Sample records for accelerate renal regeneration

  1. Regenerating the kidney using human pluripotent stem cells and renal progenitors.

    PubMed

    Becherucci, Francesca; Mazzinghi, Benedetta; Allinovi, Marco; Angelotti, Maria Lucia; Romagnani, Paola

    2018-06-25

    Introduction Chronic kidney disease is a major healthcare problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represent an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent SCs (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. Areas covered In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. Expert opinion Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.

  2. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  3. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice.

    PubMed

    Langiewicz, Magda; Graf, Rolf; Humar, Bostjan; Clavien, Pierre A

    2018-04-28

    To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (associating liver partition and portal vein ligation for staged hepatectomy [coined ALPPS]) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. c-Jun N-terminal kinase (JNK1 [Mapk8]) activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK1 diminution to substantiate their relationship during accelerated liver regeneration. Transcriptomic analysis linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in alpha-smooth muscle actin-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. JNK1-mediated induction of IHH paracrine signaling from hepatic stellate cells is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. Associating liver partition and portal vein ligation for staged hepatectomy (so called ALPPS), is a new two-staged approach to hepatectomy, which induces an unprecedented acceleration of liver

  4. Detection of abnormal extracellular matrix in the interstitium of regenerating renal tubules.

    PubMed

    Minuth, Will W; Denk, Lucia

    2014-12-15

    Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz's L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.

  5. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  6. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  7. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients.

    PubMed

    Gordon, Tessa; Amirjani, Nasim; Edwards, David C; Chan, K Ming

    2010-05-01

    Electrical stimulation (ES) of injured peripheral nerves accelerates axonal regeneration in laboratory animals. However, clinical applicability of this intervention has never been investigated in human subjects. The aim of this pilot study was to determine the effect of ES on axonal regeneration after surgery in patients with median nerve compression in the carpal tunnel causing marked motor axonal loss. A randomized control trial was conducted to provide proof of principle for ES-induced acceleration of axon regeneration in human patients. Carpel tunnel release surgery (CTRS) was performed and in the stimulation group of patients, stainless steel electrode wires placed alongside the median nerve proximal to the surgical decompression site for immediate 1 h 20 Hz bipolar ES. Subjects were followed for a year at regular intervals. Axonal regeneration was quantified using motor unit number estimation (MUNE) and sensory and motor nerve conduction studies. Purdue Pegboard Test, Semmes Weinstein Monofilaments, and Levine's Self-Assessment Questionnaire were used to assess functional recovery. The stimulation group had significant axonal regeneration 6-8 months after the CTRS when the MUNE increased to 290+/-140 (mean+/-SD) motor units (MU) from 150+/-62 MU at baseline (p<0.05). In comparison, MUNE did not significantly improve in the control group (p>0.2). Terminal motor latency significantly accelerated in the stimulation group but not the control group (p>0.1). Sensory nerve conduction values significantly improved in the stimulation group earlier than the controls. Other outcome measures showed a significant improvement in both patient groups. We conclude that brief low frequency ES accelerates axonal regeneration and target reinnervation in humans. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Stem cells in kidney regeneration.

    PubMed

    Yokote, Shinya; Yokoo, Takashi

    2012-01-01

    Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.

  9. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  10. Biodegradable and plasma-treated electrospun scaffolds coated with recombinant Olfactomedin-like 3 for accelerating wound healing and tissue regeneration.

    PubMed

    Dunn, Louise L; de Valence, Sarra; Tille, Jean-Christophe; Hammel, Philippe; Walpoth, Beat H; Stocker, Roland; Imhof, Beat A; Miljkovic-Licina, Marijana

    2016-11-01

    Three-dimensional biomimetic scaffolds resembling the native extracellular matrix (ECM) are widely used in tissue engineering, however they often lack optimal bioactive cues needed for acceleration of cell proliferation, neovascularization, and tissue regeneration. In this study, the use of the ECM-related protein Olfactomedin-like 3 (Olfml3) demonstrates the importance and feasibility of fabricating efficient bioactive scaffolds without in vitro cell seeding prior to in vivo implantation. First, in vivo proangiogenic properties of Olfml3 were shown in a murine wound healing model by accelerated wound closure and a 1.4-fold increase in wound vascularity. Second, subcutaneous implantation of tubular scaffolds coated with recombinant Olfml3 resulted in enhanced cell in-growth and neovascularization compared with control scaffolds. Together, our data indicates the potential of Olfml3 to accelerate neovascularization during tissue regeneration by promoting endothelial cell proliferation and migration. This study provides a promising concept for the reconstruction of damaged tissue using affordable and effective bioactive scaffolds. © 2016 by the Wound Healing Society.

  11. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina.

    PubMed

    White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S

    2017-05-02

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.

  12. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert.

    PubMed

    Lee, Geoffrey; Espirito Santo, Ana Isabel; Zwingenberger, Stefan; Cai, Lawrence; Vogl, Thomas; Feldmann, Marc; Horwood, Nicole J; Chan, James K; Nanchahal, Jagdeep

    2018-05-08

    A major discovery of recent decades has been the existence of stem cells and their potential to repair many, if not most, tissues. With the aging population, many attempts have been made to use exogenous stem cells to promote tissue repair, so far with limited success. An alternative approach, which may be more effective and far less costly, is to promote tissue regeneration by targeting endogenous stem cells. However, ways of enhancing endogenous stem cell function remain poorly defined. Injury leads to the release of danger signals which are known to modulate the immune response, but their role in stem cell-mediated repair in vivo remains to be clarified. Here we show that high mobility group box 1 (HMGB1) is released following fracture in both humans and mice, forms a heterocomplex with CXCL12, and acts via CXCR4 to accelerate skeletal, hematopoietic, and muscle regeneration in vivo. Pretreatment with HMGB1 2 wk before injury also accelerated tissue regeneration, indicating an acquired proregenerative signature. HMGB1 led to sustained increase in cell cycling in vivo, and using Hmgb1 -/- mice we identified the underlying mechanism as the transition of multiple quiescent stem cells from G 0 to G Alert HMGB1 also transitions human stem and progenitor cells to G Alert Therefore, exogenous HMGB1 may benefit patients in many clinical scenarios, including trauma, chemotherapy, and elective surgery. Copyright © 2018 the Author(s). Published by PNAS.

  13. MiR-21 is required for efficient kidney regeneration in fish.

    PubMed

    Hoppe, Beate; Pietsch, Stefan; Franke, Martin; Engel, Sven; Groth, Marco; Platzer, Matthias; Englert, Christoph

    2015-11-17

    Acute kidney injury in mammals, which is caused by cardiovascular diseases or the administration of antibiotics with nephrotoxic side-effects is a life-threatening disease, since loss of nephrons is irreversible in mammals. In contrast, fish are able to generate new nephrons even in adulthood and thus provide a good model to study renal tubular regeneration. Here, we investigated the early response after gentamicin-induced renal injury, using the short-lived killifish Nothobranchius furzeri. A set of microRNAs was differentially expressed after renal damage, among them miR-21, which was up-regulated. A locked nucleic acid-modified antimiR-21 efficiently knocked down miR-21 activity and caused a lag in the proliferative response, enhanced apoptosis and an overall delay in regeneration. Transcriptome profiling identified apoptosis as a process that was significantly affected upon antimiR-21 administration. Together with functional data this suggests that miR-21 acts as a pro-proliferative and anti-apoptotic factor in the context of kidney regeneration in fish. Possible downstream candidate genes that mediate its effect on proliferation and apoptosis include igfbp3 and fosl1, among other genes. In summary, our findings extend the role of miR-21 in the kidney. For the first time we show its functional involvement in regeneration indicating that fast proliferation and reduced apoptosis are important for efficient renal tubular regeneration.

  14. Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.

    PubMed

    Abbate, M; Remuzzi, G

    1996-05-01

    Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.

  15. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina

    PubMed Central

    White, David T.; Sengupta, Sumitra; Saxena, Meera T.; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai

    2017-01-01

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration—i.e., selective cell-loss paradigms akin to degenerative disease—are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of (i) rod cell clearance, (ii) MG/progenitor cell proliferation, and (iii) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions. PMID:28416692

  16. HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice.

    PubMed

    Lieu, Hanh-Tu; Batteux, Frédéric; Simon, Marie-Thérèse; Cortes, Alexandre; Nicco, Carole; Zavala, Flora; Pauloin, Alain; Tralhao, José Guilherme; Soubrane, Olivier; Weill, Bernard; Bréchot, Christian; Christa, Laurence

    2005-09-01

    Human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein HIP/PAP is a secreted C-type lectin belonging to group VII, according to Drickamer's classification. HIP/PAP is overexpressed in liver carcinoma; however, its functional role remains unclear. In this study, we demonstrate that HIP/PAP is a paracrine hepatic growth factor promoting both proliferation and viability of liver cells in vivo. First, a low number of implanted hepatocytes deriving from HIP/PAP-transgenic mice (<1:1,000) was sufficient to stimulate overall recipient severe combined immunodeficiency liver regeneration after partial hepatectomy. After a single injection of HIP/PAP protein, the percentages of bromodeoxyuridine-positive nuclei and mitosis were statistically higher than after saline injection, indicating that HIP/PAP acts as a paracrine mitogenic growth factor for the liver. Comparison of the early events posthepatectomy in control and transgenic mice indicated that HIP/PAP accelerates the accumulation/degradation of nuclear phospho-signal transducer activator transcription factor 3 and tumor necrosis factor alpha level, thus reflecting that HIP/PAP accelerates liver regeneration. Second, we showed that 80% of the HIP/PAP-transgenic mice versus 25% of the control mice were protected against lethal acetaminophen-induced fulminate hepatitis. A single injection of recombinant HIP/PAP induced a similar cytoprotective effect, demonstrating the antiapoptotic effect of HIP/PAP. Comparison of Cu/Zn superoxide dismutase activity and glutathione reductase-like effects in control and transgenic liver mice indicated that HIP/PAP exerts an antioxidant activity and prevents reactive oxygen species-induced mitochondrial damage by acetaminophen overdose. In conclusion, the present data offer new insights into the biological functions of C-type lectins. In addition, HIP/PAP is a promising candidate for the prevention and treatment of liver failure.

  17. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences

  18. Combination of small RNAs for skeletal muscle regeneration.

    PubMed

    Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin

    2016-03-01

    Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration. © FASEB.

  19. Kidney regeneration: Where we are and future perspectives

    PubMed Central

    Zambon, Joao Paulo; Magalhaes, Renata S; Ko, Inkap; Ross, Christina L; Orlando, Giuseppe; Peloso, Andrea; Atala, Anthony; Yoo, James J

    2014-01-01

    In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted. PMID:25332894

  20. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury.

    PubMed

    Han, Sang Jun; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2015-09-01

    Progression of acute kidney injury to chronic kidney disease (CKD) is associated with inadequate recovery of damaged kidney. Hydrogen sulfide (H2S) regulates a variety of cellular signals involved in cell death, differentiation and proliferation. This study aimed to identify the role of H2S and its producing enzymes in the recovery of kidney following ischemia/reperfusion (I/R) injury. Mice were subjected to 30 min of bilateral renal ischemia. Some mice were administered daily NaHS, an H2S donor, and propargylglycine (PAG), an inhibitor of the H2S-producing enzyme cystathionine gamma-lyase (CSE), during the recovery phase. Cell proliferation was assessed via 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. Ischemia resulted in decreases in CSE and cystathionine beta-synthase (CBS) expression and activity, and H2S level in the kidney. These decreases did not return to sham level until 8 days after ischemia when kidney had fibrotic lesions. NaHS administration to I/R-injured mice accelerated the recovery of renal function and tubule morphology, whereas PAG delayed that. Furthermore, PAG increased mortality after ischemia. NaHS administration to I/R-injured mice accelerated tubular cell proliferation, whereas it inhibited interstitial cell proliferation. In addition, NaHS treatment reduced post-I/R superoxide formation, lipid peroxidation, level of GSSG/GSH and Nox4 expression, whereas it increased catalase and MnSOD expression. Our findings demonstrate that H2S accelerates the recovery of I/R-induced kidney damage, suggesting that the H2S-producing transsulfuration pathway plays an important role in kidney repair after acute injury. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. Interleukin 6-dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis.

    PubMed

    Lanton, Tali; Shriki, Anat; Nechemia-Arbely, Yael; Abramovitch, Rinat; Levkovitch, Orr; Adar, Revital; Rosenberg, Nofar; Paldor, Mor; Goldenberg, Daniel; Sonnenblick, Amir; Peled, Amnon; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H

    2017-05-01

    Liver cancer, which typically develops on a background of chronic liver inflammation, is now the second leading cause of cancer mortality worldwide. For patients with liver cancer, surgical resection is a principal treatment modality that offers a chance of prolonged survival. However, tumor recurrence after resection, the mechanisms of which remain obscure, markedly limits the long-term survival of these patients. We have shown that partial hepatectomy in multidrug resistance 2 knockout (Mdr2 -/- ) mice, a model of chronic inflammation-associated liver cancer, significantly accelerates hepatocarcinogenesis. Here, we explore the postsurgical mechanisms that drive accelerated hepatocarcinogenesis in Mdr2 -/- mice by perioperative pharmacological inhibition of interleukin-6 (IL6), which is a crucial liver regeneration priming cytokine. We demonstrate that inhibition of IL6 signaling dramatically impedes tumorigenesis following partial hepatectomy without compromising survival or liver mass recovery. IL6 blockade significantly inhibited hepatocyte cell cycle progression while promoting a hypertrophic regenerative response, without increasing apoptosis. Mdr2 -/- mice contain hepatocytes with a notable persistent DNA damage response (γH2AX, 53BP1) due to chronic inflammation. We show that liver regeneration in this microenvironment leads to a striking increase in hepatocytes bearing micronuclei, a marker of genomic instability, which is suppressed by IL6 blockade. Our findings indicate that genomic instability derived during the IL6-mediated liver regenerative response within a milieu of chronic inflammation links partial hepatectomy to accelerated hepatocarcinogenesis; this suggests a new therapeutic approach through the usage of an anti-IL6 treatment to extend the tumor-free survival of patients undergoing surgical resection. (Hepatology 2017;65:1600-1611). © 2016 by the American Association for the Study of Liver Diseases.

  2. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model

    PubMed Central

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Orešič, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-01-01

    SUMMARY Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice

  5. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model.

    PubMed

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-09-01

    Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.

  6. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOEpatents

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  7. Macrophage Phenotype Controls Long-Term AKI Outcomes—Kidney Regeneration versus Atrophy

    PubMed Central

    Gröbmayr, Regina; Ryu, Mi; Lorenz, Georg; Hartter, Ingo; Mulay, Shrikant R.; Susanti, Heni Eka; Kobayashi, Koichi S.; Flavell, Richard A.; Anders, Hans-Joachim

    2014-01-01

    The mechanisms that determine full recovery versus subsequent progressive CKD after AKI are largely unknown. Because macrophages regulate inflammation as well as epithelial recovery, we investigated whether macrophage activation influences AKI outcomes. IL-1 receptor–associated kinase-M (IRAK-M) is a macrophage-specific inhibitor of Toll-like receptor (TLR) and IL-1 receptor signaling that prevents polarization toward a proinflammatory phenotype. In postischemic kidneys of wild-type mice, IRAK-M expression increased for 3 weeks after AKI and declined thereafter. However, genetic depletion of IRAK-M did not affect immunopathology and renal dysfunction during early postischemic AKI. Regarding long-term outcomes, wild-type kidneys regenerated completely within 5 weeks after AKI. In contrast, IRAK-M−/− kidneys progressively lost up to two-thirds of their original mass due to tubule loss, leaving atubular glomeruli and interstitial scarring. Moreover, M1 macrophages accumulated in the renal interstitial compartment, coincident with increased expression of proinflammatory cytokines and chemokines. Injection of bacterial CpG DNA induced the same effects in wild-type mice, and TNF-α blockade with etanercept partially prevented renal atrophy in IRAK-M−/− mice. These results suggest that IRAK-M induction during the healing phase of AKI supports the resolution of M1 macrophage– and TNF-α–dependent renal inflammation, allowing structural regeneration and functional recovery of the injured kidney. Conversely, IRAK-M loss-of-function mutations or transient exposure to bacterial DNA may drive persistent inflammatory mononuclear phagocyte infiltrates, which impair kidney regeneration and promote CKD. Overall, these results support a novel role for IRAK-M in the regulation of wound healing and tissue regeneration. PMID:24309188

  8. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    PubMed Central

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  9. In vitro effects of Panax ginseng in aristolochic acid-mediated renal tubulotoxicity: apoptosis versus regeneration.

    PubMed

    Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline

    2015-03-01

    This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo

  10. Shock wave treatment improves nerve regeneration in the rat.

    PubMed

    Mense, Siegfried; Hoheisel, Ulrich

    2013-05-01

    The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.

  11. Standard versus accelerated initiation of renal replacement therapy in acute kidney injury (STARRT-AKI): study protocol for a randomized controlled trial.

    PubMed

    Smith, Orla M; Wald, Ron; Adhikari, Neill K J; Pope, Karen; Weir, Matthew A; Bagshaw, Sean M

    2013-10-05

    Acute kidney injury is a common and devastating complication of critical illness, for which renal replacement therapy is frequently needed to manage severe cases. While a recent systematic review suggested that "earlier" initiation of renal replacement therapy improves survival, completed trials are limited due to small size, single-centre status, and use of variable definitions to define "early" renal replacement therapy initiation. This is an open-label pilot randomized controlled trial. One hundred critically ill patients with severe acute kidney injury will be randomly allocated 1:1 to receive "accelerated" initiation of renal replacement therapy or "standard" initiation at 12 centers across Canada. In the accelerated arm, participants will have a venous catheter placed and renal replacement therapy will be initiated within 12 hours of fulfilling eligibility. In the standard initiation arm, participants will be monitored over 7 days to identify indications for renal replacement therapy. For participants in the standard arm with persistent acute kidney injury, defined as a serum creatinine not declining >50% from the value at the time of eligibility, the initiation of RRT will be discouraged unless one or more of the following criteria are fulfilled: serum potassium ≥6.0 mmol/L; serum bicarbonate ≤10 mmol/L; severe respiratory failure (PaO₂/FiO₂<200) or persisting acute kidney injury for ≥72 hours after fulfilling eligibility. The inclusion criteria are designed to identify a population of critically ill adults with severe acute kidney injury who are likely to need renal replacement therapy during their hospitalization, but not immediately. The primary outcome is protocol adherence (>90%). Secondary outcomes include measures of feasibility (proportion of eligible patients enrolled in the trial, proportion of enrolled patients followed to 90 days for assessment of vital status and the need for renal replacement therapy) and safety (occurrence of adverse

  12. Kidney regeneration and stem cells.

    PubMed

    Takaori, Koji; Yanagita, Motoko

    2014-01-01

    The kidney has the capacity to recover from ischemic and toxic insults. Although there has been debate about the origin of cells that replace injured epithelial cells, it is now widely recognized that intrinsic surviving tubular cells are responsible for the repair. On the other hand, the cells, which have stem cell-like characteristics, have been isolated in the kidney using various methods, but it remains unknown if these stem cells actually exist in the adult kidney and if they are involved in kidney regeneration. This review will focus on the pathophysiology of kidney regeneration and the contribution of renal stem cells. We also discuss possible therapeutic applications to kidney disease. Copyright © 2013 Wiley Periodicals, Inc.

  13. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  14. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  15. Hepatocyte growth factor in renal failure: promise and reality.

    PubMed

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  16. Proteinuria Impairs Podocyte Regeneration by Sequestering Retinoic Acid

    PubMed Central

    Peired, Anna; Angelotti, Maria Lucia; Ronconi, Elisa; la Marca, Giancarlo; Mazzinghi, Benedetta; Sisti, Alessandro; Lombardi, Duccio; Giocaliere, Elisa; Della Bona, Marialuisa; Villanelli, Fabio; Parente, Eliana; Ballerini, Lara; Sagrinati, Costanza; Wanner, Nicola; Huber, Tobias B.; Liapis, Helen; Lazzeri, Elena; Lasagni, Laura

    2013-01-01

    In CKD, the risk of kidney failure and death depends on the severity of proteinuria, which correlates with the extent of podocyte loss and glomerular scarring. We investigated whether proteinuria contributes directly to progressive glomerulosclerosis through the suppression of podocyte regeneration and found that individual components of proteinuria exert distinct effects on renal progenitor survival and differentiation toward a podocyte lineage. In particular, albumin prevented podocyte differentiation from human renal progenitors in vitro by sequestering retinoic acid, thus impairing retinoic acid response element (RARE)-mediated transcription of podocyte-specific genes. In mice with Adriamycin nephropathy, a model of human FSGS, blocking endogenous retinoic acid synthesis increased proteinuria and exacerbated glomerulosclerosis. This effect was related to a reduction in podocyte number, as validated through genetic podocyte labeling in NPHS2.Cre;mT/mG transgenic mice. In RARE-lacZ transgenic mice, albuminuria reduced retinoic acid bioavailability and impaired RARE activation in renal progenitors, inhibiting their differentiation into podocytes. Treatment with retinoic acid restored RARE activity and induced the expression of podocyte markers in renal progenitors, decreasing proteinuria and increasing podocyte number, as demonstrated in serial biopsy specimens. These results suggest that albumin loss through the damaged filtration barrier impairs podocyte regeneration by sequestering retinoic acid and promotes the generation of FSGS lesions. Our findings may explain why reducing proteinuria delays CKD progression and provide a biologic rationale for the clinical use of pharmacologic modulators to induce regression of glomerular diseases. PMID:23949798

  17. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    PubMed Central

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  18. Mice with hepatocyte-specific deficiency of type 3 deiodinase have intact liver regeneration and accelerated recovery from nonthyroidal illness after toxin-induced hepatonecrosis.

    PubMed

    Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A

    2014-10-01

    Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.

  19. Mice With Hepatocyte-Specific Deficiency of Type 3 Deiodinase Have Intact Liver Regeneration and Accelerated Recovery From Nonthyroidal Illness After Toxin-Induced Hepatonecrosis

    PubMed Central

    Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica

    2014-01-01

    Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090

  20. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  1. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration.

    PubMed

    Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin

    2017-09-01

    Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. In vitro regeneration of kidney from pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp; PRESTO, Japan Science and Technology Agency; JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitromore » is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.« less

  3. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    PubMed

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  4. Effect of vitamin E on reversibility of renal function following discontinuation of colistin in rats: Histological and biochemical investigations.

    PubMed

    Ghlissi, Zohra; Hakim, Ahmed; Mnif, Hela; Kallel, Rim; Zeghal, Khaled; Boudawara, Tahiya; Sahnoun, Zouheir

    2018-01-01

    This study was carried out to evaluate spontaneous renal regeneration after stopping colistin methanesulfonate (CMS), which induces tubular damage, and the curative effect of Vitamin E (vit E) in rats. Animals were given the following: sterile saline (n = 6), 300,000 IU/kg/ day of CMS (n = 24), or 450,000 IU/kg/day of CMS (n = 24) for seven days. Each CMS group was subdivided into four subgroups (n = 6) and sacrificed as follows: (i) 12 h after stopping CMS, (ii) two weeks after stopping CMS, (iii) two weeks after stopping treatment with vit E, and (iv) two weeks after stopping treatment with olive oil. Subsequently, plasma creatinine (pCr), urine N-acetyl-b-D-glucosaminidase (NAG), renal tissue level of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), and renal histology were tested. CMS-induced tubular damage increased the NAG and MDA levels and decreased the SOD and GSH activities. After two weeks of stopping CMS, there was no significant renal recovery. However, treatment with vit E improved tubular regeneration and reduced the biochemical impairments. Two weeks might not be long enough for significant spontaneous renal regeneration. Improvement of renal parameters by vit E could be explained by the reduction of oxidative stress damage.

  5. Epoxyeicosanoids promote organ and tissue regeneration.

    PubMed

    Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W

    2013-08-13

    Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.

  6. Autologous Bone Marrow Concentrates and Concentrated Growth Factors Accelerate Bone Regeneration After Enucleation of Mandibular Pathologic Lesions.

    PubMed

    Talaat, Wael M; Ghoneim, Mohamed M; Salah, Omar; Adly, Osama A

    2018-02-23

    Stem cell therapy is a revolutionary new way to stimulate mesenchymal tissue regeneration. The platelets concentrate products started with platelet-rich plasma (PRP), followed by platelet-rich fibrin (PRF), whereas concentrated growth factors (CGF) are the latest generation of the platelets concentrate products which were found in 2011. The aim of the present study was to evaluate the potential of combining autologous bone marrow concentrates and CGF for treatment of bone defects resulting from enucleation of mandibular pathologic lesions. Twenty patients (13 males and 7 females) with mandibular benign unilateral lesions were included, and divided into 2 groups. Group I consisted of 10 patients who underwent enucleation of the lesions followed by grafting of the bony defects with autologous bone marrow concentrates and CGF. Group II consisted of 10 patients who underwent enucleation of the lesions without grafting (control). Radiographic examinations were done immediately postoperative, then at 1, 3, 6, and 12 months, to evaluate the reduction in size and changes in bone density at the bony defects. Results indicated a significant increase in bone density with respect to the baseline levels in both groups (P < 0.05). The increase in bone density was significantly higher in group I compared with group II at the 6- and 12-month follow-up examinations (P < 0.05). The percent of reduction in the defects' size was significantly higher in group I compared with group II after 12 months (P = 0.00001). In conclusion, the clinical application of autologous bone marrow concentrates with CGF is a cost effective and safe biotechnology, which accelerates bone regeneration and improves the density of regenerated bone.

  7. Swimming Exercise in the Acute or Late Phase after Sciatic Nerve Crush Accelerates Nerve Regeneration

    PubMed Central

    Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; Montebelo, Maria Imaculada de Lima

    2011-01-01

    There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury. PMID:21876821

  8. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    PubMed

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    PubMed

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role

  10. Peptide drugs accelerate BMP‐2‐induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling

    PubMed Central

    Sugamori, Yasutaka; Mise‐Omata, Setsuko; Maeda, Chizuko; Aoki, Shigeki; Tabata, Yasuhiko; Murali, Ramachandran; Yasuda, Hisataka; Udagawa, Nobuyuki; Suzuki, Hiroshi; Honma, Masashi

    2016-01-01

    Both W9 and OP3‐4 were known to bind the receptor activator of NF‐κB ligand (RANKL), inhibiting osteoclastogenesis. Recently, both peptides were shown to stimulate osteoblast differentiation; however, the mechanism underlying the activity of these peptides remains to be clarified. A primary osteoblast culture showed that rapamycin, an mTORC1 inhibitor, which was recently demonstrated to be an important serine/threonine kinase for bone formation, inhibited the peptide‐induced alkaline phosphatase activity. Furthermore, both peptides promoted the phosphorylation of Akt and S6K1, an upstream molecule of mTORC1 and the effector molecule of mTORC1, respectively. In the in vivo calvarial defect model, W9 and OP3‐4 accelerated BMP‐2‐induced bone formation to a similar extent, which was confirmed by histomorphometric analyses using fluorescence images of undecalcified sections. Our data suggest that these RANKL‐binding peptides could stimulate the mTORC1 activity, which might play a role in the acceleration of BMP‐2‐induced bone regeneration by the RANKL‐binding peptides. PMID:27345003

  11. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOEpatents

    Gu, Baohua; Brown, Gilbert M.

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  12. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin.

    PubMed Central

    Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.

    1997-01-01

    Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992

  13. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine.

    PubMed

    Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria

    2017-03-01

    Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [The comparative characteristics of crystalline lens and limb regeneration in newts operated on before and after the completion of an orbital space flight].

    PubMed

    Tuchkova, S Ia; Brushlinskaia, N V; Grigorian, E N; Mitashov, V I

    1994-01-01

    It has been already established that a tendency towards synchronization and acceleration of the forelimb and lens regeneration is observed in Pleurodeles waltlii under the effect of space flight factors. Here we present the results obtained after 16-day space flight of two groups of newts. In animals of group I forelimbs were amputated and lenses were removed 14 and 7 days before the space flight, respectively. Intact animals of group II were operated on the day of the sputnik landing. Regenerates of the flight and corresponding control animals were fixed at the same time after the operation. For evaluation of the regeneration rate morphological criteria were used: morphological stages of regeneration were compared in the experiment and the control. For quantitative assay of the regeneration rate we determined the index of nuclei labelled with 3H-thymidine in the blastema and lens rudiment cells and used morphometry of the lens regenerates. Acceleration of forelimb and lens regeneration was observed in both groups of animals. In group II more than two-fold increase of the index of labelled nuclei was found in the blastema cells at the comparable stages of development. The size of lens regenerates in flight groups I and II exceeded reliably those in the control animals. The results obtained suggest a prolonged effect of the space flight factors on forelimb and lens regeneration. Under the conditions of space flight the lens regenerates reached more advanced stages of regeneration, as compared with the control animals operated after the space flight. These results also suggest acceleration of regeneration in lower vertebrates.

  15. Epithelial–Mesenchymal Interactions as a Working Concept for Oral Mucosa Regeneration

    PubMed Central

    Liu, Jiarong

    2011-01-01

    Oral mucosa consists of two tissue layers, the superficial epithelium and the underlying lamina propria. Together, oral mucosa functions as a barrier against exogenous substances and pathogens. In development, interactions of stem/progenitor cells of the epithelium and mesenchyme are crucial to the morphogenesis of oral mucosa. Previous work in oral mucosa regeneration has yielded important clues for several meritorious proof-of-concept approaches. Tissue engineering offers a broad array of novel tools for oral mucosa regeneration with reduced donor site trauma and accelerated clinical translation. However, the developmental concept of epithelial–mesenchymal interactions (EMIs) is rarely considered in oral mucosa regeneration. EMIs in postnatal oral mucosa regeneration likely will not be a simple recapitulation of prenatal oral mucosa development. Biomaterial scaffolds play an indispensible role for oral mucosa regeneration and should provide a conducive environment for pivotal EMIs. Autocrine and paracrine factors, either exogenously delivered or innately produced, have rarely been and should be harnessed to promote oral mucosa regeneration. This review focuses on a working concept of epithelial and mesenchymal interactions in oral mucosa regeneration. PMID:21062224

  16. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    PubMed Central

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  17. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    PubMed

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  18. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney

    PubMed Central

    Kelsen, Silvia; He, Xiaochen

    2012-01-01

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  19. Could Notch signaling pathway be a potential therapeutic option in renal diseases?

    PubMed

    Marquez-Exposito, Laura; Cantero-Navarro, Elena; Lavoz, Carolina; Fierro-Fernández, Marta; Poveda, Jonay; Rayego-Mateos, Sandra; Rodrigues-Diez, Raúl R; Morgado-Pascual, José Luis; Orejudo, Macarena; Mezzano, Sergio; Ruiz-Ortega, Marta

    2018-02-10

    Notch pathway regulates key processes in the kidney, involved in embryonic development and tissue damage. In many human chronic renal diseases a local activation of Notch pathway has been described, suggesting that several components of Notch pathway could be considered as biomarkers of renal damage. Experimental studies by genetic modulation of Notch components or pharmacological approaches by γ-secretase inhibitors have demonstrated the role of this pathway in renal regeneration renal, podocyte apoptosis, proliferation and fibroblasts activation, and induction of epithelial to mesenchymal transition of tubular epithelial cells. Recent studies suggest an interaction between Notch and NF-κB pathway involved in the regulation of renal inflammatory process. On the other hand, there are some miRNAs that could regulate Notch components and down-stream responses. All these data suggest that Notch blockade could be a novel therapeutic option for renal diseases. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Effects of an anti-G suit on the hemodynamic and renal responses to positive /+Gz/ acceleration

    NASA Technical Reports Server (NTRS)

    Shubrooks, S. J., Jr.; Epstein, M.; Duncan, D. C.

    1974-01-01

    The effects of the currently used U.S. Air Force (CSU-12/P) anti-G suit on renal function during positive radial acceleration (+Gz) were assessed in seven normal male subjects in balance on a 200 meq sodium diet. Following suit inflation in the seated position, +2.0 Gz for 30 min resulted in a decrease in the rate of sodium excretion from 125 plus or minus 19 to 60 plus or minus 14 microeq/min, which persisted during a 25-min recovery period. Fractional excretion of sodium also decreased significantly during +Gz. The magnitude of the antinatriuresis was indistinguishable from that observed during +Gz without suit inflation. In contrast to the antinatriuresis observed during centrifugation without suit, however, the antinatriuresis with suit was mediated primarily by an enhanced tubular reabsorption of sodium.

