activity. Of thirteen pentamines tested, 3343 showed higher substrate activity than Spm, and 4343 showed similar activity to Spm. The activities of the other pentamines were as follows: 3443, 4443, 4344, 3344, 4334, 4444, and 3334 (in decreasing order). Product amines released from these pentamines by hSMO were then analyzed by HPLC. Triamine was the only observed product, and the amount of triamine was nearly equivalent to that of released H2O2. A marked difference in the pH dependency curves between tetramines and pentamines suggested that hSMO favored reactions with a non-protonated secondary nitrogen at the cleavage site. The Km and Vmax values for Spm and 3343 at pH 7.0 and 9.0 were consistent with the higher substrate activity of 3343 compared to Spm, as well as with the concept of a non-protonated secondary nitrogen at the cleavage site being preferred, and 3343 was well degraded at a physiological pH by hSMO. PMID:23449327

  2. Monoamine oxidase inhibitory components from Cayratia japonica.

    PubMed

    Han, Xiang Hua; Hong, Seong Su; Hwang, Ji Sang; Lee, Myung Koo; Hwang, Bang Yeon; Ro, Jai Seup

    2007-01-01

    Seven flavonoids were isolated from the whole plants and fruits of Cayratia japonica through the activity-guided isolation of a methanol extract using a monoamine oxidase (MAO) inhibition assay as a monitor. The chemical structures of the isolates were assigned as apigenin-7-O-beta-D-glucuronopyranoside (1), apigenin (2), luteolin (3), luteolin-7-O-beta-D-glucopyranoside (4), (+)-dihydroquercetin (taxifolin) (5), (+)-dihydrokaempferol (aromadendrin) (6) and quercetin (7). Among the isolated compounds, flavones such as apigenin (2) and luteolin (3), as well as the flavonol, quercetin (7) showed potent inhibitory effects against the MAO activity with IC50 values of 6.5, 22.6, and 31.6 microM, respectively. However, the flavone glycosides, apigenin-7-O-beta-D-glucuronopyranoside (1) and luteolin-7-O-beta-D-glucopyranoside (4), showed mild MAO inhibition (IC50 values: 81.7 and 118.6 microM, respectively). The flavanonol derivatives, taxifolin (5) and aromadendrin (6), also showed weak inhibition (IC50 values: 154.7 and 153.1 microM, respectively). Furthermore, quercetin (7) had a more potent inhibitory effect on MAO-A (IC50 value: 2.8 microM) than MAO-B (IC50 value: 90.0 microM). Apigenin (2) and luteolin (3) also preferentially inhibited MAO-A (IC50 values: 1.7 and 4.9 microM, respectively) compared with MAO-B (IC50 values: 12.8 and 59.7 microM, respectively).

  3. Sensitivity of mRNA Translation.

    PubMed

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-08-04

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5' end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.

  4. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  5. Removal of Asbestos-Containing Coatings (ACC) from gas transmission pipelines. Final report, January 1991-October 1993

    SciTech Connect

    Petersen, L.E.; Blackburn, M.L.

    1994-01-01

    Corrosion control coatings on transmission pipelines may contain asbestos as a secondary component of the coating. Current environmental and health regulations require a wet removal process for asbestos materials that provides close control of airborne emissions and asbestos fibers in effluent water. Modification of current line-traveling, water jet equipment was successfully completed in developing an economic removal process for asbestos-containing coatings (ACC). Materials handling components were added in yard experiments that permitted water jet removal, slurry filtration, and residue containerization meeting emission control levels, while providing pipe cleanliness suitable for recoating. Field evaluations under in-the-ditch and over-the-ditch conditions on 16-, 26- and 30-inch pipelines verified the achievement of design coating removal rates and asbestos emission control that meets current regulations.

  6. SCAI/AATS/ACC/STS operator and institutional requirements for transcatheter valve repair and replacement, Part III: Pulmonic valve.

    PubMed

    Hijazi, Ziyad M; Ruiz, Carlos E; Zahn, Evan; Ringel, Richard; Aldea, Gabriel S; Bacha, Emile A; Bavaria, Joseph; Bolman, R Morton; Cameron, Duke E; Dean, Larry S; Feldman, Ted; Fullerton, David; Horlick, Eric; Mack, Michael J; Miller, D Craig; Moon, Marc R; Mukherjee, Debabrata; Trento, Alfredo; Tommaso, Carl L

    2015-07-01

    With the evolution of transcatheter valve replacement, an important opportunity has arisen for cardiologists and surgeons to collaborate in identifying the criteria for performing these procedures. Therefore, The Society for Cardiovascular Angiography and Interventions (SCAI), American Association for Thoracic Surgery (AATS), American College of Cardiology (ACC), and The Society of Thoracic Surgeons (STS) have partnered to provide recommendations for institutions to assess their potential for instituting and/or maintaining a transcatheter valve program. This article concerns transcatheter pulmonic valve replacement (tPVR). tPVR procedures are in their infancy with few reports available on which to base an expert consensus statement. Therefore, many of these recommendations are based on expert consensus and the few reports available. As the procedures evolve, technology advances, experience grows, and more data accumulate, there will certainly be a need to update this consensus statement. The writing committee and participating societies believe that the recommendations in this report serve as appropriate requisites. In some ways, these recommendations apply to institutions more than to individuals. There is a strong consensus that these new valve therapies are best performed using a Heart Team approach; thus, these credentialing criteria should be applied at the institutional level. Partnering societies used the ACC's policy on relationships with industry (RWI) and other entities to author this document (http://www.acc.org/guidelines/about-guidelines-and-clinical-documents). To avoid actual, potential, or perceived conflicts of interest due to industry relationships or personal interests, all members of the writing committee, as well as peer reviewers of the document, were asked to disclose all current healthcare-related relationships including those existing 12 months before the initiation of the writing effort. A committee of interventional cardiologists and

  7. Ethanolic Extract of Vitis thunbergii Exhibits Lipid Lowering Properties via Modulation of the AMPK-ACC Pathway in Hypercholesterolemic Rabbits

    PubMed Central

    Pan, Chun-Hsu; Tsai, Chia-Hua; Lin, Wen-Hsin; Chen, Guo-Yan; Wu, Chieh-Hsi

    2012-01-01

    Vitis thunbergii (VT) is a wild grape that has been shown to provide various cardioprotective effects. The present study was designed to examine whether a VT extract could reduce serum lipid levels and prevent atherogenesis in a hypercholesterolemic rabbit model. At the end of an 8-week study, our results showed that a VT extract supplement markedly suppressed the serum levels of cholesterol and low-density lipoprotein, reduced lipid accumulation in liver tissues, and limited aortic fatty streaks. Our findings suggest that the VT extract activated AMPK (5′-adenosine monophosphate-activated protein kinase) with subsequent inhibition of the activation of ACC (acetyl-CoA carboxylase). Our results suggest that this VT extract could be further developed as a potential lipid-lowering agent and as a natural health food to prevent atherogenesis. PMID:22536284

  8. Inhibition of Lysyl Oxidase and Lysyl Oxidase-Like Enzymes Has Tumour-Promoting and Tumour-Suppressing Roles in Experimental Prostate Cancer.

    PubMed

    Nilsson, Maria; Adamo, Hanibal; Bergh, Anders; Halin Bergström, Sofia

    2016-01-25

    Lysyl oxidase (LOX) and LOX-like (LOXL) enzymes are key players in extracellular matrix deposition and maturation. LOX promote tumour progression and metastasis, but it may also have tumour-inhibitory effects. Here we show that orthotopic implantation of rat prostate AT-1 tumour cells increased LOX and LOXLs mRNA expressions in the tumour and in the surrounding non-malignant prostate tissue. Inhibition of LOX enzymes, using Beta-aminopropionitrile (BAPN), initiated before implantation of AT-1 cells, reduced tumour growth. Conversely, treatment that was started after the tumours were established resulted in unaffected or increased tumour growth. Moreover, treatment with BAPN did not suppress the formation of spontaneous lymph node metastases, or lung tumour burden, when tumour cells were injected intravenously. A temporal decrease in collagen fibre content, which is a target for LOX, was observed in tumours and in the tumour-adjacent prostate tissue. This may explain why early BAPN treatment is more effective in inhibiting tumour growth compared to treatment initiated later. Our data suggest that the enzymatic function of the LOX family is context-dependent, with both tumour-suppressing and tumour-promoting properties in prostate cancer. Further investigations are needed to understand the circumstances under which LOX inhibition may be used as a therapeutic target for cancer patients.

  9. 2015 ACC Health Policy Statement on Cardiovascular Team-Based Care and the Role of Advanced Practice Providers.

    PubMed

    Brush, John E; Handberg, Eileen M; Biga, Cathleen; Birtcher, Kim K; Bove, Alfred A; Casale, Paul N; Clark, Michael G; Garson, Arthur; Hines, Jerome L; Linderbaum, Jane A; Rodgers, George P; Shor, Robert A; Thourani, Vinod H; Wyman, Janet F

    2015-05-19

    The mission of the American College of Cardiology is "to transform cardiovascular care and improve heart health." Cardiovascular team-based care is a paradigm for practice that can transform care, improve heart health, and help meet the demands of the future. One strategic goal of the College is to help members successfully transition their clinical practices to the future, with all its complexity, challenges, and opportunities. The ACC's strategic plan is aligned with the triple aim of improved care, improved population health, and lower costs per capita. The traditional understanding of quality, access, and cost is that you cannot improve one component without diminishing the others. With cardiovascular team-based care, it is possible to achieve the triple aim of improving quality, access, and cost simultaneously to also improve cardiovascular health. Striving to serve the best interests of patients is the true north of our guiding principles. Cardiovascular team-based care is a model that can improve care coordination and communication and allow each team member to focus more on the quality of care. In addition, the cardiovascular team-based care model increases access to cardiovascular care and allows expansion of services to populations and geographic areas that are currently underserved. This document will increase awareness of the important components of cardiovascular team-based care and create an opportunity for more discussion about the most creative and effective means of implementing it. We hope that this document will stimulate further discussions and activities within the ACC and beyond about team-based care. We have identified areas that need improvement, specifically in APP education and state regulation. The document encourages the exploration of collaborative care models that should enable team members to optimize their education, training, experience, and talent. Improved team leadership, coordination, collaboration, engagement, and efficiency

  10. Transcriptional and Posttranscriptional Inhibition of Lysyl Oxidase Expression by Cigarette Smoke Condensate in Cultured Rat Fetal Lung Fibroblasts

    PubMed Central

    Gao, Song; Chen, Keyang; Zhao, Yinzhi; Rich, Celeste B.; Chen, Lijun; Li, Sandy J.; Toselli, Paul; Stone, Phillip; Li, Wande

    2005-01-01

    Lysyl oxidase (LO) catalyzes crosslinking of collagen and elastin essential for maintaining the structural integrity of the lung extracellular matrix (ECM). To understand mechanisms of cigarette smoke (CS)-induced emphysema, we investigated effects of cigarette smoke condensate (CSC), the particulate matter of CS, on LO mRNA expression in cultured rat fetal lung fibroblasts (RFL6). Exposure of RFL6 cells to 0–120 μg CSC/ml for 24 h induced a dose-dependent inhibition of LO steady-state mRNAs, for example, reducing transcript levels to below 10% of the control in cells incubated with 80–120 μg CSC/ml. Nuclear run-on assays indicated a marked reduction in LO relative transcriptional rates amounting to 27.7% of the control in cells treated with 120 μg CSC/ml. The actinomycin D-chase assay showed that CSC enhanced the instability of LO transcripts. The t1/2 for LO mRNA decay was decreased from 24 h in the control to 4.5 h in cells treated with 120 μg CSC/ml. Moreover, 80–120 μg CSC/ml also inhibited LO promoter activity as revealed by suppression of reporter gene expression in cells transfected with LO promoter-luciferase vectors. Thus, inhibition of LO transcription initiation and enhancement of LO mRNA instability both contributed to downregulation of LO steady-state mRNA in CSC-treated cells. Note that inhibition of LO mRNA expression by CSC was closely accompanied by markedly decreased levels of transcripts of collagen type I and tropoelastin, two substrates of LO. Thus, transcriptional perturbation of LO and its substrates may be a critical mechanism for ECM damage in CS-induced emphysema. PMID:15933228

  11. Cation binding site of cytochrome c oxidase: progress report.

    PubMed

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A

    2014-07-01

    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  12. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  13. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  14. Suppressive effects of the NADPH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-A(y) and Apc mutant Min mice.

    PubMed

    Komiya, Masami; Fujii, Gen; Miyamoto, Shingo; Takahashi, Mami; Ishigamori, Rikako; Onuma, Wakana; Ishino, Kousuke; Totsuka, Yukari; Fujimoto, Kyoko; Mutoh, Michihiro

    2015-11-01

    Obesity is a risk factor for colorectal cancer. The accumulation of abdominal fat tissue causes abundant reactive oxygen species production through the activation of NADPH oxidase due to excessive insulin stimulation. The enzyme NADPH oxidase catalyzes the production of reactive oxygen species and evokes the initiation and progression of tumorigenesis. Apocynin is an NADPH oxidase inhibitor that blocks the formation of the NADPH oxidase complex (active form). In this study, we investigated the effects of apocynin on the development of azoxymethane-induced colonic aberrant crypt foci in obese KK-A(y) mice and on the development of intestinal polyps in Apc mutant Min mice. Six-week-old KK-A(y) mice were injected with azoxymethane (200 μg/mouse once per week for 3 weeks) and given 250 mg/L apocynin or 500 mg/L apocynin in their drinking water for 7 weeks. Six-week-old Min mice were also treated with 500 mg/L apocynin for 6 weeks. Treatment with apocynin reduced the number of colorectal aberrant crypt foci in KK-A(y) mice by 21% and the number of intestinal polyps in Min mice by 40% compared with untreated mice. Both groups of mice tended to show improved oxidation of serum low-density lipoprotein and 8-oxo-2'-deoxyguanosine adducts in their adipose tissues. In addition, the inducible nitric oxide synthase mRNA levels in polyp tissues decreased. Moreover, apocynin was shown to suppress nuclear factor-κB transcriptional activity in vitro. These results suggest that apocynin and other NADPH oxidase inhibitors may be effective colorectal cancer chemopreventive agents.

  15. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria.

    PubMed

    Liebow, Abigail; Li, Xingsheng; Racie, Timothy; Hettinger, Julia; Bettencourt, Brian R; Najafian, Nader; Haslett, Patrick; Fitzgerald, Kevin; Holmes, Ross P; Erbe, David; Querbes, William; Knight, John

    2017-02-01

    Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.

  16. Cold induced changes of adenosine levels in common eelpout (Zoarces viviparus): a role in modulating cytochrome c oxidase expression.