  1. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.« less

  2. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid

    PubMed Central

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4 - and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking. PMID:26641857

  3. Rheological and Performance Research on a Regenerable Polyvinyl Alcohol Fracturing Fluid.

    PubMed

    Shang, Xiaosen; Ding, Yunhong; Wang, Yonghui; Yang, Lifeng

    2015-01-01

    A regenerable polyvinyl alcohol/organic boron fracturing fluid system with 1.6 wt% polyvinyl alcohol (PVOH) and 1.2 wt% organic boron (OBT) was studied, and its main regeneration mechanism is the reversible cross-linking reaction between B(OH)4- and hydroxyl groups of PVOH as the change of pH. Results of rheology evaluations show that both the apparent viscosity and the thermal stability of the fracturing fluid decreased with the regeneration number of times increasing. In addition, the apparent viscosity of the fluid which was without regeneration was more sensitive to the shear action compared with that of the fluid with regeneration once or twice. When the fracturing fluid was without regeneration, the elasticity was dominating due to the three-dimensional network structure of the formed gel; the viscosity gradually occupied the advantage when the fracturing fluid was regenerated once or twice. The settling velocity of proppant was accelerated by both the regeneration process and the increasing temperature, but it was decelerated when the proppant ratio increased. Results of core damage tests indicate that less permeability damage was caused by the PVOH/OBT fracturing fluid compared with that caused by the guar gum fracturing fluid after gel breaking.

  4. Screening for Albuminuria Identifies Individuals at Increased Renal Risk

    PubMed Central

    van der Velde, Marije; Halbesma, Nynke; de Charro, Frank T.; Bakker, Stephan J.L.; de Zeeuw, Dick; de Jong, Paul E.; Gansevoort, Ronald T.

    2009-01-01

    It is unknown whether screening for albuminuria in the general population identifies individuals at increased risk for renal replacement therapy (RRT) or accelerated loss of renal function. Here, in a general population-based cohort of 40,854 individuals aged 28 to 75 yr, we collected a first morning void for measurement of urinary albumin. In a subset of 6879 individuals, we measured 24-h urinary albumin excretion and estimated GFR at baseline and during 6 yr of follow-up. Linkage with the national RRT registry identified 45 individuals who started RRT during 9 yr of follow-up. The quantity of albuminuria was associated with increased renal risk: the higher the level of albuminuria, the higher the risk of need for renal replacement therapy and the more rapid renal function decline. A urinary albumin concentration of ≥20 mg/L identified individuals who started RRT during follow-up with 58% sensitivity and 92% specificity. Of the identified individuals, 39% were previously unknown to have impaired renal function, and 50% were not being medically treated. Restricting screening to high-risk groups (e.g., known hypertension, diabetes, cardiovascular disease [CVD], older age) reduced the sensitivity of the test only marginally but failed to identify 45% of individuals with micro- and macroalbuminuria. In conclusion, individuals with elevated levels of urinary albumin are at increased risk for RRT and accelerated loss of renal function. Screening for albuminuria identifies patients at increased risk for progressive renal disease, 40 to 50% of whom were previously undiagnosed or untreated. PMID:19211710

  5. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  6. Post-transplantation nephroptosis causing recurrent episodes of acute renal failure and hypertension secondary to intermittent vascular torsion of intraperitoneal renal allograft

    PubMed Central

    Dosch, Austin R.; Pahl, Madeleine; Reddy, Uttam; Foster, Clarence E.

    2017-01-01

    Abstract Nephroptosis is a rare complication in renal transplantation, but one with significant associated risk. Due to non-specific clinical features, there may be a substantial delay in diagnosis and loss of the transplanted kidney due to renal pedicle thrombosis. We present a case of post-transplantation nephroptosis after simultaneous pancreas and kidney transplant, which resulted in accelerated hypertension and reversible acute kidney injury >1 year after transplantation. Prompt detection of this rare entity leading to expeditious surgical intervention is necessary to preserve viability of the renal allograft. PMID:28560019

  7. Adenosine signaling promotes regeneration of pancreatic β-cells in vivo

    PubMed Central

    Andersson, Olov; Adams, Bruce A.; Yoo, Daniel; Ellis, Gregory C.; Gut, Philipp; Anderson, Ryan M.; German, Michael S.; Stainier, Didier Y. R.

    2012-01-01

    Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β-cells is still needed. Using a zebrafish model of diabetes, we screened ~7000 small molecules to identify enhancers of β-cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β-cell regeneration was the adenosine agonist 5′-N-Ethylcarboxamidoadenosine (NECA), which acting through the adenosine receptor A2aa increased β-cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β-cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β-cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes. PMID:22608007

  8. [Experimental studies for the improvement of facial nerve regeneration].

    PubMed

    Guntinas-Lichius, O; Angelov, D N

    2008-02-01

    Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.

  9. Sunitinib benefits patients with renal cell carcinoma

    Cancer.gov

    Findings from clinical trial patients with metastatic renal cell carcinoma, a common kidney cancer, show they did not have accelerated tumor growth after treatment with sunitinib, in contrast to some study results in animals.

  10. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise

    PubMed Central

    Gordon, Tessa; English, Arthur W.

    2015-01-01

    Enhancing the regeneration of axons is often considered a therapeutic target for improving functional recovery after peripheral nerve injury. In this review, the evidence for the efficacy of electrical stimulation (ES), daily exercise, and their combination in promoting nerve regeneration after peripheral nerve injuries in both animal models and in human patients, is explored. The rationale, effectiveness, and molecular basis of ES and exercise in accelerating axon outgrowth are reviewed. In comparing the effects of ES and exercise in enhancing axon regeneration, increased neural activity, neurotrophins, and androgens are considered common requirements. Similar, gender-specific requirements are found for exercise to enhance axon regeneration in the periphery and for sustaining synaptic inputs onto injured motoneurons. ES promotes nerve regeneration after delayed nerve repair in humans and rats. The effectiveness of exercise is less clear. Although ES, but not exercise, results in a significant misdirection of regenerating motor axons to reinnervate different muscle targets, the loss of neuromuscular specificity encountered has only a very small impact on resulting functional recovery. Both ES and exercise are promising experimental treatments for peripheral nerve injury that seem ready to be translated to clinical use. PMID:26121368

  11. Regeneration of the Exocrine Pancreas Is Delayed in Telomere-Dysfunctional Mice

    PubMed Central

    von Figura, Guido; Wagner, Martin; Nalapareddy, Kodandaramireddy; Hartmann, Daniel; Kleger, Alexander; Guachalla, Luis Miguel; Rolyan, Harshvardhan; Adler, Guido; Rudolph, Karl Lenhard

    2011-01-01

    Introduction Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known. Methods In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres. Results Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice. Conclusion Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation. PMID:21364961

  12. Nano-biomimetics for nano/micro tissue regeneration.

    PubMed

    Singh, Dolly; Singh, Deepti; Zo, Sunmi; Han, Sung Soo

    2014-10-01

    Nanostructured biomimetics have recently shown great promise in the field of tissue engineering. They can be used as nanoscaffolds and tailored at the molecular level. The scaffold topography closely resembles the native extracellular matrix in terms of framing, porosity and bio-functionality. This review covers the approaches used for biomimetic fabrication, including soft lithography, the plasmonic nanohybrid matrix method and multilayer self-assembly scaffolds for tissue regeneration. It brings together knowledge from different arenas about the synthesis, characterization and functionalization of matrices to accelerate the tissue regeneration process. Every tissue in the body presents different challenges and requires a specific fabrication process designed to identify and mirror the particular organ. For example, microfluidics systems aim to mimic the extracellular matrix of vascular and cartilage tissue, and these systems have different parts with completely different mechanical strength, cellular adhesion and interplay between matrix and cells. A fully functional nanomatrix designed by a self-assembling methodology for use as a vascular tissue engineering scaffold needs to have intrinsic microvessels that facilitate the transportation of metabolites and nutrients. Similarly, in the case of peripheral nerve regeneration, a scaffold needs to have sufficient mechanical strength to protect the regenerating tissue, yet be biodegradable enough to avoid a possible second surgery. To enhance the functionality of scaffolds, increasing focus has been placed on in vitro and in vivo research to achieve optimal scaffold design. Nanobiomimetics unarguably offer the most suitable physicochemical scaffold properties for tissue regeneration.

  13. Protein and peptide-based therapeutics in periodontal regeneration.

    PubMed

    Reynolds, Mark A; Aichelmann-Reidy, Mary E

    2012-09-01

    Protein and peptide-based therapeutics provide a unique strategy for controlling highly specific and complex biologic actions that cannot be accomplished by simple devices or chemical compounds. This article reviews some of the key characteristics and summarizes the clinical effectiveness of protein and peptide-based therapeutics targeting periodontal regeneration. A literature search was conducted of randomized clinical trials and systematic reviews evaluating protein and peptide-based therapeutics for the regeneration of periodontal tissues of at least 6 months duration. Data sources included PubMed and Embase electronic databases, hand-searched journals, and the ClinicalTrials.gov registry. Commercially marketed protein and peptide-based therapeutics for periodontal regeneration provide gains in clinical attachment level and bone formation that are comparable or superior to other regenerative approaches. Results from several clinical trials indicate that protein and peptide-based therapies can accelerate repair and regeneration when compared with other treatments and that improvements in clinical parameters continue beyond 12 months. Protein and peptide-based therapies also exhibit the capacity to increase the predictability of treatment outcomes. Clinical and histologic studies support the effectiveness of protein- and peptide-based therapeutics for periodontal regeneration. Emerging evidence suggests that the delivery devices/scaffolds play a critical role in determining the effectiveness of this class of therapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The senescence-accelerated mouse prone-8 (SAM-P8) oxidative stress is associated with upregulation of renal NADPH oxidase system.

    PubMed

    Baltanás, Ana; Solesio, Maria E; Zalba, Guillermo; Galindo, María F; Fortuño, Ana; Jordán, Joaquín

    2013-12-01

    Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r = 0.382, P < 0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.

  15. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    PubMed

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  16. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  17. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    PubMed

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. © The Author(s) 2015.

  18. CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*

    PubMed Central

    Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira

    2013-01-01

    CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360

  19. Hypertension in kidney transplantation is associated with an early renal nerve sprouting

    PubMed Central

    Rovella, Valentina; Borri, Filippo; Anemona, Lucia; Giannini, Elena; Giacobbi, Erica; Saggini, Andrea; Palmieri, Giampiero; Anselmo, Alessandro; Bove, Pierluigi; Melino, Gerry; Valentina, Guardini; Tesauro, Manfredi; Gabriele, D’Urso; Di Daniele, Nicola

    2017-01-01

    Abstract Background. Normalization of arterial pressure occurs in just a few patients with hypertensive chronic kidney disease undergoing kidney transplantation. Hypertension in kidney transplant recipients may be related to multiple factors. We aimed to assess whether hypertension in kidney-transplanted patients may be linked to reinnervation of renal arteries of the transplanted kidney. Methods. We investigated renal arteries innervation from native and transplanted kidneys in three patients 5 months, 2 years and 11 years after transplantation, respectively. Four transplanted kidneys from non-hypertensive patients on immunosuppressive treatment without evidence of hypertensive arteriolar damage were used as controls. Results. Evidence of nerve sprouting was observed as early as 5 months following transplantation, probably originated from ganglions of recipient patient located near the arterial anastomosis and was associated with mild hypertensive arteriolar damage. Regeneration of periadventitial nerves was already complete 2 years after transplantation. Nerve density tended to reach values observed in native kidney arteries and was associated with hypertension-related arteriolar lesions in transplanted kidneys. Control kidneys, albeit on an immunosuppressive regimen, presented only a modest regeneration of sympathetic nerves. Conclusions. Our results suggest that the considerable increase in sympathetic nerves, as found in patients with severe arterial damage, may be correlated to hypertension rather than to immunosuppressive therapy, thus providing a morphological basis for hypertension recurrence despite renal denervation. PMID:28498963

  20. Lgr5+ Cells Regenerate Hair Cells via Proliferation and Direct Transdifferentiation in Damaged Neonatal Mouse Utricle

    PubMed Central

    Wang, Tian; Chai, Renjie; Kim, Grace S.; Pham, Nicole; Jansson, Lina; Nguyen, Duc-Huy; Kuo, Bryan; May, Lindsey; Zuo, Jian; Cunningham, Lisa L.; Cheng, Alan G.

    2015-01-01

    Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here, we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized β-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration. PMID:25849379

  1. In search of adult renal stem cells.

    PubMed

    Anglani, F; Forino, M; Del Prete, D; Tosetto, E; Torregrossa, R; D'Angelo, A

    2004-01-01

    The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.

  2. Neuronal regeneration in the newt: a model to study the partly reconstruction of the neural tissue in real and simulated weightles sness

    NASA Astrophysics Data System (ADS)

    Anton, H.; Grigoryan, E.; Mitashov, V.

    The micro -"g" effect on nervous tissue regeneration in newts has been investigated by our group for many years. It has been performed in real and in simulated microgravity with a clinostat. During limb regeneration the motor - and sensory nerves regrow perfectly within the newly formed limb. Like in `1g' conditions they are responsible for the initiation of blastema formation and continuity of g owth andr differentiation. Except for a general acceleration of growth and differentiation processes no differences became visible. Tail regeneration, which is perfectly regulated in newts during their whole life, includes the restoration of the spinal cord and dorsal root ganglia. They follow or initiate an accelerated growth. Up to the present the cellular derivation of the sensory neurones within the regenerate has not yet been clarified. But growth acceleration comprises the whole nervous system. That means a totally new formation of the sensory connection from the periphery to the whole spinal cord. Regeneration must be initiated by the outgrowth of nerve fibres into the wound area. This may be performed by the remaining cut sensory fibres of the last stump segment and should be followed by the differentiation of undifferentiated cells of neural crest origin nearby the amputation area. Such cells are present in the form of meningeal cells which are the origin of mantle and Schwann cells too. Corresponding to the well proved growth acceleration of lens, retina, connective tissue, muscle and skin, the real and simulated microgravity affects the nervous system in the same manner. Tissues and organs of adult organisms have no chance to remain unaffected by the microgravity effect. We try to find the trigger which initiates the accelerated proliferation of the stem cells of sensory neurons, mantle and sheath cells under micro-"g" conditions.

  3. [Effects of bemethyl, ethomersol, and yakton on the liver regeneration after partial hepatectomy].

    PubMed

    Gaĭvoronskaia, V V; Okovityĭ, S V; Shustov, E B; Smirnov, A V

    2000-01-01

    It is experimentally demonstrated for the first time that the new drugs bemithyl, etomerzol, and yakton are capable of accelerating the process of liver regeneration following partial hepatectomy. The drugs produce a hasty gain in the mass of liver, increase in the content of nucleic acids and glycogen, and improve the functional state, as manifested by a decrease in the blood bilirubin and a reduction in the hexenal sleep duration. Bemithyl, etomerzol, and yakton produce a positive effect upon the liver morphology and the intracellular regeneration process. The repair activity of the new drugs exceeds that of a combination of the well-known regeneration stimulants riboxin and potassium orotate, representing derivatives of purine and pyrimidine bases.

  4. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice.

    PubMed

    Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong

    2016-02-01

    The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.

  5. Drosophila as a model of wound healing and tissue regeneration in vertebrates.

    PubMed

    Belacortu, Yaiza; Paricio, Nuria

    2011-11-01

    Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration. Copyright © 2011 Wiley Periodicals, Inc.

  6. Renal sympathetic nerve ablation for treatment-resistant hypertension

    PubMed Central

    Krum, Henry; Schlaich, Markus; Sobotka, Paul

    2013-01-01

    Hypertension is a major risk factor for increased cardiovascular events with accelerated sympathetic nerve activity implicated in the pathogenesis and progression of disease. Blood pressure is not adequately controlled in many patients, despite the availability of effective pharmacotherapy. Novel procedure- as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation, have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation not only reduces blood pressure but also renal as well as systemic sympathetic nerve activity in such patients. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which suggests absence of re-innervation of renal sympathetic nerves. Safety appears to be adequate. This approach may also have potential in other disorders associated with enhanced sympathetic nerve activity such as congestive heart failure, chronic kidney disease and metabolic syndrome. This review will focus on the current status of percutaneous renal sympathetic nerve denervation, clinical efficacy and safety outcomes and prospects beyond refractory hypertension. PMID:23819768

  7. A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration

    PubMed Central

    Lobo, Daniel; Feldman, Erica B.; Shah, Michelle; Malone, Taylor J.

    2014-01-01

    Abstract Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental effort, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorithms have revolutionized the study of signaling pathways, no such tools have heretofore been available to assist scientists in formulating testable models of large‐scale morphogenesis that match published data in the limb regeneration field. Major barriers to preventing an algorithmic approach are the lack of formal descriptions for experimental regenerative information and a repository to centralize storage and mining of functional data on limb regeneration. Establishing a new bioinformatics of shape would significantly accelerate the discovery of key insights into the mechanisms that implement complex regeneration. Here, we describe a novel mathematical ontology for limb regeneration to unambiguously encode phenotype, manipulation, and experiment data. Based on this formalism, we present the first centralized formal database of published limb regeneration experiments together with a user‐friendly expert system tool to facilitate its access and mining. These resources are freely available for the community and will assist both human biologists and artificial intelligence systems to discover testable, mechanistic models of limb regeneration. PMID:25729585

  8. Tail regeneration in Urodela: old model and new perspectives in studies

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.; Mitashov, V.

    immunohistochemistry. Results we've just obtained previously support our proposition on the accelerating effect of micro-"g" upon SC regeneration and then of other tail tissue in the newt. The effect, in turn, could be mediated by increased expression of neurotrophins.

  9. ERα promotes murine hematopoietic regeneration through the Ire1α-mediated unfolded protein response

    PubMed Central

    Chapple, Richard H; Hu, Tianyuan; Tseng, Yu-Jung; Liu, Lu; Kitano, Ayumi; Luu, Victor; Hoegenauer, Kevin A; Iwawaki, Takao; Li, Qing

    2018-01-01

    Activation of the unfolded protein response (UPR) sustains protein homeostasis (proteostasis) and plays a fundamental role in tissue maintenance and longevity of organisms. Long-range control of UPR activation has been demonstrated in invertebrates, but such mechanisms in mammals remain elusive. Here, we show that the female sex hormone estrogen regulates the UPR in hematopoietic stem cells (HSCs). Estrogen treatment increases the capacity of HSCs to regenerate the hematopoietic system upon transplantation and accelerates regeneration after irradiation. We found that estrogen signals through estrogen receptor α (ERα) expressed in hematopoietic cells to activate the protective Ire1α-Xbp1 branch of the UPR. Further, ERα-mediated activation of the Ire1α-Xbp1 pathway confers HSCs with resistance against proteotoxic stress and promotes regeneration. Our findings reveal a systemic mechanism through which HSC function is augmented for hematopoietic regeneration. PMID:29451493

  10. Heparin-based hydrogels induce human renal tubulogenesis in vitro.

    PubMed

    Weber, Heather M; Tsurkan, Mikhail V; Magno, Valentina; Freudenberg, Uwe; Werner, Carsten

    2017-07-15

    Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug

  11. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle.

    PubMed

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko

    2013-08-01

    We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.

  12. Transplantated Mesenchymal Stem Cells Derived from Embryonic Stem Cells Promote Muscle Regeneration and Accelerate Functional Recovery of Injured Skeletal Muscle

    PubMed Central

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka

    2013-01-01

    Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336

  13. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  14. The Prognostic Importance of Changes in Renal Function during Treatment for Acute Heart Failure Depends on Admission Renal Function

    PubMed Central

    Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko

    2015-01-01

    Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982

  15. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    PubMed

    Kostereva, Nataliya V; Wang, Yong; Fletcher, Derek R; Unadkat, Jignesh V; Schnider, Jonas T; Komatsu, Chiaki; Yang, Yang; Stolz, Donna B; Davis, Michael R; Plock, Jan A; Gorantla, Vijay S

    2016-01-01

    Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA). Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1) and chondroitinase ABC (CH) have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH) on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus) therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections). Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius) histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC) immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  16. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice

    PubMed Central

    Liu, Ning; Williams, Andrew H.; Maxeiner, Johanna M.; Bezprozvannaya, Svetlana; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle–specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that miR-206 promotes skeletal muscle regeneration in response to injury. Genetic deletion of miR-206 in mice substantially delayed regeneration induced by cardiotoxin injury. Furthermore, loss of miR-206 accelerated and exacerbated the dystrophic phenotype in a mouse model of Duchenne muscular dystrophy. We found that miR-206 acts to promote satellite cell differentiation and fusion into muscle fibers through suppressing a collection of negative regulators of myogenesis. Our findings reveal an essential role for miR-206 in satellite cell differentiation during skeletal muscle regeneration and indicate that miR-206 slows progression of Duchenne muscular dystrophy. PMID:22546853

  17. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  18. Pleiotrophin mediates hematopoietic regeneration via activation of RAS

    PubMed Central

    Himburg, Heather A.; Yan, Xiao; Doan, Phuong L.; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J.; Slamon, Dennis J.; Chute, John P.

    2014-01-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation–mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation–induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  19. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner.

  20. Vascular toxicity of urea, a new "old player" in the pathogenesis of chronic renal failure induced cardiovascular diseases.

    PubMed

    Giardino, Ida; D'Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-12-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure.

  1. Biomimetic approaches with smart interfaces for bone regeneration.

    PubMed

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  2. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    PubMed

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  3. Contrast-enhanced MR Angiography of the Abdomen with Highly Accelerated Acquisition Techniques

    PubMed Central

    Mostardi, Petrice M.; Glockner, James F.; Young, Phillip M.

    2011-01-01

    Purpose: To demonstrate that highly accelerated (net acceleration factor [Rnet] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material–enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material. Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27–62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37–68 years; three men; average age, 60 years; range, 50–67 years; composite average age, 54 years; range, 38–68 years). The two-part protocol consisted of a low-dose (2 mL contrast material) 3D timing image with approximate 1-second frame time, followed by a high-spatial-resolution (1.0–1.6-mm isotropic voxels) breath-hold 3D renal MR angiogram (18 mL) over the full abdominal field of view. Both acquisitions used two-dimensional (2D) sensitivity encoding acceleration factor (R) of eight and 2D homodyne (HD) acceleration (RHD) of 1.4–1.8 for Rnet = R · RHD of 10 or higher. Statistical analysis included determination of mean values and standard deviations of image quality scores performed by two experienced reviewers with use of eight evaluation criteria. Results: The 2-mL 3D time-resolved image successfully portrayed progressive arterial filling in all 22 studies and provided an anatomic overview of the vasculature. Successful timing was also demonstrated in that the renal MR angiogram showed adequate or excellent portrayal of the main renal arteries in 21 of 22 studies. Conclusion: Two-dimensional acceleration techniques with Rnet of 10 or higher can be used in CE MR angiography to acquire (a) a 3D image series with 1-second frame time, allowing accurate

  4. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  5. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    PubMed

    Chen, Qiang; Lin, Gui-miao; Wu, Nan; Tang, Sheng-wei; Zheng, Zhi-jia; Lin, Marie Chia-mi; Xu, Gai-xia; Liu, Hao; Deng, Yue-yue; Zhang, Xiao-yun; Chen, Si-ping; Wang, Xiao-mei; Niu, Han-ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. © 2016 Wiley Periodicals, Inc.

  6. Vascular toxicity of urea, a new “old player” in the pathogenesis of chronic renal failure induced cardiovascular diseases

    PubMed Central

    D’Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-01-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure. PMID:29483797

  7. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration.

    PubMed

    Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu

    2015-12-01

    We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.

  8. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat

    PubMed Central

    Jiang, Wenli; Wang, Yuexiang; Tang, Jie; Peng, Jiang; Wang, Yu; Guo, Quanyi; Guo, Zhiyuan; Li, Pan; Xiao, Bo; Zhang, Jinxing

    2016-01-01

    Low intensity pulsed ultrasound (LIPUS) has been widely used in clinic for the treatment of repairing pseudarthrosis, bone fractures and of healing in various soft tissues. Some reports indicated that LIPUS accelerated peripheral nerve regeneration including Schwann cells (SCs) and injured nerves. But little is known about its appropriate intensities on autograft nerves. This study was to investigate which intensity of LIPUS improved the regeneration of gold standard postsurgical nerves in experimental rat model. Sprague-Dawley rats were made into 10 mm right side sciatic nerve reversed autologous nerve transplantation and randomly treated with 250 mW/cm2, 500 mW/cm2 or 750 mW/cm2 LIPUS for 2–12 weeks after operation. Functional and pathological results showed that LIPUS of 250 mW/cm2 significantly induced faster rate of axonal regeneration. This suggested that autograft nerve regeneration was improved. PMID:27102358

  10. Functional analysis of the GmESR1 gene associated with soybean regeneration

    PubMed Central

    Chen, Qingshan; Liu, Ming; Xin, Dawei; Qi, Zhaoming; Li, Sinan; Ma, Yanlong; Wang, Lingshuang; Jin, Yangmei; Li, Wenbin; Wu, Xiaoxia; Su, An-yu

    2017-01-01

    Plant regeneration can occur via in vitro tissue culture through somatic embryogenesis or de novo shoot organogenesis. Transformation of soybean (Glycine max) is difficult, hence optimization of the transformation system for soybean regeneration is required. This study investigated ENHANCER OF SHOOT REGENERATION 1 (GmESR1), a soybean transcription factor that targets regeneration-associated genes. Sequence analysis showed that GmESR1 contained a conserved 57 amino acid APETALA 2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) DNA-binding domain. The relative expression level of GmESR1 was highest in young embryos, flowers and stems in the soybean cultivar ‘Dongnong 50’. To examine the function of GmESR1, transgenic Arabidopsis (Arabidopsis thaliana) and soybean plants overexpressing GmESR1 were generated. In Arabidopsis, overexpression of GmESR1 resulted in accelerated seed germination, and seedling shoot and root elongation. In soybean overexpression of GmESR1 also led to faster seed germination, and shoot and root elongation. GmESR1 specifically bound to the GCC-box. The results provide a foundation for the establishment of an efficient and stable transformation system for soybean. PMID:28403182

  11. A cryoinjury model in neonatal mice for cardiac translational and regeneration research

    PubMed Central

    Polizzotti, Brian D.; Ganapathy, Balakrishnan; Haubner, Bernhard; Penninger, Josef; Kühn, Bernhard

    2017-01-01

    The introduction of injury models for neonatal mouse hearts has accelerated research on the mechanisms of cardiac regeneration in mammals. However, some existing models such as apical resection and ligation of the left anterior descending artery produce variable results, which may be due to technical difficulties associated with these methods. Here, we present an alternative model for studying cardiac regeneration in neonatal mice in which cryoinjury is used to induce heart injury. This model yields a reproducible injury size, does not induce known mechanisms of cardiac regeneration, and leads to a sustained reduction of cardiac function. This protocol uses reusable cryoprobes that can be assembled in 5 minutes, with the entire procedure taking 15 minutes per pup. The subsequent heart collection and fixation takes 2 days to complete. Cryoinjury results in a myocardial scar, and the size of injury can be scaled by use of different cryoprobes (0.5 and 1.5 mm). Cryoinjury models are medically relevant to diseases in human infants with heart disease. In summary, the myocardial cryoinjury model in neonatal mice described here is a useful tool for cardiac translational and regeneration research. PMID:26890681

  12. Effects of positive acceleration /+Gz/ on renal function and plasma renin in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Shubrooks, S. J., Jr.; Fishman, L. M.; Duncan, D. C.

    1974-01-01

    The effects of positive radial centrifugation (+Gz) on plasma resin activity (PRA) and renal function were assessed in 15 normal male subjects under carefully controlled conditions of Na, K, and water intake. Twenty minutes of +2.0 Gz resulted in significant decreases in the mean rate of sodium excretion and creatine clearance and in a doubling of PRA in seven sodium-depleted subjects (10 meq Na intake). In eight sodium-replete subjects (200 mq Na intake), 30 min of +2.0 Gz was also associated with a decrease in the mean rate of sodium excretion. As a consequence of a concurrent decrease in creatine clearance, the fractional excretion of sodium during centrifugation did not differ from control, suggesting that the changes in Na excretion were mediated primarily by renal hemodynamic factors, although enhanced renal tubular sodium reabsorption may also have played a role.

  13. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.

    PubMed

    Xu, Yan; Wu, Qian; Shimatani, Yuji; Yamaguchi, Koji

    2015-10-07

    Due to the lack of regeneration methods, the reusability of nanofluidic chips is a significant technical challenge impeding the efficient and economic promotion of both fundamental research and practical applications on nanofluidics. Herein, a simple method for the total regeneration of glass nanofluidic chips was described. The method consists of sequential thermal treatment with six well-designed steps, which correspond to four sequential thermal and thermochemical decomposition processes, namely, dehydration, high-temperature redox chemical reaction, high-temperature gasification, and cooling. The method enabled the total regeneration of typical 'dead' glass nanofluidic chips by eliminating physically clogged nanoparticles in the nanochannels, removing chemically reacted organic matter on the glass surface and regenerating permanent functional surfaces of dissimilar materials localized in the nanochannels. The method provides a technical solution to significantly improve the reusability of glass nanofluidic chips and will be useful for the promotion and acceleration of research and applications on nanofluidics.

  14. Assessing regeneration potential

    Treesearch

    Ivan L. Sander

    1989-01-01

    When a regeneration harvest cut is planned for even-aged stands or it is time to make another cut in uneven-aged stands, the first thing to do is assess the regeneration potential. Regeneration potential is the likelihood of being successful in reproducing desired species. You need an assessment to be reasonably sure that regeneration and management objectives can be...

  15. Platelets in liver disease, cancer and regeneration.

    PubMed

    Kurokawa, Tomohiro; Ohkohchi, Nobuhiro

    2017-05-14

    Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.

  16. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    PubMed

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  17. [Chronic renal disease--a global problem in the XXI century].

    PubMed

    Shutov, A M

    2014-01-01

    In 2002, it was proposed to consider functional renal disorders 3 and more months in duration under the general name chronic renal disease (CRD) bearing in mind the common mechanism behind progressive nephropathy and high cardiovascular mortality of such patients. The prevalence of CRD in Russia is unknown; it is supposed that every tenth adult in the world has CRD. Diagnostics of CRD requires at least measurement of serum creatinine, calculation of the glomerular filtration rate by CKD-EPI formula, and determination of albuminuria. A main cause of CRD is cardiovascular disorders. Complicated relationships between cardiac insufficiency and CRD account for 5 types of cardiorenal syndrome. CRD patients are at risk of terminal renal insufficiency requiring replacement therapy; moreover, CRD enhances cardiovascular morbidity and predisposes to acute renal lesion that in turn accelerates progress of CRD. Taken together these events account for the global character of the CRD problem.

  18. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuan; Fujigaki, Yoshihide, E-mail: yf0516@hama-med.ac.j; Sakakima, Masanori

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PTmore » cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.« less

  19. Residual Renal Function in Children Treated with Chronic Peritoneal Dialysis

    PubMed Central

    Roszkowska-Blaim, Maria

    2013-01-01

    Residual renal function (RRF) in patients with end-stage renal disease (ESRD) receiving renal replacement therapy is defined as the ability of native kidneys to eliminate water and uremic toxins. Preserved RRF improves survival and quality of life in adult ESRD patients treated with peritoneal dialysis. In children, RRF was shown not only to help preserve adequacy of renal replacement therapy but also to accelerate growth rate, improve nutrition and blood pressure control, reduce the risk of adverse myocardial changes, facilitate treatment of anemia and calcium-phosphorus balance abnormalities, and result in reduced serum and dialysate fluid levels of advanced glycation end-products. Factors contributing to RRF loss in children treated with peritoneal dialysis include the underlying renal disease such as hemolytic-uremic syndrome and hereditary nephropathy, small urine volume, severe proteinuria at the initiation of renal replacement therapy, and hypertension. Several approaches can be suggested to decrease the rate of RRF loss in pediatric patients treated with chronic peritoneal dialysis: potentially nephrotoxic drugs (e.g., aminoglycosides), episodes of hypotension, and uncontrolled hypertension should be avoided, urinary tract infections should be treated promptly, and loop diuretics may be used to increase salt and water excretion. PMID:24376376

  20. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    PubMed

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

    PubMed

    Gordon, Tessa; Chan, K Ming; Sulaiman, Olawale A R; Udina, Esther; Amirjani, Nasim; Brushart, Thomas M

    2009-10-01

    Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.

  2. Accelerated decline of renal function in type 2 diabetes following severe hypoglycemia.

    PubMed

    Tsujimoto, Tetsuro; Yamamoto-Honda, Ritsuko; Kajio, Hiroshi; Kishimoto, Miyako; Noto, Hiroshi; Hachiya, Remi; Kimura, Akio; Kakei, Masafumi; Noda, Mitsuhiko

    2016-01-01

    This study aimed to evaluate whether the pronounced elevation in blood pressure during severe hypoglycemia is associated with subsequent renal insufficiency. We conducted a 3-year cohort study to assess the clinical course of renal function in type 2 diabetes patients with or without blood pressure surge during severe hypoglycemia. Of 111 type 2 diabetes patients with severe hypoglycemia, 76 exhibited an extremely high systolic blood pressure before treatment, whereas 35 demonstrated no such increase (179.1 ± 27.7 mmHg vs. 131.1 ± 20.2 mmHg, P<0.001). At 12h after treatment, systolic blood pressure did not differ significantly (131.5 ± 30.7 mmHg vs. 123.5 ± 20.7 mmHg; P=0.39). The estimated glomerular filtration rate (GFR) before and at the time of severe hypoglycemia did not significantly differ between both groups. A multivariate Cox proportional hazards regression analysis revealed that blood pressure surge during severe hypoglycemia was independently associated with a composite outcome of a more than 15 mL/min/1.73 m(2) decrease in the estimated GFR and initiation of chronic dialysis (hazard ratio, 2.68; 95% confidence interval, 1.12-6.38; P=0.02). Renal function after severe hypoglycemia was significantly worse in type 2 diabetes patients with blood pressure surge during severe hypoglycemia than those without blood pressure surge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Regeneration

    Treesearch

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  4. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.

    PubMed

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury.

  5. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats

    PubMed Central

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718

  6. [Ultrasonographic study of blood flow in the renal arteries of patients with arterial hypertension].

    PubMed

    Makarenko, E S; Dombrovskiĭ, V I; Nelasov, N Iu

    2012-01-01

    Vascular duplex ultrasound duplex with simultaneous ECG registration was made to estimate the quantitative and time parameters of blood flow in the renal arteries with grade 1-2 arterial hypertension. There were increases in vascular resistance indices and acceleration phase index and a reduction in systolic phase index. There were correlations of the time parameters of blood flow in the renal arteries with age and lipidogram values.

  7. Secondary forest regeneration on degraded tropical lands: the role of plantations as ‘foster ecosystems’

    Treesearch

    John A. Parrotta

    1993-01-01

    Forest plantations established on degraded sites can accelerate natural succession through their effects on vegetation structure, microclimate, and soils. Spatial and temporal patterns of secondary forest species regeneration were studied in permanent quadrats in Albizia lebbek planta1ion plots and control areas at a degraded coastal pasture in...

  8. Recovery of Na-glucose cotransport activity after renal ischemia is impaired in mice lacking vimentin.

    PubMed

    Runembert, Isabelle; Couette, Sylviane; Federici, Pierre; Colucci-Guyon, Emma; Babinet, Charles; Briand, Pascale; Friedlander, Gérard; Terzi, Fabiola

    2004-11-01

    Vimentin, an intermediate filament protein mainly expressed in mesenchyma-derived cells, is reexpressed in renal tubular epithelial cells under many pathological conditions, characterized by intense cell proliferation. Whether vimentin reexpression is only a marker of cell dedifferentiation or is instrumental in the maintenance of cell structure and/or function is still unknown. Here, we used vimentin knockout mice (Vim(-/-)) and an experimental model of acute renal injury (30-min bilateral renal ischemia) to explore the role of vimentin. Bilateral renal ischemia induced an initial phase of acute tubular necrosis that did not require vimentin and was similar, in terms of morphological and functional changes, in Vim(+/+) and Vim(-/-) mice. However, vimentin was essential to favor Na-glucose cotransporter 1 localization to brush-border membranes and to restore Na-glucose cotransport activity in regenerating tubular cells. We show that the effect of vimentin inactivation is specific and results in persistent glucosuria. We propose that vimentin is part of a structural network that favors carrier localization to plasma membranes to restore transport activity in injured kidneys.

  9. Low thyroid function is not associated with an accelerated deterioration in renal function.

    PubMed

    Meuwese, Christiaan L; van Diepen, Merel; Cappola, Anne R; Sarnak, Mark J; Shlipak, Michael G; Bauer, Douglas C; Fried, Linda P; Iacoviello, Massimo; Vaes, Bert; Degryse, Jean; Khaw, Kay-Tee; Luben, Robert N; Åsvold, Bjørn O; Bjøro, Trine; Vatten, Lars J; de Craen, Anton J M; Trompet, Stella; Iervasi, Giorgio; Molinaro, Sabrina; Ceresini, Graziano; Ferrucci, Luigi; Dullaart, Robin P F; Bakker, Stephan J L; Jukema, J Wouter; Kearney, Patricia M; Stott, David J; Peeters, Robin P; Franco, Oscar H; Völzke, Henry; Walsh, John P; Bremner, Alexandra; Sgarbi, José A; Maciel, Rui M B; Imaizumi, Misa; Ohishi, Waka; Dekker, Friedo W; Rodondi, Nicolas; Gussekloo, Jacobijn; den Elzen, Wendy P J

    2018-04-18

    Chronic kidney disease (CKD) is frequently accompanied by thyroid hormone dysfunction. It is currently unclear whether these alterations are the cause or consequence of CKD. This study aimed at studying the effect of thyroid hormone alterations on renal function in cross-sectional and longitudinal analyses in individuals from all adult age groups. Individual participant data (IPD) from 16 independent cohorts having measured thyroid stimulating hormone, free thyroxine levels and creatinine levels were included. Thyroid hormone status was defined using clinical cut-off values. Estimated glomerular filtration rates (eGFR) were calculated by means of the four-variable Modification of Diet in Renal Disease (MDRD) formula. For this IPD meta-analysis, eGFR at baseline and eGFR change during follow-up were computed by fitting linear regression models and linear mixed models in each cohort separately. Effect estimates were pooled using random effects models. A total of 72 856 individuals from 16 different cohorts were included. At baseline, individuals with overt hypothyroidism (n = 704) and subclinical hypothyroidism (n = 3356) had a average (95% confidence interval) -4.07 (-6.37 to -1.78) and -2.40 (-3.78 to -1.02) mL/min/1.73 m2 lower eGFR as compared with euthyroid subjects (n = 66 542). In (subclinical) hyperthyroid subjects (n = 2254), average eGFR was 3.01 (1.50-4.52) mL/min/1.73 m2 higher. During 329 713 patient years of follow-up, eGFR did not decline more rapidly in individuals with low thyroid function compared with individuals with normal thyroid function. Low thyroid function is not associated with a deterioration of renal function. The cross-sectional association may be explained by renal dysfunction causing thyroid hormone alterations.

  10. [Injectable hydrogel functionalised with thrombocyte-rich solution and microparticles for accelerated cartilage regeneration].

    PubMed

    Rampichová, M; Buzgo, M; Křížková, B; Prosecká, E; Pouzar, M; Štrajtová, L

    2013-01-01

    Articular cartilage defects arise due to injury or osteochondral disease such as osteonecrosis or osteochondritis dissecans. In adult patients cartilage has minimal ability to repair itself and the lesions develop into degenerative arthritis. Overcoming the low regenerative capacity of the cartilage cells and the Hayflick limit poses a challenge for the therapy of osteochondral defects. Composite scaffolds with appropriate biomechanical properties combined with a suitable blend of proliferation and differentiation factors could be a solution. The aim of this in vitro study was to develop a novel functionalised hydrogel with an integrated drug delivery system stimulating articular cartilage regeneration. Injectable collagen/ hyaluronic acid/fibrin composite hydrogel was mixed with nanofibre-based microparticles. These were loaded with ascorbic acid and dexamethasone. In addition, the effect of thrombocyte-rich solution (TRS) was studied. The gels seeded with mesenchymal stem cells (MSCs) were cultivated for 14 days. The viability, proliferation and morphology of the cells were evaluated using molecular and microscopic methods. Scaffold degradation was also assessed. The cultivation study showed that MSCs remained viable in all experimental groups, which indicated good biocompatibility of the gel. However, the number of cells in the groups enriched with microparticles was lower than in the other groups. On the other hand, confocal microscopy showed higher cell viability and rounded morphology of the cells, which can be associated with chodrogenic differentiation. The scaffolds containing microparticles showed significantly higher stability during the 14-day experiment. Our results suggest that the addition of microparticles to the scaffold improved cell differentiation into the chondrogenic lineage, resulting in a lower proliferation rate. Cell viability was better in the groups enriched with microparticles that served as an efficient drug delivery system. In

  11. Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity.

    PubMed

    Leibinger, Marco; Andreadaki, Anastasia; Golla, Renate; Levin, Evgeny; Hilla, Alexander M; Diekmann, Heike; Fischer, Dietmar

    2017-07-03

    Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3 S/A knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2 T/A ). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2 T/A in GSK3 S/A RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.

  12. Renal arterial resistive index is associated with severe histological changes and poor renal outcome during chronic kidney disease

    PubMed Central

    2012-01-01

    regression, RI≥0.65 was associated with accelerated renal function decline independently of baseline eGFR and proteinuria/creatininuria ratio (OR=13.04 [1.984-85.727], p = 0.0075). Sensitivity, specificity, predictive positive and predictive negative values of RI ≥ 0.65 for renal function decline at 18 months were respectively 77%, 86%, 71% and 82%. Conclusions Our results suggest that RI ≥ 0.65 is associated with severe interstitial fibrosis and arteriosclerosis and renal function decline. Thus, RI may contribute to identify patients at high risk of ESRD who may benefit from nephroprotective treatments. PMID:23098365

  13. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    PubMed

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-06-01

    The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.

  14. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  15. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  16. Platelet rich fibrin: a new paradigm in periodontal regeneration.

    PubMed

    Kumar, R Vinaya; Shubhashini, N

    2013-09-01

    Among the great challenges facing clinical research is the development of bioactive surgical additives regulating inflammation and increasing healing. Although the use of fibrin adhesives and platelet-rich plasma (PRP) is well documented, they have their own limitations. Hence, reconstructive dental surgeons are looking for an "edge" that jump starts the healing process to maximize predictability as well as the volume of regenerated bone. Overcoming the restrictions related to the reimplantation of blood-derived products, a new family of platelet concentrate, which is neither a fibrin glue nor a classical platelet concentrate, was developed in France. This second generation platelet concentrate called platelet-rich fibrin (PRF), has been widely used to accelerate soft and hard tissue healing. Its advantages over the better known PRP include ease of preparation/application, minimal expense, and lack of biochemical modification (no bovine thrombin or anticoagulant is required). This article serves as an introduction to the PRF "concept" and its potential clinical applications with emphasis on periodontal regeneration.

  17. Exosome and Microvesicle-Enriched Fractions Isolated from Mesenchymal Stem Cells by Gradient Separation Showed Different Molecular Signatures and Functions on Renal Tubular Epithelial Cells.

    PubMed

    Collino, Federica; Pomatto, Margherita; Bruno, Stefania; Lindoso, Rafael Soares; Tapparo, Marta; Sicheng, Wen; Quesenberry, Peter; Camussi, Giovanni

    2017-04-01

    Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.

  18. Perspectives on human regeneration.

    PubMed

    Stark, James F

    2018-06-12

    Regeneration is a concept that has fascinated humans for centuries. Whether we have been trying to bring things back to life, extract additional resources from the world, or remodel our living spaces-domestic and urban-it is often presented as an unproblematic force for good. But what exactly does it mean to regenerate a body, mind or space? This paper, which introduces a collection of contributions on the theme of human regeneration, explores the limits and possibilities of regeneration as a conceptual tool for understanding the biological realm. What does it mean to be regenerated? How can a scholarly focus on this concept enrich our histories of bodies, ageing, disability and science, technology and medicine? As a secondary goal, I identify two distinct aspects of regeneration-'hard' and 'soft' regeneration-which concern the medical and social elements of regeneration respectively. By recognising that everything from cosmetics and fictions to prosthetics and organs grown in vitro display a combination of 'hard' and 'soft' elements, we are better placed to understand that the biological and social must be considered in consort for us to fully appreciate the meanings and practices that underpin multiple forms of human regeneration.

  19. Persistent Low Level of Osterix Accelerates Interleukin-6 Production and Impairs Regeneration after Tissue Injury

    PubMed Central

    Baek, Wook-Young; Park, Seung-Yoon; Kim, Yeo Hyang; Lee, Min-A; Kwon, Tae-Hwan; Park, Kwon-Moo; de Crombrugghe, Benoit; Kim, Jung-Eun

    2013-01-01

    Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state. PMID:23922826

  20. Regeneration of injured skeletal muscle after the injury

    PubMed Central

    Järvinen, Tero AH; Järvinen, Markku; Kalimo, Hannu

    2013-01-01

    Summary Muscle injuries are one of the most common traumas occurring in sports. Despite their clinical importance, few clinical studies exist on the treatment of these traumas. Thus, the current treatment recommendations for muscle injuries have either been derived from experimental studies or been tested only empirically. Although non operative treatment should almost always be the 1st choice as it results in good functional outcomes in the majority of athletes with muscle injuries, the consequences of failed treatment can be very dramatic, possibly postponing an athlete’s return to sports for weeks or even months. Moreover, the recognition of some basic principles of skeletal muscle regeneration and healing processes can considerably help in both avoiding the imminent dangers and accelerating the return to competition. Accordingly, in this review, the authors have summarized the prevailing understanding on the biology of muscle regeneration in hopes of extending these findings to clinical practice in an attempt to propose an evidence-based approach for the diagnosis and optimal treatment of skeletal muscle injuries. PMID:24596699

  1. The effect of hypergravity on the lens, cornea and tail regeneration in Urodela

    NASA Astrophysics Data System (ADS)

    Grigoryan, E. N.; Dvorochkin, N.; Poplinskaya, V. A.; Yousuf, R.; Radugina, E. A.; Almeida, E. A.

    2017-09-01

    release by the neural retina and FGFR2 expression in the iris and other tissues could accelerate lens proliferation whereas its delay could be caused by retinal detachment, which may explain compromised regeneration at 2 g. Hypergravity (both 1 g and 2 g) increased tissue growth compared to aquarium control (as measured by regenerate volume) and altered the shape of tail regenerates - they became curved downwards. The experimental results emphasize the important and versatile role gravity plays in tissue regeneration. They also suggest that, when considering hypergravity as a countermeasure that can be used in future space missions, its potential impact on the eye should not be ignored.

  2. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  3. [Atheroembolism renal disease: diagnosis and etiologic factors].

    PubMed

    Granata, A; Insalaco, M; Di Pietro, F; Di Rosa, S; Romano, G; Scuderi, R

    2012-07-01

    Atheromatous renal disease is the major cause of renal insufficiency in the elderly, and cholesterol embolism is a manifestation of this disease. Cholesterol embolism occurs in patients suffering from diffuse erosive atherosclerosis, usually after triggering causes, such as aortic surgery, arterial invasive procedures (angiography, left heart catheterization and coronary angioplasty) and anticoagulant or thrombolytic therapy. It is characterized by occlusion of small arteries with cholesterol emboli deriving from eroded atheromatous plaques of the aorta or large feeder arteries. The proximity of the kidneys to the abdominal aorta and the large renal blood supply make the kidney a frequent target organ for cholesterol atheroembolism. The exact incidence of atheroembolic renal disease (AERD) is not known. The reported incidence AERD varied in the literature because of the differences in study design and the different criteria used for making the diagnosis. Retrospective data derived from autopsy or biopsy studies may exaggerate the frequency by including many subclinical cases. Clinical observations that are based on a short duration of follow-up after an invasive vascular procedure and the infrequency of the confirmatory renal biopsies can lead to an underestimation of the true incidence of AERD. The initial signs and symptoms in patients diagnosed with cholesterol embolism were blue toes syndrome, livedo reticularis, gangrene, leg, toe or foot pain, abdominal pain and flank or back pain, gross haematuria, accelerated hypertension and renal failure. Cholesterol embolism may also be associated with fever, increased erythrocyte sedimentation rate and eosinophilia. Thus, in the cases of spontaneous cholesterol embolism, differential diagnosis includes, polyarteritis nodosa, allergic vasculitis and subacute bacterial endocarditis. Skin and renal biopsy specimens are the best sample for histologic diagnosis. There is, at present, no pharmacological treatments shown to be

  4. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  5. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo.

    PubMed

    Santos, Daniel; Giudetti, Guido; Micera, Silvestro; Navarro, Xavier; Del Valle, Jaume

    2016-04-01

    Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls. ELISA, SEM, UV/visible light microscopy, organotypic cultures of DRG explants and spinal cord slices were used to characterize MP properties and the bioactivity of the released NTFs. Results of organotypic cultures showed that encapsulated NTFs maintain longer bioactivity and enhance neurite regeneration of both sensory and motor neurons compared with free NTFs. For in vivo assays, the rat sciatic nerve was transected and repaired with a silicone tube filled with collagen gel or collagen mixed with PBS encapsulated MPs (control groups) and with free or encapsulated NGF, BDNF, GDNF or FGF-2. After 20 days, a retrotracer was applied to the regenerated nerve to quantify motor and sensory axonal regeneration. NTF encapsulation in MPs improved regeneration of both motor and sensory axons, as evidenced by increased numbers of retrolabeled neurons. Hence, our results show that slow release of NTFs with PLGA MP enhance nerve regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms

  7. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    PubMed Central

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395

  8. Accelerated recovery from nephrotic syndrome with acute renal failure by double filtration plasmapheresis in a patient with lupus podocytopathy.

    PubMed

    Iwazu, Yoshitaka; Akimoto, Tetsu; Izawa, Sayoko; Inoue, Makoto; Muto, Shigeaki; Ando, Yasuhiro; Iwazu, Kana; Fukushima, Noriyoshi; Yumura, Wako; Kusano, Eiji

    2012-06-01

    We describe a case of an adult female who presented with nephrotic syndrome. She was diagnosed with systemic lupus erythematosus with serum antinuclear antibodies, leucopenia with lymphopenia, butterfly erythema, and nephrotic syndrome. Renal biopsy revealed normal glomeruli with diffuse effacement of the foot processes, consistent with lupus podocytopathy. Although human albumin replacement was performed initially, acute renal failure developed rapidly. Therefore, she was treated with double filtration plasmapheresis (DFPP) in addition to oral steroid. After steroid therapy combined with DFPP, the renal function and proteinuria improved rapidly. Although the impact of DFPP on the treatment of lupus nephritis remains to be delineated, our observations suggest that DFPP in lupus podocytopathy played a pivotal role in facilitating the early recovery from renal injuries. Because of the rapid improvement of renal function without any change in body weight by DFPP, acute renal failure in the setting of lupus podocytopathy might contribute to an alternative pathophysiological factor for the diminished glomerular filtration rate, similar to that observed in the setting of idiopathic minimal change glomerulopathy.

  9. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  10. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected].

    PubMed

    Liang, Jin; Wang, Dongmei; Renaud, Gabriel; Wolfsberg, Tyra G; Wilson, Alexander F; Burgess, Shawn M

    2012-08-01

    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.

  11. Regeneration methods

    Treesearch

    James P. Barnett; James B. Baker

    1991-01-01

    Southern pines can be regenerated naturally, by clearcutting, seedtree, shelterwood, or selection reproduction culling methods, or artificially, by direct seeding or by planting either container or bareroot seedlings. All regeneration methods have inherent advantages: and disadvantages; thus, land managers must consider many factors before deciding on a specific method...

  12. Mental Regeneration.

    ERIC Educational Resources Information Center

    Langer, Jonas

    Techniques for developing the potential of culturally deprived people cannot be developed without more knowledge of the basic mechanisms of mental change. Psysiological generation and regeneration are both apparently governed by the same set of mechanisms. Regeneration is possible only when a part of the damaged structure is left, and these…

  13. Sclerostin-neutralizing Antibody Enhances Bone Regeneration around Oral Implants.

    PubMed

    Yu, Shan Huey; Hao, Jie; Fretwurst, Tobias; Liu, Min; Kostenuik, Paul; Giannobile, William V; Jin, Qiming

    2018-06-19

    Dental implants have been an important option for the replacement of missing teeth. A major clinical challenge is how best to accelerate bone regeneration and reduce the healing time for functional restoration after implant placement. Monoclonal antibody against sclerostin (Scl-Ab) has been shown to enhance alveolar bone formation and fracture repair. The aim of this study was to investigate the effects of systemic administration of Scl-Ab on dental implant osseointegration and bone regeneration in an experimental alveolar ridge tooth extraction model. To investigate the effects of Scl-Ab on bone regeneration and dental implant osseointegration, an experimental alveolar bone osteotomy rat model was adopted. One month after the extraction of maxillary right first molars, osteotomy defects were created at the coronal aspect of each of the extraction sites, and 1x2 mm custom titanium implants were pressed-fitted into the osteotomies. Coincident with initial implant placement, Scl-Ab or vehicle was administered subcutaneously twice weekly at a dose of 25 mg/kg for 10-28 days and compared to a vehicle control. Rats were sacrificed 10, 14 and 28d after surgery, and maxillae were harvested and analyzed by micro-computed tomography (microCT), histology and histomorphometry. MicroCT analysis demonstrated that maxillary bone volume fraction was approximately 2 to 2.5-fold greater in Scl-Ab treated animals as compared to vehicle alone at days 14 and 28. Consistent with those findings, 2-D bone fill percentage within the coronal osteotomy sites were highest in Scl-Ab treatment groups at 28d. In addition, bone-implant contact at 28d was approximately 2-fold greater in the Scl-Ab group compared to vehicle controls. These results indicate that systemic Scl-Ab administration enhances osseointegration and bone regeneration around dental implants. This approach offers potential as a treatment modality for patients with low bone mass or bone defects to achieve more predictable bone

  14. The response of two very young naturally regenerated upland hardwood stands to weed control and fertilization

    Treesearch

    Jamie L. Schuler; Daniel J. Robison

    2006-01-01

    Two newly regenerated hardwood forest stands in the Piedmont of North Carolina were examined to determine the potential to accelerate productivity in young stands. Factorial combinations of fertilization and vegetation control treatments were applied to 1-year-old and 3-year-old stands. After three growing seasons, fertilization improved growth rates at both sites. The...

  15. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less

  16. Role of Schwann cells in the regeneration of penile and peripheral nerves

    PubMed Central

    Wang, Lin; Sanford, Melissa T; Xin, Zhongcheng; Lin, Guiting; Lue, Tom F

    2015-01-01

    Schwann cells (SCs) are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED). Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1) the origin and development of SCs in the peripheral and penile nerve system; (2) Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3) how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4) and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED. PMID:25999359

  17. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    PubMed

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  18. Perspectives on human regeneration

    PubMed Central

    Stark, James F.

    2018-01-01

    Regeneration is a concept that has fascinated humans for centuries. Whether we have been trying to bring things back to life, extract additional resources from the world, or remodel our living spaces—domestic and urban—it is often presented as an unproblematic force for good. But what exactly does it mean to regenerate a body, mind or space? This paper, which introduces a collection of contributions on the theme of human regeneration, explores the limits and possibilities of regeneration as a conceptual tool for understanding the biological realm. What does it mean to be regenerated? How can a scholarly focus on this concept enrich our histories of bodies, ageing, disability and science, technology and medicine? As a secondary goal, I identify two distinct aspects of regeneration—'hard' and 'soft' regeneration—which concern the medical and social elements of regeneration respectively. By recognising that everything from cosmetics and fictions to prosthetics and organs grown in vitro display a combination of 'hard' and 'soft' elements, we are better placed to understand that the biological and social must be considered in consort for us to fully appreciate the meanings and practices that underpin multiple forms of human regeneration. PMID:29910957

  19. Alternative cells for regeneration.

    PubMed

    Slack, Jonathan M W

    2012-04-17

    Normally, in fish fin regeneration, bone regenerates from bone. But what happens when there is no bone? Singh et al. (2012) show in this issue of Developmental Cell that the bony rays still regenerate from an alternative cell source. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    PubMed Central

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  1. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    PubMed

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    PubMed

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  3. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  4. Principles of natural regeneration

    Treesearch

    1989-01-01

    To maximize chances of successful regeneration, carefully consider the following regeneration principles. Harvesting alone does not guarantee that the desired species will be established. The conditions required for the initial establishment and early growth of the desired species largely determine what regeneration method you should use and any supplemental treatments...

  5. Uncultured undifferentiated adipose-derived nucleated cell fractions combined with inside-out artery graft accelerate sciatic nerve regeneration and functional recovery.

    PubMed

    Mohammadi, R; Asadollahi, A; Amini, K

    2014-09-01

    Effects of transplantation of adipose-derived nucleated cell fractions (ADNCs) on sciatic nerve regeneration were studied. A 10-mm sciatic nerve defect was bridged using artery graft filled with ADNCs. In control group, artery graft was filled with saline alone. Regenerated nerve fibres were studied for 12 weeks. In sham-operated group, sciatic nerve was only exposed and manipulated. Behavioural and functional studies confirmed faster recovery of regenerated axons in ADNCs transplanted animals than in control group (P<0.05). At the end of study period, animals in ADNCs transplanted group achieved a sciatic functional index (SFI) value of -31.6 ± -3.14, whereas in control group a value of -42.5 ± -3.7 was found. Gastrocnemius muscle mass in ADNCs transplanted animals was found to be significantly higher than that in control group (P=0.001). Morphometric indices of regenerated fibres showed the number and diameter of myelinated fibres to be significantly higher in ADNCs transplanted animals than in control group (P=0.001). On immunohistochemistry, there was more positive staining of S100 in the ADNCs transplanted animals than in control group. ADNCs transplantation into an artery graft could be considered a readily accessible technique that improves functional recovery of sciatic nerve. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved

  7. Effect of Resorbable Collagen Plug on Bone Regeneration in Rat Critical-Size Defect Model.

    PubMed

    Liu, Weiqing; Kang, Ning; Dong, Yuliang; Guo, Yuchen; Zhao, Dan; Zhang, Shiwen; Zhou, Liyan; Seriwatanachai, Dutmanee; Liang, Xing; Yuan, Quan

    2016-04-01

    The purpose of this investigation was to examine the effect of resorbable collagen plug (RCP) on bone regeneration in rat calvarial critical-size defects. About 5-mm-diameter calvarial defects were created in forty 12-week-old male Sprague-Dawley rats and implanted with or without RCP. Animals were killed at 1, 2, 4, and 8 weeks postoperatively. After being killed, specimens were collected and subjected to micro-computed tomography (μCT) and histological analysis. The μCT showed a significant increase of newly formed bone volume/tissue volume in RCP-implanted defect compared with controls at all designated time points. After 8 weeks, the defects implanted with RCP displayed almost complete closure. Hematoxylin and eosin staining of the decalcified sections confirmed these observations and evidenced active bone regeneration in the RCP group. In addition, Masson's trichrome staining demonstrated that RCP implantation accelerated the process of collagen maturation. The RCP enhances bone regeneration in rat critical-size cranial defects, which suggest it might be a desired material for bone defect repair.

  8. Axon Regeneration in C. elegans: worming our way to mechanisms of axon regeneration

    PubMed Central

    Byrne, Alexandra B.; Hammarlund, Marc

    2016-01-01

    How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans. PMID:27569538

  9. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability. © 2016 American Heart Association, Inc.

  10. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Transforming growth factor-beta1 accelerates resorption of a calcium carbonate biomaterial in periodontal defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated

  12. Link Protein N-Terminal Peptide as a Potential Stimulating Factor for Stem Cell-Based Cartilage Regeneration

    PubMed Central

    Xiong, Zekang; Lin, Hui; Zhao, Lei; Li, Zhiliang; Wang, Zhe; Peggrem, Shaun; Xia, Zhidao

    2018-01-01

    Background Link protein N-terminal peptide (LPP) in extracellular matrix (ECM) of cartilage could induce synthesis of proteoglycans and collagen type II in cartilaginous cells. Cartilage stem/progenitor cells (CSPCs), the endogenous stem cells in cartilage, are important in cartilage degeneration and regeneration. We hypothesized that LPP could be a stimulator for stem cell-based cartilage regeneration by affecting biological behaviors of CSPC. Methods CSPCs were isolated from rat knee cartilage. We evaluated the promoting effect of LPP on proliferation, migration, and chondrogenic differentiation of CSPCs. The chondrogenic differentiation-related genes and proteins were quantitated. Three-dimensional culture of CSPC was conducted in the presence of TGF-β3 or LPP, and the harvested pellets were analyzed to assess the function of LPP on cartilage regeneration. Results LPP stimulated the proliferation of CSPC and accelerated the site-directional migration. Higher expression of SOX9, collagen II, and aggrecan were demonstrated in CSPCs treated with LPP. The pellets treated with LPP showed more distinct characteristics of chondroid differentiation than those with TGF-β3. Conclusion LPP showed application prospect in cartilage regeneration medicine by stimulating proliferation, migration, and chondrogenic differentiation of cartilage stem/progenitor cells. PMID:29531532

  13. Cochlear hair cell regeneration after noise-induced hearing loss: does regeneration follow development?

    PubMed Central

    Zheng, Fei; Zuo, Jian

    2017-01-01

    Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss. PMID:28034617

  14. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    PubMed

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  16. Harvest survivability of oak advanced regeneration

    Treesearch

    Jeff Stringer

    2005-01-01

    Natural regeneration of oak requires the occurrence of advance regeneration and/or stems capable of stump sprouting. These stems must be present before harvest and adequate numbers must survive harvest for oaks to successfully regenerate. Regeneration predictions are based on pre-harvest advance regeneration inventories. However, the use of these inventories does not...

  17. Carbon Sorption Cryogenic Regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Britcliffe, Michael J.

    1989-01-01

    Liquid-helium refrigerator includes regenerator filled with carbon sorbent made from Saran polyvinylidene chloride. Material results in lower operating temperatures and longer times between maintenance than comparable refrigerators containing other regenerators. Sorbent material machined to various configurations to fit inside cylindrical regenerator can. Configuration chosen with regard to heat capacity, pressure drop, and rate of sorption.

  18. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.

    PubMed

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-28

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  19. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  20. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy

    PubMed Central

    Barakat-Walter, I.; Kraftsik, R.

    2018-01-01

    Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells. PMID:29722302

  1. A novel role of HIF-1α/PROX-1/LYVE-1 axis on tissue regeneration after renal ischaemia/reperfusion in mice.

    PubMed

    Meng, Fanwei

    2018-04-10

    Renal ischaemia reperfusion (I/R) is a common clinical condition with a high morbidity and mortality rate. To date, I/R-induced renal injury remains an ineffective treatment. We hypothesis that angiogenesis and lymphangiogenesis markers, prospero homeobox-1 (PROX-1) and lymphatic endothelial hyaluronan receptor-1 (LYVE-1), are critical during I/R. Kunming mice were subjected to I/R and observed for the following eight consecutive days. Pathology analysis and protein distribution were detected by H&E staining, immunohistochemistry and immunofluorescence confocal analysis. After I/R treatment, renal pathology was changed. HIF-1α was induced in the early stage and colocalisation with PROX-1 mainly in the renal tubular region, whereas PROX-1 and LYVE-1 were colocalised in the glomerulus of the endothelial region. In this study, we revealed HIF-1α/PROX-1/LVYE-1 axis dynamic changes in different regions after I/R and demonstrated for the first time it activates during I/R repair.

  2. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration.

    PubMed

    Liu, Lei; Fu, Yuanyuan; Zhu, Fang; Mu, Changkao; Li, Ronghua; Song, Weiwei; Shi, Ce; Ye, Yangfang; Wang, Chunlin

    2018-06-05

    The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  4. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  5. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  6. Neural Regeneration in Caenorhabditis elegans

    PubMed Central

    El Bejjani, Rachid; Hammarlund, Marc

    2013-01-01

    Axon regeneration is a medically relevant process that can repair damaged neurons. This review describes current progress in understanding axon regeneration in the model organism Caenorhabditis elegans. Factors that regulate axon regeneration in C. elegans have broadly similar roles in vertebrate neurons. This means that using C. elegans as a tool to leverage discovery is a legitimate strategy for identifying conserved mechanisms of axon regeneration. PMID:22974301

  7. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    PubMed Central

    Rodriguez, Isaac A.; Growney Kalaf, Emily A.; Bowlin, Gary L.; Sell, Scott A.