    PubMed

    Eckerle, L G; Lucassen, M; Hirse, T; Pörtner, H O

    2008-04-01

    Exposure of ectothermic organisms to variations in temperatures causes a transient mismatch between energy supply and demand, which needs to be compensated for during acclimation. Adenosine accumulation from ATP breakdown indicates such an imbalance and its reversal reflects a restoration of energy status. We monitored adenosine levels in blood serum and liver of common eelpout (Zoarces viviparus) during cold exposure in vivo. Furthermore, we tested its effect on the pattern of thermal acclimation in hepatocytes isolated from cold- (4 degrees C) versus warm- (11 degrees C) exposed fish. Adenosine levels increased during cold exposure in vivo and reached a transient maximum after 24 h in serum, but remained permanently elevated in liver. Whole animal cold acclimation induced a rise of liver citrate synthase activity by 44+/-15%, but left cytochrome c oxidase activity (COX) and RNA expression of the respective genes unchanged. Cold incubation of hepatocytes from warm-acclimated fish failed to cause an increase of mitochondrial enzyme activities despite increased COX4 mRNA levels. Conversely, warm acclimation of hepatocytes from cold-acclimated fish reduced both enzyme activities and COX2 and COX4 mRNA levels by 26-37%. Adenosine treatment of both warm- and cold-acclimated hepatocytes suppressed COX activities but activated COX mRNA expression. These effects were not receptor mediated. The present findings indicate that adenosine has the potential to regulate mitochondrial functioning in vivo, albeit the pathways resulting in the contrasting effects on expression and activity need to be identified.

  17. Red clover polyphenol oxidase and lipid metabolism.

    PubMed

    Van Ranst, G; Lee, M R F; Fievez, V

    2011-02-01

    Increasing the polyunsaturated fatty acid (PUFA) composition of milk is acknowledged to be of benefit to consumer health. Despite the high PUFA content of forages, milk fat contains only about 3% of PUFA and only about 0.5% of n-3 fatty acids. This is mainly due to intensive lipid metabolism in the rumen (lipolysis and biohydrogenation) and during conservation (lipolysis and oxidation) such as drying (hay) and ensiling (silage). In red clover, polyphenol oxidase (PPO) has been suggested to protect lipids against degradation, both in the silage as well as in the rumen, leading to a higher output of PUFA in ruminant products (meat and milk). PPO mediates the oxidation of phenols and diphenols to quinones, which will readily react with nucleophilic binding sites. Such binding sites can be found on proteins, resulting in the formation of protein-bound phenols. This review summarizes the different methods that have been used to assess PPO activity in red clover, and an overview on the current understanding of PPO activity and activation in red clover. Knowledge on these aspects is of major importance to fully harness PPO's lipid-protecting role. Furthermore, we review the studies that evidence PPO-mediated lipid protection and discuss its possible importance in lab-scale silages and further in an in vitro rumen system. It is demonstrated that high (induction of) PPO activity can lead to lower lipolysis in the silage and lower biohydrogenation in the rumen. There are three hypotheses on its working mechanism: (i) protein-bound phenols could directly bind to enzymes (e.g. lipases) as such inhibiting them; (ii) binding of quinones in and between proteins embedded in a lipid membrane (e.g. in the chloroplast) could lead to encapsulation of the lipids; (iii) direct binding of quinones to nucleophilic sites in polar lipids also could lead to protection. There is no exclusive evidence on which mechanism is most important, although there are strong indications that only lipid

  18. Forage polyphenol oxidase and ruminant livestock nutrition

    PubMed Central

    Lee, Michael R. F.

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated

  19. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  20. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency.

    PubMed

    Kemppainen, Kia K; Rinne, Juho; Sriram, Ashwin; Lakanmaa, Matti; Zeb, Akbar; Tuomela, Tea; Popplestone, Anna; Singh, Satpal; Sanz, Alberto; Rustin, Pierre; Jacobs, Howard T

    2014-04-15

    Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.

  1. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  2. Purification and two-dimensional crystallization of bacterial cytochrome oxidases.

    PubMed

    Warne, A; Wang, D N; Saraste, M

    1995-12-01

    A novel strategy which employes chromatography on an immobilized metal ion has been developed for the purification of bacterial cytochrome c and quinol oxidases. Many bacterial oxidase complexes appear to have a natural affinity to bind to the chelated copper ion. A combination of three different chromatographic principles (anion exchange, metal-affinity and gel filtration) makes an effective tool chest for the preparation of homogeneous and protein-chemically pure bacterial oxidases. These preparations have been used for two-dimensional crystallization. Until now, crystals have been obtained using the Paracococcus denitrificans and Rhodobacter sphaeroides cytochrome aa3 and the Escherichia coli cytochrome bo. The crystals diffract to approximately 2.5 nm in negative stain and have potential for further structural studies.

  3. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    PubMed Central

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, François; Whittaker, James W.

    2007-01-01

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4×104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions. PMID:17399681

  4. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha.

    PubMed

    Veenhuis, M; van Dijken, J P; Harder, W

    1976-12-01

    The localization of methanol oxidase activity in cells of methanol-limited chemostat cultures of the yeast Hansenula polymorpha has been studied with different cytochemical staining techniques. The methods were based on enzymatic or chemical trapping of the hydrogen peroxide produced by the enzyme during aerobic incubations of whole cells in methanol-containing media. The results showed that methanol-dependent hydrogen peroxide production in either fixed or unfixed cells exclusively occurred in peroxisomes, which characteristically develop during growth of this yeast on methanol. Apart from methanol oxidase and catalase, the typical peroxisomal enzymes D-aminoacid oxidase and L-alpha-hydroxyacid oxidase were also found to be located in the peroxisomes. Urate oxidase was not detected in these organelles. Phase-contrast microscopy of living cells revealed the occurrence of peroxisomes which were cubic of form. This unusual shape was also observed in thin sections examined by electron microscopy. The contents of the peroxisomes showed, after various fixation procedures, a completely crystalline or striated substructure. It is suggested that this substructure might represent the in vivo organization structure of the peroxisomal enzymes.

  5. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway.

    PubMed

    Chen, Lin; Dodd, Ian C; Theobald, Julian C; Belimov, Andrey A; Davies, William J

    2013-04-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant-microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana.

  6. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    SciTech Connect

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  7. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  8. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.

    PubMed

    Atkinson, Ross G; Gunaseelan, Kularajathevan; Wang, Mindy Y; Luo, Luke; Wang, Tianchi; Norling, Cara L; Johnston, Sarah L; Maddumage, Ratnasiri; Schröder, Roswitha; Schaffer, Robert J

    2011-07-01

    During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.

  9. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  10. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  11. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver.

    PubMed

    Ratnam, K; Brody, M S; Hille, R

    1996-05-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike the protocols described earlier, this procedure avoids the use of acetone extraction as well as a heat step, thus minimizing damage to the molybdenum centers of the enzymes.

  12. Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L.

    PubMed

    Pimenta Lange, Maria João; Liebrandt, Anja; Arnold, Linda; Chmielewska, Sara-Miriam; Felsberger, André; Freier, Eduard; Heuer, Monika; Zur, Doreen; Lange, Theo

    2013-06-01

    Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.

  13. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation

    PubMed Central

    Serrander, Lena; Cartier, Laetitia; Bedard, Karen; Banfi, Botond; Lardy, Bernard; Plastre, Olivier; Sienkiewicz, Andrzej; Fórró, Lászlo; Schlegel, Werner; Krause, Karl-Heinz

    2007-01-01

    NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC50>100 μM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H2O2, whereas superoxide (O2−) was almost undetectable. Probes that allow detection of intracellular O2− generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O2− within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform. PMID:17501721

  14. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  15. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.

    PubMed

    Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2011-03-01

    One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.

  16. 2013 ACC/AHA versus 2004 NECP ATP III Guidelines in the Assignment of Statin Treatment in a Korean Population with Subclinical Coronary Atherosclerosis

    PubMed Central

    Kang, Yu Mi; Yang, Dong Hyun; Kang, Joon-Won; Kim, Eun Hee; Park, Duk-Woo; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2015-01-01

    Background The usefulness of the 2013 ACC/AHA guidelines for the management of blood cholesterol in the Asian population remains controversial. In this study, we investigated whether eligibility for statin therapy determined by the 2013 ACC/AHA guidelines is better aligned with the presence of subclinical coronary atherosclerosis detected by CCTA (coronary computed tomography angiography) compared to the previously recommended 2004 NCEP ATP III guidelines. Methods We collected the data from 5,837 asymptomatic subjects who underwent CCTA using MDCT during routine health examinations. Based on risk factor assessment and lipid data, we determined guideline-based eligibility for statin therapy according to the 2013 ACC/AHA and 2004 NCEP ATP III guidelines. We defined the presence and severity of subclinical coronary atherosclerosis detected in CCTA according to the presence of significant coronary artery stenosis (defined as >50% stenosis), plaques, and the degree of coronary calcification. Results As compared to the 2004 ATP III guidelines, a significantly higher proportion of subjects with significant coronary stenosis (61.8% vs. 33.8%), plaques (52.3% vs. 24.7%), and higher CACS (CACS >100, 63.6% vs. 26.5%) was assigned to statin therapy using the 2013 ACC/AHA guidelines (P < .001 for all variables). The area under the curves of the pooled cohort equation of the new guidelines in detecting significant stenosis, plaques, and higher CACS were significantly higher than those of the Framingham risk calculator. Conclusions Compared to the previous ATP III guidelines, the 2013 ACC/AHA guidelines were more sensitive in identifying subjects with subclinical coronary atherosclerosis detected by CCTA in an Asian population. PMID:26372638

  17. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase

    PubMed Central

    Le Laz, Sébastien; kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  18. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2•− ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2•− . These results suggest that the ratio of O2•− /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2•− by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  19. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott).

    PubMed Central

    Rhoads, D M; McIntosh, L

    1991-01-01

    Polyclonal and monoclonal antibodies that recognize the 35-, 36-, and 37-kDa alternative oxidase proteins of Sauromatum guttatum (Schott) were used to isolate a cDNA clone, pAOSG81, from an S. guttatum cDNA expression library. A fusion protein with an apparent molecular mass of 48 kDa was expressed from a pUC119 derivative of pAOSG81 (pAOSG81-119) in Escherichia coli cells and was recognized by the monoclonal antibodies. When the in vitro translated and immunoprecipitated products made from mRNA hybrid-selected by pAOSG81 were analyzed, a single band corresponding to a protein with an apparent molecular mass of 42 kDa was observed. DNA sequence characterization showed that pAOSG81 contains the entire coding region of a protein with a calculated molecular mass of 38.9 kDa, a putative 63-amino acid transit peptide, and a 9-amino acid match to the authentic N-terminal sequence of the 36-kDa alternative oxidase protein. Analyses of the deduced amino acid sequence indicate: (i) that the transit peptide is predicted to form amphiphilic helices, and (ii) that three regions of the processed protein are likely to form transmembrane alpha-helices. We conclude from these data that pAOSG81 represents a nuclear gene, aox1, encoding a precursor protein of one or more of the alternative oxidase proteins of S. guttatum. Images PMID:1706518

  20. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies.

    PubMed

    Andjelković, Ana; Oliveira, Marcos T; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T

    2015-12-17

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.

  1. Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays.

    PubMed

    Lin, Fan; Zhang, Yun; Jiang, Ming-Yi

    2009-03-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs. Alternative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-alpha and -beta. Spliced transcript ZmrbohB-beta retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-alpha. The transcripts of ZmrbohB-alpha accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4 degrees C), heat (40 degrees C), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  2. High Expression Levels of NADPH Oxidase 3 in the Cerebrum of Ten-Week-Old Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Michihara, Akihiro; Oda, Asaki; Mido, Mayuko

    2016-01-01

    We previously demonstrated that the high levels of oxidative stress in the brains of ten-week-old stroke-prone hypertensive rats (SHRSP) were attributable to intrinsic, not extrinsic factors (Biol. Pharm. Bull., 33, 2010, Michihara et al.). The aim of the present study was to determine whether increases in the enzymes producing reactive oxygen species (ROS), reductions in the enzymes and proteins removing ROS, or increases in an enzyme and transporter removing antioxidants promoted oxidative stress in the SHRSP cerebrum. No significant decreases were observed in the mRNA levels of enzymes that remove ROS between SHRSP and normotensive Wistar Kyoto rats. The activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and the protein and mRNA levels of NOX3, an enzyme that produces ROS, were significantly increased in the SHRSP cerebrum. These results suggested that the high expression levels of NOX3 increased oxidative stress in the SHRSP cerebrum.

  3. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  4. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  5. Covalent immobilization of ascorbate oxidase onto polycarbonate strip for L-ascorbic acid detection.

    PubMed

    Kannoujia, Dileep Kumar; Kumar, Saroj; Nahar, Pradip

    2012-10-01

    Herein, a simple and rapid method is described for detection of L-ascorbic acid by ascorbate oxidase immobilized onto polycarbonate strip pre-activated by 1-fluoro-2-nitro-4-azidobenzene in photochemical reaction. Covalent attachment of ascorbate oxidase was confirmed by XPS studies. The immobilized-ascorbate oxidase shows higher pH, thermal and storage stability in comparison to free enzyme.

  6. Dopa oxidase activity and ceruloplasmin in the sera of hamsters with melanoma.

    PubMed

    Vachtenheim, J; Pavel, S; Duchon, J

    1981-01-01

    Two simple spectrophotometric assays have been employed for the measurement of dopa oxidase activity and ceruloplasmin polyphenol oxidase activity in the sera from normal hamsters and hamsters bearing melanotic melanoma. Both activities were found to be augmented in tumor animals, the dopa oxidase activity much more prominently. The levels of the enzymes tested increased proportionally to the tumor mass.

  7. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  8. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  9. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  10. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  11. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  12. Amine oxidase activity regulates the development of pulmonary fibrosis.

    PubMed

    Marttila-Ichihara, Fumiko; Elima, Kati; Auvinen, Kaisa; Veres, Tibor Z; Rantakari, Pia; Weston, Christopher; Miyasaka, Masayuki; Adams, David; Jalkanen, Sirpa; Salmi, Marko

    2017-03-01

    In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4(+) lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3 knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.

  13. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  14. Solubilized cytochrome c oxidase from Paracoccus denitrificans is a monomer.

    PubMed

    Ludwig, B; Grabo, M; Gregor, I; Lustig, A; Regenass, M; Rosenbusch, J P

    1982-05-25

    Cytochrome c oxidase purified from the bacterium Paracoccus denitrificans was analyzed by analytical ultracentrifugation. In the detergent octyltetra/pentaoxyethylene (C8E45), the isolated enzyme exhibits a molecular weight of 79,000 to 84,000. The detergent-solubilized enzyme is thus a monomer which contains one copy of each of the two subunits.