    2014-01-01

    Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP). PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use. PMID:25050347

  8. The CXCR4/SDF1 Axis Improves Muscle Regeneration Through MMP-10 Activity

    PubMed Central

    Bobadilla, Miriam; Sainz, Neira; Abizanda, Gloria; Orbe, Josune; Rodriguez, José Antonio; Páramo, José Antonio; Prósper, Felipe

    2014-01-01

    The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration. PMID:24548137

  9. Evaluation of Cameroonian plants towards experimental bone regeneration.

    PubMed

    Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Siddiqui, Jawed Akhtar; Tewari, Deepshikha; Nagar, Geet K; Tiwari, Satish C; Theophile, Dimo; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-05-07

    Elephantopus mollis, Spilanthes africana, Urena lobata, Momordica multiflora, Asystasia gangetica and Brillantaisia ovariensis are used in Cameroonian traditional medicine for the treatment of bone diseases and fracture repair. The aim of this study was to evaluate the effect of ethanolic extracts of six Cameroonian medicinal plants on bone regeneration following bone and marrow injury. Ethanol extract of Cameroonian medicinal plants were administered (each extract at 250, 500 and 750mg/kg doses) orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of fractured bone was performed to evaluate bone regeneration (calcein labeling). Only active plant extracts were used for further experiments. Thus, callus was analyzed by microcomputed tomography. Osteogenic effects of the extracts were evaluated by assessing mineralized nodules formation of bone marrow stromal cells and osteoblast recruitment at drill hole site by immunohistochemistry. Ethanolic extract of the leaves and twigs of Elephantopus mollis (EM) and whole plant of Spilanthes africana (SA) dose-dependently stimulated bone regeneration at the drill hole site. EM at 250 and 750mg/kg doses and SA at 750mg/kg dose significantly increased mineral deposition compared to controls. Both extracts at 500 and 750mg/kg doses improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. EM and SA extracts increased the formation of mineralized nodules from the bone marrow stromal cells. In addition, EM and SA extracts increased osteoblast recruitment at the drill hole site evident from increased Runx-2 positive cells following their treatments compared to control

  10. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    PubMed Central

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  11. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  12. [Renal length measured by ultrasound in adult mexican population].

    PubMed

    Oyuela-Carrasco, J; Rodríguez-Castellanos, F; Kimura, E; Delgado-Hernández, R; Herrera-Félix, J P

    2009-01-01

    Renal length estimation by ultrasound is an important parameter in clinical evaluation of kidney disease and healthy donors. Changes in renal volume may be a sign of kidney disease. Correct interpretation of renal length requires the knowledge of normal limits, these have not been described for Latin American population. To describe normal renal length (RL) by ultrasonography in a group of Mexican adults. Ultrasound measure of RL in 153 healthy Mexican adults stratified by age. Describe the association of RL to several anthropometric variables. A total of 77 males and 76 females were scanner. The average age for the group was 44.12 +/- 15.44 years. The mean weight, body mass index (BMI) and height were 68.87 +/- 11.69 Kg, 26.77 +/- 3.82 kg/m2 and 160 +/- 8.62 cm respectively. Dividing the population by gender, showed a height of 166 +/- 6.15 cm for males and 154.7 +/- 5.97 cm for females (p =0.000). Left renal length (LRL) in the whole group was 105.8 +/- 7.56 mm and right renal length (RRL) was 104.3 +/- 6.45 mm (p = 0.000.) The LRL for males was 107.16 +/- 6.97 mm and for females was 104.6 +/- 7.96 mm. The average RRL for males was 105.74 +/- 5.74 mm and for females 102.99 +/- 6.85 mm (p = 0.008.) We noted that RL decreased with age and the rate of decline accelerates alter 60 years of age. Both lengths correlated significantly and positively with weight, BMI and height. The RL was significantly larger in males than in females in both kidneys (p = 0.036) in this Mexican population. Renal length declines after 60 years of age and specially after 70 years.

  13. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  14. Improvement of In Vitro Three‐Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor

    PubMed Central

    Chen, Jie; Yuan, Zhaoyuan; Liu, Yu; Zheng, Rui; Dai, Yao; Tao, Ran; Xia, Huitang; Liu, Hairong; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin

    2016-01-01

    Abstract In vitro three‐dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure‐transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure‐transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long‐term (8 weeks) culture under high HP (5–10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross‐linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982–991 PMID:28297584

  15. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin.

    PubMed

    He, Liang; Hao, Lili; Fu, Xin; Huang, Mingshu; Li, Rui

    2015-04-11

    complement to existing diabetic models for pathophysiological studies in early acute and chronic kidney disease, especially hyperlipidemia. These data suggest that both severe hypertriglyceridemia and hypercholesterolemia can accelerate renal injury in the early development of T1DM.

  16. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator.

    PubMed

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub M; Abu-Heiba, Ahmad

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizations has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. The DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.

  17. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  18. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  19. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  20. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis

    NASA Astrophysics Data System (ADS)

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-03-01

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.

  1. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Chemical genetics and regeneration.

    PubMed

    Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S

    2015-01-01

    Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.

  3. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice.

    PubMed

    Hayashi, Hiromitsu; Sakai, Keiko; Baba, Hideo; Sakai, Takao

    2012-05-01

    The matricellular protein, thrombospondin-1 (TSP-1), is prominently expressed during tissue repair. TSP-1 binds to matrix components, proteases, cytokines, and growth factors and activates intracellular signals through its multiple domains. TSP-1 converts latent transforming growth factor-beta1 (TGF-β1) complexes into their biologically active form. TGF-β plays significant roles in cell-cycle regulation, modulation of differentiation, and induction of apoptosis. Although TGF-β1 is a major inhibitor of proliferation in cultured hepatocytes, the functional requirement of TGF-β1 during liver regeneration remains to be defined in vivo. We generated a TSP-1-deficient mouse model of a partial hepatectomy (PH) and explored TSP-1 induction, progression of liver regeneration, and TGF-β-mediated signaling during the repair process after hepatectomy. We show here that TSP-1-mediated TGF-β1 activation plays an important role in suppressing hepatocyte proliferation. TSP-1 expression was induced in endothelial cells (ECs) as an immediate early gene in response to PH. TSP-1 deficiency resulted in significantly reduced TGF-β/Smad signaling and accelerated hepatocyte proliferation through down-regulation of p21 protein expression. TSP-1 induced in ECs by reactive oxygen species (ROS) modulated TGF-β/Smad signaling and proliferation in hepatocytes in vitro, suggesting that the immediately and transiently produced ROS in the regenerating liver were the responsible factor for TSP-1 induction. We have identified TSP-1 as an inhibitory element in regulating liver regeneration by TGF-β1 activation. Our work defines TSP-1 as a novel immediate early gene that could be a potential therapeutic target to accelerate liver regeneration. Copyright © 2011 American Association for the Study of Liver Diseases.

  4. Upland Oak Regeneration and Management

    Treesearch

    David L. Loftis

    2004-01-01

    In oak-dominated plant communities and in other communities where oaks are important, the keys to natural regeneration of upland oak components are (1) to ensure presence of competitive regeneration sources, and (2) to provide timely, sufficient release of these sources. Regeneration sources vary significantly among different types of plant communities and disturbance...

  5. Inhibiting poly(ADP-ribosylation) improves axon regeneration.

    PubMed

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-10-04

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.

  6. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  7. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    EPA Pesticide Factsheets

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  8. Zebrafish heart regeneration: 15 years of discoveries

    PubMed Central

    González‐Rosa, Juan Manuel; Burns, Caroline E.

    2017-01-01

    Abstract Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans? PMID:28979788

  9. Elevated serum concentration of cardiotoxic lipid peroxidation products in chronic renal failure in relation to severity of renal anemia.

    PubMed

    Siems, W; Carluccio, F; Grune, T; Jakstadt, M; Quast, S; Hampl, H; Sommerburg, O

    2002-07-01

    Patients with end-stage renal disease undergoing hemodialysis (HD) are exposed to oxidative stress. Increased levels of malondialdehyde (MDA) and 4-hydroxylnonenal (HNE) were found in plasma of uremic patients indicating accelerated lipid peroxidation (LPO) as a consequence of multiple pathogenetic factors. The catabolism and action of those products was already intensively studied. As highly reactive metabolites they are able to bind to proteins, nucleic acids, and other molecules. Doing so, they exert molecular signal effects in cells and are able to exacerbate tissue and organ damage, e.g. cardiotoxic effects. Since renal anemia was shown to promote oxidative stress as well, the aim of our investigation was to examine its role in HD patients. Therefore, two groups of HD patients were investigated (group I Hb < 10 g/dl, group II Hb > 10 g/dl) and serum concentrations of MDA, HNE, and of protein carbonyls, a marker for protein oxidation, were determined. All HD patients had significantly higher levels of the LPO products MDA and HNE compared with controls. However, group I patients showed higher MDA and HNE concentrations compared to group II patients. The same result could be seen for protein carbonyls. During HD concentration of both LPO products decreased. However, this was not the case for protein carbonyls. These results lead to the conclusion that optimized correction of the renal anemia may result in a significant reduction of oxidative stress and therefore in the reduction of organ tissue damage. In this way correction of renal anemia will reduce the cardiovascular risk and comorbidity of HD patients improving their prognosis.

  10. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice.

    PubMed

    Liu, Jie; Zhang, Qing-Yu; Yu, Li-Ming; Liu, Bin; Li, Ming-Yi; Zhu, Run-Zhi

    2015-05-14

    To investigate the hepatoprotective effects of phycocyanobilin (PCB) in reducing hepatic injury and accelerating hepatocyte proliferation following carbon tetrachloride (CCl4) treatment. C57BL/6 mice were orally administered PCB 100 mg/kg for 4 d after CCl4 injection, and then the serum and liver tissue of the mice were collected at days 1, 2, 3, 5 and 7 after CCl4 treatment. A series of evaluations were performed to identify the curative effects on liver injury and recovery. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and superoxide dismutase (SOD) were detected to indirectly assess the anti-inflammatory effects of PCB. Meanwhile, we detected the expressions of hepatocyte growth factor, transforming growth factor alpha (TGF-α), TGF-β, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), the factors which are associated with inflammation and liver regeneration. The protein expressions of proliferating cell nuclear antigen (PCNA), TNF-α and cytochrome C were detected by western blot. Furthermore, the survival rates were analyzed of mice which were administered a lethal dose of CCl4 (2.6 mg/kg) with or without PCB. In our research, PCB showed a strongly anti-inflammatory effect on CCl4-induced liver injury in mice. The ALT was significantly decreased after CCl4 treatment from day 1 (P < 0.01) and the AST was significantly decreased from day 2 (P < 0.001). Both albumin and liver SOD were increased from day 2 (P < 0.001 and P < 0.01), but serum SOD levels did not show a significant increase (P > 0.05). PCB protected the structure of liver from the injury by CCl4. TUNEL assay showed that PCB dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (101.0 ± 25.4 vs 25.7 ± 6.4, P < 0.01). The result of western blotting showed that PCB could increase PCNA expression, decrease TNF-α and cytochrome C expression. Furthermore, data shows that PCB could improve the survival rate of acute liver

  11. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    PubMed Central

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001 PMID:27697151

  12. Natural Regeneration of Longleaf Pine

    Treesearch

    William D. Boyer

    1979-01-01

    Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...

  13. Transforming Growth Factor-β1 Accelerates Resorption of a Calcium Carbonate Biomaterial in Periodontal Defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-β 1 ) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-β 1 would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-β 1 , and a clear account for this could not be offered. One potential cause may be that the rhTGF-β 1 formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-β 1 on biodegradation of the calcium carbonate carrier. rhTGF-β 1 in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-β 1 (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-β 1 compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-β 1 compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-β 1 accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-β 1 formulation apparently not encompassing enhanced or accelerated periodontal regeneration. © 2007

  14. The blastema and epimorphic regeneration in mammals.

    PubMed

    Seifert, Ashley W; Muneoka, Ken

    2018-01-15

    Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    DTIC Science & Technology

    1990-01-01

    induced by decalin exposure are processes, accelerated apoptosis has been describedin renal tissue with hydronephrosis (6), during the clearly intact...experimental hydronephrosis in topathology and cell proliferation induced by 2,2.4- the rat. Lab. Invest. 56(3): 273-281. trimethylpentane in the

  16. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  17. A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator

    DOE PAGES

    Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh; ...

    2017-10-25

    A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less

  18. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    PubMed Central

    Botros, Fady T.; Dobrowolski, Leszek; Navar, L. Gabriel

    2012-01-01

    Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models. PMID:22518281

  19. Early bioelectric activities mediate redox-modulated regeneration

    PubMed Central

    Ferreira, Fernando; Luxardi, Guillaume; Reid, Brian

    2016-01-01

    Reactive oxygen species (ROS) and electric currents modulate regeneration; however, the interplay between biochemical and biophysical signals during regeneration remains poorly understood. We investigate the interactions between redox and bioelectric activities during tail regeneration in Xenopus laevis tadpoles. We show that inhibition of NADPH oxidase-mediated production of ROS, or scavenging or blocking their diffusion into cells, impairs regeneration and consistently regulates the dynamics of membrane potential, transepithelial potential (TEP) and electric current densities (JI) during regeneration. Depletion of ROS mimics the altered TEP and JI observed in the non-regenerative refractory period. Short-term application of hydrogen peroxide (H2O2) rescues (from depleted ROS) and induces (from the refractory period) regeneration, TEP increase and JI reversal. H2O2 is therefore necessary for and sufficient to induce regeneration and to regulate TEP and JI. Epistasis assays show that voltage-gated Na+ channels act downstream of H2O2 to modulate regeneration. Altogether, these results suggest a novel mechanism for regeneration via redox-bioelectric orchestration. PMID:27827821

  20. Early bioelectric activities mediate redox-modulated regeneration.

    PubMed

    Ferreira, Fernando; Luxardi, Guillaume; Reid, Brian; Zhao, Min

    2016-12-15

    Reactive oxygen species (ROS) and electric currents modulate regeneration; however, the interplay between biochemical and biophysical signals during regeneration remains poorly understood. We investigate the interactions between redox and bioelectric activities during tail regeneration in Xenopus laevis tadpoles. We show that inhibition of NADPH oxidase-mediated production of ROS, or scavenging or blocking their diffusion into cells, impairs regeneration and consistently regulates the dynamics of membrane potential, transepithelial potential (TEP) and electric current densities (J I ) during regeneration. Depletion of ROS mimics the altered TEP and J I observed in the non-regenerative refractory period. Short-term application of hydrogen peroxide (H 2 O 2 ) rescues (from depleted ROS) and induces (from the refractory period) regeneration, TEP increase and J I reversal. H 2 O 2 is therefore necessary for and sufficient to induce regeneration and to regulate TEP and J I Epistasis assays show that voltage-gated Na + channels act downstream of H 2 O 2 to modulate regeneration. Altogether, these results suggest a novel mechanism for regeneration via redox-bioelectric orchestration. © 2016. Published by The Company of Biologists Ltd.

  1. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis.

    PubMed

    Rabelink, Ton J; Little, Melissa H

    2013-12-01

    The ageing population and the increasing prevalence of noncommunicable diseases such as diabetes and hypertension have led to an increased prevalence of chronic kidney disease. The generation of de novo kidney tissue from embryonic tissue and stem cells using tissue engineering approaches is being explored as an alternative to renal replacement therapy for treating the disease. It is, however, becoming clear that resident cells can not only induce fibrotic repair, but can also restore damaged kidney tissue. Mobilizing this innate capacity of the kidney to regenerate is of particular interest in the prevention of irreversible kidney failure. A novel concept is that the interaction of interstitial stromal cells with the local immune system may regulate tissue homeostasis and the balance between tissue repair and fibrosis. Mesenchymal stromal cells (MSCs), in particular, may enhance the intrinsic reparative capabilities of the kidney. This Perspectives article considers the innate regenerative potential of the kidney in the context of ongoing studies of MSC therapy.

  2. Regeneration mechanisms in Syllidae (Annelida)

    PubMed Central

    Ribeiro, Rannyele P.

    2018-01-01

    Abstract Syllidae is one of the most species‐rich groups within Annelida, with a wide variety of reproductive modes and different regenerative processes. Syllids have striking ability to regenerate their body anteriorly and posteriorly, which in many species is redeployed during sexual (schizogamy) and asexual (fission) reproduction. This review summarizes the available data on regeneration in syllids, covering descriptions of regenerative mechanisms in different species as well as regeneration in relation to reproductive modes. Our survey shows that posterior regeneration is widely distributed in syllids, whereas anterior regeneration is limited in most of the species, excepting those reproducing by fission. The latter reproductive mode is well known for a few species belonging to Autolytinae, Eusyllinae, and Syllinae. Patterns of fission areas have been studied in these animals. Deviations of the regular regeneration pattern or aberrant forms such as bifurcated animals or individuals with multiple heads have been reported for several species. Some of these aberrations show a deviation of the bilateral symmetry and antero‐posterior axis, which, interestingly, can also be observed in the regular branching body pattern of some species of syllids. PMID:29721325

  3. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  4. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  5. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue

  6. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    PubMed

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  7. Cell Migration During Heart Regeneration in Zebrafish

    PubMed Central

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2018-01-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, preexisting cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. PMID:27085002

  8. Renal perfusion scintiscan

    MedlinePlus

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  9. Axon Regeneration in C. elegans

    PubMed Central

    Hammarlund, Marc; Jin, Yishi

    2014-01-01

    Single axon transection by laser surgery has made C. elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. in vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration. PMID:24794753

  10. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    PubMed Central

    Singh, Shailendra P.; Tao, Shixin; Fields, Timothy A.; Webb, Sydney; Harris, Raymond C.; Rao, Reena

    2015-01-01

    ABSTRACT Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. PMID:26092126

  11. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    PubMed

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  12. Diabetes and renal tubular cell apoptosis

    PubMed Central

    Habib, Samy L

    2013-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells. PMID:23593533

  13. Diabetes and renal tubular cell apoptosis.

    PubMed

    Habib, Samy L

    2013-04-15

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.

  14. Regenerating Fish Optic Nerves and a Regeneration-Like Response in Injured Optic Nerves of Adult Rabbits

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Belkin, M.; Harel, A.; Solomon, A.; Lavie, V.; Hadani, M.; Rachailovich, I.; Stein-Izsak, C.

    1985-05-01

    Regeneration of fish optic nerve (representing regenerative central nervous system) was accompanied by increased activity of regeneration-triggering factors produced by nonneuronal cells. A graft of regenerating fish optic nerve, or a ``wrap-around'' implant containing medium conditioned by it, induced a response associated with regeneration in injured optic nerves of adult rabbits (representing a nonregenerative central nervous system). This response was manifested by an increase of general protein synthesis and of selective polypeptides in the retinas and by the ability of the retina to sprout in culture.

  15. Mechanisms of urodele limb regeneration

    PubMed Central

    2017-01-01

    Abstract This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self‐organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb? PMID:29299322

  16. Effect of sodium overload on renal function of offspring from diabetic mothers.

    PubMed

    Rocco, Luigi; Gil, Frida Zaladek; da Fonseca Pletiskaitz, Thaís Maria; de Fátima Cavanal, Maria; Gomes, Guiomar Nascimento

    2008-11-01

    The aim if this study was to evaluate the effect of sodium overload on blood pressure and renal function in the offspring of diabetic rat mothers. Diabetes was induced with a single dose of streptozotocin before mating. Experimental groups were control (C), offspring from diabetic mother (D), control with sodium chloride (NaCl) overload (CS), and offspring from diabetic mother submitted to NaCl overload (DS). After weaning, all groups received food ad libitum; groups C and D had water ad libitum, and CS and DS received NaCl 0.15 M as drinking water. Renal morphology and function were evaluated in 3-month-old rats. Glomerular area, macrophage infiltration, interlobular artery wall thickness, and renal vascular resistance were significantly increased in CS, D, and DS compared with C. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were decreased in CS and D compared with C. In DS, GFR and fractional filtration were increased, suggesting a state of hyperfiltration. Hypertension was observed in groups D, CS, and DS from 2 months on and was more severe in DS. Our data suggest that diabetes during intrauterine development and salt overload beginning at an early age can cause hypertension and renal injury. When these conditions were associated, morphological and functional changes were much more intense, suggesting acceleration in the process of kidney injury.

  17. Guide to Regeneration of Bottomland Hardwoods

    Treesearch

    Martha R. McKevlin

    1992-01-01

    This guide will help landowners, consulting foresters, and public service foresters regenerate bottomland hardwoods. It discusses (1) interpretation of site characteristics, (2) selection of species, and (3) selection of regeneration methods. A dichotomous key for selection of appropriate regeneration methods under various conditions is presented.

  18. Axonal regeneration in zebrafish spinal cord

    PubMed Central

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  19. Hyperinnervation improves Xenopus laevis limb regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Axonal regeneration in zebrafish spinal cord.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2018-03-01

    In the present review we discuss two interrelated events-axonal damage and repair-known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals.

  1. Single incision laparoscopic pancreas resection for pancreatic metastasis of renal cell carcinoma.

    PubMed

    Barbaros, Umut; Sümer, Aziz; Demirel, Tugrul; Karakullukçu, Nazlı; Batman, Burçin; Içscan, Yalın; Sarıçam, Gülay; Serin, Kürçsat; Loh, Wei-Liang; Dinççağ, Ahmet; Mercan, Selçuk

    2010-01-01

    Transumbilical single incision laparoscopic surgery (SILS) offers excellent cosmetic results and may be associated with decreased postoperative pain, reduced need for analgesia, and thus accelerated recovery. Herein, we report the first transumbilical single incision laparoscopic pancreatectomy case in a patient who had renal cell cancer metastasis on her pancreatic corpus and tail. A 59-year-old female who had metastatic lesions on her pancreas underwent laparoscopic subtotal pancreatectomy through a 2-cm umbilical incision. Single incision pancreatectomy was performed with a special port (SILS port) and articulated equipment. The procedure lasted 330 minutes. Estimated blood loss was 100mL. No perioperative complications occurred. The patient was discharged on the seventh postoperative day with a low-volume (20mL/day) pancreatic fistula that ceased spontaneously. Pathology result of the specimen was renal cell cancer metastases. This is the first reported SILS pancreatectomy case, demonstrating that even advanced surgical procedures can be performed using the SILS technique in well-experienced centers. Transumbilical single incision laparoscopic pancreatectomy is feasible and can be performed safely in experienced centers. SILS may improve cosmetic results and allow accelerated recovery for patients even with malignancy requiring advanced laparoscopic interventions.

  2. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.

    PubMed

    Chow, Dick Ho Kiu; Suen, Pui Kit; Huang, Le; Cheung, Wing-Hoi; Leung, Kwok-Sui; Ng, Chun; Shi, San Qiang; Wong, Margaret Wan Nar; Qin, Ling

    2014-04-01

    Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Enhancement of organ regeneration in animal models by a stem cell-stimulating plant mixture.

    PubMed

    Kiss, István; Tibold, Antal; Halmosi, Róbert; Bartha, Eva; Koltai, Katalin; Orsós, Zsuzsanna; Bujdosó, László; Ember, István

    2010-06-01

    Adult stem cells play an important role in the regeneration of damaged organs. Attempts have already been made to enhance stem cell production by cytokines, in order to increase the improvement of cardiac functions after myocardial infarction. In our present study we investigated the possibility whether instead of cytokine injection dietary stimulation of stem cell production accelerates the organ regeneration in animals. A dietary supplement, Olimpiq StemXCell (Crystal Institute Ltd., Eger, Hungary), containing plant extracts (previously proved to increase the number of circulating CD34(+) cells) was consumed in human equivalent doses by the experimental animals. In the first experiment carbon tetrachloride was applied to CBA/Ca mice, to induce liver damage, and liver weights between StemXCell-fed and control animals were compared 10 days after the treatment. In the second model experimental diabetes was induced in F344 rats by alloxan. Blood sugar levels were measured for 5 weeks in the control and StemXCell-fed groups. The third part of the study investigated the effect of StemXCell on cardiac functions. Eight weeks after causing a myocardial infarction in Wistar rats by isoproterenol, left ventricular ejection fraction was determined as a functional parameter of myocardial regeneration. In all three animal models StemXCell consumption statistically significantly improved the organ regeneration (relative liver weights, 4.78 +/-0.06 g/100 g vs. 4.97 +/- 0.07 g/100 g; blood sugar levels at week 5, 16 +/- 1.30 mmol/L vs. 10.2 +/- 0.92 mmol/L; ejection fraction, 57.5 +/- 2.23 vs. 68.2 +/- 4.94; controls vs. treated animals, respectively). Our study confirms the hypothesis that dietary enhancement of stem cell production may protect against organ injuries and helps in the regeneration.

  4. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  5. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Effect of ground skidding on oak advance regeneration

    Treesearch

    Jeffrey W. Stringer

    2006-01-01

    Vigorous advance regeneration is required to naturally regenerate oaks. However, a reduction in the number of advance regeneration stems from harvesting activities could be an important factor in determining successful oak regeneration. This study assessed the harvest survivability of advance regeneration of oak (Quercus spp.) and co-occurring...

  7. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  8. Zebrafish fin and heart: what's special about regeneration?

    PubMed

    Sehring, Ivonne M; Jahn, Christopher; Weidinger, Gilbert

    2016-10-01

    Many organs regenerate well in adult zebrafish, but most research has been directed toward fin and heart regeneration. Cells have been found to remain generally lineage-restricted during regeneration, and proliferative regenerative progenitors can be formed by dedifferentiation from differentiated cells. Recent studies begin to shed light on the molecular underpinnings of differences between development and regeneration. Retinoic acid, BMP and NF-κB signaling are emerging as regulators of cellular dedifferentiation. Reactive oxygen species promote regeneration, and the dynamics of ROS signaling might help explain differences between wound healing and regeneration. Finally, the heart has been added to those organs that require a nerve supply to regenerate, and a trade-off between regeneration and tumor suppression has been proposed to help explain why mammals regenerate poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Renal failure and concurrent RAAS blockade in older CKD patients with renal artery stenosis: an extended Mayo Clinic prospective 63-month experience.

    PubMed

    Onuigbo, Macaulay A C; Onuigbo, Nnonyelum T C

    2008-01-01

    Concerns have been raised regarding a possible link between the increasing utilization of RAAS blocking strategies in the United States and the increasing ESRD epidemic. Most reports of accelerated renal failure in CKD patients with renal artery stenosis on RAAS blockade are retrospective. We hypothesized that this syndrome is therefore poorly understood, may be under-recognized, and demanded prospective analysis. As part of a larger cohort of 100 CKD patients on RAAS blockade presenting with worsening renal failure (>25% increased serum creatinine from baseline) while concurrently on an ACE inhibitor and/or an angiotensin receptor blocker, 26 patients (26%) enrolled between September 2002 and February 2005 had hemodynamically significant renal artery stenosis. RAAS blockade was discontinued, standard nephrology care applied, and eGFR by MDRD monitored. They consisted of 26 Caucasian patients, M:F = 10:16, age 75.3 +/- 6.4 (63-87) years. Mean follow-up was 26.4 +/- 16.4 (1-49) months. Duration of RAAS blockade prior to enrollment was 20.2 +/- 16.4 (0.5-48) months. Contrary to previous reports, precipitating factors were often absent (15/26), unilateral RAS lesions in patients with dual kidneys was common (19/26), and progression to ESRD was frequent (5/26). Four-fifths of the ESRD patients were dead after 5.5 +/- 4.1 (1-11) months. A fifth patient with improved eGFR died after 14 months from metastatic gastric cancer. Excluding five patients who progressed to ESRD and two patients lost early to follow-up, in 19 patients, eGFR increased from 27.8 +/- 9.5 (11-47) to 36.7 +/- 16 (14-68) mL/min/1.73 m(2) BSA (p = 0.014) after 34.8 +/- 10.1 (14-49) months of follow-up. This improvement in eGFR was evident after weeks to months of stopping RAAS blockade in these patients with and without renal PTA and stenting. Nevertheless, renal PTA/stenting further improved eGFR in selected patients. We conclude that renal failure/ESRD associated with concurrent RAAS blockade in older

  10. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells.

    PubMed

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2017-01-22

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 -/- ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1{sup −/−}) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24{sup +}CD133{sup +}) cells were measured; andmore » the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24{sup +}CD133{sup +} RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.« less

  12. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.

  13. Regeneration of Airy pulses in fiber-optic links with dispersion management of the two leading dispersion terms of opposite signs

    NASA Astrophysics Data System (ADS)

    Driben, R.; Meier, T.

    2014-04-01

    Dispersion management of periodically alternating fiber sections with opposite signs of two leading dispersion terms is applied for the regeneration of self-accelerating truncated Airy pulses. It is demonstrated that for such a dispersion management scheme, the direction of the acceleration of the pulse is reversed twice within each period. In this scheme the system features light hot spots in the center of each fiber section, where the energy of the light pulse is tightly focused in a short temporal slot. Comprehensive numerical studies demonstrate a long-lasting propagation also under the influence of a strong fiber Kerr nonlinearity.

  14. Oak regeneration why big is better

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1995-01-01

    It is generally accepted that large preharvest advanced oak regeneration is required for maintaining a significant oak component in future stands. However, developing advanced oak regeneration on productive sites has been difficult because stand prescriptions encouraging oak regeneration are the same conditions that favor development of potentially faster growing...

  15. Trends in tissue repair and regeneration.

    PubMed

    Galliot, Brigitte; Crescenzi, Marco; Jacinto, Antonio; Tajbakhsh, Shahragim

    2017-02-01

    The 6th EMBO conference on the Molecular and Cellular Basis of Regeneration and Tissue Repair took place in Paestum (Italy) on the 17th-21st September, 2016. The 160 scientists who attended discussed the importance of cellular and tissue plasticity, biophysical aspects of regeneration, the diverse roles of injury-induced immune responses, strategies to reactivate regeneration in mammals, links between regeneration and ageing, and the impact of non-mammalian models on regenerative medicine. © 2017. Published by The Company of Biologists Ltd.

  16. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  17. Angiogenesis is inhibitory for mammalian digit regeneration

    PubMed Central

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  18. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO 2 from CO 2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution ismore » examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO 2 desorption can be implemented.« less

  19. Regeneration-associated genes on optic nerve regeneration in fish retina.

    PubMed

    Ogai, Kazuhiro; Nishitani, Maki; Kuwana, Ayaka; Mawatari, Kazuhiro; Koriyama, Yoshiki; Sugitani, Kayo; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    It has been well documented that fish central nervous system, including retina and optic nerve, can regenerate and recover its function after nerve injury. Within a few decades, a number of regeneration-associated genes (RAGs) have been identified in fish retina following optic nerve injury (ONI). RAGs can be classified into two groups: cell survival- and axonal outgrowth-related genes. In fish retina after ONI, cell survival-related genes were upregulated in 1-6 days after ONI, which corresponds to the preparation stage for cell survival and axonal sprouting. Subsequently, axonal outgrowth-related genes were upregulated in 1-6 weeks after ONI, which corresponds to the axonal regrowth stage. Recently, we've found a novel type of RAGs, dedifferentiation-related genes, that are upregulated in overlapping time between cell survival and axonal regrowth (3-10 days after ONI). In this chapter we summarize these three types of RAGs that promote optic nerve regeneration in the fish retina after ONI.

  20. Healing of donor site in bone-tendon-bone ACL reconstruction accelerated with plasma rich in growth factors: a randomized clinical trial.

    PubMed

    Seijas, Roberto; Rius, Marta; Ares, Oscar; García-Balletbó, Montserrat; Serra, Iván; Cugat, Ramón

    2015-04-01

    To determine whether the use of plasma rich in growth factors accelerates healing of the donor site in bone-tendon-bone anterior cruciate ligament (ACL) reconstruction (patellar graft). The use of the patellar graft presents post-operative problems such as anterior knee pain, which limits its use and leads to preference being taken for alternative grafts. A double-blind, randomized, clinical trial was performed comparing two groups of patients who underwent ACL reconstruction using patellar tendon graft and comparing the use of plasma rich in growth factors at the donor site after graft harvest in terms of local regeneration by ultrasound assessment. The plasma rich in growth factors group shows earlier donor site regeneration in comparison with the control group (2 months earlier), with significant differences in the first 4 months of the follow-up. The application of plasma rich in growth factors shows accelerated tissue regeneration processes with respect to the control group. This fact, together with the previously published with similar conclusions, can create a knowledge basis in order to set out new recovery guidelines following ACL reconstruction. Therapeutic study, Level I.

  1. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  2. Three-dimensional through-time radial GRAPPA for renal MR angiography.

    PubMed

    Wright, Katherine L; Lee, Gregory R; Ehses, Philipp; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole

    2014-10-01

    To achieve high temporal and spatial resolution for contrast-enhanced time-resolved MR angiography exams (trMRAs), fast imaging techniques such as non-Cartesian parallel imaging must be used. In this study, the three-dimensional (3D) through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) method is used to reconstruct highly accelerated stack-of-stars data for time-resolved renal MRAs. Through-time radial GRAPPA has been recently introduced as a method for non-Cartesian GRAPPA weight calibration, and a similar concept can also be used in 3D acquisitions. By combining different sources of calibration information, acquisition time can be reduced. Here, different GRAPPA weight calibration schemes are explored in simulation, and the results are applied to reconstruct undersampled stack-of-stars data. Simulations demonstrate that an accurate and efficient approach to 3D calibration is to combine a small number of central partitions with as many temporal repetitions as exam time permits. These findings were used to reconstruct renal trMRA data with an in-plane acceleration factor as high as 12.6 with respect to the Nyquist sampling criterion, where the lowest root mean squared error value of 16.4% was achieved when using a calibration scheme with 8 partitions, 16 repetitions, and a 4 projection × 8 read point segment size. 3D through-time radial GRAPPA can be used to successfully reconstruct highly accelerated non-Cartesian data. By using in-plane radial undersampling, a trMRA can be acquired with a temporal footprint less than 4s/frame with a spatial resolution of approximately 1.5 mm × 1.5 mm × 3 mm. © 2014 Wiley Periodicals, Inc.

  3. [Surgical model of chronic renal failure: study in rabbits].

    PubMed

    Costa, Andrei Ferreira Nicolau da; Pereira, Lara de Paula Miranda; Ferreira, Manoel Luiz; Silva, Paulo Cesar; Chagar, Vera Lucia Antunes; Schanaider, Alberto

    2009-02-01

    To establish a model of chronic renal failure in rabbits, with perspectives of its use for therapeutic and repairing actions. Nineteen males, adults rabbits (New Zealand) randomly distributed into three groups were used: Group 1 - Control (n =5); Group 2-Sham (n =7); and Group 3 - Experimental (n =7). They were anaesthetized by using intramuscular Cetamine, Diazepam and Fentanyl followed by Sevorane with vaporizer device. In Group 3, a bipolar left nephrectomy was carried out and after four weeks, it was also done a right nephrectomy. All the samples of the renal tissue were weighed. The Group 2 was only submitted to both abdominal laparotomies, without nephrectomy. Biochemical evaluations, with urea, creatinina, sodium and potassium measurement; abdominal ultrasound scan; scintigraphy and histological analysis were performed in all animals. In group 3 there was a progressive increase of urea (p=0.0001), creatinine (p=0.0001), sodium (p = 0,0002) and potassium (p=0,0003). The comparison of these results with those one of the Groups 1 and 2, in all intervals, revealed blood rising with statistical significant level (p < 0,05). In Group 3, the ultrasound scan identified an increasing of the left kidney size, after 16 weeks and at the 4th week the scintigraphy confirmed the loss of 75% of the left renal mass. In the same group, the histological evaluation showed subcapsular and intersticial fibrosis and also tubular regeneration. The experimental model of IRC is feasible, with animal's survival in middle term which allows the use of this interval like a therapeutic window for testing different approaches in order to repair the kidney damages.

  4. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    PubMed Central

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  5. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake.

    PubMed

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G

    2016-05-01

    We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status.

  6. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo

    PubMed Central

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki

    2017-01-01

    Abstract Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC‐specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin‐forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207–1216 PMID:28186702

  7. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    PubMed

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  8. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    PubMed

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Regeneration of tert-butylhydroquinone by tea polyphenols.

    PubMed

    Guo, Yafang; Guo, Yahui; Xie, Yunfei; Cheng, Yuliang; Qian, He; Yao, Weirong

    2017-05-01

    To study the antioxidant capacity (AC) regeneration of tert-butylhydroquinone (TBHQ) by tea polyphenols (TPs), a separable system has been designed for its evaluation. The AC values of three natural food matrices (liquorice, oat, and ginger) and TBHQ regenerated by TPs were all higher than their controls, and similar to the initial values (p<0.05). The average regeneration efficiency (RE) value was 1.49 for these three natural food matrices, and 0.82 for TBHQ. Electron paramagnetic resonance spectroscopy analysis has revealed the synergistic effect of TBHQ and TPs, which arose from the regeneration of TBHQ by TPs. The RE value of TBHQ regeneration by TPs embedded in a gelatine membrane was 0.51. The results demonstrated that TPs showed a capacity for regenerating TBHQ, indicating a potential application in regenerative packaging, whereby one antioxidant would be added to the food matrix, with another one as the regenerator incorporated into the packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Animal regeneration: ancestral character or evolutionary novelty?

    PubMed

    Slack, Jonathan Mw

    2017-09-01

    An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.

  11. Return of Function after Hair Cell Regeneration

    PubMed Central

    Ryals, Brenda M.; Dent, Micheal L.; Dooling, Robert J.

    2012-01-01

    The ultimate goal of hair cell regeneration is to restore functional hearing. Because birds begin perceiving and producing song early in life, they provide a propitious model for studying not only whether regeneration of lost hair cells can return auditory sensitivity but also whether this regenerated periphery can restore complex auditory perception and production. They are the only animal where hair cell regeneration occurs naturally after hair cell loss and where the ability to correctly perceive and produce complex acoustic signals is critical to procreation and survival. The purpose of this review article is to survey the most recent literature on behavioral measures of auditory functional return in adult birds after hair cell regeneration. The first portion of the review summarizes the effect of ototoxic drug induced hair cell loss and regeneration on hearing loss and recovery for pure tones. The second portion reviews studies of complex, species-specific vocalization discrimination and recognition after hair cell regeneration. Finally, we discuss the relevance of temporary hearing loss and recovery through hair cell regeneration on complex call and song production. Hearing sensitivity is restored, except for the highest frequencies, after hair cell regeneration in birds, but there are enduring changes to complex auditory perception. These changes do not appear to provide any obstacle to future auditory or vocal learning. PMID:23202051

  12. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  13. The role of the renal specialist nurse in prevention of renal failure.

    PubMed

    Hurst, J

    2002-01-01

    This article will investigate the care required for those with reduced renal function before renal replacement therapy (RRT) commences. Renal nurses are often involved with the technical, monitoring and evaluative aspects of RRT for those with end stage renal failure. However, many patients may experience reduced renal function many years before reaching the stage of needing RRT. Renal nurses are already involved in the preparation of patients for RRT, but are not presently exercising their specialist skills in the period before this time by contributing to the prevention of end stage renal failure (ESRF). Screening programmes carried out in various parts of the world demonstrate that many members of the population have undetected renal insufficiency, and may benefit from intervention from the nephrology team to prevent further renal dysfunction. It is for this group of patients that this article will consider the potential for the renal nurse to expand their scope of practice.

  14. Transarterial Embolization of a Renal Artery Aneurysm Concomitant With Renal Arteriovenous Fistula.

    PubMed

    Hongsakul, Keerati; Bannangkoon, Kittipitch; Boonsrirat, Ussanee; Kritpracha, Boonprasit

    2018-01-01

    Congenital renal artery aneurysm is uncommon. Moreover, renal artery aneurysm concomitant with a congenital renal arteriovenous fistula is extremely rare. Transarterial embolization is the first-line treatment for these conditions. We report a case of a patient with congenital renal artery aneurysm concomitant with a congenital renal arteriovenous fistula of the upper polar left renal artery which was successfully treated by transarterial embolization with coil, glue, and Amplatzer vascular plug.

  15. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice

    PubMed Central

    Liu, Jie; Zhang, Qing-Yu; Yu, Li-Ming; Liu, Bin; Li, Ming-Yi; Zhu, Run-Zhi

    2015-01-01

    AIM: To investigate the hepatoprotective effects of phycocyanobilin (PCB) in reducing hepatic injury and accelerating hepatocyte proliferation following carbon tetrachloride (CCl4) treatment. METHODS: C57BL/6 mice were orally administered PCB 100 mg/kg for 4 d after CCl4 injection, and then the serum and liver tissue of the mice were collected at days 1, 2, 3, 5 and 7 after CCl4 treatment. A series of evaluations were performed to identify the curative effects on liver injury and recovery. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and superoxide dismutase (SOD) were detected to indirectly assess the anti-inflammatory effects of PCB. Meanwhile, we detected the expressions of hepatocyte growth factor, transforming growth factor alpha (TGF-α), TGF-β, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), the factors which are associated with inflammation and liver regeneration. The protein expressions of proliferating cell nuclear antigen (PCNA), TNF-α and cytochrome C were detected by western blot. Furthermore, the survival rates were analyzed of mice which were administered a lethal dose of CCl4 (2.6 mg/kg) with or without PCB. RESULTS: In our research, PCB showed a strongly anti-inflammatory effect on CCl4-induced liver injury in mice. The ALT was significantly decreased after CCl4 treatment from day 1 (P < 0.01) and the AST was significantly decreased from day 2 (P < 0.001). Both albumin and liver SOD were increased from day 2 (P < 0.001 and P < 0.01), but serum SOD levels did not show a significant increase (P > 0.05). PCB protected the structure of liver from the injury by CCl4. TUNEL assay showed that PCB dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (101.0 ± 25.4 vs 25.7 ± 6.4, P < 0.01). The result of western blotting showed that PCB could increase PCNA expression, decrease TNF-α and cytochrome C expression. Furthermore, data shows that PCB could improve the

  16. The cellular basis for animal regeneration

    PubMed Central

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  17. Near-infrared spectroscopy of renal tissue in vivo

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann

    2013-03-01

    We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.

  18. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    PubMed

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  19. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  20. Inflammation and immunity in organ regeneration.

    PubMed

    Mescher, Anthony L; Neff, Anton W; King, Michael W

    2017-01-01

    The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development of zinc-plated regenerator material

    NASA Astrophysics Data System (ADS)

    Y Xu, M.; Morie, T.; Tsuchiya, A.

    2017-12-01

    An effective way to improve the efficiency of a cryocooler is to improve the efficiency of the regenerator. In general, the heat capacity of materials decreases as temperature decreases. Thus, when temperature is below 40 K, lead or bismuth spheres are often used as regenerator materials. However, the pressure drop in a sphere regenerator is much larger than that in a screen regenerator. To overcome this dilemma, Xu et al. reported that cooling performance at the temperature of less than 40 K was improved when using tin-plated screens at the cold end of the regenerator. However, the reliability of tin at low temperatures is still not verified fully because of its phase transition from a normal β phase to an abnormal α phase, which may result in a significant reduction of the mechanical strength. In this paper, a zinc-plated screen is proposed as another potential alternative. A comparison test was performed with a two-stage GM cryocooler by replacing part of the first stage regenerator material, phosphorus bronze screens, with zinc-plated screens. Compared to a regenerator filled with bronze screens, the cooling capacity of the first stage increased by about 11% at 40 K and 60% at 30 K with these zinc-plated screens. The detailed experimental results are reported in this paper.

  2. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  3. Multiple Renal Artery Pseudoaneurysms in Patients Undergoing Renal Artery Embolization Following Partial Nephrectomy: Correlation with RENAL Nephrometry Scores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nakul; Patel, Anish; Ensor, Joe

    PurposeTo describe the incidence of multiple renal artery pseudoaneurysms (PSA) in patients referred for renal artery embolization following partial nephrectomy and to study its relationship to RENAL nephrometry scores.Materials and MethodsThe medical records of 25 patients referred for renal artery embolization after partial nephrectomy were retrospectively reviewed for the following parameters: size and number of tumors, RENAL nephrometry scores, angiographic abnormalities, technical and clinical outcomes, and estimated glomerular filtration rates (eGFRs) after embolization.ResultsTwenty-four patients had primary renal tumors, while 1 patient had a pancreatic tumor invading the kidney. Multiple tumors were resected in 4 patients. Most patients (92 %) were symptomatic,more » presenting with gross hematuria, flank pain, or both. Angiography revealed PSA with (n = 5) or without (n = 20) AV fistulae. Sixteen patients (64 %) had multiple PSA involving multiple renal vessels. Higher RENAL nephrometry scores were associated with an increasing likelihood of multiple PSA. Multiple vessels were embolized in 14 patients (56 %). Clinical success was achieved after one (n = 22) or two (n = 3) embolization sessions in all patients. Post-embolization eGFR values at different time points after embolization were not significantly different from the post-operative eGFR.ConclusionA majority of patients requiring renal artery embolization following partial nephrectomy have multiple pseudoaneurysms, often requiring selective embolization of multiple vessels. Higher RENAL nephrometry score is associated with an increasing likelihood of multiple pseudoaneurysms. We found transarterial embolization to be a safe and effective treatment option with no long-term adverse effect on renal function in all but one patient with a solitary kidney.« less

  4. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy

    PubMed Central

    Xu, Huihui; Wu, Xiaoyan; Qin, Hao; Tian, Wenfang; Chen, Junliang; Sun, Lina; Fang, Mingming

    2015-01-01

    Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A–associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis. PMID:25349198

  5. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    EPA Pesticide Factsheets

    Adsorptive media technology is a frequently used method of removing arsenic by small water systems because of its simplicity and efficiency. Current practice is to replace the media when it no longer reduces arsenic below the USEPA drinking water maximum contaminant level (MCL) of 10 µg/L. Media replacement typically accounts for approximately 80% of the total operational and maintenance (O/M) costs. This cost can be substantial and cost prohibitive for many small systems. One potential option to reduce the cost is on-site regeneration and reuse of the media. To evaluate the regeneration option, three consecutive regeneration studies were conducted on a full scale 295 gpm arsenic removal adsorptive media system. This paper, of a two part series, describes the regeneration process and its effectiveness to strip the arsenic and other contaminants from an exhausted media. The results of the regeneration studies found that a three step regeneration process of media backwash, caustic regeneration and acid neutralization/conditioning is very effective for stripping arsenic and other contaminants from the exhaustive media of a full scale arsenic removal system This paper, of a two part series, describes the regeneration process and its effectiveness to strip the arsenic and other contaminants from an exhausted media

  6. [Guided bone regeneration: general survey].

    PubMed

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  7. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  8. Peptide-Based Materials for Cartilage Tissue Regeneration.

    PubMed

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  9. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  10. Evaluation of advanced regenerator systems

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1978-01-01

    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.

  11. Effect of insulin-like growth factor-1 on corneal surface ultrastructure and nerve regeneration of rabbit eyes after laser in situ keratomileusis.

    PubMed

    Wang, Chunyan; Peng, Yanli; Pan, Shuling; Li, Li

    2014-01-13

    To explore the effect of insulin-like growth factor-1 (IGF-1) on corneal surface ultrastructure and nerve regeneration in rabbit models after laser in situ keratomileusis (LASIK). Forty-two healthy New Zealand white rabbits were divided into two groups, the IGF-1 group and the control group, and LASIK surgery was performed. The corneal surface ultrastructure was observed by transmission electron microscopy, and the nerve regeneration was evaluated by counting the newly regenerated nerves at 1 d, 1 w, 2 w, 1 m, 3 m and 6 m after surgery. Dry eye parameters, including the Schirmer I test and tear break-up time, were examined at all time points. The examination of corneal ultrastructure showed that the number of corneal epithelial microvilli in the IGF-1 group was significantly higher than that in the normal saline (NS) group except in the second postoperative week (p<0.05). The observation of corneal nerve regeneration showed that the number of regenerated nerve fibers in the IGF-1 group was higher than the control group at all time points (p<0.05). The parameters of dry eye were significantly higher in the IGF-1 group compared to the control group at all time points except at 1d and 6m after LASIK. IGF-1 can effectively accelerate the early repair of corneal surface ultrastructure and nerve regeneration after LASIK and relieve dry eye symptoms in rabbit eyes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. [Muscle regeneration in mdx mouse, and a trial of normal myoblast transfer into regenerating dystrophic muscle].

    PubMed

    Takemitsu, M; Arahata, K; Nonaka, I

    1990-10-01

    The most ideal therapeutic trial on Duchenne muscular dystrophy (DMD) is a transfer of normal myoblasts into dystrophic muscle which has been attempted on animal models in several institutes. In the process of muscle regeneration, the transferred normal myoblasts are expected to incorporate into the regenerating fibers in host dystrophic mouse. To know the capacity of muscle regeneration in dystrophic muscle, we compared the regenerating process of the normal muscle with that of the dystrophic muscle after myonecrosis induced by 0.25% bupivacaine hydrochloride (BPVC) chronologically. In the present study, C57BL/10ScSn-mdx (mdx) mouse was used as an animal model of DMD and C57BL/10ScSn (B10) mouse as a control. There was no definite difference in the behavior of muscle fiber regeneration between normal and dystrophic muscles. The dystrophic muscle regenerated rapidly at the similar tempo to the normal as to their size and fiber type differentiation. The variation in fiber size diameter of dystrophic muscle, however, was more obvious than that of normal. To promote successful myoblast transfer from B10 mouse into dystrophic mdx mouse at higher ratio, cultured normal myoblasts were transferred into the regenerating dystrophic muscle on the first and the second day after myonecrosis induced by BPVC. Two weeks after the myoblast injection, the muscles were examined with immunohistochemical stain using anti dystrophin antibody. Although dystrophin-positive fibers appeared in dystrophic muscle, the positive fibers were unexpectedly small in number (3.86 +/- 1.50%).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Hair cell regeneration

    PubMed Central

    Edge, Albert SB; Chen, Zheng-Yi

    2017-01-01

    The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells. PMID:18929656

  14. Atheroembolic renal disease

    MedlinePlus

    Renal disease - atheroembolic; Cholesterol embolization syndrome; Atheroemboli - renal; Atherosclerotic disease - renal ... disorder of the arteries. It occurs when fat, cholesterol, and other substances build up in the walls ...

  15. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  16. Effects of Renal Denervation from the Intima and the Adventitia of Renal Arteries on Renal Sympathetic Nerve Activity in Dogs: A Comparative Study.

    PubMed

    Bai, Minfu; Yang, Chaokuan; Gao, Chuanyu; Wang, Xianpei; Liu, Hongzhi; Zhang, You; Liu, Jun; Wu, Jintao; Jian, Dongdong; Zhu, Lijie; Zhao, Wenli; Ma, Peiyao; Han, Yaqi

    2015-01-01

    This study was designed to observe the efficacy and safety of renal denervation from the inside and outside of renal arteries. Fourteen beagles were randomly divided into a control group (n = 4) and treatment group (n = 10). One renal artery in every beagle of the treatment group was randomly assigned to an intimal group (10 renal arteries) which underwent percutaneous renal denervation from the inside, and another renal artery was assigned to an adventitial group (10 renal arteries) which underwent renal denervation from the outside by laparotomy. Compared with the intimal group, the renal norepinephrine (NE) concentration in the adventitial group had significantly decreased (p = 0.003) at 3 months postsurgery. Renal artery HE staining showed that the perineurium from the adventitial group appeared thickened. Western blotting showed that renal tissue tyrosine hydroxylase (TH) protein expression in the adventitial group was significantly lower than that in the intimal group (p < 0.01) at 3 months postsurgery. There was a renal artery stenosis and a renal atrophy in the intimal group after 1 month of follow-up. The inhibitory effect on renal sympathetic nerve activity was more effective in the adventitial group than the intimal group, and renal denervation in the former group was safe. © 2015 S. Karger AG, Basel.

  17. Expression profiling upon Nex1/MATH-2-mediated neuritogenesis in PC12 cells and its implication in regeneration

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2006-01-01

    The expression of Nex1 peaks during brain development when neurite outgrowth and synaptogenesis are highly active. We previously showed that Nex1 is a critical effector of the nerve growth factor (NGF) pathway and its overexpression results in spontaneous neuritogenesis. Furthermore, the PC12-Nex1 cells exhibit accelerated neurite extension upon NGF exposure, and have the capacity to regenerate neurites in the absence of NGF. In this study, we identify the repertoire of genes targeted by Nex1 to unravel the molecular mecha nisms by which Nex1 promotes differentiation and regeneration. Our transcriptional analysis reveals that Nex1 modulates a wide spectrum of genes with diverse functions, many of them being key downstream regulators of the NGF pathway, and critical to neuritogenesis, such as microtubules, microtubule-associated proteins (MAPs) and intermediate filaments. We also provide the first evidence that a basic helix-loop-helix (bHLH) protein stimulates the expression of the cyclin-dependent kinase (CDK) inhibitors belonging to the INK4 family, which plays a role in promoting cell-cycle arrest. Finally, we show a dramatic synergistic effect between Nex1 and cAMP, resulting in an impressive regeneration of an elaborate and dense neurite network. Thus, Nex1 has endowed the PC12-Nex1 cells with a distinct combination of gene products that takes part in the complex regulation of neuritogenesis and regeneration. PMID:15584910

  18. Renal cell carcinoma

    MedlinePlus

    Renal cancer; Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney ... 2016:chap 57. National Cancer Institute website. Renal cell cancer treatment (PDQ) - health professional version. February 23, 2018. ...

  19. Can MR Measurement of Renal Artery Flow and Renal Volume Predict the Outcome of Percutaneous Transluminal Renal Angioplasty?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkert, Christoph A.; Debatin, Jorg F.; Schneider, Ernst

    2001-07-15

    Purpose: Predicting therapeutic benefit from percutaneous transluminal renal angioplasty (PTRA) in patients with renal artery stenosis (RAS) remains difficult. This study investigates whether magnetic resonance (MR)-based renal artery flow measurements relative to renal parenchymal volume can predict clinical outcome following PTRA.Methods: The data on 23 patients (13 men, 10 women; age range 47-82 years, mean age 64 years) were analyzed. The indication for treatment was hypertension (n = 18) or renal insufficiency (n = 5). Thirty-four cases of RAS were identified: bilateral disease was manifest in 11 and unilateral disease in 12 patients. The MR imaging protocol included a breath-hold,more » cardiac-gated cine phase-contrast sequence for renal flow measurement and a fast multiplanar spoiled gradient-echo sequence for renal volume measurement. MR measurements were performed on the day prior to and the day following PTRA. Clinical success was defined as (a) a reduction in diastolic blood pressure > 15% or (b) a reduction in serum creatinine > 20%. Kidneys were categorized as normal volume or low volume. A renal flow index (RFI) was calculated by dividing the renal flow (ml/min) by the renal volume (cm{sup 3}).Results: Clinical success was observed in 11 patients. Twelve patients did not benefit from angioplasty. Normal kidney volume was seen in 10 of 11 responders and in 8 of 12 nonresponders, resulting in a sensitivity of 91%, specificity of 33%, a positive predictive value (PPV) of 56% and a negative predictive value (NPV) of 80%. A RFI below a threshold of 1.5 ml/min/cm{sup 3} predicted successful outcome with 100% sensitivity, 33% specificity, 58% PPV, and 100% NPV. The combination of normal renal volume and a RFI below 1.5 ml/min/cm{sup 3} identified PTRA responders with a sensitivity of 91%, a specificity of 67%, a PPV of 71%, and a NPV of 89%. PTRA resulted in a greater increase in renal flow in responders compared with nonresponders (p < 0.001).Conclusion

  20. Single Incision Laparoscopic Pancreas Resection for Pancreatic Metastasis of Renal Cell Carcinoma

    PubMed Central

    Sümer, Aziz; Demirel, Tugrul; Karakullukçu, Nazlι; Batman, Burçin; İçscan, Yalιn; Sarιçam, Gülay; Serin, Kürçsat; Loh, Wei-Liang; Dinççağ, Ahmet; Mercan, Selçuk

    2010-01-01

    Background: Transumbilical single incision laparoscopic surgery (SILS) offers excellent cosmetic results and may be associated with decreased postoperative pain, reduced need for analgesia, and thus accelerated recovery. Herein, we report the first transumbilical single incision laparoscopic pancreatectomy case in a patient who had renal cell cancer metastasis on her pancreatic corpus and tail. Methods: A 59-year-old female who had metastatic lesions on her pancreas underwent laparoscopic subtotal pancreatectomy through a 2-cm umbilical incision. Results: Single incision pancreatectomy was performed with a special port (SILS port) and articulated equipment. The procedure lasted 330 minutes. Estimated blood loss was 100mL. No perioperative complications occurred. The patient was discharged on the seventh postoperative day with a low-volume (20mL/day) pancreatic fistula that ceased spontaneously. Pathology result of the specimen was renal cell cancer metastases. Conclusion: This is the first reported SILS pancreatectomy case, demonstrating that even advanced surgical procedures can be performed using the SILS technique in well-experienced centers. Transumbilical single incision laparoscopic pancreatectomy is feasible and can be performed safely in experienced centers. SILS may improve cosmetic results and allow accelerated recovery for patients even with malignancy requiring advanced laparoscopic interventions. PMID:21605524

  1. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.

    PubMed

    DiBona, Gerald F

    2005-03-01

    Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.

  2. Cell lineage tracing during Xenopus tail regeneration.

    PubMed

    Gargioli, Cesare; Slack, Jonathan M W

    2004-06-01

    The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promoter driving GFP (Green Fluorescent Protein) ubiquitously throughout the embryo. Single tissues were then specifically labelled by making grafts at the neurula stage from transgenic donors to unlabelled hosts. When the hosts have developed to tadpoles, they carry a region of the appropriate tissue labelled with GFP. These tails were amputated through the labelled region and the distribution of labelled cells in the regenerate was followed. We also labelled myofibres using the Cre-lox method. The results show that the spinal cord and the notochord regenerate from the same tissue type in the stump, with no labelling of other tissues. In the case of the muscle, we show that the myofibres of the regenerate arise from satellite cells and not from the pre-existing myofibres. This shows that metaplasia between differentiated cell types does not occur, and that the process of Xenopus tail regeneration is more akin to tissue renewal in mammals than to urodele tail regeneration.

  3. Vertebrate-like regeneration in the invertebrate chordate amphioxus

    PubMed Central

    Somorjai, Ildikó M. L.; Garcia-Fernàndez, Jordi; Escrivà, Hector

    2012-01-01

    An important question in biology is why some animals are able to regenerate, whereas others are not. The basal chordate amphioxus is uniquely positioned to address the evolution of regeneration. We report here the high regeneration potential of the European amphioxus Branchiostoma lanceolatum. Adults regenerate both anterior and posterior structures, including neural tube, notochord, fin, and muscle. Development of a classifier based on tail regeneration profiles predicts the assignment of young and old adults to their own class with >94% accuracy. The process involves loss of differentiated characteristics, formation of an msx-expressing blastema, and neurogenesis. Moreover, regeneration is linked to the activation of satellite-like Pax3/7 progenitor cells, the extent of which declines with size and age. Our results provide a framework for understanding the evolution and diversity of regeneration mechanisms in vertebrates. PMID:22203957

  4. Comparison contemporary methods of regeneration sodium-cationic filters

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  5. Characteristics of a commercially aged Ni-Mo/Al2O3 hydrotreating catalyst: component distribution, nature of coke and effects of regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanor, J.M.

    1984-01-01

    Information concerning the morphology and behavior of active components on commercially aged catalyst, the effects of regeneration conditions on activity, and insights into the nature of coke and contaminant metal deposits could lead to improved catalysts and operating conditions , yielding significant economic returns. Spent Ni-Mo/Al2O3 hydrotreating catalyst from a commercial hydrotreater was examined using TGA, SEM, STEM, XPS, and a microreactor. Information concerning intraparticle distributions of active components, characteristics of the coke and metal deposits, and catalytic activity for fresh, spent and regenerated catalyst was used to draw general conclusions concerning hydrotreating catalyst deactivation. It was found that catalyticmore » activity was reduced and the nature of the hydrogenation function was altered due to bulk migration and agglomeration of molybdenum. This process was found to be accelerated by high-temperature regeneration. Results also indicated that iron deposits might catalyze formation of coke. Tentative generalizations and suggestions on improved reactor operation are presented.« less

  6. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    PubMed

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  7. Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)

    PubMed Central

    Lee, Jangwoo; Gardiner, David M.

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640

  8. [Aortic dissection spread to the renal arteries: role of renal volumetry after angioplasty].

    PubMed

    Vautrin, E; Thony, F; Chavanon, O; Hannachi, I; Barone-Rochette, G; Pierre, H; Baguet, J-P

    2012-06-01

    Type A or B aortic dissection can extend to renal arteries, causing a renal ischemia which treatment is usually endovascular. The aim of our study is to show the interest of the renal volumetry in the follow-up of these patients. Twenty-two patients (16 men, mean age 63.4±11.8years, BMI 25.2±3.4kg/m(2)) with a type A or B aortic dissection spread to one or to both renal arteries and followed at Grenoble university hospital were consecutively included. All patients underwent renal angiography with aorto-renal pressure gradients measurements and follow-up by renal volumetry (scanner Siemens(®)). A renal ischemia was defined by a decrease of 20% or more of the volumetry. Sixteen patients (73%) were hypertensive before the aortic dissection among which ten (62%) were treated. Eight patients (36%) have a significant renal pressure gradient among which five (62%) underwent renal endovascular therapy. The renal volumetry of these five patients remained unchanged while six of 17 patients (36%) without angioplasty have a decreasing volumetry. Renal volumetry appeared an effective and attractive option for the follow-up of the patients with aortic dissection spread to the renal arteries. These results should be taken into account to put the indication of an endovascular treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Functions of the Renal Nerves.

    ERIC Educational Resources Information Center

    Koepke, John P.; DiBona, Gerald F.

    1985-01-01

    Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

  10. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  11. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud's phenomenon, positive antinuclear antibodies and hypertensive emergency.

    PubMed

    Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu

    2014-01-01

    A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.

  12. p53 on the crossroad between regeneration and cancer.

    PubMed

    Charni, Meital; Aloni-Grinstein, Ronit; Molchadsky, Alina; Rotter, Varda

    2017-01-01

    Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.

  13. Composite Matrix Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  14. Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease

    PubMed Central

    Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret

    2015-01-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076

  15. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs

    PubMed Central

    Nagayasu-Tanaka, Toshie; Anzai, Jun; Takaki, Shu; Shiraishi, Noriko; Terashima, Akio; Asano, Taiji; Nozaki, Takenori; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL. PMID

  16. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    PubMed

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  17. Modulation of tissue repair by regeneration enhancer elements.

    PubMed

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.

  18. Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties

    PubMed Central

    Galgamuwa, Ramindhu; Hardy, Kristine; Dahlstrom, Jane E.; Blackburn, Anneke C.; Wium, Elize; Rooke, Melissa; Cappello, Jean Y.; Tummala, Padmaja; Patel, Hardip R.; Chuah, Aaron; Tian, Luyang; McMorrow, Linda; Board, Philip G.

    2016-01-01

    Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin. PMID:26961349

  19. Evaluation of renal function in patients with a main renal stone larger than 1 cm and perioperative renal functional change in minimally invasive renal stone surgery: a prospective, observational study.

    PubMed

    Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong

    2016-05-01

    To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.

  20. Pulp regeneration after non-infected and infected necrosis, what type of tissue do we want? A review.

    PubMed

    Andreasen, Jens O; Bakland, Leif K

    2012-02-01

    Regeneration (revitalization) of infected necrotic pulp tissue has been an important issue in endodontics for more than a decade. Based on a series of case reports, there appears to be evidence that new soft tissue can enter the root canal with a potential for subsequent hard tissue deposition resulting in a narrowing of the root canal. Very little is presently known about the exact nature of this tissue growing into the canal and how it may behave in the long term. In the case of regeneration of necrotic non-infected pulp tissue, a series of clinical and histological studies have shown that such events may take place in four variants: (i) Revascularization of the pulp with accelerated dentin formation leading to pulp canal obliteration. This event has a good long-term prognosis. (ii) Ingrowth of cementum and periodontal ligament (PDL). The long-term prognosis for this event is not known. (iii) Ingrowth of cementum, PDL, and bone. The long-term prognosis is only partly known, but cases developing an internal ankylosis have been described. (iv) Ingrowth of bone and bone marrow is a rare phenomenon and the long-term prognosis does not appear to be good. Based on current knowledge, expectations with respect to pulp regeneration (revitalization) of infected necrotic dental pulps are difficult to predict; more information than now available is needed before procedures for pulpal regeneration can be routinely recommended with a predictable long-term prognosis. © 2011 John Wiley & Sons A/S.

  1. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    PubMed

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  2. [Renal elastography].

    PubMed

    Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael

    2016-04-01

    Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  3. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  4. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    PubMed

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, Masaki, E-mail: masakiwestriver@gmail.com; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343; Yanagawa, Naomi

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineagesmore » from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM

  6. Regeneration of southern hardwoods: some ecological concepts

    Treesearch

    David L. Loftis

    1989-01-01

    Classical concepts of post-disturbance succession through well-defined seral stages to a well-defined ,climax stage( s) are not a useful conceptual framework for predicting species composition of regeneration resulting from the application of regeneration treatments in complex southern hardwood forests. Hardwood regeneration can be better understood, and more useful...