  15. The number of nucleotide binding sites in cytochrome C oxidase.

    PubMed

    Rieger, T; Napiwotzki, J; Hüther, F J; Kadenbach, B

    1995-12-05

    The binding of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate (TNP-ATP), [35S]ATP alpha S and 8-azido-[gamma-32P]ATP to isolated cytochrome c oxidase of bovine heart and liver and to the two-subunit enzyme of Paracoccus dentrificans was studied by measuring the fluorescence change or bound radioactivity, respectively. With TNP-ATP three binding sites were determined at cytochrome c oxidase from bovine heart and liver, both with two dissociation constants Kd of about 0.2 and 0.9 microM. Trypsin treatment of the enzyme from bovine heart, resulted in one binding site with a Kd of 0.3 microM. The two-subunit enzyme of Paracoccus dentrificans had only one binding site with a Kd of 3.6 microM. The binding of [35S]ATP alpha S to cytochrome c oxidase was studied by equilibrium dialysis. With the enzyme of bovine heart seven and the enzyme of liver six high-affinity binding sites with apparent Kd's of 7.5 and 12 microM, respectively, were obtained. The two-subunit enzyme of Paracoccus denitrificans had one binding site with a Kd of 20 microM. The large number of binding sites at cytochrome c oxidase from bovine heart, mainly at nuclear coded subunits, was verified by photoaffinity labelling with 8-azido-[gamma-32P]ATP.

  16. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  17. HypC, the anthrone oxidase involved in aflatoxin biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on gene disruption and enzyme activity, hypC, an open reading frame in the pksA (aflC)/nor-1 (aflD) intergenic region in the aflatoxin biosynthesis cluster, encodes a 17 kDa oxidase that catalyzes the conversion of norsolorinic acid anthrone to norsolorinic acid....

  18. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens (Ara h 1 and Ara h 2). Because high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts were treated with each of th...

  19. The glucose oxidase-peroxidase assay for glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  20. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-09

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.

  1. Polyphenol oxidase activity in co-ensiled temperate grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) and its o-diphenol substrates have been shown to effectively decrease proteolytic activity during the ensiling of forages such as red clover. Orchardgrass and smooth bromegrass both contain high levels of PPO activity, but lack appropriate levels of o-diphenols to adequately...

  2. The proton pump of heme-copper oxidases.

    PubMed

    Papa, S; Capitanio, N; Glaser, P; Villani, G

    1994-05-01

    Proton pumping heme-copper oxidases represent the terminal, energy-transfer enzymes of respiratory chains in prokaryotes and eukaryotes. The CuB-heme a3 (or heme o) binuclear center, associated with the largest subunit I of cytochrome c and quinol oxidases, is directly involved in the coupling between dioxygen reduction and proton pumping. The role of the other subunits is less clear. The following aspects will be covered in this paper: i) the efficiency of coupling in the mitochondrial aa3 cytochrome c oxidase. In particular, the effect of respiratory rate and protonmotive force on the H+/e- stoichiometry and the role of subunit IV; ii) mutational analysis of the aa3 quinol oxidase of Bacillus subtilis addressed to the role of subunit III, subunit IV and specific residues in subunit I; iii) possible models of the protonmotive catalytic cycle at the binuclear center. The observations available suggest that H+/e- coupling is based on the combination of protonmotive redox catalysis at the binuclear center and co-operative proton transfer in the protein.

  3. Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease.

    PubMed

    Simonyi, Agnes; He, Yan; Sheng, Wenwen; Sun, Albert Y; Wood, W Gibson; Weisman, Gary A; Sun, Grace Y

    2010-06-01

    Alzheimer's disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Abeta) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Abeta. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Abeta in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A(2) (PLA(2)) and secretory PLA(2). In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Abeta NADPH oxidase and PLA(2) can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.

  4. [L-lysine-alpha-oxidase activity of some Trichoderma species].

    PubMed

    Smirnova, I P; Khaduev, S Kh

    1984-01-01

    Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

  5. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  6. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  7. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity

    PubMed Central

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.

    2010-01-01

    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  8. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    PubMed Central

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2014-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this “competition” phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Towards this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an “anxiety-like” behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior. PMID:24151253

  9. Structure of the trypanosome cyanide-insensitive alternative oxidase

    PubMed Central

    Shiba, Tomoo; Kido, Yasutoshi; Sakamoto, Kimitoshi; Inaoka, Daniel Ken; Tsuge, Chiaki; Tatsumi, Ryoko; Takahashi, Gen; Balogun, Emmanuel Oluwadare; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Saimoto, Hiroyuki; Moore, Anthony L.; Harada, Shigeharu; Kita, Kiyoshi

    2013-01-01

    In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction. PMID:23487766

  10. Oxidative metabolic pathway of lenvatinib mediated by aldehyde oxidase.

    PubMed

    Inoue, Kazuko; Mizuo, Hitoshi; Kawaguchi, Shinki; Fukuda, Katsuyuki; Kusano, Kazutomi; Yoshimura, Tsutomu

    2014-08-01

    Lenvatinib is a multityrosine kinase inhibitor that inhibits vascular endothelial growth factor receptors, and is being developed as an anticancer drug. P450s are involved in one of the elimination pathways of lenvatinib, and mono-oxidized metabolites, such as N-oxide (M3) and desmethylated metabolite (M2), form in rats, dogs, monkeys, and humans. Meanwhile, two other oxidative metabolites are produced only in monkey and human liver S9 fractions, and their structures have been identified using high-resolution mass spectrometry as a quinolinone form of lenvatinib (M3') and a quinolinone form of desmethylated lenvatinib (M2'). The formation of M3' from lenvatinib occurred independently of NADPH and was effectively inhibited by typical inhibitors of aldehyde oxidase, indicating the involvement of aldehyde oxidase, but not P450s, in this pathway. M2' was a dioxidized metabolite arising from a combination of mono-oxidation and desmethylation and could only be produced from M2 in a NADPH-independent manner; M2' could not be generated from M3 or M3'. These results suggested that M2' is formed from lenvatinib by a unique two-step pathway through M2. Although both lenvatinib and M2 were substrates for aldehyde oxidase, an enzyme kinetic study indicated that M2 was a much more favorable substrate than lenvatinib. No inhibitory activities of lenvatinib, M2', or M3' and no significant inhibitory activities of M2 or M3 on aldehyde oxidase were observed, suggesting a low possibility of drug-drug interactions in combination therapy with substrates of aldehyde oxidase.

  11. ACC Neuro-over-Connectivity Is Associated with Mathematically Modeled Additional Encoding Operations of Schizophrenia Stroop-Task Performance

    PubMed Central

    Taylor, Reggie; Théberge, Jean; Williamson, Peter C.; Densmore, Maria; Neufeld, Richard W. J.

    2016-01-01

    Functional magnetic resonance imaging at 7.0 Tesla was undertaken among Schizophrenia participants (Sz), and clinical (major mood disorder; MDD) and healthy controls (HC), during performance of the Stoop task. Stroop conditions included congruent and incongruent word color items, color-only items, and word-only items. Previous modeling results extended to this most widely used selective-attention task. All groups executed item-encoding operations (subprocesses of the item encoding process) at the same rate (performance accuracy being similarly high throughout), thus displaying like processing capacity; Sz participants, however, employed more subprocesses for item completions than did the MDD participants, who in turn used more subprocesses than the HC group. The reduced efficiency in deploying cognitive-workload capacity among the Sz participants was paralleled by more diffuse neuroconnectivity (Blood-Oxygen-Level-Dependent co-activation) with the anterior cingulate cortex (ACC) (Broadman Area 32), spreading away from this encoding-intensive region; and by less evidence of network dissociation across Stroop conditions. Estimates of cognitive work done to accomplish item completion were greater for the Sz participants, as were estimates of entropy in both the modeled trial-latency distribution, and its associated neuro-circuitry. Findings are held to be symptom and assessment significant, and to have potential implications for clinical intervention. PMID:27695425

  12. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  13. Foetal life protein provision of mink (Neovison vison) changes the relative mRNA abundance of some hepatic enzymes regulating fat metabolism.

    PubMed

    Matthiesen, Connie Frank; Casañas, Maria Arantzazu Aguinaga; Tauson, Anne-Helene

    2014-01-01

    The nutrient provision to pregnant females has high impact on the growth and metabolism of their offspring. The objective was to investigate if the expression of hepatic enzymes regulating the fat metabolism was affected in foetuses and adult female mink born by dams fed either a low or an adequate level of protein during late gestation. The relative abundances of acetyl coenzyme A carboxylase (ACC), fatty acid synthase (FAS) and carnitine palmitoyl transferase 1 (CPT1) mRNA were determined by qualitative polymerase chain reaction in the livers of F₀- and F₁-generation dams and in F₁-generation foetuses. Low protein provision during foetal life resulted in a lower expression of FAS in foetal liver but a tendency towards increased expression in the liver of adult dams. There was a tendency towards an effect of life stage of the animal on the expression of ACC resulting in a higher expression among F₁ foetuses exposed to low protein during foetal life than F₀ dams fed a low protein diet during late gestation. The expression of CPT1 was significantly lower among dams exposed to low protein provision during foetal life than controls, possibly indicating a lower rate of mitochondrial β-oxidation. Further investigations are needed to clarify the consequences of these changes for the fat metabolism.

  14. Inheritance of polyphenol oxidase activity in wheat breeding lines derived from matings of low polyphenol oxidase parents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) in grain plays a major role in time-dependent discoloration of wheat (Triticum aestivum L.) products, especially fresh noodles. Breeding wheat cultivars with low or nil PPO activity can reduce the undesirable product darkening. The low PPO line PI 117635 was crossed to two...

  15. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria).

    PubMed

    Wang, Jiehua; Constabel, C Peter

    2004-11-01

    In order to functionally analyze the predicted defensive role of leaf polyphenol oxidase (PPO; EC 1.10.3.1) in Populus, transgenic hybrid aspen (Populus tremula x P. alba) plants overexpressing a hybrid poplar (Populus trichocarpa x P. deltoides) PtdPPO1 gene were constructed. Regenerated transgenic plants showed high PPO enzyme activity, PtdPPO1 mRNA levels and PPO protein accumulation. In leaf disk bioassays, forest tent caterpillar (Malacosoma disstria) larvae feeding on PPO-overexpressing transgenics experienced significantly higher mortality and reduced average weight gain compared to larvae feeding on control leaves. However, this effect was observed only when older egg masses were used and the resulting larvae showed reduced growth and vigor. In choice tests, no effect of PPO overexpression was detected. Although PPO in poplar leaves is latent and requires activation with detergents or trypsin for full enzymatic activity, in caterpillar frass the enzyme was extracted in the fully activated form. This activation correlated with partial proteolytic cleavage, suggesting that PPO latency and activation during digestion could be an adaptive and defense-related feature of poplar PPO.

  16. NNK, a tobacco-specific carcinogen, inhibits the expression of lysyl oxidase, a tumor suppressor.

    PubMed

    Cheng, Guang; Li, Jianmin; Zheng, Maoguen; Zhao, Yinzhi; Zhou, Jing; Li, Wande

    2014-12-23

    A tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is believed to contribute to the cancer burden in cigarette smokers. To evaluate NNK effects on the expression of lysyl oxidase (LOX), a tumor suppressor, we examined this enzyme at various levels in NNK-treated rat fetal lung fibroblasts (RFL6). Exposure of cells to NNK reduced levels of steady-states LOX mRNA and new transcript synthesis. NNK inhibited all LOX protein species in a dose-dependent manner. Although 300 µM NNK markedly decreased the level in the 46 kDa preproenzyme, under same conditions, there was no detectable amounts of the 50 kDa proenzyme and the 32 kDa mature enzyme suggesting NNK perturbing the LOX protein processing to its mature form. Moreover, NNK also suppressed LOX activities in conditioned media of treated cells. At the promoter level, NNK enhanced methylation of CpG, but decreased acetylation of histone H3 at the core promoter region of the LOX gene. These results indicated that transcriptional and translational processes of LOX are major targets for NNK. Thus, inactivation of tumor suppressor gene LOX may play a critical role in NNK carcinogenesis.

  17. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  18. Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes.

    PubMed

    Sturza, Adrian; Duicu, Oana M; Vaduva, Adrian; Dănilă, Maria D; Noveanu, Lavinia; Varró, András; Muntean, Danina M

    2015-07-01

    Diabetes mellitus (DM) is widely recognized as the most severe metabolic disease associated with increased cardiovascular morbidity and mortality. The generation of reactive oxygen species (ROS) is a major event causally linked to the development of cardiovascular complications throughout the evolution of DM. Recently, monoamine oxidases (MAOs) at the outer mitochondrial membrane, with 2 isoforms, MAO-A and MAO-B, have emerged as novel sources of constant hydrogen peroxide (H2O2) production in the cardiovascular system via the oxidative deamination of biogenic amines and neurotransmitters. Whether MAOs are mediators of endothelial dysfunction in DM is unknown, and so we studied this in a streptozotocin-induced rat model of diabetes. MAO expression (mRNA and protein) was increased in both arterial samples and hearts isolated from the diabetic animals. Also, H2O2 production (ferrous oxidation - xylenol orange assay) in aortic samples was significantly increased, together with an impairment of endothelium-dependent relaxation (organ-bath studies). MAO inhibitors (clorgyline and selegiline) attenuated ROS production by 50% and partially normalized the endothelium-dependent relaxation in diseased vessels. In conclusion, MAOs, in particular the MAO-B isoform, are induced in aortas and hearts in the streptozotocin-induced diabetic rat model and contribute, via the generation of H2O2, to the endothelial dysfunction associated with experimental diabetes.

  19. Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development.

    PubMed Central

    Thipyapong, P.; Joel, D. M.; Steffens, J. C.