  7. Use of computed tomography renal angiography for screening feline renal transplant donors.

    PubMed

    Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark

    2003-01-01

    Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a

  8. Renal Tumors

    PubMed Central

    Tan, Puay Hoon; Cheng, Liang; Rioux-Leclercq, Nathalie; Merino, Maria J.; Netto, George; Reuter, Victor E.; Shen, Steven S.; Grignon, David J.; Montironi, Rodolfo; Egevad, Lars; Srigley, John R.; Delahunt, Brett; Moch, Holger

    2016-01-01

    The International Society of Urological Pathology convened a consensus conference on renal cancer, preceded by an online survey, to address issues relating to the diagnosis and reporting of renal neoplasia. In this report, the role of biomarkers in the diagnosis and assessment of prognosis of renal tumors is addressed. In particular we focused upon the use of immunohistochemical markers and the approach to specific differential diagnostic scenarios. We enquired whether cytogenetic and molecular tools were applied in practice and asked for views on the perceived prognostic role of biomarkers. Both the survey and conference voting results demonstrated a high degree of consensus in participants’ responses regarding prognostic/predictive markers and molecular techniques, whereas it was apparent that biomarkers for these purposes remained outside the diagnostic realm pending clinical validation. Although no individual antibody or panel of antibodies reached consensus for classifying renal tumors, or for confirming renal metastatic disease, it was noted from the online survey that 87% of respondents used immunohistochemistry to subtype renal tumors sometimes or occasionally, and a majority (87%) used immunohistochemical markers (Pax 2 or Pax 8, renal cell carcinoma [RCC] marker, panel of pan-CK, CK7, vimentin, and CD10) in confirming the diagnosis of metastatic RCC. There was consensus that immunohistochemistry should be used for histologic subtyping and applied before reaching a diagnosis of unclassified RCC. At the conference, there was consensus that TFE3 and TFEB analysis ought to be requested when RCC was diagnosed in a young patient or when histologic appearances were suggestive of the translocation subtype; whereas Pax 2 and/or Pax 8 were considered to be the most useful markers in the diagnosis of a renal primary. PMID:24025522

  9. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK.

    PubMed

    Fu, Xing; Zhu, Meijun; Zhang, Shuming; Foretz, Marc; Viollet, Benoit; Du, Min

    2016-01-01

    Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Apparatus and methods for regeneration of precipitating solvent

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  11. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model.

    PubMed

    Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan

    2016-08-01

    Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. © 2016 Wiley Periodicals, Inc.

  12. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  13. Tissue regeneration in dentistry: Can salamanders provide insight?

    PubMed

    Sader, F; Denis, J-F; Roy, S

    2018-05-01

    The ability to regenerate damaged tissues would be of tremendous benefit for medicine and dentistry. Unfortunately, humans are unable to regenerate tissues such as teeth and fingers or to repair injured spinal cord. With an aging population, health problems are more prominent and dentistry is no exception as loss of bone tissue in the orofacial sphere from periodontal disease is on the rise. Humans can repair oral soft tissues exceptionally well; however, hard tissues, such as bone and teeth, are devoid of the ability to repair well or at all. Fortunately, Mother Nature has solved nearly every problem that we would like to solve for our own benefit and tissue regeneration is no exception. By studying animals that can regenerate, like Axolotls (Mexican salamander), we hope to find ways to stimulate regeneration in humans. We will discuss the role of the transforming growth factor beta cytokines as they are central to wound healing in humans and regeneration in Axolotls. We will also compare wound healing in humans (skin and oral mucosa) to Axolotl skin wound healing and limb regeneration. Finally, we will address the problem of bone regeneration and present results in salamanders which indicate that in order to regenerate bone you need to recruit non-bone cells. Fundamental research, such as the work being performed in animals that can regenerate, offers insight to help understand why some treatments are successful while others fail when it comes to specific tissues such as bones. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  15. Resetting the epigenome for heart regeneration.

    PubMed

    Quaife-Ryan, Gregory A; Sim, Choon Boon; Porrello, Enzo R; Hudson, James E

    2016-10-01

    In contrast to adults, recent evidence suggests that neonatal mice are able to regenerate following cardiac injury. This regenerative capacity is reliant on robust induction of cardiomyocyte proliferation, which is required for faithful regeneration of the heart following injury. However, cardiac regenerative potential is lost as cardiomyocytes mature and permanently withdraw from the cell cycle shortly after birth. Recently, a handful of factors responsible for the regenerative disparity between the adult and neonatal heart have been identified, but the proliferative response of adult cardiomyocytes following modulation of these factors rarely reaches neonatal levels. The inefficient re-induction of proliferation in adult cardiomyocytes may be due to the epigenetic landscape, which drastically changes during cardiac development and maturation. In this review, we provide an overview of the role of epigenetic modifiers in developmental processes related to cardiac regeneration. We propose an epigenetic framework for heart regeneration whereby adult cardiomyocyte identity requires resetting to a neonatal-like state to facilitate cell cycle re-entry and regeneration following cardiac injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Needed: Guidelines for defining acceptable advance regeneration

    Treesearch

    Dennis E. Ferguson

    1984-01-01

    Advance regeneration is an important component in many stands scheduled for harvesting. Properly managed, such regeneration can contribute to a healthy, new stand, but too often trees do not quickly respond to the new environment or take too long to adjust. Definitions of acceptable advance regeneration are needed for pre- and postharvest inventories. The author...

  17. Regional Longleaf Pine (Pinus palustris) Natural Regeneration

    Treesearch

    William D. Boyer

    1998-01-01

    Duration: 1968-present Objective: Test the shelterwood system of longleaf pine natural regeneration. Methods: Longleaf pine natural regeneration tests were established from 1966 through 1970 at ten locations in seven states from North Carolina to Louisiana. One of these was established on a 50-acre flatwoods site on Eglin AFB in 1968. Regeneration was initially...

  18. Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation.

    PubMed

    Imnadze, Guram; Balzer, Stefan; Meyer, Baerbel; Neumann, Joerg; Krech, Rainer Horst; Thale, Joachim; Franz, Norbert; Warnecke, Henning; Awad, Khaled; Hayek, Salim S; Devireddy, Chandan

    2016-12-01

    Initial studies of catheter-based renal arterial sympathetic denervation to lower blood pressure in resistant hypertensive patients renewed interest in the sympathetic nervous system's role in the pathogenesis of hypertension. However, the SYMPLICITY HTN-3 study failed to meet its prespecified blood pressure lowering efficacy endpoint. To date, only a limited number of studies have described the microanatomy of renal nerves, of which, only two involve humans. Renal arteries were harvested from 15 cadavers from the Klinikum Osnabruck and Schuchtermann Klinik, Bad Rothenfelde. Each artery was divided longitudinally in equal thirds (proximal, middle, and distal), with each section then divided into equal superior, inferior, anterior, and posterior quadrants, which were then stained. Segments containing no renal nerves were given a score value = 0, 1-2 nerves with diameter <300 µm a score = 1; 3-4 nerves or nerve diameter 300-599 µm a score = 2, and >4 nerves or nerve diameter ≥600 µm a score = 3. A total of 22 renal arteries (9 right-sided, 13 left-sided) were suitable for examination. Overall, 691 sections of 5 mm thickness were prepared. Right renal arteries had significantly higher mean innervation grade (1.56 ± 0.85) compared to left renal arteries (1.09 ± 0.87) (P < 0.001). Medial (1.30 ± 0.59) and distal (1.39 ± 0.62) innervation was higher than the proximal (1.17 ± 0.55) segments (p < 0.001). When divided in quadrants, the anterior (1.52 ± 0.96) and superior (1.71 ± 0.89) segments were more innervated compared to posterior (0.96 ± 0.72) and inferior (0.90 ± 0.68) segments (P < 0.001). That the right renal artery has significantly higher innervation scores than the left. The anterior and superior quadrants of the renal arteries scored higher in innervation than the posterior and inferior quadrants did. The distal third of the renal arteries are more innervated than the more

  19. Caudal autotomy and regeneration in lizards.

    PubMed

    Clause, Amanda R; Capaldi, Elizabeth A

    2006-12-01

    Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.

  20. Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration

    PubMed Central

    Byrne, Alexandra B.; Walradt, Trent; Gardner, Kathryn E.; Hubbert, Austin; Reinke, Valerie; Hammarlund, Marc

    2014-01-01

    Summary The ability of injured axons to regenerate declines with age yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2’s function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron specific, and genetically regulated process. In addition, we found that daf-18/PTEN inhibits regeneration independently of age and FOXO signaling, via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and is required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons, and that this mechanism is independent of PTEN and TOR. PMID:24440228

  1. Applications of Metals for Bone Regeneration.

    PubMed

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike

    2018-03-12

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  2. Applications of Metals for Bone Regeneration

    PubMed Central

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine

    2018-01-01

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546

  3. Neurosurgery: Functional regeneration after laser axotomy

    NASA Astrophysics Data System (ADS)

    Yanik, Mehmet Fatih; Cinar, Hulusi; Cinar, Hediye Nese; Chisholm, Andrew D.; Jin, Yishi; Ben-Yakar, Adela

    2004-12-01

    Understanding how nerves regenerate is an important step towards developing treatments for human neurological disease, but investigation has so far been limited to complex organisms (mouse and zebrafish) in the absence of precision techniques for severing axons (axotomy). Here we use femtosecond laser surgery for axotomy in the roundworm Caenorhabditis elegans and show that these axons functionally regenerate after the operation. Application of this precise surgical technique should enable nerve regeneration to be studied in vivo in its most evolutionarily simple form.

  4. Manipulations to regenerate aspen ecosystems

    Treesearch

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  5. Effects of complete water fasting and regeneration diet on kidney function, oxidative stress and antioxidants.

    PubMed

    Mojto, V; Gvozdjakova, A; Kucharska, J; Rausova, Z; Vancova, O; Valuch, J

    2018-01-01

    The aim of the study was to observe the influence of 11-days complete water fasting (WF) and regeneration diet (RD) on renal function, body weight, blood pressure and oxidative stress. Therapeutic WF is considered a healing method. Ten volunteers drank only water for 11 days, followed by RD for the next 11 days. Data on body weight, blood pressure, kidney functions, antioxidants, lipid peroxidation, cholesterols, triacylglycerols and selected biochemical parameters were obtained. WF increased uric acid and creatinine and decreased glomerular filtration rate. After RD, the parameters were comparable to baseline values. Urea was not affected. Lipid peroxidation (TBARS) decreased and maintained stable after RD. Fasting decreased α-tocopherol and increased γ-tocopherol, no significant changes were found after RD. Coenzyme Q10 decreased after RD. HDL-cholesterol decreased in WF. Total- and LDL-cholesterol decreased after RD. Other biochemical parameters were within the range of reference values. The effect of the complete fasting on kidney function was manifested by hyperuricemia. Renal function was slightly decreased, however maintained within the reference values. After RD, it returned to baseline values. The positive effect of the complete water fasting was in the reduction of oxidative stress, body weight and blood pressure (Tab. 3, Ref. 25).

  6. Evolution of the Chordate Regeneration Blastema: Differential Gene Expression and Conserved Role of Notch Signaling During Siphon Regeneration in the Ascidian Ciona

    PubMed Central

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S.; Satoh, Noriyuki; Jeffery, William R.

    2015-01-01

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration. PMID:26206613

  7. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  8. Regenerating America: Meeting the Challenge of Building Local Economies.

    ERIC Educational Resources Information Center

    Gabel, Medard; And Others

    The document includes five papers on the implications and applications of regeneration by the Regeneration Project, based in Emmaus, Pa. The first paper, "Regenerating America: Meeting the Challenge of Building Local Economies," (Medard Gabel) defines regeneration as economic recovery and growth, fostered by diversification within a…

  9. Neoblasts and the evolution of whole-body regeneration.

    PubMed

    Gehrke, Andrew R; Srivastava, Mansi

    2016-10-01

    The molecular mechanisms underlying whole-body regeneration are best understood in the planarian flatworm Schmidtea mediterranea, where a heterogeneous population of somatic stem cells called neoblasts provides new tissue for regeneration of essentially any missing body part. Studies on Schmidtea have provided a detailed description of neoblasts and their role in regeneration, but comparatively little is known about the evolutionary history of these cells and their underlying developmental programs. Acoels, an understudied group of aquatic worms that are also capable of extensive whole-body regeneration, have arisen as an attractive group to study the evolution of regenerative processes due to their phylogenetically distant position relative to flatworms. Here, we review the phylogenetic distribution of neoblast cells and compare their anatomical locations, transcriptional profiles, and roles during regeneration in flatworms and acoels to understand the evolution of whole-body regeneration. While the general role of neoblasts appears conserved in species separated by 550 million years of evolution, the extrinsic inputs they receive during regeneration can vary, making the distinction between homology and convergence of mechanism unclear. A more detailed understanding of the precise mechanisms behind whole-body regeneration in diverse phyla is necessary to understand the evolutionary history of this powerful process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Guided bone regeneration using individualized ceramic sheets.

    PubMed

    Malmström, J; Anderud, J; Abrahamsson, P; Wälivaara, D-Å; Isaksson, S G; Adolfsson, E

    2016-10-01

    Guided bone regeneration (GBR) describes the use of membranes to regenerate bony defects. A membrane for GBR needs to be biocompatible, cell-occlusive, non-toxic, and mouldable, and possess space-maintaining properties including stability. The purpose of this pilot study was to describe a new method of GBR using individualized ceramic sheets to perfect bone regeneration prior to implant placement; bone regeneration was assessed using traditional histology and three-dimensional (3D) volumetric changes in the bone and soft tissue. Three patients were included. After full-thickness flap reflection, the individualized ceramic sheets were fixed. The sites were left to heal for 7 months. All patients were evaluated preoperatively and at 7 months postoperative using cone beam computed tomography and 3D optical equipment. Samples of the regenerated bone and soft tissue were collected and analyzed. The bone regenerated in the entire interior volume of all sheets. Bone biopsies revealed newly formed trabecular bone with a lamellar structure. Soft tissue biopsies showed connective tissue with no signs of an inflammatory response. This was considered to be newly formed periosteum. Thus ceramic individualized sheets can be used to regenerate large volumes of bone in both vertical and horizontal directions independent of the bone defect and with good biological acceptance of the material. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Regeneration of hair cells in the mammalian vestibular system.

    PubMed

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  12. Assessment of the relationship between renal volume and renal function after minimally-invasive partial nephrectomy: the role of computed tomography and nuclear renal scan.

    PubMed

    Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco

    2018-05-14

    To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass renal scan and contrast-enhanced CT-scan (both performed in our Institution) both at preoperative assessment and at the third postoperative month follow-up. Tc99MAG-3 renal scan was performed to get renal functional data; renal volume was calculated by dedicated software from CT-scan with a semiautomated method. Statistical analysis aimed to identify relationships between loss of renal volume and loss of renal function and other patients' and surgical variables, particularly regarding lesion complexity (assessed by PADUA score). 57 patients were analyzed. Both at univariate and multivariate analysis, the percentage of loss of renal function was significantly correlated to the loss of renal volume (p<0.001). Warm ischemia significantly correlated with the loss of renal volume (p=0.003). After stratification according to PADUA score categories, higher surgical complexity renal masses had stronger correlation between the loss of renal volume and the loss of renal function. The use of the semiautomated method for the 3D segmentation of the kidney to get the volumetric assessment could be a valid tool to support the future use of CT-scan as the tool to pair the oncological and the functional follow-up after PN.

  13. A comparative study of noisy signal evolution in 2R all-optical regenerators with normal and anomalous average dispersions using an accelerated Multicanonical Monte Carlo method.

    PubMed

    Lakoba, Taras I; Vasilyev, Michael

    2008-10-27

    In [Opt. Express 15, 10061 (2007)] we proposed a new regime of multichannel all-optical regeneration that required anomalous average dispersion. This regime is superior to the previously studied normal-dispersion regime when signal distortions are deterministic in their temporal shape. However, there was a concern that the regenerator with anomalous average dispersion may be prone to noise amplification via modulational instability. Here, we show that this, in general, is not the case. Moreover, in the range of input powers that is of interest for multichannel regeneration, the device with anomalous average dispersion may even provide less noise amplification than the one with normal dispersion. These results are obtained with an improved version of the parallelized modification of the Multicanonical Monte Carlo method proposed in [IEEE J. Sel. Topics Quantum Electron. 14, 599 (2008)].

  14. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-03

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.

  15. Cytoskeletal Regulation of Dermal Regeneration

    PubMed Central

    Strudwick, Xanthe L.; Cowin, Allison J.

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  16. Allegheny hardwood regeneration response to even-age harvesting methods

    Treesearch

    John C. Bjorkbom; Russell S. Walters; Russell S. Walters

    1986-01-01

    Allegheny hardwood regeneration response to block clearcutting, alternate strip clearcutting, and two-cut shelterwood, and in an uncut control was compared. Stand regeneration success was evaluated 5 years after harvest. Clearcutting resulted in high mortality of advance regeneration. Thus, regeneration by block clearcutting was not successful, though both alternate...

  17. Renal Arterial Pseudoaneurysm and Renal Arteriovenous Fistula Following Partial Nephrectomy.

    PubMed

    Chen, Jinchao; Yang, Min; Wu, Pengjie; Li, Teng; Ning, Xianghui; Peng, Shuanghe; Wang, Jiangyi; Qi, Nienie; Gong, Kan

    2018-01-01

    Renal arterial pseudoaneurysm (RAP) and renal arteriovenous fistula (RAVF) are rare but can cause fatal bleeding. A retrospective review was conducted for patients undergoing partial nephrectomy (PN) in our department. The clinical features and treatment methods were analysed, and the relationships between RAP/RAVF and the surgical methods and R.E.N.A.L. score were investigated. Eleven patients were diagnosed with RAP/RAVF (9 with RAP and 2 with RAVF). The incidence of RAP/RAVF after laparoscopic PN showed no significant difference compared to that after open PN (p = 0.47). A low R.E.N.A.L. score was present in 6 patients, while an intermediate/high score was present in the other 5 patients. The major clinical manifestations included haematuria and haemorrhagic shock, and the median time of occurrence was 8 days after the operation. Six patients underwent an ultrasound examination. Of the 4 patients who underwent enhanced CT, 2 patients were diagnosed with RAP. All 11 patients were diagnosed by renal angiography and were cured after super-selective arterial embolization. The serum creatinine levels before and after embolization showed no significant differences (p = 0.14). RAP/RAVF may not have any relationship with the surgical procedure or R.E.N.A.L. score. Renal angiography and super-selective arterial embolization are the preferred methods for diagnosing and treating RAP/RAVF. © 2016 S. Karger AG, Basel.

  18. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    PubMed

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  19. Wound healing and skin regeneration.

    PubMed

    Takeo, Makoto; Lee, Wendy; Ito, Mayumi

    2015-01-05

    The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Pathophysiology of renal denervation procedures: from renal nerve anatomy to procedural parameters.

    PubMed

    Ammar, Sonia; Ladich, Elena; Steigerwald, Kristin; Deisenhofer, Isabel; Joner, Michael

    2013-05-01

    Endovascular renal denervation techniques have been clinically adopted for the treatment of resistant arterial hypertension with great success. Despite the favourable early results achieved with this technology, a clear understanding of the pathophysiology underlying this novel treatment is lacking. In addition, non-responsiveness to renal denervation remains a nidus for treatment failure in distinct patients. In search of meaningful surrogate parameters relating to treatment responsiveness, the current article reviews the existing knowledge on renal nerve anatomy, changes occurring after denervation and procedural parameters collected during denervation. From preclinical experience, the most reliable morphological parameter reflecting successful renal denervation is the presence of axonal degeneration. Most procedural and clinical parameters need extended investigation before adopting them as potential surrogate parameters for successful renal denervation. As a consequence, there is an imperative need for dedicated research revealing the pathophysiology of renal denervation procedures. In this regard, close co-operation of engineers, researchers and clinicians is warranted to turn renal denervation into a milestone treatment of arterial hypertension.

  1. Zirconia changes after grinding and regeneration firing.

    PubMed

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural

  2. Accelerated In Vitro Degradation of Optically Clear Low β-Sheet Silk Films by Enzyme-Mediated Pretreatment

    PubMed Central

    Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Tao, Hu; Kaplan, David L.

    2013-01-01

    Purpose: To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma. Methods: β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results: Low β-sheet content (17%–18%) and enzymatic pretreatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pretreatment, and overall degradation rate of the protein films. Conclusions: The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational Relevance: Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment, and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:24049717

  3. Accelerated in vitro Degradation of Optically Clear Low β-sheet Silk Films by Enzyme-Mediated Pretreatment

    PubMed Central

    Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Hu, Tao; Kaplan, David L.

    2013-01-01

    Purpose To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma, Methods β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results Low β-sheet content (17–18%) and enzymatic pre-treatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pre-treatment and overall degradation rate of the protein films. Conclusions The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational relevance Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:23579493

  4. Renal venogram

    MedlinePlus

    ... be black. Other structures will be shades of gray. Veins are not normally seen in an x- ... Venogram - kidney; Renal vein thrombosis - venogram Images Kidney anatomy Kidney - blood and urine flow Renal veins References ...

  5. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension.

    PubMed

    Banek, Christopher T; Knuepfer, Mark M; Foss, Jason D; Fiege, Jessica K; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W

    2016-12-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA) salt rat model. Uninephrectomized male Sprague-Dawley rats (275-300 g) underwent afferent-selective RDNx (n=10), total RDNx (n=10), or Sham (n=10) and were instrumented for the measurement of mean arterial pressure and heart rate by radiotelemetry. Rats received 100-mg DOCA (SC) and 0.9% saline for 21 days. Resting afferent renal nerve activity in DOCA and vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting afferent renal nerve activity, expressed as a percent of peak afferent nerve activity, was substantially increased in DOCA than in vehicle (35.8±4.4 versus 15.3±2.8 %Amax). The DOCA-Sham hypertension (132±12 mm Hg) was attenuated by ≈50% in both total RDNx (111±8 mm Hg) and afferent-selective RDNx (117±5 mm Hg) groups. Renal inflammation induced by DOCA salt was attenuated by total RDNx and unaffected by afferent-selective RDNx. These data suggest that afferent renal nerve activity may mediate the hypertensive response to DOCA salt, but inflammation may be mediated primarily by efferent renal sympathetic nerve activity. Also, resting afferent renal nerve activity is elevated in DOCA salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. © 2016 American Heart Association, Inc.

  6. Monel-shot and screen regenerators

    NASA Technical Reports Server (NTRS)

    Browning, C. W.

    1974-01-01

    Monel has been found to be ideal material for matrix of regenerators operating in temperature range of 325 K to 50 K. Two best shapes are as spheres or as wire mesh. For given size of regenerator, spherical shots are preferable for low-temperature operation. At high temperatures, mesh would be superior by virtue of its lower flow resistance.

  7. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors

    PubMed Central

    G, Swetha; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-01-01

    Abstract Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197

  8. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration

    PubMed Central

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W.; Davis, James G.; Agarwal, Beamon; Baur, Joseph A.

    2016-01-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing Nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nampt overexpressing mice were mildly hyperglycemic at baseline and, similarly to the mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking Nampt in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. Conclusion NAD availability is limiting during liver regeneration and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. PMID:27809334

  9. [Anatomy character of renal artery and treatment of living-donor renal transplantation].

    PubMed

    Zhang, Lei; Fei, Ji-guang; Chen, Li-zhong; Wang, Chang-xi; Deng, Su-xiong; Qiu, Jiang; Li, Jun; Chen, Guo-dong; Huang, Gang

    2009-12-15

    To study the anatomy characters of renal artery and the treatment of multiple arteries in living donor renal grafts. Records of 142 living donors were analyzed in our center. We analyzed the anatomic structure of renal arteries by DSA and CTA pre-transplantation. Thirty-one kidneys with multiple arteries were transplanted after reconstruction. Then clinical effects were compared between multiple-renal-arteries group (n=31) and single-renal-artery group (n=111). The incidence of multiple renal artery was 30.99%, and there was no difference between both sides (left kidney 22.54%, right kidney 22.13%). If the multiple artery occurred in left or right kidney, the incidence of the multiple artery occurred in the other side was 56.25% and 60.00%, respectively. The diameter of left main renal artery was more magnanimous (P=0.001) and the first branch was more closed to abdominal aorta (P=0.004). Operation time and warm/cool ischemia time were longer in the multiple-renal-arteries group. However, estimated blood loss, delayed graft function, acute rejection and flow rate of arcuate artery were similar in both groups, the same as serum creatinine and serum creatinine clearance rate on day 7, 1 month and 3 month post-operation. It was shown by repeated measures ANOVA that graft with multiple arteries didn't affect the tendency of renal function at early time post-operation. Comprehending the character of renal artery and accurate treatment of multiple artery anastomosis are critical for the effect of the living kidney transplantation.

  10. Jet Penetration into a Scaled Microfabricated Stirling Cycle Regenerator

    NASA Technical Reports Server (NTRS)

    Sun, Liyong; Simon, Terrence W.; Mantell, Susan; Ibrahim, Mournir; Gedeon, David; Tew, Roy

    2008-01-01

    The cooler and heater adjacent to the regenerator of a Stirling cycle engine have tubes or channels which form jets that pass into the regenerator while diffusing within the matrix. An inactive part of the matrix, beyond the cores of these jets, does not participate fully in the heat transfer between the flow of working fluid and the regenerator matrix material, weakening the regenerator s ability to exchange heat with the working fluid. The objective of the present program is to document this effect on the performance of the regenerator and to develop a model for generalizing the results. However, the small scales of actual Stirling regenerator matrices (on the order of tens of microns) make direct measurements of this effect very difficult. As a result, jet spreading within a regenerator matrix has not been characterized well and is poorly understood. Also, modeling is lacking experimental verification. To address this, a large-scale mockup of thirty times actual scale was constructed and operated under conditions that are dynamically similar to the engine operation. Jet penetration with round jets and slot jets into the microfabricated regenerator geometry are then measured by conventional means. The results are compared with those from a study of spreading of round jets within woven screen regenerator for further documentation of the comparative performance of the microfabricated regenerator geometry.

  11. Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.

    PubMed

    Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K

    2017-05-01

    This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and

  12. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  13. Wound signaling: The missing link in plant regeneration.

    PubMed

    Chen, Lyuqin; Sun, Beibei; Xu, Lin; Liu, Wu

    2016-10-02

    Wounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling. Leaf explants may produce at least two kinds of wound signals to trigger short-term and long-term wound signaling. Short-term wound signaling is primarily involved in controlling auxin behavior and the fate transition of regeneration-competent cells, while long-term wound signaling mainly modulates the cellular environment at the wound site and maintains the auxin level in regeneration-competent cells. YUCCA (YUC) genes, which are involved in auxin biogenesis, are targets of short-term wound signaling in mesophyll cells and of long-term wound signaling in regeneration-competent cells. The expression patterns of YUCs provide important information about the molecular basis of wound signaling in plant regeneration.

  14. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  15. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  16. Hair cell regeneration in the avian auditory epithelium.

    PubMed

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  17. Learning to swim, again: Axon regeneration in fish.

    PubMed

    Rasmussen, Jeffrey P; Sagasti, Alvaro

    2017-01-01

    Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Histological Evaluation of the Effect of Platelet-rich Plasma on Pulp Regeneration in Nonvital Open Apex Teeth: An Animal Study.

    PubMed

    Ghoddusi, Jamileh; Maghsudlu, Amir; Jafarzadeh, Hamid; Jafarian, Amirhossein; Forghani, Maryam

    2017-11-01

    Platelet-rich plasma (PRP), which is a concentration of growth factors found in platelets, may be a suitable material for pulp regeneration. The aim of this animal study was a histological evaluation of PRP on pulp regeneration in nonvital teeth with immature apices. A total of 40 premolar dogs' teeth were chosen for this study. After general anesthesia, the teeth were exposed, and subsequently, pulps were removed and the cavities were opened to the oral cavity. After 2 weeks, root canals were irrigated and disinfected with sodium hypochlorite with noninstrumentation technique, and triple antibiotic paste was placed inside the canals. Cavities were sealed with a temporary restoration. About 4 weeks later, canals were irrigated again and the teeth were randomly divided into three groups. Bleeding was evoked with overinstrumentation, then experimental materials for each group [PRP, mineral trioxide aggregate (MTA), and parafilm respectively] were placed over the bleeding, and orifices were sealed with MTA and glass ionomer. After 3 months, dogs were sacrificed and the teeth were separated from the jaws and sections prepared for histological evaluation. Regeneration was shown in 44.7% of the samples. About 47.3% of the samples in the MTA group and 42.1% of the samples in the PRP group showed regeneration; however, no regeneration was observed in the parafilm group. Chi-square test showed no significant difference between groups I and II. The soft regenerative tissue included pulp-like tissue and vessels. Mineralized regenerative tissue included cementum-like, periodontal ligament-like, and bone-like tissues. No normal pulp and nerve tissue were observed. Both PRP and MTA may be ideal scaffolds to accelerate the regeneration process. Pulp repair in immature permanent teeth with weak roots has a better outcome than replacement of the pulp with gutta-percha or biomaterials.

  19. [Polythelia and renal malformation].

    PubMed

    Jójárt, G; Seres, E

    1992-07-12

    The authors found 241 polythelia (5.86) among 4113 schoolchildren (aged 6-14 years). They investigated 236 of the 241 with ultrasound and found 10 renal malformations (4.24%). Among 280 controls with respiratory infection, accident or tonsillectomy they found 9 renal malformations (3.21%). With screening of 1635 neonates they found 66 with accessory nipples (4.05%). Two of the 66 had renal malformations (3.03%), while among the 1957 control neonates 37 had renal malformations (1.89%). In the hospital and ambulancy the authors found 106 polythelia, five of them had renal abnormalities (4.72%). The authors did not found association of polythelia and renal malformation with ultrasound investigation of 408 children with polythelia.

  20. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  1. Regulation of zebrafish heart regeneration by miR-133.

    PubMed

    Yin, Viravuth P; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D

    2012-05-15

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. Copyright © 2012. Published by Elsevier Inc.

  2. Regulation of zebrafish heart regeneration by miR-133

    PubMed Central

    Yin, Viravuth P.; Lepilina, Alexandra; Smith, Ashley; Poss, Kenneth D.

    2012-01-01

    Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. With pharmacological inhibition and EGFP sensor interaction studies, we demonstrated that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation. PMID:22374218

  3. Renal Salvage with Renal Artery Stenting Improves Long-term Survival.

    PubMed

    Modrall, J Gregory; Trimmer, Clayton; Tsai, Shirling; Kirkwood, Melissa L; Ali, Mujtaba; Rectenwald, John E; Timaran, Carlos H; Rosero, Eric B

    2017-11-01

    The Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL) Trial cast doubt on the benefits of renal artery stenting (RAS). However, the outcomes for patients with chronic kidney disease (CKD) were not analyzed separately in the CORAL Trial. We hypothesized that patients who experienced a significant improvement in renal function after RAS would have improved long-term survival, compared with patients whose renal function was not improved by stenting. This single-center retrospective study included 60 patients with stage 3 or worse CKD and renal artery occlusive disease who were treated with RAS for renal salvage. Patients were categorized as "responders" or "nonresponders" based on postoperative changes in estimated glomerular filtration rate (eGFR) after RAS. "Responders" were those patients with an improvement of at least 20% in eGFR over baseline; all others were categorized as "nonresponders." Survival was analyzed using the Kaplan-Meier method. Cox proportional hazards regression was used to identify predictors of long-term survival. The median age of the cohort was 66 years (interquartile range [IQR], 60-73). Median preoperative eGFR was 34 mL/min/1.73 m 2 (IQR, 24-45). At late follow-up (median 35 months, IQR, 22-97 months), 16 of 60 patients (26.7%) were categorized as "responders" with a median increase in postoperative eGFR of 40% (IQR, 21-67). Long-term survival was superior for responders, compared with nonresponders (P = 0.046 by log-rank test). Cox proportional hazards regression identified improved renal function after RAS as the only significant predictor of increased long-term survival (hazard ratio = 0.235, 95% confidence interval = 0.075-0.733; P = 0.0126 for improved versus worsened renal function after RAS). Successful salvage of renal function by RAS is associated with improved long-term survival. These data provide an important counter argument to the prior negative clinical trials that found no benefit to RAS

  4. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  5. Research on particulate filter simulation and regeneration control strategy

    NASA Astrophysics Data System (ADS)

    Dawei, Qu; Jun, Li; Yu, Liu

    2017-03-01

    This paper reports a DPF (Diesel Particulate Filter) collection mathematical model for a new regeneration control strategy. The new strategy is composed by main parts, such as regeneration time capturing, temperature rising strategy and regeneration control strategy. In the part of regeneration time capturing, a multi-level regeneration capturing method is put forward based on the combined effect of the PM (Particulate Matter) loading, pressure drop and fuel consumption. The temperature rising strategy proposes the global temperature for all operating conditions. The regeneration control process considers the particle loading density, temperature and oxygen respectively. Based on the analysis of the initial overheating, runaway temperature and local hot spot, the final control strategy is established.