    1997-01-01

    Polyphenol oxidases (PPOs) are encoded by a highly conserved, seven-member gene family clustered within a 165-kb locus on chromosome 8 of tomato (Lycopersicon esculentum). Using gene-specific probes capable of differentiating between PPO A/C, PPO B, PPO D, and PPO E/F, we examined the spatial and temporal expression of this gene family during vegetative and reproductive development. RNA blots and in situ hybridization using these probes showed that although PPO expression is primarily confined to early stages of development, the steady-state mRNA levels of these genes are subject to complex patterns of spatial and temporal regulation in vegetative and reproductive organs. Young tomato leaves and flowers possess the most abundant PPO transcripts. PPO B is the most abundant in young leaves, whereas in the inflorescence PPO B and E/F transcripts are dominant. Differential expression of PPOs is also observed in various trichome types. PPO A/C are specifically expressed in type I and type IV trichomes. In contrast, PPO D is only expressed in type VI trichomes. Type I, IV, and VI trichomes possess PPO E/F transcripts. Immunolocalization verified the translational activity of PPOs identified by in situ hybridization and suggested cell-type-specific, developmentally programmed PPO turnover. In addition, immunolocalization demonstrated the accumulation of PPO in specific idioblast cells of stems, leaves, and fruits. PMID:12223637

  20. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  1. [Cloning and bioinformatics analysis of ent-kaurene oxidase synthase gene in Salvia miltiorrhiza].

    PubMed

    Hu, Ya-ting; Gao, Wei; Liu, Yu-jia; Cheng, Qi-qing; Su, Ping; Liu, Yu-zhong; Chen, Min

    2014-11-01

    Based on the transcriptome database of Salvia miltiorrhiza, specific primers were designed to clone a full-length cDNA of ent-kaurene oxidase synthase (SmKOL) using the RACE strategy. ORF Finder was used to find the open reading frame of SmKOL cDNA, and ClustalW has been performed to analysis the multiple amino acid sequence alignment. Phylogenetic tree has been constructed using MEGA 5.1. The transcription level of SmKOL from the hairy roots induced by elicitor methyl jasmonate (MeJA) was qualifiedby real-time quantitative PCR. The full length of SmKOL cDNA was of 1 884 bp nucleotides encoding 519 amino acids. The molecular weight of the SmKOL protein was about 58.88 kDa with isoelectric point (pI) of 7.62. Results of real-time quantitative PCR analyses indicated that the level of SmKOL mRNA expression in hairy roots was increased by elicitor oMeJA, and reached maximum in 36 h. The full-length cDNA of SmKOL was cloned from S. miltiorrhiza hairy root, which provides a target gene for further studies of its function, gibberellin biosynthesis and regulation of secondary metabolites.

  2. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.

  3. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  4. Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.).

    PubMed

    Sun, Youwei; He, Zhonghu; Ma, Wujun; Xia, Xianchun

    2011-03-01

    Polyphenol oxidase (PPO) plays a crucial role in browning reactions in fresh and processed fruits and vegetables, as well as products made from cereal grains. Common wheat (Triticum aestivum L.) has a large genome, representing an interesting system to advance our understanding of plant PPO gene expression, regulation and function. In the present study, we characterized the expression of Ppo-A1, a major PPO gene located on wheat chromosome 2A, using DNA sequencing, semi-quantitative RT-PCR, PPO activity assays and whole-grain staining methods during grain development. The results indicated that the expression of the Ppo-A1b allele was regulated by alternative splicing of pre-mRNAs, resulting from a 191-bp insertion in intron 1 and one C/G SNP in exon 2. Eight mRNA isoforms were identified in developing grains based on alignments between cDNA and genomic DNA sequences. Only the constitutively spliced isoform b encodes a putative full-length PPO protein based on its coding sequence whereas the other seven spliced isoforms, a, c, d, e, f, g and h, have premature termination codons resulting in potential nonsense-mediated mRNA decay. The differences in expression of Ppo-A1a and Ppo-A1b were confirmed by PPO activity assays and whole grain staining, providing direct evidence for the influence of alternative splicing in the coding region of Ppo-A1 on polyphenol oxidase activity in common wheat grains.

  5. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1

    PubMed Central

    Dutta, Chaitali; Avitahl-Curtis, Nicole; Pursell, Natalie; Larsson Cohen, Marita; Holmes, Benjamin; Diwanji, Rohan; Zhou, Wei; Apponi, Luciano; Koser, Martin; Ying, Bo; Chen, Dongyu; Shui, Xue; Saxena, Utsav; Cyr, Wendy A; Shah, Anee; Nazef, Naim; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Salido, Eduardo; Brown, Bob D; Lai, Chengjung

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1. PMID:26758691

  6. Lutein prevents high fat diet-induced atherosclerosis in ApoE-deficient mice by inhibiting NADPH oxidase and increasing PPAR expression.

    PubMed

    Han, Hao; Cui, Wei; Wang, Linzhi; Xiong, Yufang; Liu, Liegang; Sun, Xiufa; Hao, Liping

    2015-03-01

    Epidemiological and experimental studies provide supportive evidence that lutein, a major carotenoid, may act as a chemopreventive agent against atherosclerosis, although the underlying molecular mechanisms are not well understood. The main aim of this study was to investigate the effects of lutein on the alleviation of atherosclerosis and its molecular mechanisms involved in oxidative stress and lipid metabolism. Male apolipoprotein E knockout mice (n = 55) were fed either a normal chow diet or a high fat diet (HFD) supplemented with or without lutein for 24 weeks. The results showed that a HFD induced atherosclerosis formation, lipid metabolism disorders and oxidative stress, but noticeable improvements were observed in the lutein treated group. Additionally, lutein supplementation reversed the decreased protein expression of aortic heme oxygenase-1 and increased the mRNA and protein expressions of aortic nicotinamide-adenine dinucleotide phosphate oxidase stimulated by a HFD. Furthermore, the decreased mRNA and protein expression levels of hepatic peroxisome proliferator-activated receptor-α, carnitine palmitoyltransferase 1A, acyl CoA oxidase 1, low density lipoprotein receptors and scavenger receptor class B type I observed in mice with atherosclerosis were markedly enhanced after treatment with lutein. Taken together, these data add new evidence supporting the anti-atherogenic properties of lutein and describing its mechanisms of action in atherosclerosis prevention, including oxidative stress and lipid metabolism improvements.

  7. Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidase-dependent mechanism.

    PubMed

    Shenkar, R; Abraham, E

    1996-02-01

    Hemorrhage rapidly increases plasma xanthine oxidase levels as well as the expression of proinflammatory and immunoregulatory cytokines in the lungs. To determine the role of circulating xanthine oxidase (XO), as well as other plasma factors, in affecting pulmonary cytokine expression, we conducted studies in which plasma from hemorrhaged mice was transferred into unhemorrhaged recipient mice. Administration of posthemorrhage plasma to recipient mice increased the levels of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta 1 (TGF-beta 1) in lung mononuclear cells. No enhancement of mRNA levels for these cytokines was found in the lungs of mice given allopurinol-treated posthemorrhage plasma or fed a tungsten-enriched, XO-depleting diet prior to transfer of posthemorrhage plasma. Among the nuclear transcriptional regulatory factors examined, only the cyclic AMP response-element binding protein (CREB) was activated in nuclear extracts from lung mononuclear cells of mice that were given posthemorrhage plasma. No activation of nuclear factor-kappa B (NF-kappa B), nuclear factor interleukin 6 (NF-IL6), activating protein-1 (AP-1), or serum protein-1 (SP-1) was found. These results suggest that the mechanism for hemorrhage-induced increases in pulmonary cytokine expression is by activation of the enhancer CREB through a tissue XO-dependent pathway initiated by plasma-borne mediators.

  8. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  9. The transcription of l-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbate, during development of Persian sturgeon Acipenser persicus.

    PubMed

    Akbarzadeh, Arash; Farahmand, Hamid; Mahjoubi, Frouzandeh; Nematollahi, Mohammad Ali; Leskinen, Piia; Rytkönen, Kalle; Nikinmaa, Mikko

    2011-04-01

    l-Gulono-gamma-lactone oxidase (GULO) is a key enzyme for the biosynthesis of ascorbate, which is essential for several cellular functions. In the present study, mRNA expression of GULO gene was evaluated during the early development of Persian sturgeon. First, because there are no comparative studies that have established suitable quantitative real-time PCR reference genes in sturgeons for any physiological conditions, we evaluated six candidate reference genes (ACTB, RPL13, UBQ, RPL6, GAPDH and EF1A) during the early development of Persian sturgeon. The most stable mRNA expression was obtained with RPL6 and ACTB, whereas the least stable was RPL13. After normalization using RPL6, ACTB and RPL6/ACTB combination, the mRNA expression of GULO was highest at the embryonic stage (2days before hatching; P<0.05) and started to decline from hatching of larvae to the rest of the developmental time-points. This suggests that the vitamin C requirements are highest during early life stages, and it is likely that the changes in GULO mRNA expression are associated with changes in GULO enzyme activity.

  10. Down-regulation of acyl-CoA oxidase gene expression and increased NF-kappaB activity in etomoxir-induced cardiac hypertrophy.

    PubMed

    Cabrero, Agatha; Merlos, Manuel; Laguna, Juan C; Carrera, Manuel Vázquez

    2003-02-01

    Activation of nuclear factor-kappaB (NF-kappaB) is required for hypertrophic growth of cardiomyocytes. Etomoxir is an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I) that activates peroxisome proliferator-activated receptor alpha (PPARalpha) and induces cardiac hypertrophy through an unknown mechanism. We studied the mRNA expression of genes involved in fatty acid oxidation in the heart of mice treated for 1 or 10 days with etomoxir (100 mg/kg/day). Etomoxir administration for 1 day significantly increased (4.4-fold induction) the mRNA expression of acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in peroxisomal beta-oxidation. In contrast, etomoxir treatment for 10 days dramatically decreased ACO mRNA levels by 96%. The reduction in ACO expression in the hearts of 10-day etomoxir-treated mice was accompanied by an increase in the mRNA expression of the antioxidant enzyme glutathione peroxidase and the cardiac marker of oxidative stress bax. Moreover, the activity of the redox-regulated transcription factor NF-kappaB was increased in heart after 10 days of etomoxir treatment. Overall, the findings here presented show that etomoxir treatment may induce cardiac hypertrophy via increased cellular oxidative stress and NF-kappaB activation.

  11. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model.

    PubMed

    Kaliaperumal, Jagatheesh; Padarthi, Pavankumar; Elangovan, Namasivayam; Hari, Natarajan

    2014-07-01

    At present, the majority of established treatments for breast cancer are based on clinical manifestations, some fundamental of molecular and cellular biology of cancer. In recent times, the therapy is moving towards personalized medicines. Nevertheless, both the methodologies have own demerits. In the present study, we proposed a novel idea of targeted therapy with twin pharmacological potential by a peptide pACC1. The peptide was formulated with chitosan and evaluated with DMBA induced mammary carcinoma. Results suggest that the peptide holds great control on tumor cell multiplication, fatty acid synthesis and lactate levels. In addition, peptide also brings normal metabolic signs in glycolytic and glycogenic pathways. Histological studies confirm the dual pharmacological actions. Further, it is also proven that the peptide controls membrane receptor levels of HER2 and EGFR. In conclusion, that the peptide pACC1 could be employed as greater therapeutic adjuvant with currently established drugs without considering the stage of the cancer.

  12. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  13. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  14. Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria.

    PubMed Central

    Jurtshuk, P; McQuitty, D N

    1976-01-01

    It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels. PMID:1275489

  15. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings.

    PubMed

    Xu, Mingshuang; Sheng, Jiping; Chen, Lin; Men, Yejun; Gan, Lin; Guo, Shuntang; Shen, Lin

    2014-03-01

    Study of endophytic bacteria within plant seeds is very essential and meaningful on account of their heritability and versatility. This study investigated Bacillus bacterial communities within the seeds of four commercial tomato varieties, by 16S rRNA gene PCR-RFLP (restriction fragment length polymorphism). Phylogenetic analysis of 16S rRNA gene sequences indicated that the 22 representative isolates belonged to five species of genus Bacillus and the bacterial compositions showed remarkable differences among tomato varieties. Isolates exhibited multiple plant growth promoting (PGP) traits: 37 % of indole-3-acetic acid production; 37 % of phosphate solubilization; 24 % of siderophores production; 85 % of potential nitrogen fixation and 6 % of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Isolate HYT-12-1 was shown to have highest ACC deaminase activity (112.02 nmol α-ketobutyrate mg⁻¹ protein h⁻¹) among the five ACC deamiase producing strains. 16S rRNA gene sequencing indicated that the isolate HYT-12-1 shared the highest sequence similarity (100 %) with B. subtilis. PGP experiments under gnotobiotic and greenhouse conditions revealed the ability of strain HYT-12-1 to enhance the growth of tomato seedlings. This is the first study to describe endophytic Bacillus communities within tomato seeds, and the results suggest that B. subtilis strain HYT-12-1 would have a great potential for industrial application as biofertilizer in the future.

  16. Deep sea water modulates blood pressure and exhibits hypolipidemic effects via the AMPK-ACC pathway: an in vivo study.

    PubMed

    Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi

    2013-06-17

    Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg²⁺), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg²⁺/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg²⁺/kg DSW); and 2 × DSW (equivalent to 75 mg Mg²⁺/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5'-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis.

  17. Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study

    PubMed Central

    Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi

    2013-01-01

    Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg2+), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg2+/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg2+/kg DSW); and 2 × DSW (equivalent to 75 mg Mg2+/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5′-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis. PMID:23774889

  18. Plasma leptin and mRNA expression of lipogenesis and lipolysis-related factors in bovine adipose tissue around parturition.

    PubMed

    Sadri, H; Mielenz, M; Morel, I; Bruckmaier, R M; van Dorland, H A

    2011-12-01

    The objective was to study changes in plasma leptin concentration parallel to changes in the gene expression of lipogenic- and lipolytic-related genes in adipose tissue of dairy cows around parturition. Subcutaneous fat biopsies were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. Blood samples were assayed for concentrations of leptin and non-esterified fatty acids (NEFA). Subcutaneous adipose tissue was analysed for mRNA abundance by real-time qRT-PCR encoding for leptin, adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2), hormones-sensitive lipase (HSL), perilipin (PLIN), lipoprotein lipase (LPL), acyl-CoA synthase long-chain family member 1 (ACSL1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN) and glycerol-3-phosphate dehydrogenase 2 (GPD2). Body weight and body condition score of the cows were lower after parturition than before parturition. The calculated energy balance was negative in week 1 and 5 p.p., with higher negative energy balance in week 1 p.p. compared with that in week 5 p.p. On day 1 p.p., highest concentrations of NEFA (353.3 μmol/l) were detected compared with the other biopsy time-points (210.6 and 107.7 μmol/l, in week 8 a.p., and week 5 p.p. respectively). Reduced plasma concentrations of leptin during p.p. when compared with a.p. would favour increasing metabolic efficiency and energy conservation for mammary function and reconstitution of body reserves. Lower mRNA abundance of ACC and FASN expression on day 1 p.p. compared with other biopsy time-points suggests an attenuation of fatty acid synthesis in subcutaneous adipose tissue shortly after parturition. Gene expression of AdipoR1, AdipoR2, HSL, PLIN, LPL, ACSL1 and GPD2 was unchanged over time.

  19. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake.

    PubMed

    El Hadri, Khadija; Moldes, Marthe; Mercier, Nathalie; Andreani, Marise; Pairault, Jacques; Feve, Bruno

    2002-01-01

    Cultured vascular smooth muscle cells (VSMCs) derived from rat aortic media were used to examine semicarbazide-sensitive amine oxidase (SSAO) expression during their differentiation process. In a defined serum-free medium permissive for in vitro VSMC differentiation, there was a large increase in SSAO mRNA and protein levels and in the related enzyme activity during the course of cell culture. This pattern of expression was concomitant with that of some smooth muscle-specific mRNA markers of differentiation. mRNAs in differentiated cultured VSMCs were comparable to those detected in total aorta and media. Pharmacological properties of SSAO present in VSMCs were similar to enzyme activities previously described in the aortic wall. In this model, we also demonstrated that methylamine, a physiological substrate of SSAO, activated 2-deoxyglucose transport in a time- and dose-dependent manner. This methylamine effect was reproduced by other SSAO substrates and was prevented by the SSAO inhibitor semicarbazide. It was antagonized in the presence of catalase, suggesting that SSAO-activated glucose transport was mediated through H(2)O(2) production. In addition, methylamine promoted glucose transporter 1 accumulation at the cell surface. Thus, we demonstrate for the first time the differentiation-dependent expression of SSAO in VSMCs and its role in the regulation of VSMC glucose uptake.

  20. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells.

    PubMed

    Yang, Min; Chen, Ping; Peng, Hong; Zhang, Hongliang; Chen, Yan; Cai, Shan; Lu, Qianjin; Guan, Chaxiang

    2015-03-01

    Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs.

  1. Sex differences in ischaemia/reperfusion-induced acute kidney injury depends on the degradation of noradrenaline by monoamine oxidase.

    PubMed

    Tanaka, Ryosuke; Yazawa, Maki; Morikawa, Yuri; Tsutsui, Hidenobu; Ohkita, Mamoru; Yukimura, Tokihito; Matsumura, Yasuo

    2017-03-01

    Ischaemic acute kidney injury (AKI) is a leading killer of both sexes; however, resistance to this injury is higher among women than men. We found that renal venous noradrenaline (NAd) overflow after reperfusion played important roles in the development of ischaemic AKI, and that the attenuation of AKI observed in female rats may be dependent on depressing the renal sympathetic nervous system with endogenous oestrogen. In the present study, we used male and female Sprague-Dawley rats to investigate whether sex differences in the pathogenesis of ischaemic AKI are related to the degradation of NAd by monoamine oxidase (MAO) in the kidney. Ischaemic AKI was achieved by clamping the left renal artery and vein for 45 minutes followed by reperfusion 2 weeks after contralateral nephrectomy. Renal injury was more severe in male rats than in female rats and renal venous plasma NAd levels after reperfusion were markedly elevated in males, but not in females. These sex differences were eliminated by a treatment with isatin, a non-selective MAO inhibitor, and moclobemide, a selective MAOA inhibitor, but not by selegiline, a selective MAOB inhibitor. Ischaemia decreased the mRNA expression levels of both MAOs in the kidney 1 day after reperfusion; however, MAOA mRNA expression levels were higher in female rats than in male rats. These results suggest that the degradation of NAd by MAOA in the kidney contributes to sex differences in the pathogenesis of ischaemia/reperfusion-induced AKI.

  2. Alternative oxidase expression in aged potato tuber slices

    SciTech Connect

    Hiser, C.; Herdies, L.; McIntosh, L. )

    1989-04-01

    Higher plant mitochondria posses a cyanide-resistant, hydroxamate-sensitive alternative pathway of electron transport that does not conserve energy. Aging of potato tuber slices for 24 hours leads to the development of an alternative pathway capacity. We have shown that a monoclonal antibody raised against the alternative pathway terminal oxidase of Sauromatum guttatum crossreacts with a protein of similar size in aged potato slice mitochondria. This protein was partially purified and characterized by two-dimensional gel electrophoresis, and its relative levels parallel the rise in cyanide-resistant respiration. We are using a putative clone of the S. guttatum alternative oxidase gene to isolate the equivalent gene from potato and to examine its expression.

  3. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    PubMed

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities.

  4. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO.

    PubMed

    Wang, Yanlin; Murray-Stewart, Tracy; Devereux, Wendy; Hacker, Amy; Frydman, Benjamin; Woster, Patrick M; Casero, Robert A

    2003-05-16

    The discovery of an inducible oxidase whose apparent substrate preference is spermine indicates that polyamine catabolism is more complex than that originally proposed. To facilitate the study of this enzyme, the purification and characterization of the recombinant human PAOh1/SMO polyamine oxidase are reported. Purified PAOh1/SMO oxidizes both spermine (K(m)=1.6 microM) and N(1)-acetylspermine (K(m)=51 microM), but does not oxidize spermidine. The purified human enzyme also does not oxidize eight representative antitumor polyamine analogues; however, specific oligamine analogues were found to be potent inhibitors of the oxidation of spermine by PAOh1/SMO. The results of these studies are consistent with the hypothesis that PAOh1/SMO represents a new addition to the polyamine metabolic pathway that may represent a new target for antineoplastic drug development.

  5. Cloning and expression of the potato alternative oxidase gene

    SciTech Connect

    Hiser, C.; McIntosh, L. Michigan State Univ., East Lansing )

    1990-05-01

    Mitochondria from 24-hour-aged potato slices possess an alternative path capacity and a 36kD protein not present in fresh potato mitochondria. This 36kD protein was identified by a monoclonal antibody against the Sauromatum guttatum alternative oxidase. These results suggest de novo synthesis of the 36kD protein during the aging process. To investigate this phenomenon, a clone containing a potato alternative oxidase gene was isolated from a cDNA library using the S. guttatum gene as a probe. This clone shows areas of high homology to the S. guttatum gene. Norther blots of RNA from fresh and 24-hour-aged potato slices are being probed with the potato gene to examine its expression in relation to the appearance of the 36kD protein.

  6. Rapid purification of cytochrome c oxidase from Paracoccus denitrificans.

    PubMed

    Steffens, G C; Pascual, E; Buse, G

    1990-11-23

    Two methods are described for the purification of cytochrome c oxidase from Triton X-100 extracts of the periplasma membrane of Paracoccus denitrificans. The first is a large-scale procedure for the preparation of 100-250 nmol of cytochrome c oxidase (10-20 mg) in 1 week. The second is a rapid procedure for isolating up to 25 nmol in 2-3 days. Owing to the high yields given by fast protein liquid chromatography (FPLC) on Mono Q columns, the overall yield is about 20%, whereas the yield in many other previously published procedures does not exceed 10%. The use of FPLC on Mono Q also offers a considerable saving of time.

  7. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  8. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  9. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction†

    PubMed Central

    Héroux, Annie; Bozinovski, Dragana M.; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M.

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 Å resolution or better are described of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct. The D402N enzyme has no detectable activity with neutral nitroalkanes (Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 23, 8738–8739). The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2’-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062–2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2’-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle. PMID:19265437

  10. Soluble CuA domain of cyanobacterial cytochrome c oxidase.

    PubMed

    Paumann, Martina; Lubura, Borjana; Regelsberger, Günther; Feichtinger, Markus; Köllensberger, Gunda; Jakopitsch, Christa; Furtmüller, Paul G; Peschek, Günter A; Obinger, Christian

    2004-03-12

    The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.

  11. Steady state equivalence among autocatalytic peroxidase-oxidase reactions.

    PubMed

    Méndez-González, José; Femat, Ricardo

    2016-12-14

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  12. Azachalcones: a new class of potent polyphenol oxidase inhibitors.

    PubMed

    Radhakrishnan, Sini Karanayil; Shimmon, Ronald Gibrial; Conn, Costa; Baker, Anthony T

    2015-04-15

    A library of potent inhibitors of polyphenol oxidase and their structure activity relationships are described. Azachalcone derivatives were synthesized and tested for their tyrosinase inhibitory activity. Their inhibitory activities on mushroom tyrosinase using l-DOPA as a substrate were investigated. Two compounds that are the reduction congeners of the pyridinyl azachalcones strongly inhibited the enzyme activity and were more potent than the positive control kojic acid.

  13. Steady state equivalence among autocatalytic peroxidase-oxidase reactions

    NASA Astrophysics Data System (ADS)

    Méndez-González, José; Femat, Ricardo

    2016-12-01

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  14. Cholesterol oxidase: sources, physical properties and analytical applications.

    PubMed

    MacLachlan, J; Wotherspoon, A T; Ansell, R O; Brooks, C J

    2000-04-01

    Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity.

  15. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  16. Studies of GA sub 53 oxidase from spinach

    SciTech Connect

    Wilson, T.; Zeevaart, J.A.D. )

    1990-05-01

    GA{sub 53} oxidase was purified 1,750-fold with 1% recovery of activity from spinach after exposure to 8 long days. This preparation was injected into balb/c mice and hybridomas from spleen cells were produced. Upon preliminary screening by immunoprecipitation of enzyme activity, three positive cell lines were selected. These are being cloned to select a true monoclonal antibody cell line. This antibody will be used to study the light/dark regulation of this enzyme.

  17. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    NASA Astrophysics Data System (ADS)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  18. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  19. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.

    PubMed

    Morifuji, Masashi; Sanbongi, Chiaki; Sugiura, Katsumi

    2006-09-01

    Exercise training and regular physical activity increase oxidation of fat. Enhanced oxidation of fat is important for preventing lifestyle diseases such as hypertension and obesity. The aim of the present study in rats was to determine whether intake of dietary soya protein and exercise training have an additive effect on the activity and mRNA expression of enzymes involved in skeletal muscle fatty acid oxidation. Male Sprague-Dawley rats (n 32) were assigned randomly into four groups (eight rats per group) and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise groups were trained for 2 weeks by swimming for 120 min/d, 6 d/week. Exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight and increased skeletal muscle carnitine palmitoyltransferase 1 (CPT1) activity and mRNA expression of CPT1, beta-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, PPARgamma coactivator 1alpha (PGC1alpha) and PPARalpha. Soya protein significantly decreased hepatic triacylglycerol levels and epididymal adipose tissue weight and increased skeletal muscle CPT1 activity and CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1alpha and PPARalpha mRNA levels. Furthermore, skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein. We conclude that exercise training and soya protein intake have an important additive role on induction of PPAR pathways, leading to increased activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle and reduced accumulation of body fat.

  20. Safety evaluation of glucose oxidase from Penicillium chrysogenum.

    PubMed

    Konishi, Tetsuya; Aoshima, Takuya; Mizuhashi, Fukutaro; Choi, Sharon S H; Roberts, Ashley

    2013-06-01

    Glucose oxidase (β-d-glucose:oxygen 1-oxidoreductase; EC 1.1.2.3.4) is used in the food and beverage industry as a preservative and stabilizer and is commonly derived from the fungus Aspergillus niger. Although the safety of glucose oxidase preparations from A. niger is well-established, the use of preparations derived from other fungal species is of interest; however, an assessment of their safety is warranted. Here, we report on the safety of a glucose oxidase preparation derived from the fungus Penicillium chrysogenum (designated as PGO) for commercial use in food processing, as well as an ingredient in food. In a repeated dose 90-day oral toxicity study conducted in rats, PGO was without compound-related adverse effects at doses of up to 15,600U/kg body weight/day, equivalent to 193mg total organic solids/kg body weight/day. In addition, PGO was non-genotoxic in a series of genotoxicity tests, including a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and a combined in vivo mammalian erythrocyte micronucleus test and comet assay. The results of these studies support the safe use of PGO in food for human consumption.

  1. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  2. The NADPH oxidase Nox4 has anti-atherosclerotic functions

    PubMed Central

    Schürmann, Christoph; Rezende, Flavia; Kruse, Christoph; Yasar, Yakub; Löwe, Oliver; Fork, Christian; van de Sluis, Bart; Bremer, Rolf; Weissmann, Norbert; Shah, Ajay M.; Jo, Hanjoong; Brandes, Ralf P.; Schröder, Katrin

    2015-01-01

    Aims Oxidative stress is thought to be a risk for cardiovascular disease and NADPH oxidases of the Nox family are important producers of reactive oxygen species. Within the Nox family, the NADPH oxidase Nox4 has a unique position as it is constitutively active and produces H2O2 rather than O2− . Nox4 is therefore incapable of scavenging NO and its low constitutive H2O2 production might even be beneficial. We hypothesized that Nox4 acts as an endogenous anti-atherosclerotic enzyme. Methods and results Tamoxifen-induced Nox4-knockout mice were crossed with ApoE−/− mice and spontaneous atherosclerosis under regular chow as well as accelerated atherosclerosis in response to partial carotid artery ligation under high-fat diet were determined. Deletion of Nox4 resulted in increased atherosclerosis formation in both models. Mechanistically, pro-atherosclerotic and pro-inflammatory changes in gene expression were observed prior to plaque development. Moreover, inhibition of Nox4 or deletion of the enzyme in the endothelium but not in macrophages resulted in increased adhesion of macrophages to the endothelial surface. Conclusions The H2O2-producing NADPH oxidase Nox4 is an endogenous anti-atherosclerotic enzyme. Nox4 inhibitors, currently under clinical evaluation, should be carefully monitored for cardiovascular side-effects. PMID:26385958

  3. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  4. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  5. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis.

    PubMed

    Kopacz, Malgorzata M; Heuts, Dominic P H M; Fraaije, Marco W

    2014-10-01

    Putrescine oxidase from Rhodococcus erythropolis (PuO) is a flavin-containing amine oxidase from the monoamine oxidase family that performs oxidative deamination of aliphatic diamines. In this study we report pre-steady-state kinetic analyses of the enzyme with the use of single- and double-mixing stopped-flow spectroscopy and putrescine as a substrate. During the fast and irreversible reductive half-reaction no radical intermediates were observed, suggesting a direct hydride transfer from the substrate to the FAD. The rate constant of flavin reoxidation depends on the ligand binding; when the imine product was bound to the enzyme the rate constant was higher than with free enzyme species. Similar results were obtained with product-mimicking ligands and this indicates that a ternary complex is formed during catalysis. The obtained kinetic data were used together with steady-state rate equations derived for ping-pong, ordered sequential and bifurcated mechanisms to explore which mechanism is operative. The integrated analysis revealed that PuO employs a bifurcated mechanism due to comparable rate constants of product release from the reduced enzyme and reoxidation of the reduced enzyme-product complex.