  6. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes.

    PubMed

    Alibardi, Lorenzo

    2017-09-01

    Tissue regeneration in lizards represents a unique model of regeneration and scarring in amniotes. The tail and limb contain putative stem cells but also dedifferentiating cells contribute to regeneration. Following tail amputation, inflammation is low and cell proliferation high, leading to regeneration while the intense inflammation in the limb leads to low proliferation and scarring. FGFs stimulate tail and limb regeneration and are present in the wound epidermis and blastema while they disappear in the limb wound epidermis 2-3 weeks postamputation in the scarring outgrowth. FGFs localize in the tail blastema and the apical epidermal peg (AEP), an epidermal microregion that allows tail growth but is absent in the limb. Inflammatory cells invade the limb blastema and wound epidermis, impeding the formation of an AEP. An embryonic program of growth is activated in the tail, dominated by Wnt-positive and -negative regulators of cell proliferation and noncoding RNAs, that represent the key regenerative genes. The balanced actions of these regulators likely impede the formation of a tumor in the tail tip. Genes for FACIT and fibrillar collagens, protease inhibitors, and embryonic keratins are upregulated in the regenerating tail blastema. A strong downregulation of genes for both B and T-lymphocyte activation suggests the regenerating tail blastema is a temporal immune-tolerated organ, whereas a scarring program is activated in the limb. Wnt inhibitors, pro-inflammatory genes, negative regulators of cell proliferation, downregulation of myogenic genes, proteases, and oxidases favoring scarring are upregulated. The evolution of an efficient immune system may be the main limiting barrier for organ regeneration in amniotes, and the poor regeneration of mammals and birds is associated with the efficiency of their mature immune system. This does not tolerate embryonic antigens formed in reprogrammed embryonic cells (as for neoplastic cells) that are consequently

  7. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  8. Anatomic variations of the renal vessels: focus on the precaval right renal artery.

    PubMed

    Bouali, Ourdia; Labarre, David; Molinier, François; Lopez, Raphaël; Benouaich, Vincent; Lauwers, Frédéric; Moscovici, Jacques

    2012-07-01

    The aim of this study was to determine the prevalence of precaval right renal artery and to investigate the distribution of renal arteries and veins. We discuss a theory of development of renal vascular variants. We retrospectively reviewed 120 arterial phase contrast material-enhanced spiral computerized tomography scans of the abdomen (1- to 2-mm section thickness) performed during a two-month period. Forty percent of the study group (48 patients) had one artery and one vein on each side, with typical course. There was a 9.17% prevalence of precaval right renal artery: 10 patients had a lower pole accessory artery in precaval position and one patient had the main and the accessory arteries that pass anterior to the inferior vena cava. In these cases, associated variations of renal vessels were higher than in the patients without precaval artery variant. There were multiple arteries in 28.3% of the right kidneys and in 26.7% of the left ones. Variants of the right renal vein consisted in multiple veins in 20% (24 cases). We detected no case of multiple left renal veins, but we described variations of its course (circum- or retroaortic vein) in 9.17% (11 cases). Twenty-six patients (21.7%) had associated variations of the renal pedicle. The current technical support allows for a minimally invasive study of vessels anatomy. In our study the prevalence of a precaval right renal artery appears to be higher than previously reported (9.17%). Knowledge on anatomical variations of right renal artery and associated renal vessels variations has major clinical implications.

  9. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  10. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  11. ROLE OF TIMING IN ASSESSMENT OF NERVE REGENERATION

    PubMed Central

    BRENNER, MICHAEL J.; MORADZADEH, ARASH; MYCKATYN, TERENCE M.; TUNG, THOMAS H. H.; MENDEZ, ALLEN B.; HUNTER, DANIEL A.; MACKINNON, SUSAN E.

    2014-01-01

    Small animal models are indispensable for research on nerve injury and reconstruction, but their superlative regenerative potential may confound experimental interpretation. This study investigated time-dependent neuroregenerative phenomena in rodents. Forty-six Lewis rats were randomized to three nerve allograft groups treated with 2 mg/(kg day) tacrolimus; 5 mg/(kg day) Cyclosporine A; or placebo injection. Nerves were subjected to histomorphometric and walking track analysis at serial time points. Tacrolimus increased fiber density, percent neural tissue, and nerve fiber count and accelerated functional recovery at 40 days, but these differences were undetectable by 70 days. Serial walking track analysis showed a similar pattern of recovery. A ‘blow-through’ effect is observed in rodents whereby an advancing nerve front overcomes an experimental defect given sufficient time, rendering experimental groups indistinguishable at late time points. Selection of validated time points and corroboration in higher animal models are essential prerequisites for the clinical application of basic research on nerve regeneration. PMID:18381659

  12. Update on the Mechanisms of Liver Regeneration.

    PubMed

    Preziosi, Morgan E; Monga, Satdarshan P

    2017-05-01

    Liver possesses many critical functions such as synthesis, detoxification, and metabolism. It continually receives nutrient-rich blood from gut, which incidentally is also toxin-rich. That may be why liver is uniquely bestowed with a capacity to regenerate. A commonly studied procedure to understand the cellular and molecular basis of liver regeneration is that of surgical resection. Removal of two-thirds of the liver in rodents or patients instigates alterations in hepatic homeostasis, which are sensed by the deficient organ to drive the restoration process. Although the exact mechanisms that initiate regeneration are unknown, alterations in hemodynamics and metabolism have been suspected as important effectors. Key signaling pathways are activated that drive cell proliferation in various hepatic cell types through autocrine and paracrine mechanisms. Once the prehepatectomy mass is regained, the process of regeneration is adequately terminated. This review highlights recent discoveries in the cellular and molecular basis of liver regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Tityus: a forgotten myth of liver regeneration.

    PubMed

    Tiniakos, Dina G; Kandilis, Apostolos; Geller, Stephen A

    2010-08-01

    The ancient Greek myth of Tityus is related to liver regeneration in the same way as the well known myth of Prometheus is. Depictions of the punishment of Prometheus are frequently used by lecturers on liver regeneration; however, Tityus remains unknown despite the fact that he received the same punishment and his myth could also be used as a paradigm for the organ's extraordinary ability to regenerate. Nevertheless, there is no convincing evidence that ancient Greeks had any specific knowledge about liver regeneration, a concept introduced in the early 19th century. We describe and analyze the myth of Tityus and compare it to the myth of Prometheus. We also explore artistic and literary links and summarize recent scientific data on the mechanisms of liver regeneration. Finally, we highlight links of the legend of Tityus with other sciences. Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Enhanced renal prostaglandin production in the dog. I. Effects on renal function.

    PubMed

    Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S

    1975-01-01

    The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.

  15. Mitochondria localize to injured axons to support regeneration

    PubMed Central

    Han, Sung Min; Baig, Huma S.; Hammarlund, Marc

    2016-01-01

    SUMMARY Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons, so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase-1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell biological mechanism that helps determine the regenerative response of injured neurons. PMID:28009276

  16. Renal Cysts

    MedlinePlus

    ... inside the renal cysts. Your doctor may use ultrasound imaging to monitor renal cysts for any changes over ... Related Articles and Media Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Magnetic Resonance Imaging (MRI) - Body Ultrasound - Pelvis Children's (Pediatric) Nuclear Medicine ...

  17. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    PubMed

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  18. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report.

    PubMed

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically.

  19. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    PubMed

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. NAD availability is limiting during liver regeneration, and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. (Hepatology 2017;65:616-630). © 2016 by the American Association for the Study of Liver Diseases.

  20. Sensory hair cell development and regeneration: similarities and differences

    PubMed Central

    Atkinson, Patrick J.; Huarcaya Najarro, Elvis; Sayyid, Zahra N.; Cheng, Alan G.

    2015-01-01

    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration. PMID:25922522

  1. Macrophages are necessary for epimorphic regeneration in African spiny mice.

    PubMed

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-05-16

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.

  2. Strip clearcutting to regenerate northern hardwoods.

    Treesearch

    Frederick T. Metzger

    1980-01-01

    Describes results of strip clearcutting trials in mature northern hardwood and hemlock-hardwood stands in the Lake States. Two strip width and orientations were tested, with and without herbicide treatment of the advance regeneration. Establishment, growth, and species composition of the regeneration were assessed.

  3. Technical aspects of renal denervation in end-stage renal disease patients with challenging anatomy.

    PubMed

    Spinelli, Alessio; Da Ros, Valerio; Morosetti, Daniele; Onofrio, Silvia D; Rovella, Valentina; Di Daniele, Nicola; Simonetti, Giovanni

    2014-01-01

    We describe our preliminary experience with percutaneous renal denervation in end-stage renal disease patients with resistant hypertension and challenging anatomy, in terms of the feasibility, safety, and efficacy of this procedure. Four patients with end-stage renal disease patients with resistant hypertension (mean hemodialysis time, 2.3 years) who had been taking at least four antihypertensive medications underwent percutaneous renal denervation. Renal artery eligibility included the absence of prior renal artery interventions, vessel stenosis <70%, or extended calcifications (more than 30% of the vessel circumference). No cut off values of vessel diameter were used. All patients were successfully treated with no intra- or postprocedural complications, and all showed 24-hour ambulatory blood pressure reduction at the 12-month follow-up. Percutaneous renal denervation is a feasible approach for end-stage renal disease patients with resistant hypertension with encouraging short-term preliminary results in terms of procedural efficacy and safety.

  4. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  5. Macrophage Polarization by Angiotensin II-type 1 Receptor Aggravates Renal Injury-acceleration of Atherosclerosis

    PubMed Central

    Yamamoto, Suguru; Yancey, Patricia G.; Zuo, Yiqin; Ma, Li-Jun; Kaseda, Ryohei; Fogo, Agnes B.; Ichikawa, Iekuni; Linton, MacRae F.; Fazio, Sergio; Kon, Valentina

    2011-01-01

    Background Angiotensin II (AII) is a major determinant of atherosclerosis. Although macrophages are the most abundant cells in atherosclerotic plaques and express AII type 1 receptor (AT1), the pathophysiologic role of macrophage AT1 in atherogenesis remains uncertain. We examined the contribution of macrophage AT1 to accelerated atherosclerosis in an AII-responsive setting induced by uninephrectomy (UNx). Methods and Results AT1−/− or AT1+/+ marrow from apolipoprotein E deficient (apoE−/−) mice was transplanted into recipient apoE−/− mice with subsequent UNx or sham operation: apoE−/−/AT1+/+→apoE−/− + Sham; apoE−/−/AT1+/+→apoE−/− + UNx; apoE−/−/AT1−/−→apoE−/− + Sham; apoE−/−/AT1−/−→apoE−/− + UNx. No differences in body weight, blood pressure, lipid profile, and serum creatinine were observed between the two UNx groups. ApoE−/−/AT1+/+→apoE−/− + UNx had significantly more atherosclerosis (16907 ± 21473 vs 116071 ± 8180 μm2, p<0.05). By contrast, loss of macrophage AT1 which reduced local AT1 expression, prevented any effect of UNx on atherosclerosis (77174 ± 9947 vs 75714 ± 11333 μm2, p=NS). Although UNx did not affect total macrophage content in the atheroma, lesions in apoE−/−/AT1−/−→apoE−/− + UNx had fewer classically activated macrophage phenotype (M1) and more alternatively activated phenotype (M2). Further, UNx did not affect plaque necrosis or apoptosis in apoE−/−/AT1−/−→apoE−/− whereas it significantly increased both (by 2- and 6-fold, respectively) in apoE−/−/AT1+/+→apoE−/− mice. Instead, apoE−/−/AT1−/−→apoE−/− had 5-fold-increase in macrophage-associated apoptotic bodies, indicating enhanced efferocytosis. In vitro studies confirmed blunted susceptibility to apoptosis, especially in M2 macrophages, and a more efficient phagocytic function of AT1−/− macrophages vs AT1+/+. Conclusions AT1 receptor of bone marrow

  6. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    PubMed

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  7. Strategies for regeneration of heart muscle.

    PubMed

    Guyette, Jacques P; Cohen, Ira S; Gaudette, Glenn R

    2010-01-01

    Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.

  8. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. Copyright © 2016 the American Physiological Society.

  9. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    PubMed

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  10. Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.

    PubMed

    DiBona, G F; Sawin, L L

    1999-02-01

    To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.

  11. Renal Hemodynamics and Ammoniagenesis

    PubMed Central

    Lemieux, Guy; Vinay, Patrick; Cartier, Pierre

    1974-01-01

    Renal production of ammonia by the left kidney was studied in 31 acidotic dogs (NH4Cl) after acute constriction of the renal artery. Renal ammoniagenesis fell in direct proportion with the reduction in glomerular filtration rate and renal plasma flow. The renal extraction of glutamine by the experimental kidney fell in direct proportion with the reduction in renal hemodynamics. Extracted glutamine remained greater than filtered glutamine indicating that both the luminal and antiluminal transport sites were operative. The relationship between renal extraction of glutamine and ammoniagenesis observed during control was maintained after renal artery constriction (1.7 μmol NH3 produced for each μmol of glutamine extracted). Systemic venous or renal intra-arterial infusion of glutamine during arterial constriction increased renal production of ammonia to or above control values. These observations indicate that the mechanisms responsible for glutamine extraction and ammonia production were operating normally despite reduced hemodynamics. When measured immediately after arterial clamping, the renal venous pNH3 was found to rise significantly decreasing progressively thereafter towards control values. The extracted fraction of total glutamine delivered to the kidney (31%) did not change after acute reduction of the glutamine load. Thus, the antiluminal extraction site was incapable of lowering renal venous plasma glutamine concentration below 0.33 μM/ml. In a second series of experiments, the properties of the antiluminal site of transport for glutamine were studied after complete occlusion of the left ureter in acidotic and nonacidotic animals. Under these circumstances, it was demonstrated that the antiluminal site is capable of extracting sufficient glutamine to maintain total ammonia production at 60% or more of control. In acidotic animals, changes in cellular pNH3 appeared to play a key role on the antiluminal extraction of glutamine since the significant rise in

  12. Natural regeneration - small ownerships from concept to practice

    Treesearch

    Arthur G., Jr. Dodge

    1977-01-01

    Established concepts of successful natural regeneration are not necessarily practiced on small ownerships of ten to 500 acres. Unevenage management will be the primary management system on small ownerships and natural regeneration is the most practical method of providing for continuous forest production. We can obtain satisfactory natural regeneration by good planning...

  13. Renal sympathetic nervous system and the effects of denervation on renal arteries

    PubMed Central

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure. PMID:25228960

  14. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    PubMed

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  15. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  16. Neural control of renal function.

    PubMed

    Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F

    2011-04-01

    The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.

  17. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  18. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  19. The Metabolic Microenvironment Steers Bone Tissue Regeneration.

    PubMed

    Loeffler, Julia; Duda, Georg N; Sass, F Andrea; Dienelt, Anke

    2018-02-01

    Over the past years, basic findings in cancer research have revealed metabolic symbiosis between different cell types to cope with high energy demands under limited nutrient availability. Although this also applies to regenerating tissues with disrupted physiological nutrient and oxygen supply, the impact of this metabolic cooperation and metabolic reprogramming on cellular development, fate, and function during tissue regeneration has widely been neglected so far. With this review, we aim to provide a schematic overview on metabolic links that have a high potential to drive tissue regeneration. As bone is, aside from liver, the only tissue that can regenerate without excessive scar tissue formation, we will use bone healing as an exemplarily model system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  1. Cigarette smoking reduced renal function deterioration in hypertensive patients may be mediated by elevated homocysteine.

    PubMed

    Huang, Feifei; Chen, Jie; Liu, Xun; Han, Feng; Cai, Qingqing; Peng, Guicheng; Zhang, Kun; Chen, Weiqing; Wang, Jingfeng; Huang, Hui

    2016-12-27

    Elevated homocysteine (HCY) and smoking are both important risk factors for hypertensive patients. However, whether they have crossing effect on renal function deterioration of hypertensive patients and what is the underlying mechanism are unclear. In the present study, 3033 participants diagnosed as essential hypertension with estimated glomerular filtration rate (eGFR)> 30 ml/min/1.73 m2 from southern China were enrolled in this cross-sectional study. We collected the demographic and clinical data. In addition, the mediation effects were analyzed. The results showed that, comparing with non-smokers, smokers had significant higher levels of HCY (13.10 (11.20-16.87) vs. 11.00 (8.90-13.40) umol/L, P < 0.001) and lower eGFR (79.71 (66.83-91.05) vs. 82.89 (69.80-95.85) ml/min/1.73m2, P < 0.001). HCY levels and smoking were independently associated with decreased eGFR. Meanwhile, eGFR levels were significantly negatively correlated with HCY (P < 0.001), and this correlation might be stronger in current smokers. Current smoker consuming over 20 cigarettes per day would accelerate early renal function deterioration (OR = 1.859, P = 0.019). The mediation effects analysis further showed that the association between smoking and renal function deterioration was mediated by HCY. And elevated HCY was accounted for 56.94% of the estimated causal effect of smoking on renal function deterioration in hypertensive patients. Our findings indicated that cigarette smoking was associated with renal function deterioration in hypertensive patients, and the association between cigarette smoking and renal function deterioration was probably mediated by elevated HCY. Therefore, HCY-lowering therapy may be beneficial for renal function deterioration in hypertensive smoking patients.

  2. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction.

    PubMed

    Iglesias, Jose; Frank, Elliot; Mehandru, Sushil; Davis, John M; Levine, Jerrold S

    2013-07-13

    Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction.

  3. Predictors of renal recovery in patients with pre-orthotopic liver transplant (OLT) renal dysfunction

    PubMed Central

    2013-01-01

    Background Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Methods Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Results Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. Conclusion These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction. PMID:23849513

  4. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  5. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    DTIC Science & Technology

    2016-04-01

    faster regeneration and functional recovery. Peripheral nerve injury is a common complication of complex tissue trauma and often results in significant...having poor regeneration overall, the areas of regenerating nerve tissue could often be found in sections of the nerve guide where luminal spaces of...conducted in this Aim also provided important insight into the NGC design parameters necessary to allow for maximum nerve tissue ingrowth and regeneration

  6. Resolving Heart Regeneration by Replacement Histone Profiling.

    PubMed

    Goldman, Joseph Aaron; Kuzu, Guray; Lee, Nutishia; Karasik, Jaclyn; Gemberling, Matthew; Foglia, Matthew J; Karra, Ravi; Dickson, Amy L; Sun, Fei; Tolstorukov, Michael Y; Poss, Kenneth D

    2017-02-27

    Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Blood Pressure Response to Main Renal Artery and Combined Main Renal Artery Plus Branch Renal Denervation in Patients With Resistant Hypertension.

    PubMed

    Fengler, Karl; Ewen, Sebastian; Höllriegel, Robert; Rommel, Karl-Philipp; Kulenthiran, Saaraaken; Lauder, Lucas; Cremers, Bodo; Schuler, Gerhard; Linke, Axel; Böhm, Michael; Mahfoud, Felix; Lurz, Philipp

    2017-08-10

    Single-electrode ablation of the main renal artery for renal sympathetic denervation showed mixed blood pressure (BP)-lowering effects. Further improvement of the technique seems crucial to optimize effectiveness of the procedure. Because sympathetic nerve fibers are closer to the lumen in the distal part of the renal artery, treatment of the distal main artery and its branches has been shown to reduce variability in treatment effects in preclinical studies and a recent randomized trial. Whether this optimized technique improves clinical outcomes remains uncertain. We report a 2-center experience of main renal artery and combined main renal artery plus branches renal denervation in patients with resistant hypertension using a multielectrode catheter. Twenty-five patients with therapy-resistant hypertension underwent renal sympathetic denervation with combined main renal artery and renal branch ablation and were compared to matched controls undergoing an ablation of the main renal artery only. BP change was assessed by ambulatory measurement at baseline and after 3 months. At baseline, BP was balanced between the groups. After 3 months, BP changed significantly in the combined ablation group (systolic/diastolic 24-hour mean and daytime mean BP -8.5±9.8/-7.0±10.7 and -9.4±9.8/-7.1±13.5 mm Hg, P <0.001/0.003 and <0.001/0.016, respectively), but not in patients with main artery treatment (-3.5±11.1/-2.0±7.6 and -2.8±10.9/-1.8±7.7 mm Hg, P =0.19/0.20 and 0.19/0.24, respectively). Systolic daytime BP was significantly more reduced in patients with combined ablation than in patients with main artery ablation ( P =0.033). Combined ablation of the main renal artery and branches appears to improve BP-lowering efficacy and should be further investigated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. Proceedings of the Shortleaf Pine Regeneration Workshop

    Treesearch

    John C. Brissette; James P. Barnett; [Compilers}

    1992-01-01

    This proceedings documents the results of a workshop to develop state-of-the-art information on the regeneration of shortleaf pine. Regeneration by both artificial and natural means is discussed in detail.

  9. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation.

    PubMed

    Sheehy, Eamon J; Vinardell, Tatiana; Toner, Mary E; Buckley, Conor T; Kelly, Daniel J

    2014-01-01

    Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled 'solid' controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies.

  10. Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation

    PubMed Central

    Sheehy, Eamon J.; Vinardell, Tatiana; Toner, Mary E.; Buckley, Conor T.; Kelly, Daniel J.

    2014-01-01

    Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled ‘solid’ controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies. PMID:24595316

  11. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus.

    PubMed

    Touboul, David; Efron, Nathan; Smadja, David; Praud, Delphine; Malet, Florence; Colin, Joseph

    2012-11-01

    To compare early corneal healing following conventional, transepithelial, and accelerated corneal collagen cross-linking (CXL) protocols. Twenty-four patients with progressive keratoconus were divided into three groups to receive conventional, transepithelial, or accelerated CXL. In vivo corneal confocal microscopy was performed on each patient preoperatively and at 1, 3, and 6 months postoperatively. Closure of the epithelial wound was complete 3 days following conventional and accelerated CXL. The subbasal nerve plexus was essentially obliterated immediately following conventional and accelerated CXL, and virtually no nerve fibers had regenerated by 6 months. The anterior stroma showed significant changes 1 month following conventional CXL; these changes were similar but more pronounced following accelerated CXL. Observed stromal changes included complete obliteration of keratocytes, increased tissue reflectivity, a honeycomb-like appearance, and circular lacunae. Some recovery of keratocyte density was noted after 6 months. These changes were less pronounced in the mid-stroma, and there were no apparent changes to the posterior stroma or endothelium. The cornea appeared to be unaltered following transepithelial CXL. In vivo corneal confocal microscopy analysis of the postoperative impact of CXL on the cornea revealed clear differences among conventional, accelerated, and transepithelial CXL protocols. Accelerated CXL had a greater impact than conventional CXL on the anterior cornea, whereas transepithelial CXL did not appear to alter corneal morphology. Copyright 2012, SLACK Incorporated.

  12. Macrophages are necessary for epimorphic regeneration in African spiny mice

    PubMed Central

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-01-01

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response. DOI: http://dx.doi.org/10.7554/eLife.24623.001 PMID:28508748

  13. Axon Regeneration Genes Identified by RNAi Screening in C. elegans

    PubMed Central

    Nix, Paola; Hammarlund, Marc; Hauth, Linda; Lachnit, Martina; Jorgensen, Erik M.

    2014-01-01

    Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/β-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of β-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention. PMID:24403161

  14. Centroacinar cells: At the center of pancreas regeneration.

    PubMed

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In Vitro Plant Regeneration from Commercial Cultivars of Soybean.

    PubMed

    Raza, Ghulam; Singh, Mohan B; Bhalla, Prem L

    2017-01-01

    Soybean, a major legume crop, is the source of vegetable oil and protein. There is a need for transgenic approaches to breeding superior soybean varieties to meet future climate challenges. Efficient plant regeneration is a prerequisite for successful application of genetic transformation technology. Soybean cultivars are classified into different maturity groups based on photoperiod requirements. In this study, nine soybean varieties belonging to different maturity group were regenerated successfully from three different explants: half split hypocotyl, complete hypocotyl, and cotyledonary node. All the genotypes and explant types responded by producing adventitious shoots. Shoot induction potential ranged within 60-87%, 50-100%, and 75-100%, and regeneration rate ranged within 4.2-10, 2.7-4.2, and 2.6-10.5 shoots per explant using half split hypocotyl, complete hypocotyl, and cotyledonary explants, respectively, among all the tested genotypes. Bunya variety showed the best regeneration response using half split and complete hypocotyl explants and the PNR791 with cotyledonary node. The regenerated shoots were successfully rooted and acclimatized to glasshouse conditions. This study shows that commercial varieties of soybean are amenable to shoot regeneration with high regeneration frequencies and could be exploited for genetic transformation. Further, our results show no correlation between shoots regeneration capacity with the maturity grouping of the soybean cultivars tested.

  17. Postive seedling-shrub relationships in natural regeneration of ponderosa pine

    Treesearch

    Christopher R. Keyes; Douglas A. Maguire

    2005-01-01

    An understanding of natural regeneration processes, and the stand structural features that influence those processes, is vital to attaining goals associated with natural regeneration. This paper discusses natural regeneration concepts and the interactions that occur between shrubs and natural regeneration of ponderosa pine. The interactions observed recently in a...

  18. Regenerating Longleaf Pine with Natural Seeding

    Treesearch

    William D. Boyer

    1993-01-01

    Natural regeneration is a practical and inexpensive option for existing longleaf pine (Pinus palustris Mill.) forests if all requirements for regeneration can be met. These requirements include an adequate seed supply, a seedbed of exposed mineral soil, timely control of competition, and protection of the established seedling stand. The shelterwood...

  19. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    PubMed Central

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  20. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  2. NBCe1 expression is required for normal renal ammonia metabolism

    PubMed Central

    Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.

    2015-01-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717

  3. Periodontal regeneration around natural teeth.

    PubMed

    Garrett, S

    1996-11-01

    1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.

  4. Effects of dietary salt restriction on renal progression and interstitial fibrosis in adriamycin nephrosis.

    PubMed

    Park, Joon-Sung; Kim, Sua; Jo, Chor Ho; Oh, Il Hwan; Kim, Gheun-Ho

    2014-01-01

    Although high salt intake is thought to accelerate renal progression in proteinuric kidney disease, it is not known whether strict dietary salt restriction could delay renal inflammation and interstitial fibrosis. Here, we sought to answer this question in a rat model of adriamycin-induced nephrotic syndrome. Adriamycin was administered via the femoral vein in a single bolus (7.5 mg/kg), and the rats were put on a sodium-deficient rodent diet. Rats with intact kidneys were studied for 5 weeks (experiment 1), and uninephrectomized rats were studied for 6 weeks (experiment 2). In experiment 1, restricting salt intake improved renal tubulointerstitial histopathology in adriamycin-treated rats. Immunohistochemical and immunoblot results additionally showed that restricting dietary salt lowered adriamycin-induced expression of osteopontin, collagen III, and fibronectin. In experiment 2, salt restriction improved adriamycin-induced azotemia, although it did not affect proteinuria or blood pressure. Dietary salt restriction also reduced adriamycin-induced infiltration of ED1-positive cells and the upregulated expression of osteopontin and α-SMA. Masson's trichrome and Sirius red staining revealed that salt restriction slowed Adriamycin-induced progression of renal interstitial fibrosis. Finally, qPCR revealed that adriamycin-induced expression of TNF-α, IκB-α, gp91(phox), p47(phox), and p67(phox) mRNA was blocked by salt restriction. Our findings demonstrate that strict dietary salt restriction delays the progress of renal inflammation and fibrosis in proteinuric kidney disease, most likely via relieving the reactive oxygen species-mediated NF-κB activation. © 2014 S. Karger AG, Basel.

  5. Effects of Renal Denervation on Renal Artery Function in Humans: Preliminary Study

    PubMed Central

    Doltra, Adelina; Hartmann, Arthur; Stawowy, Philipp; Goubergrits, Leonid; Kuehne, Titus; Wellnhofer, Ernst; Gebker, Rolf; Schneeweis, Christopher; Schnackenburg, Bernhard; Esler, Murray; Fleck, Eckart; Kelle, Sebastian

    2016-01-01

    Aim To study the effects of RD on renal artery wall function non-invasively using magnetic resonance. Methods and Results 32 patients undergoing RD were included. A 3.0 Tesla magnetic resonance of the renal arteries was performed before RD and after 6-month. We quantified the vessel sharpness of both renal arteries using a quantitative analysis tool (Soap-Bubble®). In 17 patients we assessed the maximal and minimal cross-sectional area of both arteries, peak velocity, mean flow, and renal artery distensibility. In a subset of patients wall shear stress was assessed with computational flow dynamics. Neither renal artery sharpness nor renal artery distensibility differed significantly. A significant increase in minimal and maximal areas (by 25.3%, p = 0.008, and 24.6%, p = 0.007, respectively), peak velocity (by 16.9%, p = 0.021), and mean flow (by 22.4%, p = 0.007) was observed after RD. Wall shear stress significantly decreased (by 25%, p = 0.029). These effects were observed in blood pressure responders and non-responders. Conclusions RD is not associated with adverse effects at renal artery level, and leads to an increase in cross-sectional areas, velocity and flow and a decrease in wall shear stress. PMID:27003912

  6. Renal papillary necrosis

    MedlinePlus

    ... asking your provider. Alternative Names Necrosis - renal papillae; Renal medullary necrosis Images Kidney anatomy Kidney - blood and urine flow References Bushinsky DA, Monk RD. Nephrolithiasis and nephrocalcinosis. ...

  7. Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation.

    PubMed

    Strudwick, Xanthe L; Waters, James M; Cowin, Allison J

    2017-01-01

    The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Axonal Regeneration in Mammals with Spinal Cord Injury

    DTIC Science & Technology

    1983-09-14

    Cajal, S. 1905. Notas preventivas sobre la degeneracion y regeneracion las vias nerviosos centrales . Trab. Lab. Invest. Biol. Univ. Madrid, 4: 295-301...S. 1914. Degeneracion y Regeneration del Sistema Nervioso , Vol. 1, 2. (Nicolas Moya, Madrid), Ramon y Cajal, S. 1928. Degeneration and Regeneration...field of central nervous system (CNS) regeneration research. These developments have revealed important aspects regarding the histology and

  9. Longleaf Pine: Natural Regeneration and Management

    Treesearch

    William D. Boyer

    1999-01-01

    Longleaf pine has long been recognized as a high-quality timber tree providing a number of valuable products. It is a versatile species with characteristics allowing the use of several silvicultural options. Both natural and artificial regeneration of longleaf pine are now practical management options. Natural regeneration is a lowcost alternative whenever sufficient...

  10. Natural Regeneration of Southern Bottomland Hardwoods

    Treesearch

    John A. Stanturf; J. Steven Meadows

    1994-01-01

    Many mixed hardwood stands found in bottomlands have been degraded by past harvesting practices that resulted in high grading the stand, thereby leaving the forester few options other than regeneration. Economic considerations usually constrain the choices to some form of complete overstory removal if adequate advance regeneration or sprouting potential is available....

  11. Enhancing wildlife habitat when regenerating stands

    Treesearch

    Frank R., III Thompson

    1989-01-01

    Forest regeneration cuttings affect wildlife habitat more drastically than most forest management practices because a mature forest stand is replaced by a young sapling stand. Regeneration cuttings quickly provide habitat for many wildlife species but they also influence wildlife use of the new stand and adjacent areas throughout the rotation. Retaining snags, cavity...

  12. Longleaf pine regeneration ecology and methods

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; William D. Boyer

    2006-01-01

    Regenerating longleaf pine (Pinus palustris) is key to its long-term sustainable production of forest resources and its perpetuation as the dominant tree species in a variety of important ecosystems ranging from xeric to mesic to hydric site conditions. Early regeneration to problems and the subsequent efforts to overcome these are significant...

  13. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    PubMed Central

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  14. Subclinical rejection in renal transplants is associated with low serum mannose-binding lectin levels.

    PubMed

    Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel

    2011-08-01

    Surveillance biopsies have contributed to the understanding of the natural history of renal allograft lesions. Subclinical rejection, defined as the presence of histological lesions, indistinguishable from acute rejection in stable grafts, is associated with progression of interstitial fibrosis and tubular atrophy. The prevalence of subclinical rejection has decreased as more powerful immunosuppressive treatments have been introduced, suggesting that subclinical rejection represents the degree of control of the alloimmune response. However, non-immune factors such as donor age are also associated with the prevalence of subclinical rejection, suggesting that kidneys from older donors are more susceptible to insult and have a reduced capacity for tissue regeneration. Innate immunity has a crucial role in the modulation of the inflammatory response during infection and tissue damage. Mannose-binding lectin (MBL) is an innate immune protein, the polymorphisms of which are associated with infection, low-grade inflammation, diabetes, and cardiovascular disease. However, the relationship between MBL and disease is complex. For example, low MBL level is associated with higher risk for diabetes, whereas in patients with diabetes, high MBL level is associated with more severe renal damage. In renal transplant patients, low MBL levels are associated with an increased prevalence of infection and diabetes, whereas high MBL levels are associated with shortened graft survival. Although MBL is not clearly associated with prevalence of acute rejection, surveillance biopsy studies have shown that low MBL levels are associated with subclinical rejection in kidney and the heart, suggesting that MBL modulates the injury-repair process of the allograft.

  15. Subclinical rejection in renal transplants is associated with low serum mannose-binding lectin levels

    PubMed Central

    Ibernon, Meritxell; Moreso, Francesc; Serón, Daniel

    2011-01-01

    Surveillance biopsies have contributed to the understanding of the natural history of renal allograft lesions. Subclinical rejection, defined as the presence of histological lesions, indistinguishable from acute rejection in stable grafts, is associated with progression of interstitial fibrosis and tubular atrophy. The prevalence of subclinical rejection has decreased as more powerful immunosuppressive treatments have been introduced, suggesting that subclinical rejection represents the degree of control of the alloimmune response. However, non-immune factors such as donor age are also associated with the prevalence of subclinical rejection, suggesting that kidneys from older donors are more susceptible to insult and have a reduced capacity for tissue regeneration. Innate immunity has a crucial role in the modulation of the inflammatory response during infection and tissue damage. Mannose-binding lectin (MBL) is an innate immune protein, the polymorphisms of which are associated with infection, low-grade inflammation, diabetes, and cardiovascular disease. However, the relationship between MBL and disease is complex. For example, low MBL level is associated with higher risk for diabetes, whereas in patients with diabetes, high MBL level is associated with more severe renal damage. In renal transplant patients, low MBL levels are associated with an increased prevalence of infection and diabetes, whereas high MBL levels are associated with shortened graft survival. Although MBL is not clearly associated with prevalence of acute rejection, surveillance biopsy studies have shown that low MBL levels are associated with subclinical rejection in kidney and the heart, suggesting that MBL modulates the injury–repair process of the allograft. PMID:25018901

  16. Landscape-level regeneration adequacy for native hardwood forests of Pennsylvania

    Treesearch

    William H. McWilliams; Todd W. Bowersox; David A. Gansner; Larry H. McCormick; Susan L. Stout

    1995-01-01

    Studies of advance regeneration and post-disturbance regeneration adequacy were conducted during the recent USDA Forest Service inventory of forest resources in Pennsylvania. The first study examined advance tree-seedling regeneration in stands where stocking levels would suggest that advance regeneration should be abundant. A range of metrics was used to describe...

  17. Nonexpanded Adipose Stromal Vascular Fraction Local Therapy on Peripheral Nerve Regeneration Using Allografts.

    PubMed

    Mohammadi, Rahim; Mehrtash, Moein; Mehrtash, Moeid; Sajjadi, Seyedeh-Sepideh

    2016-06-01

    Adipose tissue possesses a population of multi-potent stem cells which can be differentiated to a Schwann cell phenotype and may be of benefit for treatment of peripheral nerve injuries. Effects of local therapy of nonexpanded adipose stromal vascular fraction (SVF) on peripheral nerve regeneration was studied using allografts in a rat sciatic nerve model. Thirty male white Wistar rats were divided into three experimental groups (n = 10), randomly: Sham-operated group (SHAM), allograft group (ALLO), SVF-treated group (ALLO/SVF). In SHAM group left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the ALLO group the left sciatic nerve was exposed through a gluteal muscle incision and transected proximal to the tibio-peroneal bifurcation where a 10 mm segment was excised. The same procedure was performed in the ALLO/SVF group. The harvested nerves of the rats of ALLO group were served as allograft for ALLO/SVF group and vice versa. The SHAM and ALLO groups received 100 μL phosphate buffered saline and the ALLO/SVF group received 100 μL SVF (2.25 ± 0.45 × 10(7) cells) locally where the grafting was performed. Behavioral, functional, biomechanical, and gastrocnemius muscle mass showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Histomorphometic and immunohistochemical studies also showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Administration of nonexpanded SVF could accelerate functional recovery after nerve allografting in sciatic nerve. It may have clinical implications for the surgical management of patients after nerve transection.

  18. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study.

    PubMed

    Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel

    2009-10-01

    The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.

  19. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model.

    PubMed

    Kim, Joong-Hyun; Oh, Se Heang; Min, Hyun Ki; Lee, Jin Ho

    2018-01-01

    Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018. © 2017 Wiley Periodicals, Inc.

  20. Renal Sinus Fat Invasion and Tumoral Thrombosis of the Inferior Vena Cava-Renal Vein: Only Confined to Renal Cell Carcinoma

    PubMed Central

    Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC. PMID:25506021

  1. Renal sinus fat invasion and tumoral thrombosis of the inferior vena cava-renal vein: only confined to renal cell carcinoma.

    PubMed

    Acar, Turker; Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC.

  2. Renal hemodynamics in space.

    PubMed

    Kramer, H J; Heer, M; Cirillo, M; De Santo, N G

    2001-09-01

    Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.

  3. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  4. MRI appearance of massive renal replacement lipomatosis in the absence of renal calculus disease

    PubMed Central

    Fitzgerald, E; Melamed, J; Taneja, S S; Rosenkrantz, A B

    2011-01-01

    Renal replacement lipomatosis is a rare benign entity in which extensive fibrofatty proliferation of the renal sinus is associated with marked renal atrophy. In this report, we present a case of massive renal replacement lipomatosis demonstrated on MRI. The presentation was atypical given an absence of associated renal calculus disease, and an initial CT scan was interpreted as suspicious for a liposarcoma. The differential diagnosis and key MRI findings that served to establish this specific diagnosis are reviewed. Histopathological correlation is also presented, as the patient underwent nephroureterectomy. PMID:21257835

  5. Does the presence of accessory renal arteries affect the efficacy of renal denervation?

    PubMed

    Id, Dani; Kaltenbach, Benjamin; Bertog, Stefan C; Hornung, Marius; Hofmann, Ilona; Vaskelyte, Laura; Sievert, Horst

    2013-10-01

    This study sought to assess the efficacy of catheter-based renal sympathetic denervation in patients with accessory renal arteries and to compare the blood pressure (BP)-lowering effect with that observed in patients with bilateral single renal arteries after renal denervation. Catheter-based renal sympathetic denervation causes significant BP reductions in patients with resistant hypertension. Seventy-four patients were included in this study. Patients were assigned to 2 main groups: a bilateral single renal arteries group I (n = 54) and an accessory renal arteries group II (n = 20). Group II consisted of 9 patients whose accessory renal arteries were all denervated (group IIa), and 11 patients whose accessory renal arteries were not, or only incompletely, denervated (group IIb). The primary endpoint was the change in office systolic BP after 6 months. The procedure was successful in all patients. Group I: mean BP at baseline was 166.2/89.4 ± 20.5/14.6 mm Hg and decreased by -16.6 (p < 0.001)/-6.7 (p = 0.016) ± 16.4/11 mm Hg at 6-month follow-up. Group II: mean BP at baseline was 164.2/89.1 ± 19.9/15.4 mm Hg and decreased by -6.2 (p = 0.19)/-0.2 (p = 0.5) ± 19.7/11.3 mm Hg at 6-month follow-up. Patients in group IIa had an office BP reduction of -8.8 (p = 0.2)/1.1 ± 17.9/10.8 mm Hg and patients in group IIb of -4.1 (p = 0.55)/-1.3 ± 20.8/11.6 mm Hg. Similarly, significant improvements in 24-h mean systolic BP were seen in group I (-8.3 ± 17.4 mm Hg, p < 0.01), whereas none were seen in group II (-3.7 ± 8.3 mm Hg, p = 0.38). BP reduction achieved after renal denervation in patients with accessory renal arteries is less pronounced than in patients with bilateral single renal arteries. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Renal autotransplantation: current perspectives.

    PubMed

    Stewart, B H; Banowsky, L H; Hewitt, C B; Straffon, R A

    1977-09-01

    Autotransplantation, with or without an extracorporeal renal operation, has been done 39 times in 37 patients. Indications for the procedure included several ureteral injury in 4 patients, failed supravesical diversion in 2, renal carcinoma in a solitary kidney in 1, renovascular hypertension in 1 and donor arterial reconstruction before renal transplantation in 29. Success was obtained in all but 2 procedures, both of which involved previously operated kidneys with severe inflammation and adhesions involving the renal pelvis and pedicle. Based on our experience and a review of currently available literature we believe that renal autotransplantation and extracorporeal reconstruction can provide the best solution for patients with severe renovascular and ureteral disease not correctable by conventional operative techniques. The technique can be of particular value in removing centrally located tumors in solitary kidneys and in preparing donor kidneys with abnormal arteries for renal transplantation. The role of autotransplantation in the management of advanced renal trauma and calculus disease is less clear. A long-term comparison of patients treated by extracorporeal nephrolithotomy versus conventional lithotomy techniques will be necessary before a conclusion is reached in these disease categories.

  7. Renal autotransplantation: current perspectives.

    PubMed

    Stewart, B H; Banowsky, L H; Hewitt, C B; Straffon, R A

    1976-01-01

    Autotransplantation, with or without an extracorporeal renal operation, has been done 39 times in 37 patients. Indications for the procedure included severe ureteral injury in 4 patients, failed supravesical diversion in 2, renal carcinoma in a solitary kidney in 1, renovascular hypertension in 1 and donor arterial reconstruction before renal transplantation in 29. Success was obtained in all but 2 procedures, both of which involved previously operated kidneys with severe inflammation and adhesions involving the renal pelvis and pedicle. Based on our experience and a review of currently available literature we believe that renal autotransplantation and extracorporeal reconstruction can provide the best solution for patients with severe renovascular and ureteral disease not correctable by conventional operative techniques. The technique can be of particular value in removing centrally located tumors in solitary kidneys and in preparing donor kidneys with abnormal arteries for renal transplantation. The role of autotransplantation in the management of advanced renal trauma and calculus disease is less clear. A long-term comparison of patients treated by extracorporeal nephrolithotomy versus conventional lithotomy techniques will be necessary before a conclusion is reached in these disease categories.

  8. NEUROTROPHIN SELECTIVITY IN ORGANIZING TOPOGRAPHIC REGENERATION OF NOCICEPTIVE AFFERENTS

    PubMed Central

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M.

    2015-01-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP+) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4+ non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFR-α3, which only promoted mistargeted regeneration. PMID:26054884

  9. Neurotrophin selectivity in organizing topographic regeneration of nociceptive afferents.

    PubMed

    Kelamangalath, Lakshmi; Tang, Xiaoqing; Bezik, Kathleen; Sterling, Noelle; Son, Young-Jin; Smith, George M

    2015-09-01

    Neurotrophins represent some of the best candidates to enhance regeneration. In the current study, we investigated the effects of artemin, a member of the glial derived neurotrophic factor (GDNF) family, on sensory axon regeneration following a lumbar dorsal root injury and compared these effects with that observed after either NGF or GDNF expression in the rat spinal cord. Unlike previously published data, artemin failed to induce regeneration of large-diameter myelinated sensory afferents when expressed within either the spinal cord or DRG. However, artemin or NGF induced regeneration of calcitonin gene related peptide positive (CGRP(+)) axons only when expressed within the spinal cord. Accordingly, artemin or NGF enhanced recovery of only nociceptive behavior and showed a cFos distribution similar to the topography of regenerating axons. Artemin and GDNF signaling requires binding to different co-receptors (GFRα3 or GFRα1, respectively) prior to binding to the signaling receptor, cRet. Approximately 70% of DRG neurons express cRet, but only 35% express either co-receptor. To enhance artemin-induced regeneration, we co-expressed artemin with either GFRα3 or GDNF. Co-expression of artemin and GFRα3 only slightly enhanced regeneration of IB4(+) non-peptidergic nociceptive axons, but not myelinated axons. Interestingly, this co-expression also disrupted the ability of artemin to produce topographic targeting and lead to significant increases in cFos immunoreactivity within the deep dorsal laminae. This study failed to demonstrate artemin-induced regeneration of myelinated axons, even with co-expression of GFRα3, which only promoted mistargeted regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Menominee Tribal Enterprises forest regeneration efforts

    Treesearch

    Suzanne M. Beilfuss

    2002-01-01

    Menominee Tribal Enterprises (MTE) is located in northeastern Wisconsin on the Menominee Indian Reservation, which includes ten townships of mostly forested land. Past fires, windstorms, and logging all have affected the composition and structure of this forest, which brings us to why regeneration on the forest is very important. Stands are regenerated with tree...

  11. Development of a novel regenerated cellulose composite material.

    PubMed

    De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

    2015-05-05

    We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy. Copyright © 2015. Published by Elsevier Ltd.

  12. Formation and regeneration of the urothelium.

    PubMed

    Yamany, Tammer; Van Batavia, Jason; Mendelsohn, Cathy

    2014-06-01

    This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.

  13. Effects of regenerator geometry on pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Kuriyama, T.; Xiao, J. H.; Radebaugh, R.

    1998-01-01

    This paper gives results of the cooling performance of a double-inlet pulse tube refrigerator using various regenerators. The same pulse tube was used for all the experiments and measured 4.76 mm in diameter and 46.2 mm in length. A commercial linear compressor with a swept volume of 4 cm3 was used in these experiments. The operating conditions were held constant at a mean pressure of 2.0 MPa and a frequency of 54 Hz. Using finite difference software called REGEN3.1, developed at NIST, and recent experiment results, we optimized a series of regenerators based on dimensions, materials and screen packing. The values used for calculating the thermal conduction through stacked screens by REGEN3.1 were based on recent experimental results from NIST. The regenerator tubes were designed using 316 stainless steel and titanium materials. The regenerator matrices investigated were 400-mesh and 500-mesh stainless steel screen. The valve settings for both orifices were adjusted to minimize the no-load temperature for all regenerators. A cooling capacity curve from 0 to 3 W was also determined. The performance of the pulse tube refrigerator using the different regenerators is discussed. The experimental results from the various regenerators are evaluated and compared with their corresponding numerically calculated coefficient of performance (COP) and regenerator design as determined by REGEN3.1.

  14. In Vitro Plant Regeneration from Commercial Cultivars of Soybean

    PubMed Central

    Raza, Ghulam; Singh, Mohan B.

    2017-01-01

    Soybean, a major legume crop, is the source of vegetable oil and protein. There is a need for transgenic approaches to breeding superior soybean varieties to meet future climate challenges. Efficient plant regeneration is a prerequisite for successful application of genetic transformation technology. Soybean cultivars are classified into different maturity groups based on photoperiod requirements. In this study, nine soybean varieties belonging to different maturity group were regenerated successfully from three different explants: half split hypocotyl, complete hypocotyl, and cotyledonary node. All the genotypes and explant types responded by producing adventitious shoots. Shoot induction potential ranged within 60–87%, 50–100%, and 75–100%, and regeneration rate ranged within 4.2–10, 2.7–4.2, and 2.6–10.5 shoots per explant using half split hypocotyl, complete hypocotyl, and cotyledonary explants, respectively, among all the tested genotypes. Bunya variety showed the best regeneration response using half split and complete hypocotyl explants and the PNR791 with cotyledonary node. The regenerated shoots were successfully rooted and acclimatized to glasshouse conditions. This study shows that commercial varieties of soybean are amenable to shoot regeneration with high regeneration frequencies and could be exploited for genetic transformation. Further, our results show no correlation between shoots regeneration capacity with the maturity grouping of the soybean cultivars tested. PMID:28691031

  15. Congestive renal failure: the pathophysiology and treatment of renal venous hypertension.

    PubMed

    Ross, Edward A

    2012-12-01

    Longstanding experimental evidence supports the role of renal venous hypertension in causing kidney dysfunction and "congestive renal failure." A focus has been heart failure, in which the cardiorenal syndrome may partly be due to high venous pressure, rather than traditional mechanisms involving low cardiac output. Analogous diseases are intra-abdominal hypertension and renal vein thrombosis. Proposed pathophysiologic mechanisms include reduced transglomerular pressure, elevated renal interstitial pressure, myogenic and neural reflexes, baroreceptor stimulation, activation of sympathetic nervous and renin angiotensin aldosterone systems, and enhanced proinflammatory pathways. Most clinical trials have addressed the underlying condition rather than venous hypertension per se. Interpreting the effects of therapeutic interventions on renal venous congestion are therefore problematic because of such confounders as changes in left ventricular function, cardiac output, and blood pressure. Nevertheless, there is preliminary evidence from small studies of intense medical therapy or extracorporeal ultrafiltration for heart failure that there can be changes to central venous pressure that correlate inversely with renal function, independently from the cardiac index. Larger more rigorous trials are needed to definitively establish under what circumstances conventional pharmacologic or ultrafiltration goals might best be directed toward central venous pressures rather than left ventricular or cardiac output parameters. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Nephrolithiasis in renal tubular acidosis.

    PubMed

    Buckalew, V M

    1989-03-01

    Renal tubular acidosis is a term applied to several conditions in which metabolic acidosis is caused by specific defects in renal tubular hydrogen ion secretion. Three types of renal tubular acidosis generally are recognized based on the nature of the tubular defect. Nephrolithiasis occurs only in type I renal tubular acidosis, a condition marked by an abnormality in the generation and maintenance of a hydrogen ion gradient by the distal tubule. A forme fruste of type I renal tubular acidosis has been described in which the characteristic defect in distal hydrogen ion secretion occurs in the absence of metabolic acidosis (incomplete renal tubular acidosis). Type I renal tubular acidosis is a heterogeneous disorder that may be hereditary, idiopathic or secondary to a variety of conditions. Secondary type I renal tubular acidosis in sporadic cases is associated most commonly with autoimmune diseases, such as Sjögren's syndrome and systemic lupus erythematosus, and it occurs more frequently in women than men. Nephrolithiasis, which may occur in any of the subsets of type I renal tubular acidosis, accounts for most of the morbidity in adults and adolescents. Major risk factors for nephrolithiasis include alkaline urine, hypercalciuria and hypocitraturia. In addition, we found hyperuricosuria in 21 per cent of the patients with type I renal tubular acidosis with nephrolithiasis. The most frequently occurring risk factor, hypocitraturia, is due to decreased filtered load and/or to increased tubular reabsorption of filtered citrate. While increased tubular reabsorption may be due to systemic acidosis, hypocitraturia occurs in incomplete renal tubular acidosis. Furthermore, alkali therapy (either bicarbonate or citrate salts) increases citrate excretion in complete and incomplete type I renal tubular acidosis. These data suggest that hypocitraturia in type I renal tubular acidosis may be due to a defect in proximal tubule function. Hypercalciuria appears to have 2 causes

  17. Economics and policy environments for forest regeneration.

    Treesearch

    Donald F. Flora

    1970-01-01

    MOST OF YOUR DAILY CONCERNS IN FOREST REGENERATION are biologic, technologic, and mechanical. But periodically, perhaps once a year, many of you must consider regeneration in a context that includes alternative uses for the financial resources you have.

  18. [Small renal mass].

    PubMed

    Prokofiev, D; Kreutzer, N; Kress, A; Wissing, F; Pfeifer, H; Stolzenburg, J-U; Dietel, A; Schwalenberg, T; Do, M; Truß, M C

    2012-10-01

    The frequent application of ultrasound and radiological imaging for non-urological indications in recent years has resulted in an increase in the diagnosis of small renal masses. The treatment options for patients with a small renal mass include active surveillance, surgery (both open and minimally invasive) as well as ablative techniques. As there is a risk for metastatic spread even in small renal masses surgical extirpation remains the treatment of choice in most patients. Ablative procedures, such as cryoablation and radiofrequency ablation are appropriate for old and multi-morbid patients who require active treatment of a small renal mass. Active surveillance is an alternative for high-risk patients. Meticulous patient selection by the urologist and patient preference will determine the choice of treatment option in the future.

  19. Novel electro-fenton approach for regeneration of activated carbon.

    PubMed

    Bañuelos, Jennifer A; Rodríguez, Francisco J; Manríquez Rocha, Juan; Bustos, Erika; Rodríguez, Adrián; Cruz, Julio C; Arriaga, L G; Godínez, Luis A

    2013-07-16

    An electro-Fenton-based method was used to promote the regeneration of granular activated carbon (GAC) previously adsorbed with toluene. Electrochemical regeneration experiments were carried out using a standard laboratory electrochemical cell with carbon paste electrodes and a batch electrochemical reactor. For each system, a comparison was made using FeSO4 as a precursor salt in solution (homogeneous system) and an Fe-loaded ion-exchange resin (Purolite C-100, heterogeneous system), both in combination with electrogenerated H2O2 at the GAC cathode. In the two cases, high regeneration efficiencies were obtained in the presence of iron using appropriate conditions of applied potential and adsorption-polarization time. Consecutive loading and regeneration cycles of GAC were performed in the reactor without great loss of the adsorption properties, only reducing the regeneration efficiency by 1% per cycle during 10 cycles of treatment. Considering that, in the proposed resin-containing process, the use of Fe salts is avoided and that GAC cathodic polarization results in efficient cleaning and regeneration of the adsorbent material, this novel electro-Fenton approach could constitute an excellent alternative for regenerating activated carbon when compared to conventional methods.

  20. Post-wildfire logging hinders regeneration and increases fire risk.

    PubMed

    Donato, D C; Fontaine, J B; Campbell, J L; Robinson, W D; Kauffman, J B; Law, B E

    2006-01-20

    We present data from a study of early conifer regeneration and fuel loads after the 2002 Biscuit Fire, Oregon, USA, with and without postfire logging. Natural conifer regeneration was abundant after the high-severity fire. Postfire logging reduced median regeneration density by 71%, significantly increased downed woody fuels, and thus increased short-term fire risk. Additional reduction of fuels is necessary for effective mitigation of fire risk. Postfire logging can be counterproductive to the goals of forest regeneration and fuel reduction.

  1. Advanced Engineering Strategies for Periodontal Complex Regeneration.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Seol, Yang-Jo

    2016-01-18

    The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.

  2. Chemical renal denervation in the rat.

    PubMed

    Consigny, Paul M; Davalian, Dariush; Donn, Rosy; Hu, Jie; Rieser, Matthew; Stolarik, Deanne

    2014-02-01

    The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose-response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography-mass spectrometry. Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10(-5) M through 10(-2) M paclitaxel. We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  3. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    PubMed

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  4. Release of suppressed oak advance regeneration

    Treesearch

    Dylan Dillaway; Jeffrey W. Stringer

    2006-01-01

    Oaks are not consistently regenerating on intermediate- and high-quality sites due to the lack of well-developed advance regeneration. Studies of northern red oak (Quercus rubra L.) seedling cohorts have shown that when grown under well-developed canopies and mid-stories, height growth is suppressed, and seedling mortality increases with time resulting in a sparsely...

  5. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  6. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.

  7. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  8. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  9. 99mtechnetium-dimercapto-succinic acid renal scanning and excretory urography in diagnosis of renal scars in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLorie, G.A.; Aliabadi, H.; Churchill, B.M.

    1989-09-01

    We compared the ability of excretory urography (without tomography) and 99mtechnetium-dimercapto-succinic acid renal scanning to detect renal scars in 32 children with primary vesicoureteral reflux. These children did not have hydronephrosis, renal failure or urinary tract obstruction. In all cases both studies were conducted within a 10-month period. The findings from both modalities were in agreement for 51 of the 64 renal units evaluated (80%). Evaluation of the excretory urogram indicated 6 cases of diffuse and 2 of focal scarring that were not detected by evaluation of the renal scan. The sensitivity of excretory urography to detect renal scars wasmore » 84% and the specificity was 83%. The 99mtechnetium-dimercapto-succinic acid renal scan showed 5 cases of focal renal scarring not detected by excretory urography. The sensitivity of the renal scan to detect renal scars was 77% and the specificity was 75%. We conclude that neither study alone could effectively replace the other for the detection of renal scars, and recommend that both be included in the initial evaluation and followup of patients with renal scars.« less

  10. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in DOCA-salt hypertension

    PubMed Central

    Banek, Christopher T.; Knuepfer, Mark M.; Foss, Jason D.; Fiege, Jessica K.; Asirvatham-Jeyaraj, Ninitha; Van Helden, Dusty; Shimizu, Yoji; Osborn, John W.

    2016-01-01

    Renal sympathetic denervation (RDNx) has emerged as a novel therapy for hypertension; however, the therapeutic mechanisms remain unclear. Efferent renal sympathetic nerve activity (RSNA) has recently been implicated in trafficking renal inflammatory immune cells and inflammatory chemokine and cytokine release. Several of these inflammatory mediators are known to activate or sensitize afferent nerves. This study aimed to elucidate the roles of efferent and afferent renal nerves in renal inflammation and hypertension in the deoxycorticosterone acetate (DOCA)-salt rat model. Uninephrectomized male Sprague Dawley rats (275–300g) underwent selective afferent-selective RDNx (A-RDNx; n=10), total RDNx (T-RDNx; n=10), or Sham (n=10) and were instrumented for measurement of mean arterial pressure (MAP) and heart rate (HR) by radiotelemetry. Rats received 100mg DOCA (s.c.) and 0.9% saline for 21 days. Resting afferent renal nerve activity (ARNA) in DOCA and Vehicle animals was measured after the treatment protocol. Renal tissue inflammation was assessed by renal cytokine content and T-cell infiltration and activation. Resting ARNA, expressed as a percent of peak afferent nerve activity (%Amax), was substantially increased in DOCA vs. Vehicle (35.8±4.4 vs. 15.3±2.8%Amax). The DOCA-Sham hypertension (132±12 mmHg) was attenuated by ~50% in both T-RDNx (111±8) and A-RDNx (117±5mmHg) groups. Renal inflammation induced by DOCA-salt was attenuated by T-RDNx, and unaffected by A-RDNx. These data suggest ARNA may mediate the hypertensive response to DOCA-salt, but inflammation may be mediated primarily by efferent RSNA. Also, resting ARNA is elevated in DOCA-salt rats, which may highlight a crucial neural mechanism in the development and maintenance of hypertension. PMID:27698066

  11. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  12. Redox Control of Skeletal Muscle Regeneration

    PubMed Central

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane

    2017-01-01

    Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662

  13. Heart Repair and Regeneration: Recent Insights from Zebrafish Studies

    PubMed Central

    Lien, Ching-Ling; Harrison, Michael R.; Tuan, Tai-Lan; Starnes, Vaughn A

    2012-01-01

    Cardiovascular disease is the leading cause of death in United States and worldwide. Failure to properly repair or regenerate damaged cardiac tissues after myocardial infarction is a major cause of heart failure. In contrast to humans and other mammals, zebrafish hearts regenerate after substantial injury or tissue damage. Here, we review recent progress in studying zebrafish heart regeneration, addressing the molecular and cellular responses in the three tissue layers of the heart: myocardium, epicardium, and endocardium. We also compare different injury models utilized to study zebrafish heart regeneration, and discuss the differences in responses to injury between mammalian and zebrafish hearts. By learning how zebrafish hearts regenerate naturally, we can better design therapeutic strategies for repairing human hearts after myocardial infarction. PMID:22818295

  14. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  15. Bi-layered collagen nano-structured membrane prototype collagen matrix 10826® for soft tissue regeneration in rabbits: an in vivo ultra-structural study of the early healing phase.

    PubMed

    De Santis, D; Menchini Fabris, G B; Lotti, J; Palumbo, C; Ferretti, M; Castellani, R; Lotti, T; Zanotti, G; Gelpi, F; Covani, C; Nocini, P F

    Collagen Matrix (CM) 10826 is a nanostructured bi-layered collagen membrane obtained from type I and III porcine collagen, which in vitro has shown to have the potential to be a substitute and/or stimulant for soft oral tissue regeneration. The objective of this study was to evaluate the in vivo potential and safety of this membrane for soft tissue regeneration in the early stage of wound healing. Two soft tissue wounds (test and control) were created on the back skin of 5 rabbits (female New Zealand White Rabbits specific pathogen free). All wounds were protected by a special poly-tetra-fluoro-ethylene (PTFE) healing camera. On each rabbit on the test side CM-10826 was used, while on the control side conventional treatment (an autologous pedicle graft) was performed. The healing process was observed clinically after 2 and 6 days, and Magnetic Resonance Imaging (MRI) was performed after this period. After 7 days, animals were sacrificed and specimens were analyzed with light optic microscopy (LM), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These in vivo trials on rabbits confirmed that CM-10826 is well tolerated, without signs of histological inflammatory reaction and proved to be able to accelerate the spontaneous repair of the skin defect taken as the control. The light-optic and ultra-microscopy of serial biopsies showed that the new matrix is biocompatible and is able to function as a scaffold inducing soft tissue regeneration. In conclusion this study demonstrates that CM-10826 promote early soft tissue regeneration and suggests it is a potential constituent for human autologous keratinocytes seeded derma bioequivalent. It protects the wound from injuries and bacterial contamination accelerating healing process. As a clinical relevance, we consider that the quality of life of patients will be improved avoiding the use of major autologous grafts, reducing the hospitalization time and morbidity.

  16. Hypercalcemia with renal failure.

    PubMed

    Bhavani, Nisha; Praveen, Valiyaparambil Pavithran; Jayakumar, Rohinivilasam Vasukutty; Nair, Vasantha; Muraleedharan, Mangath; Kuma, Harish; Unnikrishnan, Ambika Gopalakrishnan; Menon, Vadayath Usha

    2012-06-01

    We report a cse of nephrocalcinosis with renal failure which on evaluation was found to have hypercalcemia. Further investigations showed an inappropriately normal intact parathormone (iPTH) and 1,25 dihydroxy-vitamin D level in the setting of renal failure. Probing for a cause of non-PTH mediated hypercalcemia led to the diagnosis of sarcoidosis. Treatment with glucocorticoids could partially reverse the renal failure and control the hypercalcemia. This case illustrates the importance of careful interpretation of laboratory parameters especially levels of iPTH and vitamin D metabolites in renal failure.

  17. Kidney (Renal) Failure

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Kidney Failure Kidney failure, also known as renal failure, ... evaluated? How is kidney failure treated? What is kidney (renal) failure? The kidneys are designed to maintain ...

  18. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration.

    PubMed

    Stang, Felix; Fansa, Hisham; Wolf, Gerald; Reppin, Michael; Keilhoff, Gerburg

    2005-06-01

    Large nerve defects require nerve grafts to allow regeneration. To avoid donor nerve problems the concept of tissue engineering was introduced into nerve surgery. However, non-neuronal grafts support axonal regeneration only to a certain extent. They lack viable Schwann cells which provide neurotrophic and neurotopic factors and guide the sprouting nerve. This experimental study used the rat sciatic nerve to bridge 2 cm nerve gaps with collagen (type I/III) tubes. The tubes were different in their physical structure (hollow versus inner collagen skeleton, different inner diameters). To improve regeneration Schwann cells were implanted. After 8 weeks the regeneration process was monitored clinically, histologically and morphometrically. Autologous nerve grafts and collagen tubes without Schwann cells served as control. In all parameters autologous nerve grafts showed best regeneration. Nerve regeneration in a noteworthy quality was also seen with hollow collagen tubes and tubes with reduced lumen, both filled with Schwann cells. The inner skeleton, however, impaired nerve regeneration independent of whether Schwann cells were added or not. This indicates that not only viable Schwann cells are an imperative prerequisite but also structural parameters determine peripheral nerve regeneration.

  19. [Age factor in eye regeneration of the gastropod mollusk Achatina fulica].

    PubMed

    Tartakovskaia, O S; Borisenko, S L; Zhukov, V V

    2003-01-01

    The dependence of the ability to regenerate the eye on the age of experimental animals was studied in the snail Achatina fulica. The degree of regeneration was estimated by light-microscopic and electrophysiological methods and by analyzing the motor response to visual stimuli. In older age groups, the number of regenerated eye-bearing tentacles decreased, whereas the period of regeneration increased. The regenerated eyes of the snails operated at the age of more than two months remained smaller than normal eyes even after six months. Regeneration of the distal part of the optic nerve was observed, and the regenerated eyes recovered the ability to respond to stimulation by light. In the electroretinogram, the responses of the regenerated eye, compared to the control, were characterised by a lower amplitude and longer repolarization and refractory periods. Manifestations of the motor response to visual stimuli in the young snails with regenerating eyes could be regarded as evidence for the recovery of connection between the organ of sight and the central ganglia.

  20. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.