  6. Multi-Copper Oxidases and Human Iron Metabolism

    PubMed Central

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  7. Essential role of lysyl oxidases in notochord development

    PubMed Central

    Gansner, John M.; Mendelsohn, Bryce A.; Hultman, Keith A.; Johnson, Stephen L.; Gitlin, Jonathan D.

    2007-01-01

    Recent studies reveal a critical role for copper in the development of the zebrafish notochord, suggesting that specific cuproenzymes are required for the structural integrity of the notochord sheath. We now demonstrate that β-aminopropionitrile, a known inhibitor of the copper-dependent lysyl oxidases, causes notochord distortion in the zebrafish embryo identical to that seen in copper deficiency. Characterization of the zebrafish lysyl oxidase genes reveals eight unique sequences, several of which are expressed in the developing notochord. Specific gene knockdown demonstrates that loss of loxl1 results in notochord distortion, and that loxl1 and loxl5b have overlapping roles in notochord formation. Interestingly, while notochord abnormalities are not observed following partial knockdown of loxl1 or loxl5b alone, in each case this markedly sensitizes developing embryos to notochord distortion if copper availability is diminished. Likewise, partial knockdown of the lysyl oxidase substrate col2a1 results in notochord distortion when combined with reduced copper availability or partial knockdown of loxl1 or loxl5b. These data reveal a complex interplay of gene expression and nutrient availability critical to notochord development. They also provide insight into specific genetic and nutritional factors that may play a role in the pathogenesis of structural birth defects of the axial skeleton. PMID:17543297

  8. Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus.

    PubMed

    von Ballmoos, Christoph; Adelroth, Pia; Gennis, Robert B; Brzezinski, Peter

    2012-04-01

    The respiratory heme-copper oxidases catalyze reduction of O(2) to H(2)O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa(3)-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba(3) oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H(+)/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba(3) oxidases with a focus on mechanisms of proton transfer and pumping.

  9. Decavanadate inhibits the cell-free activation of neutrophil NADPH oxidase without affecting tyrosine phosphorylation.

    PubMed

    Okamura, N; Sakai, T; Nishimura, Y; Sakai, M; Araki, S; Yamaguchi, M; Ishibashi, S

    1999-08-01

    NADPH oxidase was activated by arachidonate in a cell-free system consisting of membrane and cytosol fractions prepared from guinea pig neutrophils. Vanadate apparently inhibited the NADPH oxidase activity in the cell-free system (IC50=2 microM) without phosphotyrosine accumulation. The pH dependency and stability of the inhibitory effect observed for vanadate solution indicated that decavanadate, an isopolyanion of vanadate, was responsible for the inhibition. Pervanadate (vanadyl hydroperoxide) also inhibited the oxidase activity but at a higher concentration (IC50=0.2 mM). Decavanadate lowered the Vmax but did not affect the Km value of NADPH oxidase for NADPH. Decavanadate inhibited the activation process of NADPH oxidase but not the oxidase activity itself. Decavanadate-pretreatment of membrane and cytosol fractions irreversibly decreased the abilities of both fractions to activate NADPH oxidase in the cell-free system. Translocation of p47-phox, one of the cytosolic activation factors of NADPH oxidase, from cytosol to membrane, was little affected by decavanadate. These results suggest that decavanadate inhibits the activation of NADPH oxidase in the cell-free system without affecting the phosphotyrosine phosphatase, and that decavanadate can bind to both the membrane and cytosolic activation factors when they are in a dormant state, but not to the active oxidase complex.

  10. Two variants of the assembly factor Surf1 target specific terminal oxidases in Paracoccus denitrificans.

    PubMed

    Bundschuh, Freya A; Hoffmeier, Klaus; Ludwig, Bernd

    2008-10-01

    Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba(3)-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa(3)-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa(3)-type cytochrome c oxidase and the ba(3)-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I.

  11. Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus.

    PubMed

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Morris, Peter C; Keane, Mark A

    2013-04-10

    While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.

  12. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases.

    PubMed

    Weidert, E R; Schoenborn, S O; Cantu-Medellin, N; Choughule, K V; Jones, J P; Kelley, E E

    2014-02-15

    Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken

  13. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  14. Limitation of adipose tissue enlargement in rats chronically treated with semicarbazide-sensitive amine oxidase and monoamine oxidase inhibitors.

    PubMed

    Carpéné, C; Abello, V; Iffiú-Soltész, Z; Mercier, N; Fève, Bruno; Valet, P

    2008-06-01

    Inhibition of semicarbazide-sensitive amine oxidases (SSAO) and monoamine oxidases (MAO) reduces fat deposition in obese rodents: chronic administration of the SSAO-inhibitor semicarbazide (S) in combination with pargyline (MAO-inhibitor) has been shown to reduce body weight gain in obese Zucker rats, while (E)-2-(4-fluorophenethyl)-3-fluoroallylamine, an SSAO- and MAO-B inhibitor, has been reported to limit weight gain in obese and diabetic mice. Our aim was to state whether such weight gain limitation could occur in non-obese, non-diabetic rats and to extend these observations to other amine oxidase inhibitors. Prolonged treatment of non-obese rats with a high dose of S (900 micromol kg(-1) day(-1)) reduced body weight gain and limited white adipose tissue enlargement. When chronically administered at a threefold lower dose, S also inhibited SSAO activity but not fat depot enlargement, suggesting that effects other than SSAO inhibition were involved in adipose tissue growth retardation. However, combined treatment of this lower dose of S with pargyline inhibited SSAO, MAO, energy intake, weight gain and fat deposition. Adipocytes from treated rats exhibited unchanged insulin responsiveness but impaired antilipolytic responses to amine oxidase substrates. Phenelzine clearly inhibited both MAO and SSAO when tested on adipocytes. Obese rats receiving phenelzine i.p. at 17 micromol kg(-1) day(-1) for 3 weeks, exhibited blunted MAO and SSAO activities in any tested tissue, diminished body weight gain and reduced intra-abdominal adipose tissue. Their adipocytes were less responsive to lipogenesis activation by tyramine or benzylamine. These observations suggest that SSAO inhibition is not sufficient to impair fat deposition. However, combined MAO and SSAO inhibition limits adiposity in non-obese as well as in obese rats.

  15. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability

    PubMed Central

    Vuong, Thu V.; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R.

    2016-01-01

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H2O2. By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H2O2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H2O2, the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H2O2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications. PMID:27869125

  16. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability.

    PubMed

    Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R

    2016-11-21

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H2O2. By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H2O2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H2O2, the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H2O2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.

  17. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.

    PubMed

    Chabrashvili, Tina; Kitiyakara, Chagriya; Blau, Jonathan; Karber, Alex; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2003-07-01

    Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.

  18. Links between mRNA splicing, mRNA quality control, and intellectual disability

    PubMed Central

    Fasken, Milo B.; Corbett, Anita H.

    2016-01-01

    In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the ubiquitously expressed ZC3H14 protein specifically affects neurons. PMID:27868086

  19. Comparing hydrazine-derived reactive groups as inhibitors of quinone-dependent amine oxidases.

    PubMed

    Burke, Ashley A; Severson, Elizabeth S; Mool, Shreya; Solares Bucaro, Maria J; Greenaway, Frederick T; Jakobsche, Charles E

    2017-12-01

    Lysyl oxidase has emerged as an important enzyme in cancer metastasis. Its activity has been reported to become upregulated in several types of cancer, and blocking its activity has been shown to limit the metastatic potential of various cancers. The small-molecules phenylhydrazine and β-aminopropionitrile are known to inhibit lysyl oxidase; however, issues of stability, toxicity, and poorly defined mechanisms limit their potential use in medical applications. The experiments presented herein evaluate three other families of hydrazine-derived compounds - hydrazides, alkyl hydrazines, and semicarbazides - as irreversible inhibitors of lysyl oxidase including determining the kinetic parameters and comparing the inhibition selectivities for lysyl oxidase against the topaquinone-containing diamine oxidase from lentil seedlings. The results suggest that the hydrazide group may be a useful core functionality that can be developed into potent and selective inhibitors of lysyl oxidase and eventually find application in cancer metastasis research.

  20. Assessment of 2013 AHA/ACC ASCVD risk scores with behavioral characteristics of an urban cohort in India

    PubMed Central

    Menon, Vidya P.; Edathadathil, Fabia; Sathyapalan, Dipu; Moni, Merlin; Don, Ann; Balachandran, Sabarish; Pushpa, Binny; Prasanna, Preetha; Sivaram, Nithu; Nair, Anupama; Vinod, Nithu; Jayaprasad, Rekha; Menon, Veena

    2016-01-01

    Abstract Cardiovascular diseases (CVDs) are the leading cause of death and disability in India. Early and sustained exposure to behavioral risk factors leads to development of CVDs. The aim of this study was to determine the baseline risk of a “hard CVD event” in subjects attending comprehensive health clinic and assess behavioral characteristics in “at risk” population. Using WHO STEPwise approach to Surveillance modified questionnaire, prevalence of noncommunicable diseases (NCDs) and risk factors was estimated in this cross-sectional study of 4507 subjects. Baseline cardiovascular risk was determined using Framingham risk score (FRS) and American College of Cardiology (ACC)/American Heart Association (AHA) atherosclerotic cardiovascular disease (ASCVD) algorithms. Modifiable behavior associated with high CVD risk was assessed. Among 40 to 59-year olds, ASCVD risk tool derived both a 10-year and lifetime risk score, which were used to stratify the cohort into 3 risk groups, namely, a high 10-year and high lifetime, a low 10-year and high lifetime, and a low 10-year and low lifetime risks. Dyslipidemia (30.6%), hypertension (25.5%), diabetes mellitus (20%), and obstructive airway disorders (17.6%) were most prevalent NCDs in our cohort. The ASCVD score stratified 26.1% subjects into high 10-yr and 59.5% into high lifetime risk while FRS classified 17.2% into high 10-year risk. Compared with FRS, the ASCVD risk estimator identified a larger proportion of subjects “at risk” of developing CVD. A high prevalence of alcohol use (38.4%), decreased intake of fruits and vegetables (96.2%) and low physical activity (58%) were observed in “at risk” population. Logistic regression analysis showed that in 40 to 59-year group, regular and occasional drinkers were 8.5- and 3.1-fold more likely to be in high 10-year and high lifetime ASCVD risk category than in low 10-year and low lifetime risk group. Similarly, regular drinkers and occasional drinkers were 2

  1. High rate GPS positioning , JASON altimetry and marine gravimetry : monitoring the Antarctic Circumpolar Current (ACC) through the DRAKE campaigns.

    NASA Astrophysics Data System (ADS)

    Melachroinos, S. A.; Biancale, R.; Menard, Y.; Sarrailh, M.

    2008-12-01

    The Drake campaign which took place from Jan 14, 2006 - 08 Feb, 2006 has been a very successful mission in collecting a wide range of GPS and marine gravity data all along JASON altimetry ground track n° 104. The same campaign will be repeated in 2009 along 028 and 104 JASON-2 ground track. The Drake Passage (DP) chokepoint is not only well suited geographically, as the Antarctic Circumpolar Current (ACC) is constricted to its narrowest extent of 700 km, but observations and models suggest that dynamical balances are particular effective in this area. Furthermore the space geodesy observations and their products provided from several altimetry missions (currently operating ENVISAT, JASON 1 and 2, GFO, ERS and other plannified for the future such as Altika, SWOT) require the cross comparison with independent geodetic techniques at the DP. The current experiment comprises a kinematic GPS and marine gravimetry Cal/Val geodetic approach and it aims to : validate with respect to altimetry data and surface models such a kinematic high frequency GPS technique for measuring sea state and sea surface height (SSH), compare the GPS SSH profiles with altimetry mean dynamic topography (MDT) and mean sea surface (MSS) models, give recommendations for future "offshore" Cal/Val activities on the ground tracks of altimeter satellites such as JASON-2, GFO, Altika using the GNSS technology etc. The GPS observations are collected from GPS antennas installed on a wave-rider buoy , aboard the R/V "Polarstern" and from continuous geodetic reference stations in the proximity. We also analyse problems related to the ship's attitude variations in roll, pitch and yaw and a way to correct them. We also give emphasis on the impact of the ship's acceleration profiles on the so called "squat effect" and ways to deal with it. The project will in particular benefit the GOCE mission by proposing to integrate GOCE in the ocean circulation study and validate GOCE products with our independent

  2. Etomoxir, sodium 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, up-regulates uncoupling protein-3 mRNA levels in primary culture of rat preadipocytes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    1999-09-16

    Uncoupling proteins (UCPs) are mitochondrial membrane proton transporters that uncouple respiration from oxidative phosphorylation by dissipating the proton gradient across the membrane. Treatment of primary culture of rat preadipocytes for 24 h with 40 microM etomoxir, an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I), up-regulated UCP-3 mRNA levels (3. 6-fold induction), whereas changes in UCP-2 mRNA levels were not significant. As a consequence of increased UCP-3 expression, a fall in the mitochondrial membrane potential was detected by flow cytometry. Etomoxir treatment modified neither L-CPT-I (liver-type) nor PPARalpha mRNA levels in preadipocytes. In contrast, mRNA expression of acyl-CoA oxidase (ACO), the rate-limiting enzyme of peroxisomal fatty acid beta-oxidation, whose transcription is controlled by PPARalpha, was significantly induced (1.3-fold induction, P = 0.015). These findings suggest that the effects of etomoxir were mediated by PPARalpha. Since it has been reported that the intracellular accumulation of lipids following the inhibition of CPT-I by etomoxir leads to a PPARalpha-mediated metabolic response that increases the expression of genes involved in alternate fatty acid oxidation pathways, these results seem to implicate UCP-3 in this protective metabolic response. It remains to be studied whether reductions in the expression of UCP-3 could compromise this response, giving rise to lipotoxic effects on cells.

  3. Quantitation of rat liver xanthine oxidase by radioimmunoassay. A mechanism for sex-specific differences

    SciTech Connect

    Decker, D.E.; Levinson, D.J.

    1982-03-01

    To further delineate the mechanism responsible for the differences in xanthine oxidase activity in male and female Sprague-Dawley rats, a sensitive and specific radioimmunoassay (RIA) was developed for the measurement of hepatic xanthine oxidase. The RIA could detect as little as 5 mg of liver enzyme. Specificity of the RIA was confirmed by 1) Ouchterlony double immuno-diffusion in which a single precipitin band exhibited xanthine oxidase activity, when crude liver homogenate and an enzyme-specific stain were used; 2) parallelism between purified 125I-labeled xanthine oxidase and serial dilutions of crude liver homogenate; 3) a linear correlation between xanthine oxidase activity and the level of enzyme protein; and 4) a single protein band coincident with purified xanthine oxidase, when an immunoprecipitate prepared from antisera and crude liver homogenate was analyzed on sodium dodecyl sulfate (SDS) polyacrylamide gels. Whether xanthine oxidase activity was assayed in the absence of nicotinamide adenine dinucleotide (NAD+) (oxidase form) or in the presence of NAD+ (dehydrogenase), male values were consistently higher, and both forms of the enzyme correlated significantly with each other. When purified to homogeneity, neither form of the enzyme was appreciably affected by 17 beta-estradiol or testosterone propionate. When the RIA was employed, levels of hepatic xanthine oxidase were significantly greater in male than in female rats. We concluded from these data that increased xanthine oxidase activity in the male corresponds to a greater quantitative complement of xanthine oxidase protein. Furthermore, lower xanthine oxidase activity in the female cannot be explained by immunologically cross-reactive material without enzyme activity nor by a direct sex-steroid enzyme interaction.

  4. The Role of the RAS Tumor Suppressor, Lysyl Oxidase, in Breast Cancer Development and Progression.

    DTIC Science & Technology

    1997-11-01

    lymphocytes. In ductal carcinoma, lysyl oxidase expression was absent in some cases , patchy in others, and sometimes appeared unchanged. The expression of...in tumor tissue sections. Ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC). Several cases of DCIS, IDC and mixed DCIS-IDC...were examined by in situ RT-PCR. The expression of lysyl oxidase in cases of ductal carcinoma was variable. In some patients, lysyl oxidase message

  5. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.

  6. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    PubMed Central

    Forte, Elena; Borisov, Vitaliy B.; Falabella, Micol; Colaço, Henrique G.; Tinajero-Trejo, Mariana; Poole, Robert K.; Vicente, João B.; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed. PMID:27030302

  7. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.

    PubMed

    Forte, Elena; Borisov, Vitaliy B; Falabella, Micol; Colaço, Henrique G; Tinajero-Trejo, Mariana; Poole, Robert K; Vicente, João B; Sarti, Paolo; Giuffrè, Alessandro

    2016-03-31

    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50 = 1.1 ± 0.1 μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200 μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2-consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed.

  8. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.

    PubMed

    Cervelli, Manuela; Polticelli, Fabio; Angelucci, Emanuela; Di Muzio, Elena; Stano, Pasquale; Mariottini, Paolo

    2015-05-01

    Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N(1)-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.

  9. A method for highly efficient catalytic immobilisation of glucose oxidase on the surface of silica.

    PubMed

    Sim, Yong-Kyun; Park, Jung-Woo; Kim, Bo-Hyeong; Jun, Chul-Ho

    2013-12-11

    A simple, mild and convenient method has been developed for catalytic immobilisation of glucose oxidase (GOx), chemically modified to contain pendant methallylsilyl groups, on an untreated silica surface.

  10. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions.

    PubMed

    Rogov, A G; Sukhanova, E I; Uralskaya, L A; Aliverdieva, D A; Zvyagilskaya, R A

    2014-12-01

    The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.

  11. Oxidation of the flavonol fisetin by polyphenol oxidase.

    PubMed

    Jiménez, M; Escribano-Cebrián, J; García-Carmona, F

    1998-11-27

    The present study demonstrates the antiradical efficiency of fisetin, a flavonol widely distributed in fruits and vegetables, by its ability to react with two different free radicals, ABTS; and DPPH;. The polyphenolic nature of fisetin led us to consider whether it might be oxidised by polyphenol oxidase (PPO), and the results reported show that it can be oxidised by PPO extracted and partially purified from broad bean seeds. The reaction was followed by recording spectral changes with time, with maximal spectral changes being observed at 282 nm (increase in absorbance) and at 362 nm (decrease). The presence of two isosbectic points (at 265 and 304 nm) suggested that only one absorbent product was formed. These spectral changes were not observed in the absence of PPO. The oxidation rate varied with the pH, reaching its highest value at pH 5.5. The fisetin oxidation rate increased in the presence of sodium dodecyl sulfate, an activator of polyphenol oxidase. Maximal activity was obtained at 0.87 mM sodium dodecyl sulfate. The following kinetic parameters were determined: Vmax=49 microM/min, Km=0.6 mM, Vmax/Km=8.2x10-2 min-1. Flavonol oxidation was inhibited by selective PPO inhibitors such as cinnamic acid (a classical competitive inhibitor, Ki=1.4 mM) and 4-hexylresorcinol, which behaved as a slow-binding inhibitor. The results reported show that fisetin oxidation was strictly dependent on the presence of polyphenol oxidase.

  12. Functional Integration of mRNA Translational Control Programs

    PubMed Central

    MacNicol, Melanie C.; Cragle, Chad E.; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M.

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  13. Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus

    PubMed Central

    Liu, Tong-Jian; Zhang, Cai-Yun; Yan, Hai-Fei; Zhang, Lu

    2016-01-01

    Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis. PMID:27375965

  14. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin.

    PubMed

    Salman-Minkov, Ayelet; Levi, Amnon; Wolf, Shmuel; Trebitsh, Tova

    2008-05-01

    The flowering pattern of watermelon species (Citrullus spp.) is either monoecious or andromonoecious. Ethylene is known to play a critical role in floral sex determination of cucurbit species. In contrast to its feminizing effect in cucumber and melon, in watermelon ethylene promotes male flower development. In cucumber, the rate-limiting enzyme of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), regulates unisexual flower development. To investigate the role of ethylene in flower development, we isolated four genomic sequences of ACS from watermelon (CitACS1-4). Both CitACS1 and CitACS3 are expressed in floral tissue. CitACS1 is also expressed in vegetative tissue and it may be involved in cell growth processes. Expression of CitACS1 is up-regulated by exogenous treatment with auxin, gibberellin or ACC, the immediate precursor of ethylene. No discernible differential floral sex-dependent expression pattern was observed for this gene. The CitACS3 gene is expressed in open flowers and in young staminate floral buds (male or hermaphrodite), but not in female flowers. CitACS3 is also up-regulated by ACC, and is likely to be involved in ethylene-regulated anther development. The expression of CitACS2 was not detected in vegetative or reproductive organs but was up-regulated by auxin. CitACS4 transcript was not detected under our experimental conditions. Restriction fragment length polymorphism (RFLP) and sequence tagged site (STS) marker analyses of the CitACS genes showed polymorphism among and within the different Citrullus groups, including watermelon cultivars, Citrullus lanatus var. lanatus, the central subspecies Citrullus lanatus var. citroides, and the desert species Citrullus colocynthis (L).

  15. The role of NADPH oxidase in a mouse model of fetal alcohol syndrome

    PubMed Central

    Hill, Alexandria J.; Dreve, Nathan; Yin, Huaizhi; Tamayo, Esther; Saade, George; Bytautiene, Egle

    2014-01-01

    OBJECTIVE Fetal alcohol syndrome (FAS) is the most common cause of nongenetic mental retardation. Oxidative stress is one of the purported mechanisms. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is an enzyme involved in the production of reactive oxygen species. Our objective was to evaluate NOX in the fetal brain of a well-validated mouse model of FAS. STUDY DESIGN Timed, pregnant C57BL/6J mice were injected intraperitoneally with 0.03 mL/g of either 25% ethyl alcohol or saline. Fetal brain, liver, and placenta were harvested on gestational day 18. The unit of analysis was the litter; tissue from 6–8 litters in the alcohol and control group was isolated. Evaluation of messenger ribonucleic acid (mRNA) expression of NOX subunits (DUOX1, DUOX2, NOX1, NOX2, NOX3, NOX4, NOXA1, NOXO1, RAC1, p22phox, and p67phox) was performed using quantitative real-time polymerase chain reaction; alcohol vs placebo groups were compared using a Student t test or a Mann-Whitney test (P < .05). RESULTS Alcohol exposed fetal brains showed significant up-regulation in subunits DUOX2 (1.61 ± 0.28 vs 0.84 ± 0.09; P = .03), NOXA1 (1.75 ± 0.27 vs 1.09 ± 0.06; P = .04), and NOXO1 (1.59 ± 0.10 vs 1.28 ± 0.05; P = .02). Differences in mRNA expression in the placenta were not significant; p67phox was significantly up-regulated in alcohol-exposed livers. CONCLUSION Various NOX subunits are up-regulated in fetal brains exposed to alcohol. This effect was not observed in the fetal liver or placenta. Given the available evidence, the NOX system may be involved in the causation of FAS through the generation of reactive oxygen species and may be a potential target for preventative treatment in FAS. PMID:24334207

  16. Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells.

    PubMed

    Hescot, Ségolène; Slama, Abdelhamid; Lombès, Anne; Paci, Angelo; Remy, Hervé; Leboulleux, Sophie; Chadarevian, Rita; Trabado, Séverine; Amazit, Larbi; Young, Jacques; Baudin, Eric; Lombès, Marc

    2013-06-01

    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration of 50 μM (14 mg/l), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mt proteins involved in steroidogenesis (STAR, CYP11B1, and CYP11B2). In both H295R and SW13 cells, 50 μM mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase (COX)). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by blue native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 (MT-CO2) and nuclear DNA-encoded COX4 (COX4I1) subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mt biogenesis (increase in mtDNA content and PGC1α (PPARGC1A) expression) and triggered fragmentation of the mt network. Altogether, our results provide first evidence that mitotane induced a mt respiratory chain defect in human adrenocortical cells.

  17. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation

    PubMed Central

    Ahn, Bumsoo; Coblentz, Philip D.; Beharry, Adam W.; Patel, Nikhil; Judge, Andrew R.; Moylan, Jennifer. S.; Hoopes, Charles W.; Bonnell, Mark R.; Ferreira, Leonardo F.

    2017-01-01

    Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p < 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p < 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals. PMID:28119629

  18. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration.

    PubMed

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T

    2013-06-01

    Parkinson's disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2(+/+) ) mice with NOX subunit gp91(phox) -deficient (NOX2(-/-) ) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (P < 0.01) loss of TH+IR neurons in NOX2(+/+) mice, whereas NOX2(-/-) mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2(+/+) mice, but not in NOX2(-/-) mice at 1 hr. Treatment of NOX2(+/+) mice with LPS resulted in a 12-fold increase in NOX2 mRNA in midbrain and 5.5-6.5-fold increases in NOX2 protein (+IR) in SN compared with the saline controls. Brain reactive oxygen species (ROS), determined using diphenyliodonium histochemistry, was increased by LPS in SN between 1 hr and 20 months. Diphenyliodonium (DPI), an NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2(+/+) mice showed age-related increases in microglial activation, NOX, and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production, and dopaminergic neurodegeneration that persist and continue to increase with age.

  19. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration

    PubMed Central

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T.

    2013-01-01

    Parkinson’s disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2+/+) mice with NOX subunit gp91phox-deficient (NOX2−/−) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (p<0.01) loss of TH+IR neurons in NOX2+/+ mice, whereas, NOX2−/− mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2+/+ mice, but not in NOX2−/− mice at 1 hour. Treatment of NOX2+/+ mice with LPS resulted in a 12 fold increase in NOX2 mRNA in midbrain and 5.5–6.5 fold increases in NOX2 protein (+IR) in SN compared to the saline controls. Brain reactive oxygen species (ROS), determined by hydroethidine histochemistry, was increased by LPS in SN between 1 hour and 20 months. Diphenyliodonium (DPI), a NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2+/+ mice showed age-related increases in microglial activation, NOX and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production and dopaminergic neurodegeneration that persist and continue to increase with age. PMID:23536230

  20. Evolution of the oxygen sensitivity of cytochrome c oxidase subunit 4

    PubMed Central

    Kocha, K. M.; Reilly, K.; Porplycia, D. S. M.; McDonald, J.; Snider, T.

    2014-01-01

    Vertebrates possess two paralogs of cytochrome c oxidase (COX) subunit 4: a ubiquitous COX4-1 and a hypoxia-linked COX4-2. Mammalian COX4-2 is thought to have a role in relation to fine-tuning metabolism in low oxygen levels, conferred through both structural differences in the subunit protein structure and regulatory differences in the gene. We sought to elucidate the pervasiveness of this feature across vertebrates. The ratio of COX4-2/4-1 mRNA is generally low in mammals, but this ratio was higher in fish and reptiles, particularly turtles. The COX4-2 gene appeared unresponsive to low oxygen in nonmammalian models (zebrafish, goldfish, tilapia, anoles, and turtles) and fish cell lines. Reporter genes constructed from the amphibian and reptile homologues of the mammalian oxygen-responsive elements and hypoxia-responsive elements did not respond to low oxygen. Unlike the rodent ortholog, the promoter of goldfish COX4-2 did not respond to hypoxia or anoxia. The protein sequences of the COX4-2 peptide showed that the disulfide bridge seen in human and rodent orthologs would be precluded in other mammalian lineages and lower vertebrates, all of which lack the requisite pair of cysteines. The coordinating ligands of the ATP-binding site are largely conserved across mammals and reptiles, but in Xenopus and fish, sequence variations may disrupt the ability of the protein to bind ATP at this site. Collectively, these results suggest that many of the genetic and structural features of COX4-2 that impart responsiveness and benefits in hypoxia may be restricted to the Euarchontoglires lineage that includes primates, lagomorphs, and rodents. PMID:25519729

  1. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.

    PubMed

    Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B

    2016-01-15

    A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein.

  2. Bioactive compounds of inhibiting xanthine oxidase from Selaginella labordei.

    PubMed

    Tan, Wen-Jie; Xu, Jia-Cheng; Li, Li; Chen, Ke-Li

    2009-01-01

    Four flavone compounds were isolated from the effective fractions inhibiting xanthine oxidase (XOD) of the medicinal plant Selaginella labordei with anti-virus activity, and the structures were elucidated as 4'-methylether robustaflavone (1), robustaflavone (2), eriodictyol (3) and amentoflavone (4). The 50% inhibitory concentration (IC(50)) of the three compounds of inhibiting XOD were 61.0, 0.199, 16.0 and 32.0 mg L(-1), respectively. All of these compounds were isolated from the species for the first time, and eriodictyol was found from Selaginellaceae for the first time. Among these compounds, robustaflavone has been reported as an effective compound against the hepatitis B virus.

  3. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase

    PubMed Central

    Rich, Peter R.; Maréchal, Amandine

    2013-01-01

    The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored. PMID:23864498

  4. A Simple Litmus Test for Aldehyde Oxidase Metabolism of Heteroarenes

    PubMed Central

    2015-01-01

    The bioavailability of aromatic azaheterocyclic drugs can be affected by the activity of aldehyde oxidase (AO). Susceptibility to AO metabolism is difficult to predict computationally and can be complicated in vivo by differences between species. Here we report the use of bis(((difluoromethyl)sulfinyl)oxy)zinc (DFMS) as a source of CF2H radical for a rapid and inexpensive chemical “litmus test” for the early identification of heteroaromatic drug candidates that have a high probability of metabolism by AO. PMID:24472070

  5. Probing dimensionality beyond the linear sequence of mRNA.

    PubMed

    Del Campo, Cristian; Ignatova, Zoya

    2016-05-01

    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions.

  6. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata)

    PubMed Central

    Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi

    2010-01-01

    Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria. PMID:20507907

  7. NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts.

    PubMed

    Sasaki, Hideyuki; Yamamoto, Hironori; Tominaga, Kumiko; Masuda, Kiyoshi; Kawai, Tomoko; Teshima-Kondo, Shigetada; Rokutan, Kazuhito

    2009-02-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) homologues have been suggested to regulate osteoclast differentiation. However, no bone abnormalities have been documented in Nox1 deficient, Nox2 deficient, or Nox3 mutant mice. During receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts, mRNA levels of Nox enzymes (Nox1-4) and their adaptor proteins were monitored by real-time reverse transcriptase PCR. RAW264.7 cells constitutively expressed abundant Nox2 mRNA and small amounts of Nox1 and Nox3 transcripts. RANKL markedly attenuated Nox2 mRNA expression in association with reciprocal up-regulation of Nox1 and Nox3 transcripts. Introduction of small interference RNA targeting p67(phox) or p22(phox) into RAW264.7 cells effectively down-regulated ROS generation and significantly suppressed the RANKL-stimulated differentiation, which was assessed by appearance of tartrate resistant acid phosphatase (TRAP)-positive, multinucleated cells having an ability to form resorption pits on calcium phosphate thin film-coated disks, and by expression of osteoclast marker genes (TRAP, cathepsin K, Atp6i, ClC-7, and NFATc1). Our results suggest that RANKL may stimulate switching between Nox homologues during osteoclast differentiation, and Nox-derived ROS may be crucial for RANKL-induced osteoclast differentiation.

  8. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

    PubMed

    Kawakami, Takuro; Kuroki, Miho; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2010-06-01

    Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration. Two of them, the bo(3) oxidase (Cyo) and the cyanide-insensitive oxidase (CIO), are quinol oxidases and the other three, the cbb(3)-1 oxidase (Cbb3-1), the cbb(3)-2 oxidase (Cbb3-2) and the aa(3) oxidase (Aa3), are cytochrome c oxidases. The expression pattern of the genes for these terminal oxidases under various growth conditions was investigated by using lacZ transcriptional fusions and some novel regulatory issues were found. The Aa3 genes were induced under starvation conditions. The Cyo genes were induced by exposure to the nitric oxide-generating reagent S-nitrosoglutathione. The CIO genes were induced by exposure to sodium nitroprusside as well as cyanide. The stationary phase sigma factor RpoS was found to be involved in the expression of the Aa3 and CIO genes. The role of two redox-responsive transcriptional regulators, ANR and RoxSR, was investigated using the anr and roxSR mutant strains. The ANR was involved in the repression of the CIO genes and induction of the Cbb3-2 genes. The other three terminal oxidase genes were not significantly regulated by ANR. On the other hand, all five terminal oxidase genes were shown to be directly or indirectly regulated by RoxSR. The Aa3 genes were repressed but the genes for the other four enzymes were induced by RoxSR. The transcriptome data also showed that some respiration-related genes were regulated by RoxSR, suggesting that this two-component regulatory system plays an important role in the regulation of respiration in P. aeruginosa.

  9. Identification and biochemical characterization of polyamine oxidases in amphioxus: Implications for emergence of vertebrate-specific spermine and acetylpolyamine oxidases.

    PubMed

    Wang, Huihui; Liu, Baobao; Li, Hongyan; Zhang, Shicui

    2016-01-10

    Polyamine oxidases (PAOs) have been identified in a wide variety of animals, as well as in fungi and plant. Generally, plant PAOs oxidize spermine (Spm), spermidine (Spd) and their acetylated derivatives, N(1)-acetylspermine (N(1)-Aspm) and N(1)-acetylspermidine (N(1)-Aspd), while yeast PAOs oxidize Spm, N(1)-Aspm and N(1)-Aspd, but not Spd. By contrast, two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of Spm and N(1)-Aspm/N(1)-Aspd, respectively. However, our knowledge on the biochemical and structural characterization of PAOs remains rather limited, and their evolutionary history is still enigmatic. In this study, two amphioxus (Branchiostoma japonicum) PAO genes, named Bjpao1 and Bjpao2, were cloned and characterized. Both Bjpao1 and Bjpao2 displayed distinct tissue-specific expression patterns. Notably, rBjPAO1 oxidized both spermine and spermidine, but not N(1)-acetylspermine, whereas rBjPAO2 oxidizes both spermidine and N(1)-acetylspermine, but not spermine. To understand structure-function relationship, the enzymatic activities of mutant BjPAOs that were generated by site-directed mutagenesis and expressed in E. coli were examined, The results indicate that the residues H64, K301 and T460 in rBjPAO1, and H69, K315 and T467 in rBjPAO2 were all involved in substrate binding and enzyme catalytic activity to some extent. Based on our results and those of others, a model depicting the divergent evolution and functional specialization of vertebrate SMO and APAO genes is proposed.

  10. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase ll)

    SciTech Connect

    Collard, F.; Zhang, J; Nemet, I; Qanungo, K; Monnier, V; Yee, V

    2008-01-01

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6{angstrom} resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12{angstrom} deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  11. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)

    SciTech Connect

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C.

    2009-01-12

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6{angstrom} resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12{angstrom} deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  12. Alternative oxidase in animals: unique characteristics and taxonomic distribution.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C; Staples, James F

    2009-08-01

    Alternative oxidase (AOX), a ubiquinol oxidase, introduces a branch point into the respiratory electron transport chain, bypassing complexes III and IV and resulting in cyanide-resistant respiration. Previously, AOX was thought to be limited to plants and some fungi and protists but recent work has demonstrated the presence of AOX in most kingdoms of life, including animals. In the present study we identified AOX in 28 animal species representing nine phyla. This expands the known taxonomic distribution of AOX in animals by 10 species and two phyla. Using bioinformatics we found AOX gene sequences in members of the animal phyla Porifera, Placozoa, Cnidaria, Mollusca, Annelida, Nematoda, Echinodermata, Hemichordata and Chordata. Using reverse-transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed to recognize conserved regions of animal AOX, we demonstrated that AOX genes are transcribed in several animals from different phyla. An analysis of full-length AOX sequences revealed an amino acid motif in the C-terminal region of the protein that is unique to animal AOXs. Animal AOX also lacks an N-terminal cysteine residue that is known to be important for AOX enzyme regulation in plants. We conclude that the presence of AOX is the ancestral state in animals and hypothesize that its absence in some lineages, including vertebrates, is due to gene loss events.

  13. Partial purification and characterization of polyphenol oxidase from persimmon.

    PubMed

    Navarro, José L; Tárrega, Amparo; Sentandreu, Miguel A; Sentandreu, Enrique

    2014-08-15

    Activity of polyphenol oxidase (PPO) from "Rojo Brillante" persimmon (Diospyros kaki L.) fruits was characterized. Crude extracts were used for characterization of enzyme activity and stability at different temperatures (60, 70 and 80 °C), pHs (from 3.5 to 7.5) and substrate concentrations (catechol from 0 to 0.5M). Maximum enzyme activity was reached at pH 5.5 and 55 °C. Enzyme stability was higher than PPO activities found in other natural sources, since above pH 5.5 the minimum time needed to achieve an enzyme inactivation of 90% was 70 min at 80 °C. However, at pH 4.0 the enzyme stability decreased, reaching inactivation levels above 90% after 10 min even at 60 °C. Thus it was concluded that acidification can circumvent browning problems caused by PPO activity. Moreover, polyacrylamide gel electrophoresis of the enriched extract revealed the presence of at least four bands with strong oxidase activity, suggesting the existence of different PPO isoforms.

  14. Characterization of copper atoms in bilirubin oxidase by spectroscopic analyses.

    PubMed

    Gotoh, Y; Kondo, Y; Kaji, H; Takeda, A; Samejima, T

    1989-10-01

    Bilirubin oxidase [EC 1.3.3.5], purified from the culture medium of Myrothecium verrucaria, was found to contain two blue copper atoms per protein molecule with a molecular weight of ca. 52 kDa. The two copper atoms were estimated to be in the all cupric state by the cuproine colorimetric method and also atomic absorption analysis. We could remove the reduce cuprous ions from the holo enzyme by adding ascorbate, followed by a KCN solution, yielding an apo-enzyme with no activity. The apo-enzyme can be reconstituted with Cu or other divalent cations such as Co, Fe, and Cd, with accompanying recovery of the enzyme activity. The activity recovery depended upon the species of cation employed; Cu being most effective, an almost 100% recovery, and Cd the least, only a 25% recovery. We could obtain information on the copper ions and their coordination structure by spectroscopic analyses of the apo- and reconstituted enzymes, obtaining such as absorption, CD, MCD, and XPS spectra. The bilirubin oxidase catalyzed-reaction was a second order reaction with respect to copper bound with protein. The donor set was of the CuSS*N2 (S = Cys, S* = Met, N = His) type, i.e., the same as in the case of blue copper proteins. On studying the Co-substituted enzyme, it was revealed that the copper site of the enzyme had a 4-coordinated structure.

  15. Location and catalytic characteristics of a multipotent bacterial polyphenol oxidase.

    PubMed

    Fernández, E; Sanchez-Amat, A; Solano, F

    1999-10-01

    The melanogenic marine bacterium Marinomonas mediterranea contains a multipotent polyphenol oxidase (PPO) able to oxidize substrates characteristic for tyrosinase and laccase. Thus, this enzyme shows tyrosine hydroxylase activity and it catalyzes the oxidation of a wide variety of o-diphenol as well as o-methoxy-activated phenols. The study of its sensitivity to different inhibitors also revealed intermediate features between laccase and tyrosinase. It is similar to tyrosinases in its sensitivity to tropolone, but it resembles laccases in its resistance to cinnamic acid and phenylthiourea, and in its sensitivity to fluoride anion. This enzyme is mostly membrane-bound and can be solubilized either by non-ionic detergent or lipase treatments of the membrane. The expression of this enzymatic activity is growth-phase regulated, reaching a maximum in the stationary phase of bacterial growth, but L-tyrosine, Cu(II) ions, or 2,5-xylidine do not induce it. This enzyme can be separated from a second PPO form by gel permeation chromatography. The second PPO is located in the soluble fraction and shows a sodium dodecyl sulfate (SDS)-activated action on the characteristic substrates for tyrosinase, L-tyrosine, and L-dopa, but it does not show activity towards laccase-specific substrates. The involvement of the multipotent PPO in melanogenesis and its relationship with the SDS-activated form and with the alternative functions proposed for multicopper oxidases in other microorganisms are discussed.

  16. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  17. Purification and characterization of amine oxidase from pea seedlings.

    PubMed

    Vianello, F; Malek-Mirzayans, A; Di Paolo, M L; Stevanato, R; Rigo, A

    1999-03-01

    A novel, simple, and rapid procedure for the purification of pea seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation, was purified in two steps: the first one by anion-exchange chromatography and the second one by affinity chromatography. The first chromatography step was carried out on a diethylaminoethyl-cellulose column. By lowering the amount of protein loaded on the column and the buffer concentration it was possible to obtain an enzyme pure at 95% (sp act 1.2 microkat/mg). To achieve a higher degree of purification various affinity resins were prepared and tested. The resins were obtained by covalent immobilization of polyamines on Sepharose according to three different procedures. The best results were obtained with 6-aminohexyl-Sepharose 2B, prepared using CNBr as coupling agent, and eluting the enzyme by a solution containing 1, 4-diaminocyclohexane. This last compound was found to be a relatively strong competitive inhibitor of the oxidative deamination of cadaverine catalyzed by pea seedling amine oxidase (Ki = 32 microM). According to this procedure an electrophoretically homogeneous enzyme, characterized by a specific activity of 1.63 microkat/mg, was obtained.

  18. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)*

    PubMed Central

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C.

    2008-01-01

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6Å resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12Å deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates. PMID:18667417

  19. Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus▿

    PubMed Central

    Sánchez-Sutil, María Celestina; Gómez-Santos, Nuria; Moraleda-Muñoz, Aurelio; Martins, Lígia O.; Pérez, Juana; Muñoz-Dorado, José

    2007-01-01

    Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetative rods exhibit 15-fold-greater resistance against copper than developing cells. However, cells preadapted to this metal reach the same levels of resistance during both stages. Analysis of the M. xanthus genome reveals that many of the genes involved in copper resistance are redundant, three of which encode proteins of the multicopper oxidase family (MCO). Each MCO gene exhibits a different expression profile in response to external copper addition. Promoters of cuoA and cuoB respond to Cu(II) ions during growth and development; however, they show a 10-fold-increased copper sensitivity during development. The promoter of cuoC shows copper-independent induction upon starvation, but it is copper up-regulated during growth. Phenotypic analyses of deletion mutants reveal that CuoB is involved in the primary copper-adaptive response; CuoA and CuoC are necessary for the maintenance of copper tolerance; and CuoC is required for normal development. These roles seem to be carried out through cuprous oxidase activity. PMID:17483223

  20. Inhibiting Cytochrome C Oxidase Leads to Alleviated Ischemia Reperfusion Injury

    PubMed Central

    Yang, Zhaoyun; Duan, Zhongxin; Yu, Tian; Xu, Junmei

    2017-01-01

    Background and Objectives The overall purpose of this study was to investigate the role of cytochrome C oxidase (CcO) in preventing ischemia reperfusion-induced cardiac injury through gaseous signaling molecule pathways. Materials and Methods We used CcO inhibitor, potassium cyanide (KCN) to mimic the pre-treatment of gaseous signaling molecules in a global ischemia/reperfusion (IR) injury model in rats. Intracellular reactive oxygen species (ROS) was determined by measuring mitochondrial H2O2 and mitochondrial complex activity. Results KCN pre-treatment led to decreased infarction area after IR injury and improved cardiac function. KCN pre-treated group challenged with IR injury was associated with reduced ROS production through inhibition of activity and not downregulation of CcO expression. In addition, KCN pre-treatment was associated with enhanced expression and activity of mitochondrial antioxidase, suggesting the role of CcO in regulating IR injury through oxidative stress. Conclusion KCN pre-treatment reduced the severity of IR injury. The potential mechanism could be increased endogenous anti-oxidase activity and consequently, the enhanced clearance of ROS. PMID:28382074

  1. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    SciTech Connect

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-10-15

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated t