Joseph, J A; Shukitt-Hale, B; McEwen, J; Rabin, B
1999-12-01
Previous research has determined that the deficits in motor behavior seen in aged animals irradiated with (56)Fe particles involved alterations in muscarinic receptor sensitivity. In the present experiments, we determined whether increasing either membrane fluidity by exposure of striatal slices from irradiated ((56)Fe particles) animals to S-adenosyl-l-methionine (SAM) or GTP hydrolysis with Mg(2+) would reverse this (56)Fe-particle-induced loss of muscarinic receptor sensitivity, as has been observed in aged animals. Results indicated that, while increasing Mg(2+) concentrations in the incubation medium was effective in reducing the radiation effects, SAM was able to effect some reversal of the radiation effects only at the lower concentration (200 microM). These results suggest that similar mechanisms may be involved in the deficits in signal transduction seen after (56)Fe-particle irradiation to those seen in aging, and that these may include changes in the membrane structure or composition that could alter subsequent responsiveness of transduction pathways. The results further suggest that, as has been reported previously, (56)Fe-particle irradiation may accelerate brain aging, and that since these HZE particles contribute at least 1% of the dose that astronauts would receive from cosmic rays, long-term exposure on extended space flights (e.g. to Mars) may produce similar deficits that could have immediate or delayed effects on behavior.
NASA Technical Reports Server (NTRS)
Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.
2003-01-01
The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.
NASA Technical Reports Server (NTRS)
Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)
1998-01-01
The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.
NASA Astrophysics Data System (ADS)
Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara
2017-02-01
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.
Exposure to heavy charged particles affects thermoregulation in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.
1994-09-01
Rats exposed to 0.1-5 Gy of heavy particles ({sup 56}Fe, {sup 40}Ar, {sup 20}Ne or {sup 4}He) showed dose-dependent changes in body temperature. Lower doses of all particles produced hyperthermia, and higher doses of {sup 20}Ne and {sup 56}Fe produced hypothermia. Of the four HZE particles, {sup 56}Fe particles were the most potent and {sup 4}He particles were the least potent in producing changes in thermoregulation. The {sup 20}Ne and {sup 40}Ar particles produced an intermediate level of change in body temperature. Significantly greater hyperthermia was produced by exposure to 1 Gy of {sup 20}Ne, {sup 40}Ar and {sup 56}Femore » particles than by exposure to 1 Gy of {sup 60}Co {gamma} rays. Pretreating rats with the cyclo-oxygenase inhibitor indomethacin attenuated the hyperthermia produced by exposure to 1 Gy of {sup 56}Fe particles, indicating that prostaglandins mediate {sup 56}Fe-particle-induced hyperthermia. The hypothermia produced by exposure to 5 Gy of {sup 56}Fe particles is mediated by histamine and can be attenuated by treatment with the antihistamines mepyramine and cimetidine. 15 refs., 4 figs.« less
Poulose, Shibu M; Rabin, Bernard M; Bielinski, Donna F; Kelly, Megan E; Miller, Marshall G; Thanthaeng, Nopporn; Shukitt-Hale, Barbara
2017-02-01
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56 Fe, within 24-48h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56 Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56 Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56 Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.
2015-12-01
It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the anthropogenic combustion process. The δ56Fe in anthropogenic aerosols measured here is important to model the budget of iron in the surface ocean.
USDA-ARS?s Scientific Manuscript database
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to “accelerated aging.” One such scenario is exposure to space radiation, consisting of high-energy and -charge par...
Chemical leaching methods and measurements of marine labile particulate Fe
NASA Astrophysics Data System (ADS)
Revels, B. N.; John, S.
2012-12-01
Iron (Fe) is an essential nutrient for life. Yet its low solubility and concentration in the ocean limits marine phytoplankton productivity in many regions of the world. Dissolved phase Fe (<0.4μm) has traditionally been considered the most biologically accessible form, however, the particulate phase (>0.4μm) may contain an important, labile reservoir of Fe that may also be available to phytoplankton. However, concentration data alone cannot elucidate the sources of particulate Fe to the ocean and to what extent particulate iron may support phytoplankton growth. Isotopic analysis of natural particles may help to elucidate the biogeochemical cycling of Fe, though it is important to find a leaching method which accesses bioavailable Fe. Thirty-three different chemical leaches were performed on a marine sediment reference material, MESS-3. The combinations included four different acids (25% acetic acid, 0.01M HCl, 0.5M HCl, 0.1M H2SO4 at pH2), various redox conditions (0.02M hydroxylamine hydrochloride or 0.02M H2O2), three temperatures (25°C, 60°C, 90°C), and three time points (10 minutes, 2 hours, 24 hours). Leached Fe concentrations varied from 1mg/g to 35mg/g, with longer treatment times, stronger acids, and hotter temperatures generally associated with an increase in leached Fe. δ56Fe in these leaches varied from -1.0‰ to +0.2‰. Interestingly, regardless of leaching method used, there was a very similar relationship between the amount of Fe leached from the particles and the δ56Fe of this iron. Isotopically lighter δ56Fe values were associated with smaller amounts of leached Fe whereas isotopically heavier δ56Fe values were associated with larger amounts of leached Fe. Two alternate hypotheses could explain these data. Either, the particles may contain pools of isotopically light Fe that are easily accessed early in dissolution, or isotopically light Fe may be preferentially leached from the particle due to a kinetic isotope effect during dissolution. To explore the first hypothesis, we modeled dissolution of Fe from particles assuming two separate pools, labile and refractory. The model produces a good fit to the data assuming 3mg/g of a labile Fe pool with δ56Fe = -0.9‰ and a refractory Fe pool with δ56Fe = +0.1‰. If the second hypothesis is true, and there is a kinetic isotope effect during dissolution, the similar relationship between amount of Fe leached and δ56Fe for both organic and mineral acids suggests that Fe is leached from particles via proton-promoted dissolution. Several of these leaching techniques will be employed on sediment trap material from the Cariaco Basin to further investigate the relationship between δ56Fe and the labile, bioavailable fraction of iron particles. A leach or series of leaches will be chosen to provide the most useful information about the bioavailability of iron from particles, and they will be applied to filtered particle samples from portions of the US GEOTRACES A10 (North Atlantic) transect. δ56Fe values from particulate material in these regions will provide a better understanding of the sources of particulate iron to the ocean, and may help to trace how particulate iron is involved in global biogeochemical cycles.
Dietary modulation of the effects of exposure to 56Fe particles
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.
On exploratory missions to other planets, astronauts will be exposed to galactic cosmic rays composed of protons and heavy particles, such as 56Fe. Long-term exposure to these particles can cause cancer. However, there are significant uncertainties in the risk estimates for the probability of developing heavy particle-induced cancer, and in the amount of shielding needed to provide an adequate level of radiation protection. The results of this preliminary study, using a ground-based model for exposure to cosmic rays, show reduced tumorigenesis in rats maintained on diets containing blueberry or strawberry extract prior to exposure to 56Fe particles. Because the study was not initially designed to evaluate tumorigenesis following exposure to 56Fe particles, additional research is needed to evaluate the effectiveness of strawberry and blueberry supplementation. However, the preliminary results presented in this study suggest that diets containing antioxidant phytochemicals can provide additional radiation protection on interplanetary voyages.
NASA Technical Reports Server (NTRS)
Evans, H. H.; Horng, M. F.; Evans, T. E.; Jordan, R.; Schwartz, J. L.
2001-01-01
The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.
NASA Technical Reports Server (NTRS)
Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.;
1998-01-01
This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.
NASA Technical Reports Server (NTRS)
Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.
2001-01-01
To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.
Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats
NASA Technical Reports Server (NTRS)
Rabin, Bernard M.; Buhler, Lynn L.; Joseph, James A.; Shukitt-Hale, Barbara; Jenkins, Daniel G.
2002-01-01
On long-duration trips outside of the magnetosphere, astronauts will be exposed to protons and to heavy particles which can affect their performance of required tasks. It is essential to determine the range of behaviors that might be affected by exposure to these types of radiation in order to understand the nature of behavioral deficits and to develop effective countermeasures. The present experiment examined the ability of rats to make an operant response following exposure to protons (250 MeV, 4 Gy) or 56Fe particles (1 GeV/n, 1 or 2 Gy). Following irradiation, rats were trained to press a lever in order to obtain food reinforcement. They were then placed on an ascending fixed-ratio schedule from FR-1 (each lever press rewarded with a food pellet) through FR-35 (35 lever presses required for 1 food pellet). Rats exposed to 4 Gy of protons or 1 Gy of 56Fe particles responded similarly to controls, increasing their rate of responding as the ratio increased. However, rats exposed to 2 Gy of 56Fe particles failed to increase their rate of responding at ratios greater than FR-20, indicating that rats exposed to 2 Gy of 56Fe particles cannot respond appropriately to increasing work requirements.
NASA Astrophysics Data System (ADS)
DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.
2014-07-01
The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support the regenerative capacity of the adult SGZ after HZE particle exposure and encourage additional inquiry into the relationship between radial glia stem cells and cognitive function after HZE particle exposure.
NASA Astrophysics Data System (ADS)
Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.
The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.
Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation
NASA Technical Reports Server (NTRS)
Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.
2002-01-01
Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.
Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.
Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A
2002-12-01
Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.
USDA-ARS?s Scientific Manuscript database
Exposing young rats to particles of high energy and charge (HZE particles), such as 56Fe, enhances indices of oxidative stress and inflammation and disrupts behavior, including spatial learning and memory. In the present study, we examined whether gene expression in the hippocampus, an area of the b...
NASA Technical Reports Server (NTRS)
Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.
2001-01-01
We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.
Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.
Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G
2005-01-01
We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.
Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.
Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions
NASA Technical Reports Server (NTRS)
Evans, H. H.; Evans, T. E.; Horng, M. F.
2002-01-01
The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.
NASA Astrophysics Data System (ADS)
Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.
2015-10-01
Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (δ56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate δ56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate δ56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated during leaching of silicates and clays but only minimally fractionated during dissolution of Fe oxyhydroxides. Two different analytical models were developed to explain the relationship between amount of Fe leached and δ56Fe, one of which assumes mixing between two Fe phases with different δ56Fe and different dissolution rates, and the other of which assumes dissolution of a single phase with a kinetic isotope effect. We apply both models to fit results from the acidic leaches of MESS-3 and find that the fit for both models is very similar, suggesting that isotope data will never be sufficient to distinguish between these two processes for natural materials. Next, we utilize our data to choose an optimal leach for application to marine particles. The oxalate-EDTA leach is well-suited to this purpose because it does not greatly fractionate Fe isotopes for a diversity of particle types over a wide variety of leaching conditions, and because it approximates the conditions by which particulate Fe dissolves in the oceans. We recommend a 2 h leach at 90 °C with 0.1 M oxalate and 0.05 M EDTA at pH 8 to measure labile ;ligand-leachable; particulate δ56Fe on natural marine materials with a range of compositions.
Effects of exposure to 56Fe particles on the acquisition of a conditioned place preference in rats
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Shukitt-Hale, B.; Joseph, J. A.; Denissova, N.
2001-01-01
Exposure to low doses of 56Fe particles produces changes in neural function and behavior. The present experiments were designed to examine the effects of irradiation on the acquisition of a dopamine-mediated conditioned place preference (CPP). In the CPP procedure, rats are given an injection of the dopamine agonist amphetamine in one distinctive compartment and a saline injection in a different compartment of a three-compartment apparatus. Control rats develop a preference for the amphetamine-paired compartment. In contrast, rats exposed to 1 Gy of 56Fe particles fail to develop a similar preference. The results of the experiment indicate that exposure to low doses of heavy particles can disrupt the neural mechanisms that mediate the reinforcement of behavior.
NASA Astrophysics Data System (ADS)
Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James
Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-κB signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent DNA damage caused by radiation to new cells. Supplementation with the berry diets enhanced neuronal communication and cell signaling by altering gene regulation of some of the protective stress signals. Therefore, these data suggest that 56 Fe particle irradiation causes deficits in gene expression in rats which are ameliorated by berry fruit diets.
Projectile fragmentation of 500 A MeV 56Fe in nuclear emulsion
NASA Astrophysics Data System (ADS)
Li, Jun-Sheng; Zhang, Dong-Hai; Li, Hui-Ling; Yasuda, N.
2013-07-01
N-4 stacks of nuclear emulsion were exposed to 500 A MeV 56Fe ions at the HIMAC NIRS. Particle production was investigated in 56Fe-Em interactions. The multiplicity distribution of projectile fragments was done in this paper and compared with interactions induced by 56Fe and other heavy ions in nuclear emulsion at other energies. The variation of characteristics of the heavy ion interactions with the mass and energy of the projectile is studied.
Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.
2014-01-01
Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054
Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.
Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A
2012-10-01
Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated cortex and the basal forebrain. Our observation that 20 cGy of 1 GeV/u (56)Fe particles is sufficient to impair the ability of rats to conduct attentional set-shifting raises the possibility that astronauts on prolonged deep space exploratory missions could subsequently develop deficits in executive function.
NASA Astrophysics Data System (ADS)
Maters, E. C.; Flament, P.; de Jong, J.; Mattielli, N. D. C.; Deboudt, K.
2017-12-01
Iron (Fe) is a key element in ocean biogeochemistry and hence the carbon cycle. Its low concentration in seawater limits primary production in >30% of the surface ocean, and thus strong interest lies in constraining Fe inputs to the ocean on different spatial and temporal scales. During Earth's past, large fluctuations in atmospheric deposition fluxes of continental particles including mineral dust and volcanic ash to the ocean may have played a role in climate change events. At present, anthropogenic particles from metal working, biomass burning, and fossil fuel combustion are increasingly recognised to deliver Fe to the ocean as well. To assess the relative importance of these particulate Fe sources, knowledge of their deposition flux (overall dominated by natural dusts) and their Fe solubility (a proxy for Fe bioavailability, and typically higher in anthropogenic materials) is needed, although large uncertainties remain in these parameters. A potential tool for tracing atmospheric inputs to the ocean is the Fe isotope composition (δ56Fe), previously reported to be distinct for natural versus anthropogenic particles. However, it remains unknown if and how the δ56Fe is influenced by various physicochemical processes (e.g. acidification, photochemistry) shown to enhance Fe solubility in airborne particles. Iron isotopic fractionation has been observed during ligand-controlled and photo-reductive dissolution of goethite at low pH,[1] and similar effects may apply to more complex materials during atmospheric transport. Specifically, isotopic enrichment in partially dissolved particles may result from initial preferential release of 54Fe over 56Fe from the solid surface. To test these hypotheses, we subjected natural and anthropogenic specimens, including mineral dust from the Sahara desert and industrial ash from an Fe-Mn alloy factory, to simulated atmospheric processing in pH 2 solution in the presence/absence of oxalic acid and solar radiation. The Fe solubility and δ56Fe/IRMM-014 values of the solid samples were measured to determine the extents of fractionation relative to unprocessed particles. The results of these experiments and the implications for tracing atmospheric Fe inputs to the ocean will be presented. [1] Wiederhold, J. G. et. al. (2006) Environ. Sci. Technol., 40, 3787-3793.
Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks
NASA Technical Reports Server (NTRS)
Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.
1989-01-01
Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.
Complex chromatid-isochromatid exchanges following irradiation with heavy ions?
Loucas, B D; Eberle, R L; Durante, M; Cornforth, M N
2004-01-01
We describe a peculiar and relatively rare type of chromosomal rearrangement induced in human peripheral lymphocytes that were ostensibly irradiated in G(0) phase of the cell cycle by accelerated heavy ions, and which, to the best of our knowledge, have not been previously described. The novel rearrangements which were detected using mFISH following exposure to 500 MeV/nucleon and 5 GeV/n 56Fe particles, but were not induced by either 137Cs gamma rays or 238Pu alpha particles, can alternatively be described as either complex chromatid-isochromatid or complex chromatid-chromosome exchanges. Different mechanisms potentially responsible for their formation are discussed. Copyright 2003 S. Karger AG, Basel
Accelerated hematopoietic toxicity by high energy (56)Fe radiation.
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J
2012-03-01
There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.
Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.
2013-01-01
Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.
Heavy-Element Abundances in Solar Energetic Particle Events
NASA Technical Reports Server (NTRS)
Reames, Donald V.
2004-01-01
We survey the relative abundances of elements with 1 less than or = Z less than or = 82 in solar energetic particle (SEP) events observed at 2 - 10 MeV amu" during nearly 9 years aboard the Wind spacecraft, with special emphasis on enhanced abundances of elements with 2Z greater than or = 34. Abundances of Fe/O again show a bimodal distribution with distinct contributions from impulsive and gradual SEP events as seen in earlier solar cycles. Periods with greatly enhanced abundances of (50 less than or = Z less than or = 56)/O, like those with enhanced He-3/He-4, fall prominently in the Fe-rich population of the impulsive SEP events. In a sample of the 39 largest impulsive events, 25 have measurable enhancements in (50 less than or = Z less than or = 56)/O and (76 less than or = Z less than or = 82)/O, relative to coronal values, ranging from approx. 100 to 10,000. By contrast, in a sample of 45 large gradual events the corresponding enhancements vary from approx. 0.2 to 20. However, the magnitude of the heavy-element enhancements in impulsive events is less striking than their strong correlation with the Fe spectral index and flare size, with the largest enhancements occurring in flares with the steepest Fe spectra, the smallest Fe fluence, and the lowest X-ray intensity, as reported here for the first time Thus it seem that small events with low energy input can produce only steep spectra of the dominant species but accelerate rare heavy elements with great efficiency, probably by selective absorption of resonant waves in the flare plasma. With increased energy input, enhancements diminish, as heavy ions are depleted, and spectra of the dominant species harden.
Heavy-Element Abundances in Solar Energetic Particle Events
NASA Technical Reports Server (NTRS)
Reames, D. V.; Ng, C. K.
2004-01-01
We survey the relative abundances of elements with 1 < or equal to Z < or equal to 82 in solar energetic particle (SEP) events observed at 2-10 MeV/amu during nearly 9 years aboard the Wind spacecraft, with special emphasis on enhanced abundances of elements with Z > or equal to 34. Abundances of Fe/O again show a bimodal distribution with distinct contributions from impulsive and gradual SEP events as seen in earlier solar cycles. Periods with greatly enhanced abundances of (50 < or equal to Z < or equal to 56)/O, like those with enhanced (3)He/(4)He, fall prominently in the Fe-rich population of the impulsive SEP events. In a sample of the 39 largest impulsive events, 25 have measurable enhancements in (50 < or equal to z < or equal to 56)/O and (76 < or equal to Z < or equal to 82)/O, relative to coronal values, ranging from approx. 100 to 10,000. By contrast, in a sample of 45 large gradual events the corresponding enhancements vary from approx. 0.2 to 20. However, the magnitude of the heavy-element enhancements in impulsive events is less striking than their strong correlation with the Fe spectral index and flare size, with the largest enhancements occurring in flares with the steepest Fe spectra, the smallest Fe fluence, and the lowest X-ray intensity, as reported here for the first time. Thus it seems that small events with low energy input can produce only steep spectra of the dominant species but accelerate rare heavy elements with great efficiency, probably by selective absorption of resonant waves in the flare plasma. With increased energy input, enhancements diminish, as heavy ions are depleted, and spectra of the dominant species harden.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2003-01-01
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
The Roles of Flares and Shocks in determining SEP Abundances
NASA Technical Reports Server (NTRS)
Cane, H. V.; Mewaldt, R. A.; Cohen, C. M. S.; vonRosenvinge, T. T.
2007-01-01
We examine solar energetic particle (SEP) event-averaged abundances of Fe relative to O and intensity versus time profiles at energies above 25 MeV/nucleon using the SIS instrument on ACE. These data are compared with solar wind conditions during each event and with estimates of the strength of the associated shock based on average travel times to 1 AU. We find that the majority of events with an Fe to 0 abundance ratio greater than two times the average 5-12 MeV/nuc value for large SEP events (0.134) occur in the western hemisphere. Furthermore, in most of these Fe-rich events the profiles peak within 12 hours of the associated flare, suggesting that some of the observed interplanetary particles are accelerated in these flares. The vast majority of events with Fe/O below 0.134 are influenced by interplanetary shock acceleration. We suggest that variations in elemental composition in SEP events mainly arise from the combination of flare particles and shock acceleration of these particles and/or the ambient medium.
Nuclear Deexcitation Gamma Ray Lines from Accelerated Particle Interactions
2002-01-01
MeV) 10−1 1 10 102 103 104 105 C ou nt s s− 1 M eV −1 neutron capture 12C 56Fe, 24Mg, 20Ne, 28Si 16O 16O, 15N positron annihilation Fig. 1.— Gamma...1996). The results of these efforts have established gamma-ray spectroscopy as an important tool for exploration of high-energy processes in solar...Murphy et al. 1997) is shown in Figure 1. Among the main results of the investigations using gamma-ray spectroscopy are (1) the determination of the
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.
Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Astrophysics Data System (ADS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy ( n=10) of 56Fe heavy particle radiation or in non-radiated controls ( n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.
The effects of heavy particle irradiation on exploration and response to environmental change
NASA Technical Reports Server (NTRS)
Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks. Published by Elsevier Ltd on behalf of COSPAR.
Effects of heavy particle irradiation and diet on object recognition memory in rats
NASA Astrophysics Data System (ADS)
Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.
2009-04-01
On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.
Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo
NASA Technical Reports Server (NTRS)
Brooks, A.; Bao, S.; Rithidech, K.; Couch, L. A.; Braby, L. A.
2001-01-01
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.
CNS effects of heavy particle irradiation in space: behavioral implications.
Joseph, J A; Erat, S; Rabin, B M
1998-01-01
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.
Local factors modify the dose dependence of 56Fe-induced atherosclerosis.
NASA Astrophysics Data System (ADS)
Kucik, Dennis; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz; Yu, Shaohua
2012-07-01
Radiation exposure from a number of terrestrial sources is associated with an increased risk of cardiovascular disease, but evidence establishing whether high-LET radiation has similar effects has been lacking. We recently demonstrated that 600 MeV/n 56Fe induces atherosclerosis as well. Ten-week old male apolipoprotein-E deficient mice, a well-characterized atherosclerosis animal model, were exposed to 0 (control) 2, or 5Gy 56Fe targeted to the chest and neck. In these mice, 56Fe-induced atherosclerosis was similar in character to that induced by X-rays in the same mouse model and to that resulting from therapeutic radiation in cancer patients. Atherosclerosis was exacerbated by 56Fe only in targeted areas, however, suggesting a direct effect of the radiation on the arteries themselves. This is in contrast to some other risk factors, such as high cholesterol or tobacco use, which have systemic effects. The radiation dose required to accelerate development of atherosclerotic plaques, however, differed depending on the vessel that was irradiated and even the location within the vessel. For example, atherosclerosis in the aortic arch was accelerated only by the highest dose (5 Gy), while the carotid arteries and the aortic root showed effects at 2 Gy (a dose four- to eight-fold lower than the dose of X-rays that produces similar effects in this model). Since shear stress is disrupted in the area of the aortic root, it is likely that at least part of the site-specificity is due to additive or synergistic effects of radiation and local hydrodynamics. Other factors, such as local oxidative stress or gene expression may also have been involved. Since the pro-atherogenic effects of 56Fe depend on additional local factors, this suggests that radiation exposure, when unavoidable, might be mitigated by modification of factors unrelated to the radiation itself.
Cherry, Jonathan D.; Liu, Bin; Frost, Jeffrey L.; Lemere, Cynthia A.; Williams, Jacqueline P.; Olschowka, John A.; O’Banion, M. Kerry
2012-01-01
Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE) particles poses a significant threat to future astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on the brain. In this study we examined the effects of 56Fe particle irradiation in an APP/PS1 mouse model of Alzheimer’s disease (AD). We demonstrated 6 months after exposure to 10 and 100 cGy 56Fe radiation at 1 GeV/µ, that APP/PS1 mice show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests. Furthermore, in male mice we saw acceleration of Aβ plaque pathology using Congo red and 6E10 staining, which was further confirmed by ELISA measures of Aβ isoforms. Increases were not due to higher levels of amyloid precursor protein (APP) or increased cleavage as measured by levels of the β C-terminal fragment of APP. Additionally, we saw no change in microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Aβ plaques or insulin degrading enzyme, which has been shown to degrade Aβ. However, immunohistochemical analysis of ICAM-1 showed evidence of endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Aβ trafficking through the blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle radiation can increase Aβ plaque pathology in an APP/PS1 mouse model of AD. PMID:23300905
Rabin, Bernard M; Joseph, James A; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty L
2012-02-01
Previous research has shown a progressive deterioration in cognitive performance in rats exposed to (56)Fe particles as a function of age. The present experiment was designed to evaluate the effects of age of irradiation independently of the age of testing. Male Fischer-344 rats, 2, 7, 12, and 16 months of age, were exposed to 25-200 cGy of (56)Fe particles (1,000 MeV/n). Following irradiation, the rats were trained to make an operant response on an ascending fixed-ratio reinforcement schedule. When performance was evaluated as a function of both age of irradiation and testing, the results showed a significant effect of age on the dose needed to produce a performance decrement, such that older rats exposed to lower doses of (56)Fe particles showed a performance decrement compared to younger rats. When performance was evaluated as a function of age of irradiation with the age of testing held constant, the results indicated that age of irradiation was a significant factor influencing operant responding, such that older rats tested at similar ages and exposed to similar doses of (56)Fe particles showed similar performance decrements. The results are interpreted as indicating that the performance decrement is not a function of age per se, but instead is dependent upon an interaction between the age of irradiation, the age of testing, and exposure to HZE particles. The nature of these effects and how age of irradiation affects cognitive performance after an interval of 15 to 16 months remains to be established.
Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona
NASA Technical Reports Server (NTRS)
Reames, Donald V.; Ng, C. K.; Tylka, A. J.
2000-01-01
We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.
NASA Technical Reports Server (NTRS)
Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.
1994-01-01
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.
NASA Astrophysics Data System (ADS)
Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.
1994-10-01
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.
Observation of the 60Fe Nucleosynthesis-Clock Isotope in Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Christian, E. R.; Cummings, A. C.; de Nolfo, G. A.; Lave, K. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.
2016-01-01
Iron-60 (60Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 105 iron nuclei, with energies 195 to 500 megaelectron volts per nucleon, of which we identify 15 60Fe nuclei. The 60Fe56Fe source ratio is (7.5 2.9) 105. The detection of supernova-produced 60Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the 60Fe half-life of 2.6 million years and that the 60Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, 1 kiloparsec. A natural place for 60Fe origin is in nearby clusters of massive stars.
Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice
NASA Astrophysics Data System (ADS)
White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.
2015-03-01
Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.
NASA Technical Reports Server (NTRS)
Gersey, B. B.; Borak, T. B.; Guetersloh, S. B.; Zeitlin, C.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.; Chatterjee, A. (Principal Investigator)
2002-01-01
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2006-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.
NASA Technical Reports Server (NTRS)
Rabin, Bernard M.; Shukitt-Hale, Barbara; Szprengiel, Aleksandra; Joseph, James A.
2002-01-01
Rats were maintained on diets containing either 2% blueberry or strawberry extract or a control diet for 8 weeks prior to being exposed to 1.5 Gy of 56Fe particles in the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Three days following irradiation, the rats were tested for the effects of irradiation on the acquisition of an amphetamine- or lithium chloride-induced (LiCl) conditioned taste avoidance (CTA). The rats maintained on the control diet failed to show the acquisition of a CTA following injection of amphetamine. In contrast, the rats maintained on antioxidant diets (strawberry or blueberry extract) continued to show the development of an amphetamine-induced CTA following exposure to 56Fe particles. Neither irradiation nor diet had an effect on the acquisition of a LiCl-induced CTA. The results are interpreted as indicating that oxidative stress following exposure to 56Fe particles may be responsible for the disruption of the dopamine-mediated amphetamine-induced CTA in rats fed control diets; and that a reduction in oxidative stress produced by the antioxidant diets functions to reinstate the dopamine-mediated CTA. The failure of either irradiation or diet to influence LiCl-induced responding suggests that oxidative stress may not be involved in CTA learning following injection of LiCl.
A balloon measurement of the isotopic composition of galactic cosmic ray iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, J.E.
1989-01-01
The isotopic composition of galactic cosmic ray iron in the energy interval of approximately 1550 to 2200 MeV/nucleon was measured using a balloon-borne mass spectrometer. The instrument was flown from Palestine, Texas, in May 1984 for greater than 35 hours at an atmospheric depth of approximately 6 g/sq cm. Masses were derived by the Cerenkov-Energy technique. The Cerenkov counter employed a silica aerogel radiator with an index of refraction n = 1.1. Particle energies were measured in a stack of NaI(Tl) scintillators, which also provided particle trajectories. A detailed discussion of the sources of mass uncertainty is presented, including anmore » analytic model of the contribution from fluctuations in the Cerenkov yield from knock-on electrons. The achieved mass resolution is approximately 0.65 amu, which is consistent with the theoretical estimate. An Fe-54/Fe-56 abundance ratio of 0.14(sup +0.18)(sub -0.11) and an 84 percent confidence upper limit of Fe-58/Fe-56 is less than or = to 0.07 at the top of the atmosphere is reported. Combining the data with those of precious measurements of the composition of iron at lower energies, and using a model of the galactic propagation, cosmic-ray source abundance ratios of Fe-54/Fe-56 = 0.064(sup +0.032)(sub -0.027) and Fe-58/F3-56 is less than or = to 0.062 were derived. These values are consistent with the composition of solar system iron and place restrictions on the conditions under which cosmic-ray iron is synthesized.« less
Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change
Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A.; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M.; Gauny, Stacey; Kronenberg, Amy
2017-01-01
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis. PMID:28683078
Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.
Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy
2017-01-01
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.
Observation of the ⁶⁰Fe nucleosynthesis-clock isotope in galactic cosmic rays.
Binns, W R; Israel, M H; Christian, E R; Cummings, A C; de Nolfo, G A; Lave, K A; Leske, R A; Mewaldt, R A; Stone, E C; von Rosenvinge, T T; Wiedenbeck, M E
2016-05-06
Iron-60 ((60)Fe) is a radioactive isotope in cosmic rays that serves as a clock to infer an upper limit on the time between nucleosynthesis and acceleration. We have used the ACE-CRIS instrument to collect 3.55 × 10(5) iron nuclei, with energies ~195 to ~500 mega-electron volts per nucleon, of which we identify 15 (60)Fe nuclei. The (60)Fe/(56)Fe source ratio is (7.5 ± 2.9) × 10(-5) The detection of supernova-produced (60)Fe in cosmic rays implies that the time required for acceleration and transport to Earth does not greatly exceed the (60)Fe half-life of 2.6 million years and that the (60)Fe source distance does not greatly exceed the distance cosmic rays can diffuse over this time, ⪍1 kiloparsec. A natural place for (60)Fe origin is in nearby clusters of massive stars. Copyright © 2016, American Association for the Advancement of Science.
Cognitive differences between male and female rats following exposure to 56Fe particles
NASA Astrophysics Data System (ADS)
Rabin, Bernard; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Luskin, Katharine; Long, Lauren; Joseph, James
On exploratory class missions astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of exposure to HZE particles on cognitive performance in female subjects. While previous research has shown that exposure to HZE particles disrupts cognitive performance in male rats it remains to be established whether or not similar effects will occur with female subjects because estrogen may act as a neuroprotectant. Ovariectomized (OVX) female rats were obtained from Taconic Farms. Thirty mm segments of silastic tubing containing either 180 pg l7-estradiol/mL in sesame oil or vehicle alone were implanted subcutaneously in the neck. Three days following surgery the rats were exposed to 56Fe particles (1000 MeV/n, 0-200 cGy) at the NSRL. Following irradiation the rats were shipped to UMBC for behavioral testing. The results indicated that the pattern of decrements in cognitive performance differed between male and female rats. In addition, for female rats, there were differences in performance as a function of the presence or absence of estradiol. In the vehicle implanted subjects exposure to 56Fe particles did not affect operant responding on an ascending fixed-ratio schedule; whereas irradiation did disrupt responding in OVX animals given estradiol. These results suggest that estrogen may not be protective following exposure to HZE particles. This research was supported by Grant NNX08AM66G from NASA.
Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24
NASA Astrophysics Data System (ADS)
Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.
2018-01-01
The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.
Induction and repair of HZE induced cytogenetic damage
NASA Technical Reports Server (NTRS)
Brooks, A. L.; Bao, S.; Rithidech, K.; Chrisler, W. B.; Couch, L. A.; Braby, L. A.
2001-01-01
Wistar rats were exposed to high-mass, high energy (HZE) 56Fe particles (1000 GeV/AMU) using the Alternating Gradient Synchrotron (AGS). The animals were sacrificed at 1-5 hours or after a 30-day recovery period. The frequency of micronuclei in the tracheal and the deep lung epithelial cells were evaluated. The relative effectiveness of 56Fe, for the induction of initial chromosome damage in the form of micronuclei, was compared to damage produced in the same biological system exposed to other types of high and low-LET radiation. It was demonstrated that for animals sacrificed at short times after exposure, the tracheal and lung epithelial cells, the 56Fe particles were 3.3 and 1.3 times as effective as 60Co in production of micronuclei, respectively. The effectiveness was also compared to that for exposure to inhaled radon. With this comparison, the 56Fe exposure of the tracheal epithelial cells and the lung epithelial cells were only 0.18 and 0.20 times as effective as radon in the production of the initial cytogenetic damage. It was suggested that the low relative effectiveness was related to potential for 'wasted energy' from the core of the 56Fe particles. When the animals were sacrificed after 30 days, the slopes of the dose-response relationships, which reflect the remaining level of damage, decreased by a factor of 10 for both the tracheal and lung epithelial cells. In both cases, the slope of the dose-response lines were no longer significantly different from zero, and the r2 values were very high. Lung epithelial cells, isolated from the animals sacrificed hours after exposure, were maintained in culture, and the micronuclei frequency evaluated after 4 and 6 subcultures. These cells were harvested at 24 and 36 days after the exposure. There was no dose-response detected in these cultures and no signs of genomic instability at either sample time.
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Biswas, S.; Fichtel, C. E.; Pellerin, C. J.; Reames, D. V.
1973-01-01
Measurements of the flux of helium nuclei in the 24 January 1971 event and of helium and (C,N,O) nuclei in the 1 September 1971 event are combined with previous measurements to obtain the relative abundances of helium, (C,N,O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C,N,O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C,N,O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.
Trueman, Benjamin F; Gagnon, Graham A
2016-07-05
High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.
Cognitive deficits induced by 56Fe radiation exposure
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2003-01-01
Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.
Poigner, Harald; Wilhelms-Dick, Dorothee; Abele, Doris; Staubwasser, Michael; Henkel, Susann
2015-09-01
Iron stable isotope signatures (δ(56)Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013 b). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean δ(56)Fe values of -1.19 ± 0.34‰ and -1.04 ± 0.39 ‰, respectively, which is between 0.5‰ and 0.85‰ lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3‰ to -0.6‰). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, δ(56)Fe hemolymph values from both stations showed a high variability, ranging between -0.21‰ (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91‰ (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" δ(56)Fe signature caused by Fe assimilation from different sources with varying Fe contents and δ(56)Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acute effects of exposure to 56Fe and 16O particles on learning and memory
USDA-ARS?s Scientific Manuscript database
Although it has been shown that exposure to HZE particles disrupts cognitive performance when tested 2-4 weeks after irradiation, it has not been determined whether exposure to HZE particles can exert acute effects on cognitive performance; i.e., effects within 4-48 hrs after exposure. The present ...
Neuronal stress following exposure to 56Fe particles and the effects of antioxidant-rich diets
USDA-ARS?s Scientific Manuscript database
Exposing young rats to particles of high energy and charge (HZE particles), a ground-based model for exposure to cosmic rays, enhances indices of oxidative stress and inflammation and disrupts the functioning of neuronal communication in critical regions of the brain. These changes in neuronal funct...
Neuronal stress following exposure to 56Fe particles and the effects of antioxidant-rich diets
USDA-ARS?s Scientific Manuscript database
Exposing young rats to particles of high energy and charge (HZE particles), a ground-based model for exposure to cosmic rays, enhances indices of oxidative stress and inflammation and disrupts the functioning of neuronal communication in critical regions of the brain, similar to those seen in aging....
The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon
NASA Technical Reports Server (NTRS)
Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.
1995-01-01
We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.
Signatures of particle acceleration at SN1987a
NASA Technical Reports Server (NTRS)
Gaisser, T. K.; Stanev, Todor; Harding, Alice
1988-01-01
Young SNRs may be bright sources of energetic photons and neutrinos generated by the collisions of particles accelerated within the remnant. Due to the large opacity of the shell at these early times, a photon signal may be suppressed; at later times, due to adiabatic losses of the magnetically-trapped particles in the expanding envelope, both neutron and neutrino signals will begin to decrease. There is therefore a window during which the secondary photon signal will be at its maximum. It is presently noted that if the observed decline of the optical light curve of SN1987a is due to Ni-56, Co-56 decay, this may place upper limits on such other sources of light as a central pulsar.
Particle Aggregation During Fe(III) Bioreduction in Nontronite
NASA Astrophysics Data System (ADS)
Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.
2005-12-01
This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for the particles size of 0.12-0.22 and 1.42-1.8 mm, respectively. The particle aggregation was limited in control experiment to the factor of 2.8 and 2.1 for these two size fractions, respectively. The measured electrophoretic mobility decreased with increase in the extent of bioreduction and aggregation, but the rate of decrease was greatest in the finest size fraction. The EPS measurements showed the increase in the carbohydrate and protein fractions as a result of bioreduction. Separate experiments were performed to understand the relative contribution of Fe(III) reduction and EPS production in controlling nontronite particle aggregation The rate of particle aggregation was measured for nontronite that was chemically pre-reduced by dithionite to various extents, both with and without addition of dextran, a neutral and pure EPS. The aggregation rate was greater in the nontronite that were pre-reduced to a higher extent than those with a lower extent of reduction. The relative contribution to particle aggregation due to Fe(III) reduction and polysaccharide bridging was about 4:1. However, in the real system where bacterial cells are involved, and amount of EPS production and extent of Fe(III) bioreduction increase with time, the relative contribution may be different than in this simple system. In summary, we conclude that both Fe(III) reduction and microbial production of EPS contribute to the observed nontronite particle aggregation with Fe(III) reduction playing more dominant role.
Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue
2017-11-01
Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beneficial effects of fruit extracts on neuronal function and behavior following 56Fe irradiation
NASA Astrophysics Data System (ADS)
Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.; Jenkins, D.; Rabin, B. M.
Exposing young rats to particles of high energy and charge HZE particles enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals Previous research has shown that diets supplemented with 2 blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats perhaps due to their antioxidant and anti-inflammatory properties This study evaluated the efficacy of these diets on irradiation-induced deficits in these parameters by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to whole-body irradiation with 1 5 Gy of 1 GeV n high-energy 56 Fe particles Irradiation impaired performance in the Morris water maze and measures of dopamine release one month following radiation these deficits were protected by the antioxidant diets The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information a hippocampally-mediated behavior compared to controls The blueberry diet on the other hand seemed to improve reversal learning a behavior more dependent on intact striatal function These data suggest that 56 Fe particle irradiation causes deficits in behavior and signaling in rats which were ameliorated by an antioxidant diet and that the polyphenols in these fruits might be acting in different brain regions
Ionization states of heavy elements observed in the 1974 May 14-15 anomalous solar particle event
NASA Technical Reports Server (NTRS)
Ma Sung, L. S.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.
1981-01-01
The charge states of heavy ions accelerated in the (He-3)-Fe-rich solar particle event of May 14-15, 1974 have been determined by the use of using data from the University of Maryland/Max-Planck-Institut experiment on IMP 8. In addition to Fe(+11,12), it is found that both O(+5) and Fe(+16,17,18) are also present, suggesting variations in coronal temperatures over a range from approximately 400,000 to 5,000,000 K. The presence of O(+5) and Fe(+16-18) may be explained by a resonant plasma heating mechanism proposed by Fisk (1978) to account for the enhancements of He-3 and Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filwett, R. J.; Desai, M. I.; Dayeh, M. A.
2017-03-20
We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, whilemore » no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.« less
NASA Astrophysics Data System (ADS)
Yu, M.; Zhu, M.; Fu, J.; Yang, P. A.; Qi, S.
2015-11-01
This paper describes a simple and convenient approach for the synthesis of Fe nano-flakes coated spherical carbonyl iron particles (CIP-Nano-Fe). The morphology and composition of CIP-Nano-Fe were characterized using electron scanning microscope and x-ray diffraction analysis. The results indicated that the CI particles were coated with uniform and continuous Fe nanostructures. Partial substitution of CI particles with CIP-Nano-Fe constituted a novel dimorphic magnetorheological elastomer (D-MRE), and the influence of the content of CIP-Nano-Fe on the viscoelastic performance of the magnetorheological elastomers (MREs) were systematically studied. The magnetorheological properties and the damping properties of the D-MRE samples were analyzed to evaluate their dynamic properties. The experimental results indicated that the MR effect, the max loss factor and the magneto-induced loss factor in the sample 3 (CIP-Nano-Fe weight content 6 wt%) were approximately 1.32, 1.45 and 1.56 times that in the sample 1 (non-doped MRE). The approach to synthesize CIP-Nano-Fe reported here can be readily explored for fabricating particles modified by other metal nanostructures, and the resulting D-MREs are expected to be applied in various applications, especially in the field of vibration and noise control, involving vibration isolators, tunable engine mounts, noise insulation devices, and so forth.
Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.
2012-01-01
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.
Age/Radiation Parallels in the Effects of 56Fe Particle Irradiation and Protection by Berry Diets
NASA Astrophysics Data System (ADS)
Joseph, James; Bielinski, Donna; Carrihill-Knoll, Kirsty; Rabin, Bernard; Shukitt-Hale, Barbara
Exposing young rats to particles of high-energy and charge (HZE particles) enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals Previous research has shown that diets supplemented with 2% blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats, perhaps due to their antioxidant and anti-inflammatory properties. A subsequent study has shown that whole-body irradiation with 1.5 Gy of 1 GeV/n high-energy 56 Fe particles impaired performance in the Morris water maze and measures of dopamine release one month following radiation; these deficits were protected by the antioxidant diets. The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information, while the blueberry-supplemented animals showed enhanced learning that was dependent on striatal functioning. Additional experiments in cell models to examine possible mechanisms involved in these beneficial effects have shown that, in addition to the well known free radical scavenging effects of berries, it appears that berry fruit can directly reduce stress signaling and enhance protective signals, suggesting the involvement of multiple mechanisms in the beneficial effects observed. Enhancements of "protective" signals (e.g., extracellular signal regulated kinase, ERK) include those that are involved in neuronal communication, neurogenesis, and learning and memory. Reductions in stress signaling include inhibiting nuclear factor kappa B (NF-κB) and cytokines, among others, induced by oxidative and inflammatory stressors. We have found these changes in both BV2 mouse microglial and hippocampal cells. We believe that the possible addition of colorful fruits such as berry fruits to the diet can possibly increase protection against the deleterious effects of HZE particles in long-term space flights and may provide a "longevity dividend" or economic benefit for mitigating possible accelerated aging effects at the end of the mission.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Erat, S.
1998-01-01
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...
2015-09-05
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).
Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim
2016-04-13
Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.
NASA Technical Reports Server (NTRS)
Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.
2002-01-01
Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.
NASA Astrophysics Data System (ADS)
Moniz, Ernest; McAndrew, Elizabeth; Chan, Albert; Eggleton, David
2015-01-01
In reply to the physicsworld.com blog post "Build your own LEGO particle collider" (2 December 2014, http://ow.ly/Fe3Vy, see also p3) which described a campaign to get the popular plastic-bricks firm to make a building set based on a particle accelerator, such as the Large Hadron Collider at CERN.
Elastic and inelastic scattering of neutrons from 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.
2015-10-01
The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.
The abundances of hydrogen, helium, oxygen, and iron accelerated in large solar particle events
NASA Technical Reports Server (NTRS)
Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.
1993-01-01
Energy spectra measured in 10 large flares with the University of Maryland/Max-Planck-Institut sensors on ISEE I and Goddard Space Flight Center sensors on IMP 8 allowed us to determine the average H, He, O, and Fe abundances as functions of energy in the range of about 0.3-80 MeV/nucleon. Model fits to the spectra of individual events using the predictions of a steady state stochastic acceleration model with rigidity-dependent diffusion provided a means of interpolating small portions of the energy spectra not measured with the instrumentation. Particles with larger mass-to-charge ratios were relatively less abundant at higher energies in the flare-averaged composition. The Fe/O enhancement at low SEP energies was less than the Fe/O ratios observed in He-3-rich flares. Unlike the SEP composition averaged above 5 MeV/nucleon, the average SEP abundances above 0.3 MeV/nucleon were similar to the average solar wind.
NASA Astrophysics Data System (ADS)
Minasyants, G. S.; Minasyants, T. M.; Tomozov, V. M.
2016-03-01
The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n-1) have been constructed for various powerful flare events (1997-2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.
CNS-induced deficits of heavy particle irradiation in space: the aging connection.
Joseph, J A; Shukitt-Hale, B; McEwen, J; Rabin, B M
2000-01-01
Our research over the last several years has suggested that young (3 mo) rats exposed to whole-body 56Fe irradiation show neuronal signal transduction alterations and accompanying motor behavioral changes that are similar to those seen in aged (22-24 mo) rats. Since it has been postulated that 1-2% of the composition of cosmic rays contain 56Fe particles of heavy particle irradiation, there may be significant CNS effects on astronauts on long-term space flights which could produce behavioral changes that could be expressed during the mission or at some time after the return. These, when combined with other effects such as weightlessness and exposure to proton irradiations may even supercede mutagenic effects. It is suggested that by determining mechanistic relationships that might exist between aging and irradiation it may be possible to determine the common factor(s) involved in both perturbations and develop procedures to offset their deleterious effects. For example, one method that has been effective is nutritional modification.
NASA Astrophysics Data System (ADS)
Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan
2016-02-01
Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.
Ramadan, Samy S; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan
2016-02-01
Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of (56)Fe in a mouse model. Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of (56)Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of (56)Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Exposure to (56)Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before (56)Fe prevented all of the responses to (56)Fe. This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan
2015-01-01
Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008
Rola, Radoslaw; Sarkissian, Vahe; Obenaus, Andre; Nelson, Gregory A; Otsuka, Shinji; Limoli, Charles L; Fike, John R
2005-10-01
Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. It may result in the loss of critical cellular components in complex systems like the central nervous system (CNS), which could lead to performance decrements that ultimately could compromise mission goals and long-term quality of life. Specific hippocampal-dependent cognitive impairment occurs after whole-body 56Fe-particle irradiation, and while the pathogenesis of this effect is not yet clear, it may involve damage to neural precursor cells in the hippocampal dentate gyrus. We irradiated mice with 1-3 Gy of 12C or 56Fe ions and 9 months later quantified proliferating cells and immature neurons in the dentate subgranular zone (SGZ). Our results showed that reductions in these cells were dependent on the dose and LET. When compared with data for mice that were studied 3 months after 56Fe-particle irradiation, our current data suggest that these changes are not only persistent but may worsen with time. Loss of precursor cells was also associated with altered neurogenesis and a robust inflammatory response. These results indicate that high-LET radiation has a significant and long-lasting effect on the neurogenic population in the hippocampus that involves cell loss and changes in the microenvironment.
Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation
Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...
2014-10-22
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less
Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less
Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation
NASA Astrophysics Data System (ADS)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.
2016-12-01
Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.
Neutron scattering cross section measurements for Fe 56
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; ...
2017-06-09
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
Neutron scattering cross section measurements for 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; McEllistrem, M. T.; Peters, E. E.; Mukhopadhyay, S.; Harrison, T. D.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.; Rice, B. G.; Thompson, B. K.; Yates, S. W.
2017-06-01
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the talys and empire nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimental (n ,n0 ) and (n ,n1 ) cross sections well.
Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.
Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less
Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58
Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...
2015-07-06
Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less
Mutagenesis in human cells with accelerated H and Fe ions
NASA Technical Reports Server (NTRS)
Kronenberg, Amy
1994-01-01
The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lun C.; Shao, Xi; Malandraki, Olga E., E-mail: ltan@umd.edu
We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form ofmore » equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.« less
Energetic particle abundances in solar electron events
NASA Technical Reports Server (NTRS)
Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.
1990-01-01
The results of a comprehensive search of the ISEE 3 energetic particle data for solar electron events with associated increases in elements with atomic number Z = 6 or greater are reported. A sample of 90 such events was obtained. The events support earlier evidence of a bimodal distribution in Fe/O or, more clearly, in Fe/C. Most of the electron events belong to the group that is Fe-rich in comparison with the coronal abundance. The Fe-rich events are frequently also He-3-rich and are associated with type III and type V radio bursts and impulsive solar flares. Fe-poor events are associated with type IV bursts and with interplanetary shocks. With some exceptions, event-to-event enhancements in the heavier elements vary smoothly with Z and with Fe/C. In fact, these variations extend across the full range of events despite inferred differences in acceleration mechanism. The origin of source material in all events appears to be coronal and not photospheric.
Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.
Straume, T; Dobson, R L; Kwan, T C
1989-01-01
Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.
USDA-ARS?s Scientific Manuscript database
INTRODUCTION Previous research has shown that the dose of 56Fe particles needed to disrupt cognitive performance decreases as the age at which the subject is irradiated increases. It remains to be established whether a similar relationship would be observed with lower Linear energy transfer (LET) ...
USDA-ARS?s Scientific Manuscript database
On exploratory class missions to other planets astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of ...
On the cause of variability of the cosmic ray spectrum in the knee region
NASA Astrophysics Data System (ADS)
Loznikov, V. M.; Erokhin, N. S.; Zol'nikova, N. N.; Mikhailovskaya, L. A.
2017-09-01
Cosmic ray (CR) energy spectra for H, He, Si, and Fe nuclei with energy-to-charge number ratios ℰ/ Z in the range from 10 to 5 × 107 GeV are studied using observational data obtained at different times in different energy ranges: AMS-02, CREAM, Tibet ASγ, Tibet (hybrid), GRAPES-3, KASCADE, and KASCADE-Grande. Comparison of the H and He CR fluxes according to the KASCADE and KASCADE-Grande data (for different models of deconvolving CR spectra) with the Tibet ASγ and Tibet (hybrid) data obtained at another time in the range of ℰ/ Z ˜ 3 × 106 GeV demonstrates space weather-caused variability of the CR flux. This feature of CR energy spectra in the Tibet ASγ data is most clearly observed in the spectra of heavier nuclei (Si and Fe) according to the KASCADE-Grande and GRAPES-3 data. The variability in the energy spectra of all CRs in the vicinity of the "knee" is shown in the data of Yakutsk EAS, CASA-BLANCA, and Tibet-III experiments. The variability of the CR flux on a time scale on the order of several years exists only if the source corresponding to the peak in the energy spectrum is situated at a distance of no more than 1 pc from the Sun. Rapid surfatron acceleration of CRs may result from colliding interstellar clouds nearest to the Sun (LIC and G). This acceleration mechanism allows one to explain the variability of the CR spectrum in the range 103 GeV < ℰ/ Z < 108 GeV. Conditions for the trapping of strongly relativistic Fe nuclei by an electromagnetic wave, the dynamics of the components of the particle velocity and momentum, and the dependence of the particle acceleration rate on the initial parameters of the problem are analyzed using numerical calculations. The structure of the phase plane of the accelerated Fe nuclei is examined. Optimal conditions for the implementation of ultrarelativistic surfatron acceleration of Fe nuclei by an electromagnetic wave are formulated.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806
Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M
2009-04-01
Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.
Raber, Jacob; Allen, Antiño R; Rosi, Susanna; Sharma, Sourabh; Dayger, Catherine; Davis, Matthew J; Fike, John R
2013-06-01
The space radiation environment contains high-energy charged particles such as (56)Fe, which could pose a significant hazard to hippocampal function in astronauts during and after the mission(s). The mechanisms underlying impairments in cognition are not clear but might involve alterations in the percentage of neurons in the dentate gyrus expressing the plasticity-related immediate early gene Arc. Previously, we showed effects of cranial (56)Fe irradiation on hippocampus-dependent contextual freezing and on the percentage of Arc-positive cells in the enclosed, but not free, blade. Because it is unclear whether whole body (56)Fe irradiation causes similar effects on these markers of hippocampal function, in the present study we quantified the effects of whole body (56)Fe irradiation (600MeV, 0.5 or 1Gy) on hippocampus-dependent and hippocampus-independent cognitive performance and determined whether these effects were associated with changes in Arc expression in the enclosed and free blades of the dentate gyrus. Whole body (56)Fe irradiation impacted contextual but not cued fear freezing and the percentage of Arc-positive cells in the enclosed and free blades. In mice tested for contextual freezing, there was a correlation between Arc-positive cells in the enclosed and free blades. In addition, in mice irradiated with 0.5Gy, contextual freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive cells in the enclosed blade. In mice tested for cued freezing, there was no correlation between Arc-positive cells in the enclosed and free blades. In contrast, cued freezing in the presence or absence of aversive stimuli correlated with Arc-positive cells in the free blade. In addition, in mice irradiated with 1Gy cued freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive neurons in the free blade. These data indicate that while whole body (56)Fe radiation affects contextual freezing and Arc-positive cells in the dentate gyrus, the enclosed blade might be more important for contextual freezing while the free blade might be more important for cued freezing. Copyright © 2013 Elsevier B.V. All rights reserved.
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...
2016-12-15
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions
NASA Astrophysics Data System (ADS)
Rithidech, Kanokporn; Supanpaiboon, Wisa; Whorton, Elbert
Different types of galactic cosmic rays (GCR) are present in space and have large mass and energy (HZE particles). Among these, stripped 56 Fe ions are of major concern. Although HZE particles are approximately 1% of GCR, their contribution to health risk could be significant because of (1) their high linear energy transfer (LET) resulting in a larger amount of energy being deposited in the hit cells, and (2) the lack of information on the effectiveness of these particles in cancer induction. To better protect astronauts in space environments, it is essential that we improve our understanding of the 56 Fe-ion-induced damage associated with the increased risk of late occurring diseases (such as cancer). It has been well established that acute myeloid leukemia (AML) is one of the major malignancies associated with exposure to ionizing radiation in both human beings and in mice. It is therefore one of the most important cancers related to space flights. For these reasons, it is important to investigate 56 Fe ion-induced damage in in vivo systems, especially in those cells that are known to be at risk for health problems associated with radiation, such as hematopoietic cells, the known target cell for radiation-induced leukemia. Since in vivo studies of humans are not possible, animal studies are critically important. It has been widely suggested that elevation of delayed chromosomal damage (normally known as genomic instability) is associated with cancer risk. We therefore determined dose-response relationships for the frequencies of micronuclei (MN) in mouse blood erythrocytes as a measure of both initial radiation damage and the induction of genomic instability. The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and immature polychromatic-erythrocytes (MN-PCEs). These measurements were made as a function of radiation dose, radiation quality, time after irradiation and the genetic background of exposed mice. Blood samples were collected from CBA/CaJ and C57BL/6J mice at different times up to 3 months following an acute whole-body exposure to various doses of 1 GeV/amu 56 Fe ions (0, 0.1, 0.5 and 1.0 cGy) or 137 Cs gamma rays (0, 0.5, 1.0 and 3.0 cGy, as a reference radiation). These strains of mouse are known to be sensitive (CBA/CaJ) or resistant (C57BL/6J) to radiation-induced chromosomal damage and AML. At 2 days after the exposure, our data indicated that there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56 Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in either strain of mouse exposed to either 56 Fe ions or 137 Cs gamma rays. We also found that at the early sacrifice times (2 and 4 days) the 56 Fe ions were slightly more effective, per unit dose, in inducing MN-NCEs than 137 Cs gamma rays in both strains. Likewise, no increase in the frequency of MN-NCEs was found at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCE frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo. Research funded by NASA Grant #NAG9- 1 52 .
USDA-ARS?s Scientific Manuscript database
The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...
Spectral Properties of Suprathermal Heavy Ions in Corotating Interaction Regions at 1 AU
NASA Astrophysics Data System (ADS)
Filwett, R. J.; Desai, M. I.; Ebert, R. W.; Dayeh, M. A.
2017-12-01
Suprathermal particles are an important constituent of the seed population that is accelerated in interplanetary events. Despite their importance, the origin of these particles and the acceleration mechanism they undergo is poorly understood. Using data from Wind/EPACT/STEP and ACE/ULEIS we examined the 0.03-3.0MeV nucleon-1 H-Fe spectra in 41 corotating interaction regions (CIRs). We fit power-law functions to the data to obtain the spectral index γ and break energy Eo. We examined the energy and species-to-species variation of both γ and Eo. Our results show Eo decreases systematically with decreasing Q/M scaling as (Q/M)α. Additionally, we compared the expected compression ratio, H, as determined by γ, to the observed magnetic and density compression ratios. We discuss these results and their implications to local vs. non-local suprathermal particle acceleration and transport in CIRs.
Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3
NASA Astrophysics Data System (ADS)
Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan
2016-05-01
The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.
Study on the keV neutron capture reaction in 56Fe and 57Fe
NASA Astrophysics Data System (ADS)
Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya
2014-03-01
The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.
NASA Astrophysics Data System (ADS)
Shukitt-Hale, Barbara; Miller, Marshall; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James
Previous research has shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut's ability to successfully complete requirements associated with these missions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. Therefore, in the present study, we used a combination of these two tests, the 8 arm radial water maze (RAWM), to measure spatial learning in rats which were irradiated at the NSRL with 0, 150cGy, or 200cGy of 56Fe radiation. Following irradiation the rats were shipped to the HNRCA and tested in the RAWM (2-3 months later) for 5 days, 3 trials/day. In this version of the RAWM, there were 4 hidden platforms that the rat needed to locate to successfully solve a trial. Once the rat located a platform, it was allowed to remain there for 15 sec before the platform sank, at which point the rat tried to locate the remaining ones. Reference (entering an arm that never contained the platform) and working (re-entering an arm in which the platform had already been found) memory errors were tabulated. Results showed that the irradiated rats had more reference and working memory errors while learning the maze, particularly on Day 3 of testing. Additionally, they utilized non-spatial strategies to solve the RAWM task whereas the control animals used spatial strategies. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by USDA Intramural and N.A.S.A. Grant NNX08AM66G
Ding, Liang-Hao; Park, Seongmi; Peyton, Michael; Girard, Luc; Xie, Yang; Minna, John D; Story, Michael D
2013-06-01
Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was specifically induced after HZE particle irradiation. A 73 gene signature capable of predicting with 96% accuracy the radiation species to which cells were exposed, was developed. These data suggest that the molecular response to the radiation species used here is a function of the energy deposition characteristics of the radiation species. This novel molecular response to HZE particles may have implications for radiotherapy including particle selection for therapy and risk for second cancers, risk for cancers from diagnostic radiation exposures, as well as NASA's efforts to develop more accurate lung cancer risk estimates for astronaut safety. Lastly, irrespective of the source of radiation, the gene expression changes observed set the stage for functional studies of initiation or progression of radiation-induced lung carcinogenesis.
2013-01-01
Background Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Results Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was specifically induced after HZE particle irradiation. A 73 gene signature capable of predicting with 96% accuracy the radiation species to which cells were exposed, was developed. Conclusions These data suggest that the molecular response to the radiation species used here is a function of the energy deposition characteristics of the radiation species. This novel molecular response to HZE particles may have implications for radiotherapy including particle selection for therapy and risk for second cancers, risk for cancers from diagnostic radiation exposures, as well as NASA’s efforts to develop more accurate lung cancer risk estimates for astronaut safety. Lastly, irrespective of the source of radiation, the gene expression changes observed set the stage for functional studies of initiation or progression of radiation-induced lung carcinogenesis. PMID:23724988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostdiek, K.; Anderson, T.; Bauder, W.
Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, Fe-60, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the Fe-60/Fe-56 concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay inmore » Co-60, which is the decay product of Fe. Preliminary half-life estimates of (2.53 +/- 0.24) x 10(6) years seem to confirm the recent measurement by Rugel et al. (2009). (C) 2015 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Antonelli, Francesca; Esposito, Giuseppe; Dini, Valentina; Belli, Mauro; Campa, Alessandro; Sorrentino, Eugenio; Antonella Tabocchini, Maria; Lobascio, Cesare; Berra, Bruno
HZE particles from space radiation raise an important protection concern during long-term astronauts' travels. As high charge, high energy particles interact with a shield, both projec-tile and target fragmentation may occurs, so that the biological properties of the emerging radiation field depend on the nature and energy of the incident particles, and on the nature and thickness of the shield. We have studied the influence of PMMA and Kevlar shielding as well as the antioxidant compounds Rosmarinic acid or Resveratrol on DNA damage induction and processing (as evaluated by the g-H2AX phosphorylation assay) and on early and delayed cell death in AG01522 human fibroblasts irradiated with Fe ions of 595 MeV/u at the NASA Space Radiation Laboratory (NSRL), Brookhaven National Laboratory (BNL, Upton, USA). Insertion of PMMA or Kevlar shields (10 g/cm2 thick) gave no substantial change in the bio-logical effect per unit dose on the sample for all the end points studied. When irradiation was performed in the presence of 300 mM Rosmarinic acid or Resveratrol no difference were found for both early and delayed cell death, while a slight protective effect was observed for the initial and residual DNA damage. For both early and delayed cell death, Fe-ions are more effective than g-rays. The number of Fe-ion induced g-H2AX foci is instead lower than that induced by g-rays, due to the presence of multiple DSB within a single focus induced by Fe-ions. From a comparison of the g-H2AX data with the results on DNA fragmentation obtained with 414 MeV/u Fe ions at the Heavy Ions Medical Accelerator (HIMAC, Chiba, Japan) and with 1 GeV/u Fe ions at BNL, in the absence or in the presence of PMMA shields (Esposito et al, Advance in Space Research 2004) we speculate that the overall effect of the shield is a balance between the contributions due to the slowing down of the primary particles and that due to the nuclear fragmentation. Acknowledgment: Financial support from ASI project "From Molecules to Man: Space Re-search Applied to the improvement of the Quality of Life of the Ageing Population on Earth (MoMa)"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S; Lee, N; Shin, S
Purpose: To investigate the feasibility of using multifunctional Fe{sub 3}O{sub 4}/TaOx(core / shell) nano particles developed for CT and MRI contrast agent as dose enhancing radiosensitizers. Methods: Firstly, to verify the imaging detectability of Fe{sub 3}O{sub 4}/TaOx nano particles, in-vivo tests were conducted. Approximately 600 mg/kg of 19 nm diameter Fe{sub 3}O{sub 4}/TaOx nano particles dispersed in phosphate buffered saline(PBS) were injected to ten nude Balb/c mice through the tail vein. Difference between pre- and post-injection images was analyzed by computing the pixel histogram and correlation coefficient factor using MATLAB in the user defined ROI. Secondly, to quantify the potentialmore » therapeutic enhancement with nano materials, DER (Dose Enhancement Ratio) and number of SER (Secondary Electron Ratio) were computed using TOPAS(ver.2.0 P-03) MC simulation. Results: In CT, MRI imaging, the aorta, the blood vessel, and the liver were clearly visualized after intravenous injection of Fe{sub 3}O{sub 4}/TaOx nano particles. There was large different between pre and post-injection images of Histogram data and Coefficients of correlation factor in CT and MR are 0.006, 0.060, respectively. When 70 MeV protons were irradiated for a Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, DER was 2.59, 2.41, 1.68, 1.54 and 1.36 respectively. Similarly, SER increment was 2.31, 2.15, 1.56, 1.46, and 1.27 for Gold, Tantalum, TaOx, Fe{sub 3}O{sub 4}/TaOx, Fe{sub 3}O{sub 4} nano particle, respectively. Conclusion: Fe{sub 3}O{sub 4}/TaOx nano particles have potential as a multifunctional agent which enhances the accuracy in cancer detection through visualization of developed tumor lesion and increases the therapeutic effect in proton therapy. The dose enhancement with Fe{sub 3}O{sub 4}/TaOx was estimated as half of the Gold. However, tumor targeting such as combined with magnetic field may overcome the low DER. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].« less
Shen, Shaobo; Rao, Ruirui; Wang, Jincao
2013-01-01
The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.
The effects of proton exposure on neurochemistry and behavior
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Szprengiel, A.; Pluhar, J.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints. Published by Elsevier Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
McGrady, John; Scenini, Fabio; Duff, Jonathan; Stevens, Nicholas; Cassineri, Stefano; Curioni, Michele; Banks, Andrew
2017-09-01
The deposition of CRUD (Chalk River Unidentified Deposit) in the primary circuit of a Pressurised Water Reactor (PWR) is known to preferentially occur in regions of the circuit where flow acceleration of coolant occurs. A micro-fluidic flow cell was used to recreate accelerated flow under simulated PWR conditions, by flowing water through a disc with a central micro-orifice. CRUD deposition was reproduced on the disc, and CRUD Build-Up Rates (BUR) in various regions of the disc were analysed. The effect of the local environment on BUR was investigated. In particular, the effect of flow velocity, specimen material and Fe concentration were considered. The morphology and composition of the deposits were analysed with respect to experimental conditions. The BUR of CRUD was found to be sensitive to flow velocity and Fe concentration, suggesting that mass transfer is an important factor. The morphology of the deposit was affected by the specimen material indicating a dependence on surface/particle electrostatics meaning surface chemistry plays an important role in deposition. The preferential deposition of CRUD in accelerated flow regions due to electrokinetic effects was observed and it was shown that higher Fe concentrations in solution increased BURs within the orifice whereas increased flow velocity reduced BURs.
Nitrate reduction in water by aluminum alloys particles.
Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin
2017-07-01
Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L) 1.5 /min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L) 1.5 /min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Some Behavioral Effects of Exposure to Low Doses of Fe-56 Particles
NASA Technical Reports Server (NTRS)
Rabin, Bernard M.; Joseph, James A.; Shukitt-Hale, Barbara
1999-01-01
Future missions in space (such as a mission to Mars) will involve long-term travel beyond the magnetic field of the Earth. As a result, astronauts will be exposed to radiation qualities and doses that differ from those experienced in low earth orbit, including exposure to heavy particles, such as Fe-56, which are a component of cosmic rays. Although the hazards of exposure to heavy particles are often minimized, they can affect neural functioning, and as a consequence, behavior. Unless the effects of exposure to cosmic rays can somehow be reduced, their effects on the brain throughout long duration flights could be disastrous. In the extreme case, it is possible that the effects of cosmic rays on space travelers could result in symptomatology resembling that of Alzheimer's or Parkinson's diseases or of advancing age, including significant cognitive and/or motor impairments. Because successful operations in space depend in part on the performance capabilities of astronauts, such impairments could jeopardize their ability to satisfy mission requirements, as well as have long-term consequences on the health of astronauts. As such, understanding the nature and extent of this risk may be vital to the effective performance and possibly the survival of astronauts during future missions in space.
Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor
NASA Astrophysics Data System (ADS)
Wang, Haiyun; Fu, Qiong; Luo, Jiangqi; Zhao, Dongmei; Luo, Laihui; Li, Weiping
2017-06-01
To get the dielectric material with a high dielectric constant and low dielectric loss, the modified multiwalled carbon nanotube (MWNT-S) and ferroferric oxide (Fe3O4) particles were embedded into polyvinylidene fluoride (PVDF) to fabricate the Fe3O4/MWNT-S/PVDF ternary composites. The maximum dielectric constant of these composites can be up to 3490 at a very low filler fraction, and dielectric loss can be suppressed below 0.5. The small amount of the second filler (Fe3O4) can accelerate the formation of a percolation conductive network and improve the interfacial polarization. Therefore, the excellent dielectric properties can be achieved at low loading of fillers.
Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.
Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q
2014-01-01
A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.
The structural and Raman spectral studies on Ni0.5Cu0.5Fe2O4 ferrite
NASA Astrophysics Data System (ADS)
Somani, M.; Saleem, M.
2018-05-01
Spinel ferrite Ni0.5Cu0.5Fe2O4 has been successfully prepared via solid state reaction. The crystal structure studies using XRD technique revealed cubic structure of the sample. The XRD spectra was further refined via Retvield Refinement and all the parameters regarding structure were obtained which confirmed cubic structure. The assigned space group was found to be Fd-3m. Particle size was calculated to be 56 nm. The Raman Spectra revealed five active Raman modes which confirmed spinel structure.
NASA Astrophysics Data System (ADS)
Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.
2014-09-01
Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.
Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno
1994-01-01
In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.
Magnetic and hydrogel composite materials for hyperthermia applications.
Lao, L L; Ramanujan, R V
2004-10-01
Micron-sized magnetic particles (Fe3O4) were dispersed in a polyvinyl alcohol hydrogel to study their potential for hyperthermia applications. Heating characteristics of this ferrogel in an alternating magnetic field (375 kHz) were investigated. The results indicate that the amount of heat generated depends on the Fe3O4 content and magnetic field amplitude. A stable maximum temperature ranging from 43 to 47 degrees C was successfully achieved within 5-6 min. The maximum temperature was a function of Fe3O4 concentration. A specific absorption rate of up to 8.7 W/g Fe3O4 was achieved; this value was found to depend on the magnetic field strength. Hysteresis loss is the main contribution to the heating effect experienced by the sample.
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Yashiro, S.; Thakur, N.; Akiyama, S.; Xie, H.
2017-01-01
We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx. 3 km s-2) and a type II radio burst with high starting frequency (200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Yashiro, S.; Thakur, N.; Akiyama, S.; Xie, H.
2017-01-01
We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx.3 km s-2) and a type II radio burst with high starting frequency (approx. 200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.
NASA Astrophysics Data System (ADS)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas
2017-02-01
In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode. We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3-5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4-7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas
2017-02-10
In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close tomore » sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.« less
NASA Astrophysics Data System (ADS)
Ito, Mikio; Majima, Kazuhiko; Shimuta, Toru; Katsuyama, Shigeru; Nagai, Hiroshi
2002-09-01
Sm2(Fe0.95Cr0.05)17Nx and Sm2(Fe0.95Mn0.05)17Nx coarse powders 10-70 mum in size were synthesized by crushing mother alloy ingots into 32-74 mum in particle size and subsequent nitrogenation at 748 K in a flowing mixed gas of 60 vol % H2+40 vol % NH3. The effects of Cr or Mn substitution for Fe on the nitrogenation rate, magnetic properties, and microstructure of the Sm2Fe17Nx hard magnetic material were investigated. Cr and Mn substitution was quite effective for accelerating nitrogenation. When the powders were nitrogenated beyond x=3, amorphous phase formation was observed as the x value increased. The magnetic properties of the nitrogenated powders were significantly improved by Cr and Mn substitution, and these powders also possessed a satisfactory magnetic anisotropy. The maximum coercivity in this study, 0.59 MA/m, was obtained for the Sm2(Fe0.95Mn0.05)17N5.0 powder in spite of its large particle size. The high coercivity of the coarse powders was caused by a cell-like microstructure composed of fine 2-17 crystalline grains 20-30 nm in size surrounded by an amorphous phase.
Total-body irradiation with high-LET particles: acute and chronic effects on the immune system
NASA Technical Reports Server (NTRS)
Gridley, Daila S.; Pecaut, Michael J.; Nelson, Gregory A.
2002-01-01
Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.
Total-body irradiation with high-LET particles: acute and chronic effects on the immune system.
Gridley, Daila S; Pecaut, Michael J; Nelson, Gregory A
2002-03-01
Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.
NASA Astrophysics Data System (ADS)
Hermanne, A.; Adam Rebeles, R.; Tárkányi, F.; Takács, S.
2015-08-01
Thin natCr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of 52gFe, 49,51cumCr, 52cum,54,56cumMn and 48cumV in Cr and 61Cu,68Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the natCu(α,x)67,66Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for 52gFe with achievable yields and contamination rates was made.
Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu
2013-01-01
High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically heavy Fe(II) produced by microbially mediated reduction of Fe(III) oxides led to further enrichment of isotopically light Fe in groundwater (up to −3.4‰ of δ56Fe) in anoxic–suboxic conditions. Arsenic re-adsorption was expected to occur along with Fe(II) re-adsorption, decreasing groundwater As concentrations. In strongly reducing conditions, precipitation of isotopically light Fe-pyrite and/or siderite increased groundwater δ56Fe values, reaching +0.58‰ δ56Fe, with a subsequent decrease in As concentrations via co-precipitation. The mixed effect of those pathways would regulate As and Fe cycling in most groundwaters.
Two Components in Major Solar Particle Events
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Cane, H. V.; vonRosenvinge, T. T.; Cohen, C. M. S.; Mewaldt, R. A.
2003-01-01
A study has been made of 29 intense, solar particle events observed in the energy range 25-100 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe to O ratios which were reasonably constant with time and energy, and with values above coronal. These all originated on the Sun s western hemisphere and most had intensities that rose rapidly at the time of an associated flare, and coronal mass ejection (CME), and then decayed more gradually. Few interplanetary shocks were observed during these increases. The spectra were mainly power laws. The remaining 10 events had different intensity-time profiles and Fe to O ratios that varied with time and energy with values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. In general the spectra were not power laws but steepened at high energies, particularly for Fe. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare and the other at shock passage. The results, considered in the light of other recent work, suggest that the high energy particles that occur shortly after flares are indeed flare particles. At the highest rigidities considered here shock-accelerated particles are uncommon and are observed only in association with unusually fast shocks.
Fly ash particles spheroidization using low temperature plasma energy
NASA Astrophysics Data System (ADS)
Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.
2016-11-01
The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PICmore » only, reduced dimensionality). The approach is free of numerical instabilities: ω peΔt >> 1, and Δx >> λ D. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N FE, leading to an optimal algorithm.« less
NASA Astrophysics Data System (ADS)
Behera, C.; Choudhary, R. N. P.; Das, Piyush R.
2018-05-01
A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.
NASA Astrophysics Data System (ADS)
Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan
2018-05-01
Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, J.A.; Villalobos-Molina, R.; Rabin, B.M.
Recent experiments have revealed radiation-induced losses of sensitivity of rodent neostriatal muscarinic receptors to stimulation by cholinergic agonists that appears as reduction in oxotremorine enhancement of K{sup +}-evoked dopamine release. These losses were postulated to be the result of radiation-induced alterations early in phosphoinositide-mediated signal transduction. Additional findings indicated that if the ligand-receptor-G protein interface was bypassed no radiation deficits were seen. In the present study, radiation-induced deficits in K{sup +}-evoked dopamine release were examined in perifused striatal tissue obtained from rats exposed to 0,0.1 or 1.0 Gy of {sup 56}Fe particles. Results showed that these deficits could be reducedmore » by co-applying combinations of various pharmacological agents that were known to have differential effects on various second messengers such as 1,4,5-inositoltrisphosphate (IP{sub 3}). Combinations included oxotremorine-carbachol, and either oxotremorine or carbachol with arginine vasopressin or arachidonic acid. These results are discussed in terms of putative radiation-induced changes in receptor-containing membranes which alter receptor-G protein coupling/uncoupling. 49 refs., 4 figs.« less
NASA Technical Reports Server (NTRS)
Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)
2001-01-01
Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.
CO oxidation and O2 removal on meteoric material in Venus' atmosphere
NASA Astrophysics Data System (ADS)
Frankland, Victoria L.; James, Alexander D.; Carrillo-Sánchez, Juan Diego; Nesvorný, David; Pokorný, Petr; Plane, John M. C.
2017-11-01
The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus' atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley-Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) - (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) - (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3T(K) - (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus' troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted to occur above the cloud tops may facilitate the low temperature heterogeneous chemistry of other species.
Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles
NASA Astrophysics Data System (ADS)
Reames, Donald V.
2018-04-01
The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs and from the slow solar wind as a function of the first ionization potential (FIP) of the elements, remaining differences are for the elements C, P, and S. The theory of the fractionation of ions by Alfvén waves shows that C, P, and S are suppressed because of wave resonances during chromospheric transport on closed magnetic loops but not on open magnetic fields that supply the solar wind. Shock waves can accelerate ions from closed coronal loops that easily escape as SEPs, while the solar wind must emerge on open fields.
What We Don't Understand About Ion Acceleration Flares
NASA Technical Reports Server (NTRS)
Reames, Donald V.; Ng, C. K.; Tylka, A. J.
1999-01-01
There are now strong associations between the (3)He-rich, Fe-rich ions in "impulsive" solar energetic particle (SEP) events and the similar abundances derived from gamma-ray lines from flares. Compact flares, where wave energy can predominate, are ideal sites for the study of wave-particle physics. Yet there are nagging questions about the magnetic geometry, the relation between ions that escape and those that interact, and the relative roles of cascading Alfven waves and the EMIC waves required to enhance He-3. There are also questions about the relative timing of ion and electron acceleration and of heating; these relate to the variation of ionization states before and during acceleration and during transport out of the corona. We can construct a model that addresses many of these issues, but problems do remain. Our greatest lack is realistic theoretical simulations of element abundances, spectra, and their variations. By contrast, we now have a much better idea of the acceleration at CME-driven shock waves in the rare but large "gradual" SEP events, largely because of their slow temporal evolution and great spatial extent.
Preservation of Fe Isotope Proxies in the Rock Record
NASA Astrophysics Data System (ADS)
Johnson, C.; Beard, B.; Valley, J.; Valaas, E.
2005-12-01
Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54Fe ratios for re-crystallized magnetite from BIFs of the Biwabik iron formation that have apparent oxygen-isotope (quartz-magnetite) temperatures between 270 and 800 oC span a significant portion of the range measured in lower-grade BIFs from South Africa and Australia. d56Fe values for Biwabik magnetite vary from -0.2 to +0.7 per mil, whereas magnetite from the Dales Gorge member of the Brockman iron formation and the Kuruman iron formation has d56Fe values that lie between -1.2 and +1.3 per mil. Iron isotope fractionations between magnetite and Fe silicates (greenalite, hedenbergite, and fayalite) in the Biwabik iron formation regularly decrease with increasing oxygen-isotope temperatures, approaching the zero fractionation expected at igneous temperatures; apparent magnetite-Fe silicate fractionations range from +0.2 per mil at 650 oC to +0.5 per mil at 300 oC, lying close to those predicted using the revised beta factors of Polyakov et al. (2005, Goldschmidt). During closed-system Fe isotope exchange during metamorphism, the overall range in d56Fe values for magnetite will remain relatively constant, although it may shift to higher d56Fe values relative to primary (low-temperature) magnetite due to the non-zero magnetite-Fe silicate fractionation factor at moderate temperature ranges. If the mineral parageneis is known, and some assumptions regarding primary mineralogy can be made, these small corrections may be made to successfully infer the original Fe isotope compositions of sedimentary minerals and rocks that have been subjected to metamorphism.
NASA Astrophysics Data System (ADS)
Kretzschmar, R.; Kiczka, M.; Wiederhold, J. G.; Voegelin, A.; Kraemer, S.; Bourdon, B.
2010-12-01
Iron (Fe) is not only an essential element for almost all organisms, but is also involved in many biogeochemical processes including silicate weathering and soil formation. The aim of this study was to gain a better understanding of Fe isotope fractionation during initial silicate weathering and soil formation processes. Therefore, we investigated changes in Fe speciation and Fe isotope signatures in total soils and selected Fe pools along a weathering chronosequence within an Alpine glacier forefield on granite. The sampling sites along the dated chronosequence were deglaciated since up to 150 years, and we included two additional sites which were ice-free since several thousands of years. Changes in Fe speciation were investigated using Fe K-edge X-ray absorption spectroscopy (XAS) and also qualitatively documented by optical microscopy of soil thin sections. Iron in the unweathered rock was mainly present as structural Fe in biotite, with smaller amounts in chlorite, epidote, and magnetite. Within 150 years of deglaciation, the fraction of Fe(III) relative to total Fe increased from 34 to 53%, clearly documenting oxidation of Fe(II) in primary phyllosilicates. After 100 years of deglaciation, secondary Fe(III)-oxyhydroxides were detected by XAS and were also clearly evident in soil thin sections. Elemental analysis and Fe isotope analysis of particle size fractions by MC-ICP-MS showed that the clay fractions were significantly enriched in Fe and their δ56Fe signatures were up to 0.35‰ lower than those of the bulk soils (<2 mm). In addition, the hydroxylamine-hydrochloride extractable Fe pool (1 M HA-HCl in 25% acetic acid, pH 1.5), representing mainly poorly-crystalline Fe(III)-oxyhydroxides, increased with time of deglaciation and also had a significantly (by up to 0.7‰) lighter δ56Fe signature than the respective bulk soils. Thus, our data show that weathering of primary silicates, mainly biotite and chlorite, preferentially releases light Fe isotopes during oxidative weathering, which are subsequently enriched in secondary Fe(III)-oxyhydroxides with a rather constant isotopic offset of -0.7‰ in δ56Fe relative to the bulk soils. These findings are consistent with previous laboratory experiments on silicate weathering by proton- and ligand-promoted dissolution. The data suggest a kinetic isotope effect during Fe release from primary silicates, combined with quantitative oxidation and precipitation of Fe(III) as poorly-crystalline oxyhydroxides. Analysis of plants collected along the chronosequence revealed additional fractionation towards light Fe isotopes, but the plant contribution to total Fe cycling in this young ecosystem was still minor.
Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes
NASA Astrophysics Data System (ADS)
Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny
2016-10-01
The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.
Analysis of elements in lake sediment samples by PIXE spectrometry
NASA Astrophysics Data System (ADS)
Chelarescu, E. D.; Radulescu, C.; Stihi, C.; Bretcan, P.; Tanislav, D.; Dulama, I. D.; Stirbescu, R. M.; Teodorescu, S.; Bucurica, I. A.; Andrei, R.; Morarescu, C.
2017-09-01
This work aims to determine the concentrations of several elements (e.g. Pb, Ni, Zn, Mn, Cr, and Fe) from lake sediments, in order to characterize their origin and evolution. Particle Induced X-ray Emission (PIXE) technique using the 3 MV Tandetron™ particle accelerator from National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Magurele-Bucharest, Romania, was applied. Sediment cores from different salt lakes from Romania (i.e. Amara Lake, Caineni Lake, and Movila Miresii Lake) were collected, in August 2015. The content of Pb, Cr, Mn, Fe, and Ni from sediment samples show similarities with other data presented in literature and international regulation. The Zn was the only element with a higher content in all samples (e.g. maximum 401.7-517.3 mg/kg d.w.).
Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang
2015-01-01
Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanner, E. D.; Bayer, T.; Wu, W.
In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less
Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles
Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.
2006-01-01
A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400 nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less
The Improved Locating Algorithm of Particle Filter Based on ROS Robot
NASA Astrophysics Data System (ADS)
Fang, Xun; Fu, Xiaoyang; Sun, Ming
2018-03-01
This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.
NASA Astrophysics Data System (ADS)
Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter
2014-12-01
The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following relative shares were obtained for PM10: 22% exhaust, 22% abrasion and 56% resuspension (40%, 27%, 33% for PM1). Compared to previous publications we have observed a significantly lower portion of exhaust particles and a significantly higher portion of resuspension particles. The high abundance of resuspension particles underlines their significance for the observed adverse health effects of traffic emissions and for mitigation measures.
Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.
2010-12-01
The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.
Characterization of typical metal particles during haze episodes in Shanghai, China.
Li, Rui; Yang, Xin; Fu, Hongbo; Hu, Qingqing; Zhang, Liwu; Chen, Jianmin
2017-08-01
Aerosol particles were collected during three heavy haze episodes at Shanghai in the winter of 2013. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy was used to study the morphology and speciation of typical metal particles at a single-particle level. In addition, time-of-flight aerosol mass spectrometry (ATOFMS) was applied to identify the speciation of the Fe-containing particles. TEM analysis indicated that various metal-containing particles were hosted by sulfates, nitrates, and oxides. Fe-bearing particles mainly originated from vehicle emissions and/or steel production. Pb-, Zn-, and Sb-bearing particles were mainly contributed by anthropogenic sources. Fe-bearing particles were clustered into six groups by ATOFMS: Fe-Carbon, Fe-Inorganic, Fe-Trace metal, Fe-CN, Fe-PO 3, and Fe-NO 3 . ATOFMS data suggested that Fe-containing particles corresponded to different origins, including industrial activities, resuspension of dusts, and vehicle emissions. Fe-Carbon and Fe-CN particles displayed significant diurnal variation, and high levels were observed during the morning rush hours. Fe-Inorganic and Fe-Trace metal particle levels peaked at night. Furthermore, Fe-Carbon and Fe-PO 3 were mainly concentrated in the fine particles. Fe-CN, Fe-Inorganic, and Fe-Trace metal exhibited bimodal distribution. The mixing state of the particles revealed that all Fe-bearing particles tended to be mixed with sulfate and nitrate. The data presented herein is essential for elucidating the origin, evolution processes, and health effects of metal-bearing particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Partial melting and melt percolation in the mantle: The message from Fe isotopes
NASA Astrophysics Data System (ADS)
Weyer, Stefan; Ionov, Dmitri A.
2007-07-01
High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with the generally observed difference between peridotites and basalts; this slope was used here to estimate the Fe isotope composition of the fertile upper mantle (at Mg# = 0.894, δ 56Fe ≈ 0.02 ± 0.03‰). Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events, e.g. melt percolation. At two localities (Tok, Siberia and Tariat, Mongolia) δ 56Fe correlates with iron contents of the peridotites, which was increased from about 8% to up to 14.5% FeO by post-melting melt percolation. This process produced a range of Fe isotope compositions in the percolation columns, from extremely light (δ 56Fe = - 0.42‰) to heavy (δ 56Fe = + 0.17‰). We propose reaction with isotopically heavy melts and diffusion (enrichment of light Fe isotopes) as the most likely processes that produced the large isotope variations at these sites. Thus, Fe isotopes might be used as a sensitive tracer to identify such metasomatic processes in the mantle.
NASA Astrophysics Data System (ADS)
Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.
2014-01-01
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.
Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.
2014-01-01
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration. PMID:24430621
Hassan, M A; Mahmoodian, Reza; Hamdi, M
2014-01-16
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.
Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23
NASA Astrophysics Data System (ADS)
Malandraki, Olga; Tan, Lun C.; Shao, Xi
2017-04-01
In this work we have examined 29 large SEP events with the peak proton intensity Jpp(>60MeV) >1 pfu during the solar cycle 23. The emphasis of our examination is put on a joint analysis of the Ne/O and Fe/O data in the 3-40 MeV/nucleon energy range as covered by the Wind/LEMT and ACE/SIS sensors in order to differentiate between the Fe-poor and Fe-rich events emerged from the CME-driven shock acceleration process. Some of our main findings are: (1) An improved ion ratio calculation can be carried out by re-binning ion intensity data into the form of equal bin widths in the logarithmic energy scale, (2) through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties, (3) in particular, we observe a good correlation of the high-energy Ne/O ratio with the source plasma temperature T recently reported by Reames (2016). Therefore, the (Ne/O)n value at high energies should be a proxy of the injection energy in the shock acceleration process, and hence the shock θBn according to the models of Tylka & Lee (2006) as well as Schwadron et al. (2015). Acknowledgements. We gratefully acknowledge the source plasma temperature data provided by D. Reames, Wind/EPACT/LEMT data provided by the NASA/Space Physics Data Facility (SPDF)/CDAWeb, and the ACE/SIS data provided by the ACE Science Center. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.
Hu, Yunjie; Lin, Jun; Zhang, Suanqin; Kong, Lingdong; Fu, Hongbo; Chen, Jianmin
2015-04-01
For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Ion Acceleration in Solar Flares
NASA Technical Reports Server (NTRS)
Miller, James A.; Weir, Sue B.
1996-01-01
Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O. Specifically, above about 1 MeV nucleon(exp -1), the ratio of Fe to O is about 8 times larger than in the corona or in gradual flares, while the ratio of Ne, Mg, and Si to O is about 3 times higher; He-4, C, N, and 0 are not enchanced with respect to each other. In addition to these elemental enhancements, Ne and Mg have isotopic enhancements as well. The general scenario that has emerged from these (and other) observations is that energetic particles in gradual events are accelerated by a CME-driven shock, while those particles in impulsive events are accelerated by another mechanism(s).
Han, Yanlai; Liu, Changjie; Horita, Juske; Yan, Weile
2018-08-01
Amending bulk and nanoscale zero-valent iron (ZVI) with catalytic metals significantly accelerates hydrodechlorination of groundwater contaminants such as trichloroethene (TCE). The bimetallic design benefits from a strong synergy between Ni and Fe in facilitating the production of active hydrogen for TCE reduction, and it is of research and practical interest to understand the impacts of common groundwater solutes on catalyst and ZVI functionality. In this study, TCE hydrodechlorination reaction was conducted using fresh NiFe bimetallic nanoparticles (NiFe BNPs) and those aged in chloride, sulfate, phosphate, and humic acid solutions with concurrent analysis of carbon fractionation of TCE and its daughter products. The apparent kinetics suggest that the reactivity of NiFe BNPs is relatively stable in pure water and chloride or humic acid solutions, in contrast to significant deactivation observed of PdFe bimetallic particles in similar media. Exposure to phosphate at greater than 0.1 mM led to a severe decrease in TCE reaction rate. The change in kinetic regimes from first to zeroth order with increasing phosphate concentration is consistent with consumption of reactive sites by phosphate. Despite severe kinetic effect, there is no significant shift in TCE 13 C bulk enrichment factor between the fresh and the phosphate-aged particles. Instead, pronounced retardation of TCE reaction by NiFe BNPs in deuterated water (D 2 O) points to the importance of hydrogen spillover in controlling TCE reduction rate by NiFe BNPs, and such process can be strongly affected by groundwater chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Britten, R.; Mitchell, S.; Parris, B.; Johnson, A.; Singletary-Britten, S.; Lonart, G.; Drake, R.
2008-10-01
During the planned mission to Mars, Astronauts will be exposed to heavy charged particles (Hze). Our group has been determining the relative biological effectiveness (RBE) of Hze (1 GeV 56Fe, LET = 150 kev/um) with respect to neurocognitive impairment, specifically spatial memory, short-term working memory and attentional set shifting. Our current data suggest that Hze have RBE values of about 7 for hippocampal-dependent spatial memory tasks (Barnes Maze) and possibly even higher for certain attentional processes. We have also used MALDI-TOF serum profiling analysis to identify several proteins that are biomarkers of both the level and LET of the radiation exposure, and biomarkers of cognitive performance. Our data suggest that Hze particles have a distinctly different impact upon neurocognitive function in rats than do X-rays. From a mission perspective, attentional set shifting is the neurocognitive function most likely to be impacted by the predicted Hze exposure; unfortunately Set shifting underlies our ability to execute complex plans. The proteins identified could be used to monitor the Astronauts for radiation exposure and any associated loss of neurocognitive function, and some may actually give an insight into the complex processes that lead to radiation-induced cognitive impairment.
NASA Astrophysics Data System (ADS)
Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.
1998-11-01
Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.
NASA Technical Reports Server (NTRS)
Lau, K. H.
1985-01-01
A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae.
Modes of planetary-scale Fe isotope fractionation
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; von Blanckenburg, Friedhelm
2006-12-01
A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.
Cataract production in mice by heavy charged particles
NASA Technical Reports Server (NTRS)
Ainsworth, E. J.; Jose, U.; Yang, V. V.; Barker, M. E.
1981-01-01
The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks.
Evidence for the dipole nature of the low-energy γ enhancement in Fe 56
Larsen, A. C.; Blasi, N.; Bracco, A.; ...
2013-12-11
Here, the γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the ( 3He,αγ) 56Fe reaction, is confirmed with the (p,p'γ) 56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atac, Hamza
The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusivemore » electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.« less
Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.
Bae, Sungjun; Hanna, Khalil
2015-09-01
While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).
NASA Astrophysics Data System (ADS)
Sawicki, Jerzy A.
2011-08-01
The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.
'Tertiary' nuclear burning - Neutron star deflagration?
NASA Technical Reports Server (NTRS)
Michel, F. Curtis
1988-01-01
A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.
d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M
2013-12-17
The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.
NASA Astrophysics Data System (ADS)
Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.
2014-12-01
Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine sediments appear to be particularly useful when targeting specific Fe pools, rather than the total highly reactive Fe fraction, since isotopic trends may be masked within the latter pool. [1] Poulton and Canfield (2005), Chemical Geology 214, 209-221. [2] Crosby et al., Geobiology 5 (2007), 169-189. [3] Staubwasser et al., Geology 34 (2006), 629-632.
Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H
2016-01-27
The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.
Ibrahim, Mohamed F.; Elgallad, Emad M.; Valtierra, Salvador; Doty, Herbert W.; Samuel, Fawzy H.
2016-01-01
The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode. PMID:28787877
Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.
2012-01-01
The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.
SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. I. FE, O, AND SEED MATERIAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, M. I.; Dayeh, M. A.; Ebert, R. W.
We have surveyed ∼0.1–100 MeV nucleon{sup −1} O and Fe fluence spectra during 46 isolated, large gradual SEP events observed at ACE during solar cycles 23 and 24. Most SEP spectra are well represented by the four-parameter Band function with a normalization constant, low-energy spectral slope, high-energy spectral slope, and break energy. The O and Fe spectral slopes are similar and most spectra steepen above the break energy, probably due to common acceleration and transport processes affecting different ion species. SEP spectra above the break energies depend on the origin of the seed population; larger contributions of suprathermal flare materialmore » result in higher Fe/O ratios and flatter spectra at higher energies. SEP events with steeper O spectra at low energies and higher break energies are associated with slower coronal mass ejections (CMEs), while those associated with fast (>2000 km s{sup −1}) CMEs and ground level enhancements have harder or flatter spectra at low and high energies, and O break energies between ∼1 and 10 MeV nucleon{sup −1}. The latter events are enriched in {sup 3}He and higher-energy Fe, and have Fe spectra that rollover at significantly lower energies compared with O, probably because Fe ions with smaller Q/M ratios can escape from the distant shock more easily than O ions with larger Q/M ratios. We conclude that SEP spectral properties result from many complex and competing effects, namely Q/M-dependent scattering, shock properties, and the origin of the seed populations, all of which must be taken into account to develop a comprehensive picture of CME-driven shock acceleration of large gradual SEP events.« less
Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon
2010-06-01
The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.
Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G
2009-09-01
The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, M.; Fujiwara, Y.
Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less
Radio Bursts as Diagnostics of Relative Abundances in Solar Particles
NASA Astrophysics Data System (ADS)
Cane, H. V.; Richardson, I. G.; von Rosenvinge, T. T.
2008-05-01
Based solely on the presence of associated low frequency type III radio bursts with specific characteristics, Cane et al. (2002) suggested that large solar energetic particle events are likely to include contributions from particles accelerated in the associated flares. Studies using ACE/SIS observations of O and Fe intensity-time profiles have supported this suggestion. Nevertheless, some researchers have argued that particles cannot be flare accelerated if the relative abundances differ from those in the small particle events that are widely accepted to be composed of flare particles. However, based on the radio data, the flare particles in large events are not released at the time of the flare soft X-ray onset but are delayed, either because they are accelerated later or released later. These changed conditions are expected to alter the relative abundances (electrons to protons, heavy to light ions) compared to those associated with small flares. From a comprehensive analysis of the characteristics of the coronal mass ejections (CMEs), flares and radio bursts (at metric and longer wavelengths) associated with the ~340 proton events at >25 MeV that occurred during solar cycle 23, we confirm earlier results (Cane et al. 1986) that the timing of the type III bursts is a reasonable discriminator for the relative abundances at the start of solar particle events. In contrast, the speeds of the associated CMEs do not discriminate events, nor does the presence of meter wavelength type II bursts. Cane, H. V., R. E. McGuire, and T. T. von Rosenvinge (1986), Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares, Astrophys. J., 301, 448. Cane, H. V., W. C. Erickson, and N. P. Prestage (2002), Solar flares, type III radio bursts, coronal mass ejections, and energetic particles, J. Geophys. Res., 107(A10), 1315, doi:10.1029/2001JA000320.
Morel, Anne-Laure; Nikitenko, Sergei I; Gionnet, Karine; Wattiaux, Alain; Lai-Kee-Him, Josephine; Labrugere, Christine; Chevalier, Bernard; Deleris, Gerard; Petibois, Cyril; Brisson, Alain; Simonoff, Monique
2008-05-01
In this study, we report a rapid sonochemical synthesis of monodisperse nonaggregated Fe(3)O(4)@SiO(2) magnetic nanoparticles (NPs). We found that coprecipitation of Fe(II) and Fe(III) in aqueous solutions under the effect of power ultrasound yields smaller Fe(3)O(4) NPs with a narrow size distribution (4-8 nm) compared to the silent reaction. Moreover, the coating of Fe(3)O(4) NPs with silica using an alkaline hydrolysis of tetraethyl orthosilicate in ethanol-water mixture is accelerated many-fold in the presence of a 20 kHz ultrasonic field. The thickness of the silica shell can be easily controlled in the range of several nanometers during sonication. Mossbauer spectra revealed that nonsuperparamagnetic behavior of obtained core-shell NPs is mostly related to the dipole-dipole interactions of magnetic cores and not to the particle size effect. Core-shell Fe(3)O(4)@SiO(2) NPs prepared with sonochemistry exhibit a higher magnetization value than that for NPs obtained under silent conditions owing to better control of the deposited silica quantities as well as to the high speed of sonochemical coating, which prevents the magnetite from oxidizing.
NASA Astrophysics Data System (ADS)
Sánchez, Javier; Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Reyes-Rodríguez, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Bartolo-Pérez, Pascual; De-León-Prado, Laura Elena
2017-04-01
In this work, the synthesis of MnxGa1-xFe2O4 (x=0-1) nanosized particles by thermal decomposition method, using tetraethylene glycol (TEG) as a reaction medium, has been performed. The crystalline structure of the inverse spinel obtained in all the cases was identified by X-ray diffraction (XRD). Vibration sample magnetometry (VSM) was used to evaluate the magnetic properties of ferrites and to demonstrate their superparamagnetic behavior and the increase of magnetization values due to the Mn2+ ions incorporation into the FeGa2O4 structure. Transmission electron microscopy, energy dispersive spectroscopy (TEM-EDS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the obtained magnetic nanoparticles (MNPs). These MNPs showed a near spherical morphology, an average particle size of 5.6±1.5 nm and a TEG coating layer on their surface. In all the cases MNPs showed no response when submitted to an alternating magnetic field (AMF, 10.2 kA/m, 354 kHz) using magnetic induction tests. These results suggest that the synthesized nanoparticles can be potential candidates for their use in biomedical areas.
Chen, Chao; Wang, Xiangyu; Chang, Ying; Liu, Huiling
2008-01-01
Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained alpha-Fe0. Detected Pd to Fe ratio by weight (Pd/Fe ratio) was close to theoretical value. Spherical granules with diameter of 47 +/- 11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. The factors, such as species of reductants, Pd/Fe ratio, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% Pd/Fe > nanoscale Fe > reductive Fe. When the Pd/Fe ratio was lower than 0.083%, increasing Pd/Fe ratio would increase dechlorination efficiency (DE) of MCAA. When the Pd/Fe ratio was higher than 0.083%, increasing Pd/Fe ratio caused a decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.
NASA Astrophysics Data System (ADS)
Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian
2018-01-01
Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where they form, and are less sensitive to abiotic versus biotic origins. It follows that FeOx deposits at Loihi Seamount provides important modern analogues for ancient seafloor Fe-rich deposits allowing for testing hypotheses about the biogeochemical cycling of Fe isotopes on early Earth.
Bai, Zhiyong; Wang, Jianlong; Yang, Qi
2018-04-01
Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.
High δ56Fe values in Samoan basalts
NASA Astrophysics Data System (ADS)
Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.
2014-12-01
Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized xenoliths from Samoa [4]. [1] Heimann et al., 2008, doi:10.1016/j.gca.2008.06.009 [2] Teng et al., 2013, doi:10.1016/j.gca.2012.12.027 [3] Williams et al., 2004, doi: 10.1126/science.1095679 [4] Hauri et al., 1993, doi: 10.1038/365221a0
Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai
2011-10-01
The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.
Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.
Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A
2016-01-01
The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined radiations. The levels of MDC and eotaxin correlated and the levels of MDC, but not eotaxin, correlated with the percentage of newly born activated microglia in the blades of the dentate gyrus. Finally, hippocampal IL-6 levels were higher in mice receiving combined radiations compared with mice receiving (56)Fe radiation alone. These data demonstrate the sensitivity of novel object recognition for detecting cognitive injury three months after exposure to proton radiation alone, and combined exposure to proton and (56)Fe radiations, and that newly-born activated microglia and inflammation might be involved in this injury.
NASA Technical Reports Server (NTRS)
Goeorge, Kerry; Cucinotta, Francis A.
2007-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.
Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D
2017-12-01
Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.
FOXSI-2 Observations and Coronal Heating
NASA Astrophysics Data System (ADS)
Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.
2015-12-01
Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.
The Trace Element Geochemistry of Marine Biogenic Particulate Matter.
1981-02-01
while the sample remains in the sea water suspension due to mechanical, bacterial, or autolytic decomposition, but is accelerated by suspension in the...acid leaching experiments is that which contains a very refractory component which is only partly released by HNO 3 or remains in the residual particles...significant percentages of their total concentrations remaining in the frustules after leaching with O.1N HCl. The residual Fe and Al in the sample are in
Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space
NASA Technical Reports Server (NTRS)
Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.
1985-01-01
Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.
NASA Astrophysics Data System (ADS)
Cui, B. Z.; Marinescu, M.; Liu, J. F.
2014-05-01
This paper reports morphology, structure, and magnetic properties of air-stable soft magnetic FexCo100-x (x = 65, 50, and 34) and Fe50Ni50 (at. %) submicron and nanosize particles fabricated by template-free thermal decomposition of nitrates of Fe, Co, and Ni and subsequent hydrogen reduction. The particle compositions were tuned by modification of the precursor solution concentrations. The as-synthesized Fe-Co and Fe50Ni50 particles have body centered cubic and face centered cubic poly-nanocrystalline structures, respectively. The Fe-Co and Fe50Ni50 particles have particle sizes in the range of 28-200 nm and 70-480 nm, and average grain sizes of 16-29 nm and 20-24 nm, respectively. The particle and grain sizes were controlled by tuning particle composition, and the temperature and time of hydrogen reduction. Saturation magnetization Ms as high as 207-224 emu/g and intrinsic coercivity Hci of 59-228 Oe were obtained in the Fe-Co particles reduced at 550 °C for 90 min. Of special note, the Ms of 224 emu/g (˜2.3 T) obtained in the Fe65Co35 particles is among the highest values for Fe-Co particles reported so far. Ms of 135-137 emu/g and Hci of 59-111 Oe were obtained in the Fe50Ni50 particles reduced at 500 or 550 °C for 20 min.
NASA Astrophysics Data System (ADS)
Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.
2016-11-01
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.
30 CFR 56.19062 - Maximum acceleration and deceleration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062 Section 56.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating...
Iron isotope composition of depleted MORB
NASA Astrophysics Data System (ADS)
Labidi, J.; Sio, C. K. I.; Shahar, A.
2015-12-01
In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3+, likely producing a relatively reduced melt. These hypotheses are testable, and will be discussed in detail at the conference.
1993-01-01
behavioral func- agonists (as assessed by examining oxotremorine enhancement tions such as coordination and muscle strength [for reviews, of K4-evoked...interface and by comparing the response to oxotremorine -en- made by examining the oxotremorine (OXO)-enhanced hanced K4-evoked release of dopamine...Results showed that al- K+-evoked release of dopamine (DA) from perifused stria- though oxotremorine -enhanced K4-evoked release of dopamine tal slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less
Gan, Lu; Wang, Zhenhua; Si, Jing; Zhou, Rong; Sun, Chao; Liu, Yang; Ye, Yancheng; Zhang, Yanshan; Liu, Zhiyuan; Zhang, Hong
2018-02-15
Exposure to iron ion 56 Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56 Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Microwave absorption property of the diatomite coated by Fe-CoNiP films
NASA Astrophysics Data System (ADS)
Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan
2015-08-01
A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.
NASA Astrophysics Data System (ADS)
Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan
2018-05-01
Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.
Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan
2018-05-05
Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH 3 -SCR or DeNOx) of NO using NH 3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO 3 solution and NH 4 F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH 3 -SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH 3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO 3 ) than in Fe-MCM-56 (HF/NH 4 F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N 2 O decomposition, with maximum N 2 O conversion not higher than 80% and activity window starting at 500°C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction. Copyright © 2018 Elsevier B.V. All rights reserved.
The Observational Consequences of Proton-Generated Waves at Shocks
NASA Technical Reports Server (NTRS)
Reames, Donald V.
2000-01-01
In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
The Solar Wind Ion Composition Spectrometer
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.
1992-01-01
The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.
Chemical modification of projectile residues and target material in a MEMIN cratering experiment
NASA Astrophysics Data System (ADS)
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas
2013-01-01
In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.
Oxidative Alteration of Ferrous Smectites and Implications for the Redox Evolution of Early Mars
NASA Astrophysics Data System (ADS)
Chemtob, Steven M.; Nickerson, Ryan D.; Morris, Richard V.; Agresti, David G.; Catalano, Jeffrey G.
2017-12-01
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggests that ferrous smectites are the unoxidized progenitors of orbitally detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg + Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon reexposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift toward dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements
NASA Technical Reports Server (NTRS)
Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.
2013-01-01
The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.
NASA Astrophysics Data System (ADS)
Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.
2018-05-01
Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.
Evaluation of Neutron Reactions on Iron Isotopes for CIELO and ENDF/B-VIII.0
Herman, M.; Trkov, A.; Capote, R.; ...
2018-02-01
A new suite of evaluations for 54,56,57,58Fe has been developed in the framework of the CIELO international collaboration. New resolved resonance ranges were evaluated for 54Fe and 57Fe, while modifications were applied to resonances in 56Fe. The low energy part of the 56Fe file is almost totally based on measurements. At higher energies in 56Fe and in the whole fast neutron range for minor isotopes the evaluation consists of model predictions carefully adjusted to available experimental data. We also make use of the high quality and well experimentally-constrained dosimetry evaluations from the IRDFF library. Special attention was dedicated to themore » elastic angular distributions, which were found to affect results of the integral benchmarking. The new set of iron evaluations was developed in concert with other CIELO evaluations and they were tested together in the integral experiments before being adopted for the ENDF/B-VIII.0 library.« less
Evaluation of Neutron Reactions on Iron Isotopes for CIELO and ENDF/B-VIII.0
NASA Astrophysics Data System (ADS)
Herman, M.; Trkov, A.; Capote, R.; Nobre, G. P. A.; Brown, D. A.; Arcilla, R.; Danon, Y.; Plompen, A.; Mughabghab, S. F.; Jing, Q.; Zhigang, G.; Tingjin, L.; Hanlin, L.; Xichao, R.; Leal, L.; Carlson, B. V.; Kawano, T.; Sin, M.; Simakov, S. P.; Guber, K.
2018-02-01
A new suite of evaluations for 54,56,57,58Fe has been developed in the framework of the CIELO international collaboration. New resolved resonance ranges were evaluated for 54Fe and 57Fe, while modifications were applied to resonances in 56Fe. The low energy part of the 56Fe file is almost totally based on measurements. At higher energies in 56Fe and in the whole fast neutron range for minor isotopes the evaluation consists of model predictions carefully adjusted to available experimental data. We also make use of the high quality and well experimentally-constrained dosimetry evaluations from the IRDFF library. Special attention was dedicated to the elastic angular distributions, which were found to affect results of the integral benchmarking. The new set of iron evaluations was developed in concert with other CIELO evaluations and they were tested together in the integral experiments before being adopted for the ENDF/B-VIII.0 library.
Evaluation of Neutron Reactions on Iron Isotopes for CIELO and ENDF/B-VIII.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, M.; Trkov, A.; Capote, R.
A new suite of evaluations for 54,56,57,58Fe has been developed in the framework of the CIELO international collaboration. New resolved resonance ranges were evaluated for 54Fe and 57Fe, while modifications were applied to resonances in 56Fe. The low energy part of the 56Fe file is almost totally based on measurements. At higher energies in 56Fe and in the whole fast neutron range for minor isotopes the evaluation consists of model predictions carefully adjusted to available experimental data. We also make use of the high quality and well experimentally-constrained dosimetry evaluations from the IRDFF library. Special attention was dedicated to themore » elastic angular distributions, which were found to affect results of the integral benchmarking. The new set of iron evaluations was developed in concert with other CIELO evaluations and they were tested together in the integral experiments before being adopted for the ENDF/B-VIII.0 library.« less
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N
Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.
2008-01-01
In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.
NASA Astrophysics Data System (ADS)
Wu, Lingling; Druschel, Greg; Findlay, Alyssa; Beard, Brian L.; Johnson, Clark M.
2012-07-01
The Fe isotope fractionation factors among aqueous ferrous iron (
NASA Technical Reports Server (NTRS)
George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.
2003-01-01
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.
Zhang, Shouwei; Li, Jiaxing; Zeng, Meiyi; Zhao, Guixia; Xu, Jinzhang; Hu, Wenping; Wang, Xiangke
2013-12-11
Water-soluble magnetic-functionalized graphitic carbon nitride (g-C3N4) composites were synthesized successfully by in situ decorating spinel ZnFe2O4 nanoparticles on g-C3N4 sheets (CN-ZnFe) through a one-step solvothermal method. The magnetic properties of CN-ZnFe can be effectively controlled via tuning the coverage density and the size of ZnFe2O4 nanoparticles. The results indicate that the CN-ZnFe exhibits excellent photocatalytic efficiency for methyl orange (MO) and fast separation from aqueous solution by magnet. Interestingly, the catalytic performance of the CN-ZnFe is strongly dependent on the loading of ZnFe2O4. The optimum activity of 160CN-ZnFe photocatalyst is almost 6.4 and 5.6 times higher than those of individual g-C3N4 and ZnFe2O4 toward MO degradation, respectively. By carefully investigating the influence factors, a possible mechanism is proposed and it is believed that the synergistic effect of g-C3N4 and ZnFe2O4, the smaller particle size, and the high solubility in water contribute to the effective electron-hole pairs separation and excellent photocatalytic efficiency. This work could provide new insights that g-C3N4 sheets function as good support to develop highly efficient g-C3N4-based magnetic photocatalysts in environmental pollution cleanup.
Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types
NASA Technical Reports Server (NTRS)
Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira
2016-01-01
An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.
56Fe accelerates development of atherosclerosis in apoE -/-mice
NASA Astrophysics Data System (ADS)
Kucik, Dennis; Yu, Tao; Parks, Brian; Yu, Shaohua; Srivastava, Roshni; Gupta, Kiran; Wu, Xing; Khaled, Saman; Chang, Polly; Kabarowski, Janusz
Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. For example, for women with early breast cancer, the benefit of radiotherapy can be nearly offset by the increased risk of mortality from cardiovascular disease. Head and neck cancer patients who undergo radiation treatment are at significantly elevated risk of stroke, even in a relatively young patient population that would not normally be at risk for atheroscle-rosis. Similarly, atomic bomb survivors had an increased incidence of mortality from coronary artery disease and stroke. Even radiation technologists working before 1950 (when occupational exposure was higher) had increased mortality due to circulatory diseases. Although much is known about the cardiovascular consequences these exposures to X-raus and gamma radiation, the response to the type of radiation likely to be encountered in prolonged space flight has not been determined. A key component of this cosmic radiation is 56Fe, which is particularly damaging to tissues. Using collimated beams, we selectively irradiated aortic arches and carotids (only) of the well-established apoE -/-atherosclerosis mouse model to test directly whether 56Fe exposure is a cardiovascular risk factor. Mice were sacrificed at 13 weeks post-irradiation and dissected, and aortas were divided into areas that had been targeted by the ion beam and those that were not. The area that was covered by plaques was then quantified. Plaque area at 13 weeks post-irradiation was significantly greater in targeted areas of mice that had received 5 Gy of 56Fe as compared to age-and sex-matched un-irradiated controls. In the carotid arteries and aortic roots, significantly greater atherosclerosis was apparent for a 2Gy exposure as well (the lowest dose tested). This demonstrates that even a single exposure to heavy ion radiation is capable of triggering events that culminate in cardiovascular disease, even long after the exposure has ended. There-fore, the potential consequences of radiation exposure for astronaut health on missions beyond Earth orbit represent a risk that warrants further investigation. Current studies are aimed at better understanding the magnitude of this risk and the molecular mechanism, which will be essential to devising the countermeasures that may be necessary to ensure astronaut safety in future missions.
Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai
2014-06-01
Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.
Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong
2018-05-15
In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Chen-Long; Deng, Zhang; Cao, Kun
2016-07-15
Iron(II,III) oxide (Fe{sub 3}O{sub 4}) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al{sub 2}O{sub 3} passivation layers on Fe{sub 3}O{sub 4} nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surfacemore » reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al{sub 2}O{sub 3} coatings could effectively protect the Fe{sub 3}O{sub 4} nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5 nm-thick Al{sub 2}O{sub 3} passivation layer. This good preservation of the magnetic properties with superior oxidation resistance will be beneficial for practical magnetic-based applications.« less
Jin, Fuxia; Cheng, Zhiqiang; Rutzke, Michael A; Welch, Ross M; Glahn, Raymond P
2008-08-27
Isotopic labeling of food has been widely used for the measurement of Fe absorption in determining requirements and evaluating the factors involved in Fe bioavailability. An extrinsic labeling technique will not accurately predict the total Fe absorption from foods unless complete isotopic exchange takes place between an extrinsically added isotope label and the intrinsic Fe of the food. We examined isotopic exchange in the case of both white beans and colored beans (Phaseolus vulgaris) with an in vitro digestion model. There are significant differences in (58)Fe/(56)Fe ratios between the sample digest supernatant and the pellet of extrinsically labeled pinto bean. The white bean digest shows significantly better equilibration of the extrinsic (58)Fe with the intrinsic (56)Fe. In contrast to the extrinsically labeled samples, both white and red beans labeled intrinsically with (58)Fe demonstrated consistent ratios of (58)Fe/(56)Fe in the bean meal, digest, supernatant, and pellet. It is possible that the polyphenolics in the bean seed coat may bind Fe and thus interfere with extrinsic labeling of the bean meals. These observations raise questions on the accuracy of studies that used extrinsic tags to measure Fe absorption from beans. Intrinsic labeling appears necessary to accurately measure Fe bioavailability from beans.
NASA Technical Reports Server (NTRS)
Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.
2001-01-01
Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.
USPAS | U.S. Particle Accelerator School
U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs
NASA Technical Reports Server (NTRS)
Philpott, Delbert E.; Miquel, Jaime
1986-01-01
Eight-month-old male C57BL6 mice were exposed without anesthesia to whole-body irradiation in circular holders. The mice were tested for behavioral decrements after 0.5 and 50 rads of Fe particle irradiation at 6 and 12 months postirradiation to obtain long-term results. A standard maze was used, and the animals were timed for completion thereof. A string test also was administered to the mice, testing their ability to grasp and move along a string to safety. The results from animals exposed to 50 rads were significantly different from control results to p = less than 0.001 in both systems of testing. The hippocampus (believed to be the location of environmental interaction in the brain) and the retina were examined for ultrastructural changes. The ultrastructural changes were similar to those found in the Cosmos 782, 936, and Argon experiments. The mouse data indicate that iron particles were able to induce long-term changes in the central nervous system which led to behavioral impairment.
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Miquel, J.
1986-01-01
Eight month old male C57BL6 mice were exposed without anesthesia to whole-body irradiation in circular holders. The mice were tested for behavioral decrements after 0.5 and 50 rads of Fe particle irradiation at 6 and 12 months post irradiation to obtain long term results. A standard maze was used and the animals were timed for completion thereof. A string test also was administered to the mice, testing their ability to grasp and move along a string to safety. The results from animals exposed to 50 rads were significantly different from [correction of fron] control results to p = < .001 in both systems of testing. The hippocampus (believed to be the location of environmental interaction in the brain) and the retina were examined for ultrastructural changes. The ultrastructural changes were similar to those we found in our Cosmos 782, 936 and in our Argon experiments. The mouse data indicate that iron particles were able to induce long term changes in the central nervous system which lead to behavioral impairment.
NASA Astrophysics Data System (ADS)
Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter
2018-04-01
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.
Reduced Magnetism in Core–Shell Magnetite@MOF Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsaidi, Sameh K.; Sinnwell, Michael A.; Banerjee, Debasis
Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that couldmore » accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.« less
Chen, Chunmei; Thompson, Aaron
2018-01-16
Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
NASA Technical Reports Server (NTRS)
Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.
1994-01-01
The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.
NASA Astrophysics Data System (ADS)
Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Tharaud, Mickaël; Gélabert, Alexandre; Cartigny, Pierre; Carlut, Julie; Isambert, Aude; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François
2018-07-01
Magnetotactic bacteria (MTB) produce intracellular, membrane-bounded magnetite [Fe(II)Fe(III)2O4] crystals in a genetically controlled way. They are ubiquitous in aquatic environments, and have been proposed to represent some of the most ancient biomineralizing organisms on Earth. Although tremendous advances have been made in constraining the mechanisms of magnetite formation in MTB, the precise biomineralization pathways are still a matter of debate. To further constrain the processes of Fe uptake and magnetite precipitation in MTB, Fe stable isotope measurements were carried out with the magnetotactic strain AMB-1 cultivated with Fe(III), Fe(II) or mixed Fe(III)/Fe(II) species in the growth media. The Fe isotope compositions of growth media before and after AMB-1 cultures, bacterial lysates (i.e. cells devoid of magnetite) and magnetite samples were measured. Single valence Fe(III) or Fe(II) growth media after AMB-1 cultures showed depletion in heavy Fe isotopes by 0.2 to 1.5‰ (δ56Fe), relative to the initial Fe source. Contrastingly, heavy Fe isotopes accumulated in the growth media supplemented with mixed Fe(III)/Fe(II) sources, with enrichment up to 0.25‰. These results support a preferential bacterial uptake of Fe(II) when both Fe(III) and Fe(II) are bioavailable. Bacterial lysates contained at least 50% of the total cellular Fe; thus, magnetite was not the main Fe reservoir in AMB-1 under the experimental conditions investigated in this study. In all cultures, bacterial lysates δ56Fe were 0.4 to 0.8‰ higher than the initial Fe sources, while magnetite δ56Fe were 1.2 to 2.5‰ lower. This depletion in heavy Fe isotopes of magnetite can be explained by partial reduction of Fe(III) to Fe(II) within the cell and subsequent magnetite precipitation. The data also show mass-independent fractionations (MIF) in odd (57Fe) but not in even (54Fe, 56Fe, 58Fe) isotopes, expressed mainly in magnetite crystals, and supporting a magnetic isotope effect on 57Fe. Bacterial Fe uptake and MIF patterns suggest that Fe(II) species can freely exchange between the intracellular and external media. Based on these observations, an integrative biogeochemical model for Fe uptake, cellular trafficking, and magnetite precipitation in AMB-1 is presented.
Liu, Xueyan; Qi, Xinyu; Zhang, Lei
2018-02-15
Three-dimensional (3D) hierarchical magnetic hollow sphere-like CuFe 2 O 4 (3D HMHS-CuFe 2 O 4 ) were designed to sensitively detect four Sudan dyes combined with HPLC-DAD. The formation mechanism of 3D HMHS-CuFe 2 O 4 is also discussed. Compared to the particle-like CuFe 2 O 4 (PL-CuFe 2 O 4 ), the as-obtained 3D HMHS-CuFe 2 O 4 provided a higher extraction efficiency for the four Sudan dyes (I, II, III and IV) due to its hierarchical hollow structure with properly interconnected pores where the targets can easily diffuse into the reaction sites. Thus, a magnetic solid-phase extraction (MSPE)-HPLC method was established for the simultaneous measurement of the four Sudan dyes. Under optimized conditions, good linearity (5-4000ngg -1 , r 2 ≥0.9991), limits of detection (LODs, 0.56-0.60ngg -1 ), recoveries (91.1%-99.3%) and precision (RSDs≤4.9%) for the four Sudan dyes were obtained. The proposed MSPE-HPLC-DAD method is a convenient, effective, sensitive and time-saving method for the rapid isolation and determination of four Sudan dyes in preserved bean curd. Copyright © 2017. Published by Elsevier Ltd.
Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders
NASA Astrophysics Data System (ADS)
Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.
2018-03-01
In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.
NASA Astrophysics Data System (ADS)
Faraz, Ahmad; Ricote, Jesus; Jimenez, Ricardo; Maity, Tuhin; Schmidt, Michael; Deepak, Nitin; Roy, Saibal; Pemble, Martyn E.; Keeney, Lynette
2018-03-01
Here, we report the effect of A-site substitution of Tb at the expense of Bi on the ferroelectric and magnetic properties in m = 5 layered 2-D Aurivillius Bi6Ti3Fe2O18 thin films. The nominal stoichiometry of the prepared compound is Tb0.40Bi5.6Fe2Ti3O18, Tb0.90Bi5.1Fe2Ti3O18, and Bi6Ti3Fe2O18. Phase examination reveals that only 0.40 mol. % is successfully substituted forming Tb0.40Bi5.6Fe2Ti3O18 thin films. Lateral and vertical piezoresponse switching loops up to 200 °C reveal responses for Bi6Ti3Fe2O18, Tb substituted Tb0.40Bi5.6Fe2Ti3O18, and Tb0.90Bi5.1Fe2Ti3O18 thin films along the in-plane (±42.31 pm/V, 88 pm/V and ±134 pm/V, respectively) compared with the out-of-plane (±6.15 pm/V, 19.83 pm/V and ±37.52 pm/V, respectively). The macroscopic in-plane polarization loops reveal in-plane saturation (Ps) and remanence polarization (Pr) for Bi6Ti3Fe2O18 of ±26.16 μC/cm2 and ±22 μC/cm2, whereas, ±32.75 μC/cm2 and ±22.11 μC/cm2, ±40.30 μC/cm2 and ±28.5 μC/cm2 for Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 thin films, respectively. No ferromagnetic signatures were observed for Bi6Ti3Fe2O18 and Tb0.40Bi5.6Fe2Ti3O18. However, a weak response was observed for the Tb0.90Bi5.1Fe2Ti3O18 at 2 K. Microstructural analysis of Tb0.90Bi5.1Fe2Ti3O18 revealed that it contains 4 vol. % Fe:Tb rich areas forming FexTbyOz, which accounts for the observed magnetic moment. This study demonstrates the importance of thorough microstructural analysis when determining whether magnetic signatures can be reliably assigned to the single-phase system. We conclude that Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 samples are not multiferroic but demonstrate the potential for Fe-RAM applications.
NASA Astrophysics Data System (ADS)
Bae, Sang-Chul; Tanae, Takayuki; Monde, Masanori; Katsuta, Masafumi
A series of study has been performed on the metal hydride particle beds of Ti0.15Zr0.85Cr0.9Fe0.6Ni0.2Mn0.3Cu0.05 (MH-1, using for heat source), Ti0.73Zr0.27Cr1.2Fe0.3Ni0.1Mn0.4Cu0.05 (MH-2, using for cooling load) to measure the effective thermal conductivities. The effective thermal conductivities of activated and oxidized MH particle bed in helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range (<0.5 MPa). And that influence decreases rapidly with increase of gas pressure. The reason of pressure dependence at low pressure range is that the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism of particle bed. In order to enhance the poor thermal conductivity of metal hydride particle bed, carbon fiber mixing method has been used in this study. Three types, two insert methods and five mass percentages of carbon fiber have been examined and compared. The highest effective thermal conductivity of MH particle bed has been reached with Type B carbon fiber which has second higher thermal conductivity, and 2 weight percentage. This method has acquired 5-6 times higher thermal conductivity than pure metal hydride particle beds with quite low quantity of additives, only 2 mass% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher percentage of additives too.
Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation
NASA Astrophysics Data System (ADS)
Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury
2018-03-01
The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.
Volcanic ash as an oceanic iron source and sink
NASA Astrophysics Data System (ADS)
Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.
2016-03-01
Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.
NASA Astrophysics Data System (ADS)
Hu, Xue-Feng; Xue, Yong
2015-04-01
Fe has four stable isotopes, 54Fe (5.84%), 56Fe (91.76%), 57Fe (2.12%) and 58Fe (0.28%). The occurrence of Fe isotopic fractionation during the weathering and pedogenic processes might have some significant paleo-environmental implications. The Quaternary Red Clay (QRC), widely distributed to the south of the Yangtze River, is regarded as a potential archive to record the paleoclimatic changes in subtropical China since the Middle Pleistocene. The composition of Fe isotopes in a profile of the QRC in Langxi County, Anhui Province, Southeast China, was analyzed by the MC-ICP-MS method in this study. The results were as follows: (1) δ56Fe of the Yellow-brown Earth (YBE), the uppermost layer of the profile, only slightly fluctuates between 0.10‰ ~ 0.12‰. That of the Uniform Red Clay (URC) was stable and 0.03‰ in content. That of the Reticulate Red Clay (RRC) in the lower part of the profile, however, was instable and fluctuates between -0.06‰ ~ 0.05‰. (2) The reticulate (net-like) pattern of the RRC was formed by the partial leaching of Fe in the red clay possibly due to long-term frequent fluctuations of groundwater table. The white veins of the RRC were deficiency in both total Fe (Fet) and free Fe (Fed), but the red ones were not. A significant difference of δ56Fe between the white and red veins of the RRC was found. δ56Fe of the white veins, 0.35‰ on average, was significantly higher than that of the red veins, -0.09‰ on average. This suggests that lighter Fe isotopes were preferentially removed during the formation of the reticulate pattern. (3) The content of free Fe oxides in soil is evaluated by the CBD-extracted method. δ56Fe of the CBD-extracted fraction of the red clay samples, -0.083‰ on average, is significantly lower than that of the residual fraction, 0.361‰ on average, suggesting that lighter Fe isotopes were preferentially released from primary minerals to form Fe oxides in the red clay. (4) δ56Fe of the entire profile was negatively significantly correlated with Fet and Fed contents (r2=0.3009 and 0.5105, respectively), which also suggests that Fe in the QRC becomes heavier after the preferential leaching of lighter Fe during the intensive weathering and reticulating processes. In short, the Fe isotopes were only weakly fractionated in the red clay formation under an aerobic condition. When the RRC was formed, however, a large amount of lighter Fe isotopes were preferentially removed under an anaerobic condition and heavier Fe were relatively accumulated in the residues. Therefore, heavier Fe in the red clay may imply a warm and humid climate and luxuriant vegetation during the Middle Pleistocene. The Fe isotope composition of soils or paleosols is a promising factor to interpret pedogenic processes and indicate paleo-environmental changes.
Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang
2017-02-01
Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics
NASA Astrophysics Data System (ADS)
Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon
2011-06-01
The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Castillo, Alesha B.; Globus, R. K.
2016-01-01
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading reduced trabecular thickness (Tb.Th), and radiation reduced Tb.N, at both time points. To assess acute response to mechanical stimuli, samples were harvested from a subset of Sham-AL (n=5) and SSR-AL (n=5) to measure changes in gene expression levels. Preliminary results indicate that axial loading increased expression of the antioxidant response gene Nfe2l2 and the osteoprogenitor-associated marker Runx2 in the bone marrow cells, and there was an interaction effect between axial loading and radiation at 2-months post-IR. Additional analyses of gene expression levels in the mineralized tissue are in progress. Results indicate that SSR caused persistent impairment of osteoblast colony formation and nodule mineralization 6-mo post-IR. Contrary to our hypothesis, simulated space radiation did not impair the ability of cancellous bone to respond to a mechanical anabolic stimulus, consistent with our previous findings [1]. Hence, compressive loading may be a potential countermeasure against spaceflight-induced bone loss.
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Globus, R. K.
2016-01-01
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading reduced trabecular thickness (Tb.Th), and radiation reduced Tb.N, at both time points. To assess acute response to mechanical stimuli, samples were harvested from a subset of Sham-AL (n=5) and SSR-AL (n=5) to measure changes in gene expression levels. Preliminary results indicate that axial loading increased expression of the antioxidant response gene Nfe2l2 and the osteoprogenitor-associated marker Runx2 in the bone marrow cells, and there was an interaction effect between axial loading and radiation at 2-months post-IR. Additional analyses of gene expression levels in the mineralized tissue are in progress. Results indicate that SSR caused persistent impairment of osteoblast colony formation and nodule mineralization 6-mo post-IR. Contrary to our hypothesis, simulated space radiation did not impair the ability of cancellous bone to respond to a mechanical anabolic stimulus, consistent with our previous findings. Hence, compressive loading may be a potential countermeasure against spaceflight-induced bone loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
Structure and magnetic properties of Nd2Fe14B fine particles produced by spark erosion
NASA Astrophysics Data System (ADS)
Wan, H.; Berkowitz, A. E.
1994-11-01
At present Nd2Fe14B is the best permanent magnet because of its extremely high coercivity and energy product. Optimum properties of Nd2Fe14B magnets can be attained by producing single domain particles, and then aligning and compacting them. Due to the reactivity of the Nd constitutent, it is challenging to produce and handle a large amount of fine particles of this material. We have prepared fine particles of Nd2Fe14B by spark erosion with various dielectric media. Yield, size, size distribution, structure, and magnetic properties are discussed. The Nd2Fe14B particles were made by the sharker pot spark erosion method. Relaxation oscillators or a pulse generator were used to power the park erosion. Commercial Neomax 35 was employed as the primary material. The dielectric media were liquid Ar, Ar gas, and hydrocarbons, which provided an oxygen free environment. Structure and size were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffraction. Magnetic properties were measured by vibrating sample magnetometer (VSM) with temperatures in range of 4.2-1200 K. The particles produced in these three different dielectric media had different microstructures and crystal structures. The particles made in Ar gas were pure Nd2Fe14B phase. The particles made in liquid Ar were a mixture of amorphous and crystalline Nd2Fe14B, because the liquid Ar provided a much higher quench rate than Ar gas, which produced some amorphous Nd2Fe14B. Upon annealing, the amorphous particles became crystalline. The fine particles produced in hydrocarbons, such as pentane and dodecane, had more complex mixed phases, since the rare earth reacted with the hydrocarbons during the sparking process. The phases were NdC2, alpha-Fe, and amorphous and crystalline Nd2Fe14B. The effects of power parameters, such as voltage and capacitance, on particle size were investigated. Particle sizes from 20 nm to 50 microns were obtained.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, A. K.
1998-03-01
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.
Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un
2008-12-15
A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.
NASA Astrophysics Data System (ADS)
Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai
2013-06-01
Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling
2015-01-01
The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.
Tracing mantle processes with Fe isotopes
NASA Astrophysics Data System (ADS)
Weyer, S.; Ionov, D.
2006-12-01
High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be used as a sensitive tracer to identify such metasomatic processes in the mantle. [1] Weyer et al. (2005) EPSL 240: 251-264 [2] Williams et al. (2005) EPSL 235 : 435-452
Qiu, Guihua; Wang, Qi; Wang, Chao; Lau, Willie; Guo, Yili
2007-01-01
Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.
Forest Fires as a Possible Source of Isotopically Light Marine Fe Aerosols
NASA Astrophysics Data System (ADS)
Tegler, L. A.; Sherry, A. M.; Romaniello, S. J.; Anbar, A. D.
2016-12-01
Iron (Fe) is an important limiting micronutrient for primary productivity in many high-nutrient, low-chlorophyll (HNLC) regions of the ocean. These marine systems receive a significant fraction of their Fe from atmospheric deposition, which is thought to be dominated by mineral dust with an Fe isotopic composition at or above 0‰. However, Mead et al. (2013) observed isotopically light Fe in marine aerosols smaller than 2.5 μm, which is difficult to reconcile with known sources of marine aerosols. Based on previous experimental work, we hypothesize that biomass burning is the source of isotopically light Fe in atmospheric particles and suggest that biomass burning might represent an underappreciated source of Fe to marine ecosystems. While Guelke et al (2007) demonstrated that Fe in agricultural plants is isotopically light, few studies have examined the Fe isotope composition of naturally occurring forests likely to be a significant source of Fe during forest fires. To address this question, we measured the isotopic composition of Ponderosa pine growing in northern Arizona. Ponderosa pine is one the most common forest types in the western US and thus representative of an important North American fire region. Pine needles were chosen because they are susceptible to complete combustion during biomass burning events. To determine the Fe isotopic composition of pine trees, pine needles were sampled at various tree heights. We found that these samples had δ56Fe values between -1.5 and 0‰, indicating that pine needles can be isotopically light compared to local grasses and soil. These results support the hypothesis that biomass burning may contribute isotopically light Fe to marine aerosols.
NASA Astrophysics Data System (ADS)
Podolyák, Zs.; Shand, C. M.; Lalović, N.; Gerl, J.; Rudolph, D.; Alexander, T.; Boutachkov, P.; Cortés, M. L.; Górska, M.; Kojouharov, I.; Kurz, N.; Louchart, C.; Merchán, E.; Michelagnoli, C.; Pérez-Vidal, R. M.; Pietri, S.; Ralet, D.; Reese, M.; Schaffner, H.; Stahl, Ch.; Weick, H.; Ameil, F.; de Angelis, G.; Arici, T.; Carroll, R.; Dombrádi, Zs.; Gadea, A.; Golubev, P.; Lettmann, M.; Lizarazo, C.; Mahboub, D.; Pai, H.; Patel, Z.; Pietralla, N.; Regan, P. H.; Sarmiento, L. G.; Wieland, O.; Wilson, E.; Birkenbach, B.; Bruyneel, B.; Burrows, I.; Charles, L.; Clément, E.; Crespi, F. C. L.; Cullen, D. M.; Désesquelles, P.; Eberth, J.; González, V.; Habermann, T.; Harkness-Brennan, L.; Hess, H.; Judson, D. S.; Jungclaus, A.; Korten, W.; Labiche, M.; Maj, A.; Mengoni, D.; Napoli, D. R.; Pullia, A.; Quintana, B.; Rainovski, G.; Reiter, P.; Salsac, M. D.; Sanchis, E.; Valiente Dóbon, J. J.
2016-11-01
The 54Fe nucleus was populated from a 56Fe beam impinging on a Be target with an energy of E /A =500 MeV . The internal decay via γ -ray emission of the 10+ metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the 56Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of 54Fe, suggesting that it was populated via the decay of the Δ0 resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10+ metastable state in 54Fe is a consequence of the quark structure of the nucleons.
Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment
NASA Astrophysics Data System (ADS)
Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.
2016-09-01
Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.
NASA Astrophysics Data System (ADS)
Westphal, A. J.; Bradley, J. P.
2004-12-01
Interplanetary dust particles (IDPs) contain enigmatic submicron components called GEMS (glass with embedded metal and sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation, but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS: they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca, and Fe (relative to solar abundances); most have normal (solar) oxygen isotopic compositions; they exhibit a strikingly narrow size distribution (0.1-0.5 μm diameter); and some of them contain ``relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble (SB), and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury, and Ellison have proposed that Galactic cosmic rays (GCRs) originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for GCRs. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last 30 yr.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph; ...
2018-01-20
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Hui; Chen, Xiaowen; Shekiro, Joseph
High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose, resulting in enhanced sugar solubilization and digestibility.« less
Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng
2014-03-01
A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-27
SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
NASA Astrophysics Data System (ADS)
Conway, T. M.; Shelley, R.; Aguilar-Islas, A. M.; Landing, W. M.; Mahowald, N. M.; John, S.
2016-02-01
Supply of iron (Fe) to the surface ocean from atmospheric deposition plays a vital role in marine biogeochemical cycles, especially in Fe-limited areas or regions close to dust sources. However, large uncertainties remain over the fluxes, solubility and bioavailability of Fe supplied by aerosol dust. Additionally, aerosol Fe is likely to consist of a mixture of natural and anthropogenic (urban, biomass burning and combustion) components, which may have very different solubilities in seawater [e.g. 1]. To constrain soluble Fe supply to the oceans, it is thus vitally important to understand the relative contributions of different types of aerosol Fe, their solubilities and spatial distributions. Stable Fe isotopes (δ56Fe) may offer a way to discriminate between different dust sources [2], because of differential fractionation during a range of chemical processes. In this study, we measured δ56Fe in North Atlantic marine aerosols collected during two US GEOTRACES GA03 cruises (Lisbon to Woods Hole via Cape Verde, 2010-11) and we present δ56Fe measurements (relative to IRMM-014) from both the bulk aerosol (HF-HNO3 digested) and the water-soluble (10s ultrapure water leach) fractions. Aerosols collected from different air-masses (Saharan, European and N. American) allowed us to investigate the variability in δ56Fe due to different regional dust sources. The bulk phase was characterized by near-crustal δ56Fe values of +0.1±0.2‰, indicating the dominance of mineral dust. In contrast, the water-soluble fraction showed great variability; aerosols from European and North American air-masses were very isotopically light (-1.2±0.2‰ and -1.1±0.7‰) while those from Saharan air-masses were crustal (+0.1‰). Comparison of this data with isotope-informed model predictions of soluble Fe from mineral and anthropogenic sources (combustion, biofuels and biomass burning) [1], suggests that the data is consistent with mixing of either 1) Fe from mineral dust (+0.1‰) and a distinctly light anthropogenic Fe (-1.6‰), or 2) Fe from crustal mineral dust, isotopically heavy combustion Fe (+0.1 to +0.3‰), and biomass Fe that is both isotopically light (-1.6‰) and very soluble (>50%). [1] Luo, C. et al. (2008), Glob. Biogeochem. Cyc., 22, GB1012. [2] Mead, C. et al. (2013), Geophys. Res. Lett., 40, 5722-5727.
Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)
NASA Astrophysics Data System (ADS)
Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.
2014-12-01
The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier 56Fe ratios. The magnitude of isotope fractionation is not related to the reduction rate generalized over all reductants. The measured isotopic fractionations produce δ56Fe from -3.82 to +3.05 across all of the reductants tested, highlighting the large impact that redox chemistry may have on fractionating Fe isotopes in the environment.
Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons
NASA Astrophysics Data System (ADS)
An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang
2017-03-01
We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.
Thermal neutron capture cross section for 56Fe(n ,γ )
NASA Astrophysics Data System (ADS)
Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmikloṡi, L.; Tomandl, I.
2017-01-01
The 56Fe(n ,γ ) thermal neutron capture cross section and the 57Fe level scheme populated by this reaction have been investigated in this work. Singles γ -ray spectra were measured with an isotopically enriched 56Fe target using the guided cold neutron beam at the Budapest Reactor, and γ γ -coincidence data were measured with a natural Fe target at the LWR-15 research reactor in Řež, Czech Republic. A detailed level scheme consisting of 448 γ rays populating/depopulating 97 levels and the capture state in 57Fe has been constructed, and ≈99 % of the total transition intensity has been placed. The transition probability of the 352-keV γ ray was determined to be Pγ(352 ) =11.90 ±0.07 per 100 neutron captures. The 57Fe level scheme is substantially revised from earlier work and ≈33 previously assigned levels could not be confirmed while a comparable number of new levels were added. The 57Feγ -ray cross sections were internally calibrated with respect to 1H and 32Sγ -ray cross section standards using iron(III) acetylacetonate (C15H21FeO6) and iron pyrite (FeS2) targets. The thermal neutron cross section for production of the 352-keV γ -ray cross section was determined to be σγ(352 ) =0.2849 ±0.015 b. The total 56Fe(n ,γ ) thermal radiative neutron cross section is derived from the 352-keV γ -ray cross section and transition probability as σ0=2.394 ±0.019 b. A least-squares fit of the γ rays to the level scheme gives the 57Fe neutron separation energy Sn=7646.183 ±0.018 keV.
Amps particle accelerator definition study
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.
1975-01-01
The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.
Debandi, Aníbal; Maeyama, Akira; Hoshino, Yuichi; Asai, Shigehiro; Goto, Bunsei; Smolinski, Patrick; Fu, Freddie H
2016-11-01
To evaluate the effect of knee flexion angle for hamstring graft fixation, full extension (FE), or 30°, on acceleration of the knee motion during pivot-shift testing after either anatomic or nonanatomic anterior cruciate ligament (ACL) reconstruction using triaxial accelerometry. Two types of ACL reconstructions (anatomic and nonanatomic) using 2 different angles of knee flexion during graft fixation (FE and 30°) were performed on 12 fresh-frozen human knees making 4 groups: anatomic-FE, anatomic-30°, nonanatomic-FE, and nonanatomic-30°. Manual pivot-shift testing was performed at ACL-intact, ACL-deficient, and ACL-reconstructed conditions. Three-dimensional acceleration of knee motion was recorded using a triaxial accelerometer. The anatomic-30° group showed the smallest overall magnitude of acceleration among the ACL-reconstructed groups (P = .0039). There were no significant differences among the anatomic-FE group, the nonanatomic-FE group, and the nonantomic-30° group (anatomic-FE vs nonanatomic-FE, P = .1093; anatomic-FE vs nonanatomic-30°, P = .8728; and nonanatomic-FE vs nonanatomic-30°, P = .1093). After ACL transection, acceleration was reduced by ACL reconstruction with the exception of the nonanatomic-FE group that did not show a significant difference when compared with the ACL-deficient (P = .4537). The anatomic ACL reconstruction with the graft fixed at 30° of knee flexion better restored rotational knee stability compared with FE. An ACL graft fixed with the knee at FE in anatomic position did not show a significant difference compared with the nonanatomic ACL reconstructions. Knee flexion angle at the time of graft fixation for ACL reconstruction can be considered to maximize the rotational knee stability. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Ferreira, Timothy; Carone, Darren; Huon, Amanda; Herklotz, Andreas; Stoian, Sebastian A; Heald, Steve M; Morrison, Gregory; Smith, Mark D; Loye, Hans-Conrad Zur
2018-05-29
The crystal chemistry and magnetic properties for two triple perovskites, Ba 3 Fe 1.56 Ir 1.44 O 9 and Ba 3 NiIr 2 O 9 , grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A 3 MM 2 'O 9 hexagonal symmetry characteristic of most triple perovskites, including Ba 3 NiIr 2 O 9, Ba 3 Fe 1.56 Ir 1.44 O 9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O 6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (T N = 270 K) was observed for Ba 3 Fe 1.56 Ir 1.44 O 9 .
Variations in the Infrared Spectra of Wüstite with Defects and Disorder
NASA Astrophysics Data System (ADS)
Koike, C.; Matsuno, J.; Chihara, H.
2017-08-01
The presence of FeO particles in circumstellar space has been suggested based on the observation of a mysterious 21 μm emission band. However, the complete infrared spectra of FeO have not been obtained so far; hence, data of the infrared (IR) spectra of FeO need to be investigated. We prepared synthetic and commercial samples of FeO, which were obtained by crushing bulk samples, annealing iron oxalate dihydrate ({{FeC}}2{{{O}}}4\\cdot 2{{{H}}}2{{O}}), and mechanical milling of a powder mixture comprising (Fe and {{Fe}}2{{{O}}}3) particles with different milling times. We present a new study on the IR spectra of these samples, and show that these spectra changed according to defects and disorders. Furthermore, FeO particles are very sensitive to oxygen fugacity and temperature. The spectra of FeO particles were compared with the unidentified observed feature. It may be difficult for FeO particles to exist alone in the ISM and circumstellar space. This may be connected to the problem of missing iron in the ISM.
FEL system with homogeneous average output
Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph
2018-01-16
A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.
NASA Astrophysics Data System (ADS)
Britten, Richard A.; Miller, Vania D.; Hadley, Melissa M.; Jewell, Jessica S.; Macadat, Evangeline
2016-08-01
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20 cGy 1 GeV/n 56Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.
Iron isotope fractionation in marine invertebrates in near shore environments
NASA Astrophysics Data System (ADS)
Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.
2014-04-01
Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracibar, A.; Carrasco, J.; Saurel, D.
Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤ x ≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both alignmore » vacancies diagonally within the ab plane, coupled to a Fe2+/Fe3+ alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.« less
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
NASA Technical Reports Server (NTRS)
Krupp, N.; Keppler, E.; Fraenz, M.; Korth, A.; Witte, M.; Moussas, X.; Blake, J. B.; Naidu, K.; Quenby, J. J.; Woch, J.
1992-01-01
Energetic particle measurements are reported which were obtained with the EPAC instrument on board the Ulysses spacecraft during March 1991 when a series of important flares occurred at the sun. The time interval March 22 through March 29 is studied in three periods with different ion compositions. At a quasi-perpendicular shock on March 23, shock-drift acceleration of protons, helium and electrons was observed. Thirteen hours after this shock the energetic ion composition changed dramatically by almost two orders of magnitude, signaling the arrival of a coronal mass ejection or driver gas. This driver gas was still present at the spacecraft when a second quasi-perpendicular shock passed the spacecraft. The ratio Fe/O increased from 0.6 to 1.0 indicative of a connection to solar particles for about six hours after the second shock. The second shock did not accelerate ions as well and electrons not at all. Six hours after this shock the same oxygen and ion composition was observed as before, indicating that the second shock did not alter the energetic ion composition. A third ion composition was observed before the driver gas disappeared which was significantly different from those observed before the first and between the two shocks.
Oxygenation of Ediacaran Ocean recorded by iron isotopes
NASA Astrophysics Data System (ADS)
Fan, Haifeng; Zhu, Xiangkun; Wen, Hanjie; Yan, Bin; Li, Jin; Feng, Lianjun
2014-09-01
The increase in atmospheric oxygen during the late Neoproterozoic Era (ca. 800-542 Ma) may have stimulated the oxygenation of the deep oceans and the evolution of macroscopic multicellular organisms. However, the mechanism and magnitude of Neoproterozoic oxygenation remain uncertain. We present Fe isotopes, Fe species and other geochemical data for two sections of the Doushantuo Formation (ca. 635-551 Ma) deposited after the Nantuo glacial episode in the Yangtze Gorge area, South China. It is highlighted that highly positive δ56Fe values reflect a lower oxidation rate of Fe(II)aq under ferruginous conditions, and in turn near zero δ56Fe values indicate oxidizing conditions. Our study suggests that during the deposition of the bottom of Member II of the Doushantuo Formation the shallow seawater was oxic, but the deep water was characterized by ferruginous conditions, which is consistent with a redox chemical stratification model. Subsequent anoxic conditions under shallow seawater, represented by positive δ56Fe and negative δ13Ccarb excursions, should be ascribed to the upwelling of Fe(II)aq and dissolved organic carbon (DOC)-rich anoxic deep seawater. The oxidation of Fe (II)aq and DOC-rich anoxic deep seawater upon mixing with oxic shallow water provides an innovative explanation for the well-known negative δ13Ccarb excursions (ENC2) and positive δ56Fe excursions in the middle of Doushantuo Formation. Meanwhile, the upwelling Fe (II)aq- and DOC-rich anoxic deep seawater could increase photosynthetic activity. The balance between oxygen consumption and production was most important criteria for the oxygenation of Early Ediacaran Ocean and diversity of eukaryotic organisms.
Iron Isotope Systematics of the Bushveld Complex, South Africa: Initial Results
NASA Astrophysics Data System (ADS)
Stausberg, N.; Lesher, C. E.; Hoffmann-Barfod, G.; Glessner, J. J.; Tegner, C.
2014-12-01
Iron isotopes show systematic changes in igneous rocks that have been ascribed to fractional crystallization, partial melting, as well as, diffusion effects. Layered mafic intrusions, such as the Paleoproterozoic Bushveld Igneous Complex, are ideally suited to investigate stable isotope fractionation arising principally by fractional crystallization. The upper 2.1km of the Bushveld Complex (Upper and Upper Main Zone, UUMZ) crystallized from a basaltic magma produced by a major recharge event, building up a sequence of tholeiitic, Fe-rich, gabbroic cumulate rocks that display systematic variations in mineralogy and mineral compositions consistent with fractional crystallization. Within this sequence, magnetite joins the liquidus assemblage at ˜260m, followed by olivine at 460m and apatite at 1000m. Here, we present iron isotope measurements of bulk cumulate rocks from the Bierkraal drill core of UUMZ of the western limb. Iron was chemically separated from its matrix and analyzed for δ56Fe (relative to IRMM- 014) with a Nu plasma MC-ICPMS at the University of California, Davis, using (pseudo-) high resolution and sample-standard bracketing. The δ56Fe values for Bushveld cumulates span a range from 0.04‰ to 0.36‰, and systematically correlate with the relative abundance of pyroxene + olivine, magnetite and plagioclase. Notably, the highest δ56Fe values are found in plagioclase-rich cumulates that formed prior to magnetite crystallization. δ56Fe is also high in magnetite-rich cumulates at the onset of magnetite crystallization, while subsequent cumulates exhibit lower and variable δ56Fe principally reflecting fractionation of and modal variations in magnetite, pyroxene and fayalitic olivine. The overall relationships for δ56Fe are consistent with positive mineral - liquid Fe isotope fractionation factors for magnetite and plagioclase, and negative to near zero values for pyroxene and olivine. These initial results are being integrated into a forward model of the Bushveld liquid line of descent and will be compared to complementary work on the Skaergaard intrusion.
Systematics of nn states with high spin: A study of the (α, 2He) reaction on fp shell nuclei
NASA Astrophysics Data System (ADS)
Jahn, R.; Wienands, U.; Wenzel, D.; von Neumann-Cosel, P.
1985-01-01
At 57 MeV bombarding energy the (α, 2He) reaction has been investigated on targets of 54,56Fe, 58,60,62,64Ni, 64,66Zn, and 70Ge. Selective excitation of the 2n configurations ( f{5}/{2}g{9}/{2}) 7-, ( g{9}/{2}) 8 +2, and ( g{9}/{2}2 d{5}/{2}) 6+ was observed in all final nuclei. A linear A and T dependence of the binding energies of these states was observed. This systematic behaviour is well described by the Bansal-French model. The values obtained for the strength of the isoscalar and the isovector parts of the particle-hole interaction are consistent with the average of the values describing the corresponding single-particle states.
Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes
NASA Astrophysics Data System (ADS)
Lough, A. J. M.; Klar, J. K.; Homoky, W. B.; Comer-Warner, S. A.; Milton, J. A.; Connelly, D. P.; James, R. H.; Mills, R. A.
2017-04-01
Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from -2.39 ± 0.05‰ to -0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from -0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of -0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past hydrothermalism from ocean sediment records.
Mahmoud, Essam R. I.; Tash, Mahmoud M.
2016-01-01
Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe) and magnetite (Fe3O4) particles through friction stir processing (FSP). Fe and Fe3O4 powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP) tool of square probe shape, rotated at a rate of 1000–2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm) was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe3O4. The Fe3O4 particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe3O4 particles and the aluminum matrix. The saturation magnetization (Ms) of the Fe-dispersed nugget zone was higher than that of the Fe3O4-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe3O4 materials and the volume content of the dispersed particles in the nugget zone. PMID:28773629
Solubility of iron from combustion source particles in acidic media linked to iron speciation.
Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin
2012-10-16
In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.
HZE Radiation Leukemogenesis in Mice
NASA Astrophysics Data System (ADS)
Peng, Yuanlin
Radiation exposure is a risk factor for acute myeloid leukemia (AML). The Leukemogenesis NSCOR was developed to compare this risk for low LET vs HZE radiations as a means to better assess the leukemia risk to astronauts posed by space radiation. Individual projects within the NSCOR explore HZE radiation leukemogenesis in murine model systems and extend the findings to AML in humans. AML sensitive CBA/CaJ mice have been irradiated with 1 GeV 56 Fe particles at NSRL and with 137 Cs gamma-rays at Colorado State University and followed to 800 days of age for the development of AML. Molecular and cytogenetic analyses of HZE- and gamma-induced AML, including assays for chromosomal aberrations, PU.1 deletion, gene expression, array CGH and microsatellite instability are ongoing. Preliminary data indicate that 56 Fe particles are no more effective in inducing AML or shortening lifespan than gamma-rays. Studies designed to address the individual molecular steps in leukemogenesis and determine the effects of radiation and genetic background on each step have been initiated using knockout mice. Deletion of the PU.1 gene on mouse chromosome 2 is a critical step in this murine model of radiation leukemogenesis. Two of the three HZE-induced AMLs that could be assayed and thirteen of fourteen γ-induced AMLs had PU.1 loss as determined by Fluorescence in Situ Hybridization (FISH). We have found that AML sensitive CBA/CaJ mice have a higher incidence of Chr. 2 deletion in bone marrow cells following 56 Fe irradiation than AML resistant C57BL/6 mice. This study is being extended to proton irradiated mice. Our preliminary results indicate that microsatellite instability may be common in HZE irradiated progenitor cells. To determine if these cytogenetic changes can be induced in human myeloid progenitor cells by gamma, proton or HZE irradiation we are generating NOD/SCID mice that have been "humanized" by being transplanted with human hematopoietic stem cells. We are currently irradiating the humanized NOD/SCID mice with gamma-rays and then harvesting human cells from their bone marrow. These cells will be assayed for specific cytogenetic and molecular changes consistent with AML. In addition to screening the cells for chromosomal aberrations and specific deletions and translocations, we will also screen them for microsatellite instability by small pool PCR.(Funded by NASA Grant NAG9 1569)
Further analysis of the IRIS iron isotope experiment
NASA Technical Reports Server (NTRS)
Tarle, G.; Ahlen, S. P.; Cartwright, B. G.; Solarz, M.
1980-01-01
The IRIS Fe isotope experiment was extended to atomic charges of Z = 19, with isotopic distributions for 500 events ranging from 18 to 28. Normalization of the detector response functions at Fe-56 produced a single well resolved peak at Sc-45, establishing the resolution and mass scale of the device over the entire charge region. The abundance distributions for the predominantly primary isotopes Ca-40, Fe-54, Fe-56, Ni-58, and Ni-60 do not indicate a large admixture of material with distinctly nonsolar abundances.
Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth K.
2017-01-01
Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA’s Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss. PMID:28994728
Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M
2014-05-15
In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Oleic acid coated magnetic nano-particles: Synthesis and characterizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.
2015-06-24
Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less
Iron oxide and iron carbide particles produced by the polyol method
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, R.; Kobayashi, Y.
2016-12-01
Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.
Petrographic and Isotopic Evidence for Siderite Precursors to Iron Oxide Cements
NASA Astrophysics Data System (ADS)
Loope, D.
2015-12-01
The origin of iron oxide mineralization in the Navajo Sandstone on the Colorado Plateau is important because of the different forms of distinct self-organization exhibited by these systems, the potential importance of the cements as geochronometers, and their use as analogs for similar mineralization on other planets. We consider this mineralization to be the product of microbially mediated oxidation of siderite in evolving groundwater systems. Iron oxide grain coatings were dissolved and the iron precipitated as siderite during a reducing phase of diagenesis. Upon invasion by oxidizing waters, iron-oxidizing bacteria colonized the redox interface between siderite-cemented and porous sandstone. Precipitation of iron oxide at this interface generated acid that facilitated further siderite dissolution. One difficulty in testing this hypothesis is that siderite is destroyed by the cm-scale transport of iron during oxidation. There are two lines of evidence that support the presence of a siderite precursor in these systems. 1)Rhombic grains that we interpret to be iron oxide pseudomorphs after siderite occur where in-situ oxidation rather than dissolution of the siderite precursor has occurred. 2) The δ56Fe values of these iron oxide cements are typically negative. We have measured the δ56Fe value of Navajo Sandstone to be 0.2‰; a value in good agreement with previous workers (Chan et al., 2006; Busigny and Dauphas, 2007). Bleaching of the sandstones apparently results in near complete removal of Fe with little change in the δ56Fe values of the bulk sandstone. The δ56Fe values of iron oxide cements have a median value of -0.8‰; similar to the value we obtained from ferroan carbonate (-0.86‰). Iron oxide from samples that comprise largely rhombic grains has similar δ56Fe values (-0.5‰) to those obtained from cements produced by siderite dissolution and subsequent oxidation (-0.4‰). Our interpretation is that siderite precipitated from an aqueous solution in which the δ56Fe value was <0.2‰ yielding siderite with δ56Fe values that ranged upward from -1.4‰. Invasion of the Navajo by oxidizing waters resulted in microbially mediated oxidation of the siderite concretions. The strongly negative values of the Fe oxides result from the near-quantitative oxidation of the siderite in a closed system.
NASA Astrophysics Data System (ADS)
Virtasalo, Joonas J.; Laitala, Jaakko J.; Lahtinen, Raimo; Whitehouse, Martin J.
2015-12-01
The Paleoproterozoic, 2.0-1.9 Ga Talvivaara formation of Finland was deposited during the Shunga Event, a worldwide episode of enhanced accumulation of organic-rich sediments in the aftermath of the Lomagundi-Jatuli carbon isotope excursion. Sulfidic carbonaceous mudstones in the Talvivaara formation contain one of the largest known shale-hosted nickel deposits. In order to gain new insight into this Shungian sedimentary environment, sedimentological, petrographical and in situ S and Fe isotopic microanalyses were carried out on samples representing depositional and early-diagenetic conditions. The event-bedded lithology with tidal signatures in the organic-rich mudstones strongly indicates deposition from predominantly river-delivered mud on a highly-productive coastal area, below storm-wave base. The riverine supply of phosphorus, sulfate and iron supported high primary productivity and resulted in strong lateral and vertical chemical gradients in the nearshore waters with a shallow oxic surface layer underlain by euxinic water. The stratigraphic upper part of the Talvivaara formation contains banded intervals of thin alternating pyrite beds and carbonaceous mudstone beds. The pyrite beds were deposited by seaward excursions of the concentrated, acidic Fe-rich river plume subsequent to droughts or dry seasons, which led to intense pyrite precipitation upon mixing with euxinic waters. δ34S and δ56Fe values of the bedded pyrite (median δ34S = - 10.3 ‰ and δ56Fe = - 0.79 ‰) are consistent with the reaction of dissolved Fe(II) with H2S from bacterial sulfate reduction. Organic-rich clayey Fe-monosulfide-bearing granules were transported from the muddy estuary, and enclosed in Fe (oxyhydr)oxide aggregates that were forming by wave and current reworking in nearshore accumulations of river-delivered iron. The isotopic composition of these presently pyrrhotitic inclusions (median δ34S = - 3.3 ‰ and δ56Fe = - 1.6 ‰) indicates microbial iron reduction. The Fe (oxyhydr)oxide aggregates were transported in muddy debris flows to the distal euxinic seafloor. Their Fe (oxyhydr)oxide matrix was replaced by pyrite (median δ34S = + 5.8 ‰ and δ56Fe = + 0.81 ‰) at shallow sediment depths with 34S and 56Fe-enriched porewater. Wavy-crinkly laminae of possible microbial origin developed on the euxinic seafloor during low sedimentation. These results indicate episodic deposition at seasonal to multiannual time scales. δ34S and δ56Fe values in the studied Fe-sulfides provide evidence of microbial isotope fractionation processes and syndepositional and early-diagenetic origin, finding no support for the previously proposed local hydrothermal activity in the Talvivaara mudstones.
Iron isotopic systematics of oceanic basalts
NASA Astrophysics Data System (ADS)
Teng, Fang-Zhen; Dauphas, Nicolas; Huang, Shichun; Marty, Bernard
2013-04-01
The iron isotopic compositions of 93 well-characterized basalts from geochemically and geologically diverse mid-ocean ridge segments, oceanic islands and back arc basins were measured. Forty-three MORBs have homogeneous Fe isotopic composition, with δ56Fe ranging from +0.07‰ to +0.14‰ and an average of +0.105 ± 0.006‰ (2SD/√n, n = 43, MSWD = 1.9). Three back arc basin basalts have similar δ56Fe to MORBs. By contrast, OIBs are slightly heterogeneous with δ56Fe ranging from +0.05‰ to +0.14‰ in samples from Koolau and Loihi, Hawaii, and from +0.09‰ to +0.18‰ in samples from the Society Islands and Cook-Austral chain, French Polynesia. Overall, oceanic basalts are isotopically heavier than mantle peridotite and pyroxenite xenoliths, reflecting Fe isotope fractionation during partial melting of the mantle. Iron isotopic variations in OIBs mainly reflect Fe isotope fractionation during fractional crystallization of olivine and pyroxene, enhanced by source heterogeneity in Koolau samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
Formation of β-FeSi 2 thin films by partially ionized vapor deposition
NASA Astrophysics Data System (ADS)
Harada, Noriyuki; Takai, Hiroshi
2003-05-01
The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.
On 2013 April 11 active region 11719 was centered just west of the central meridian; at 06:55 UT, it erupted with an M6.5 X-ray flare and a moderately fast (∼800 km s{sup –1}) coronal mass ejection. This solar activity resulted in the acceleration of energetic ions to produce a solar energetic particle (SEP) event that was subsequently observed in energetic protons by both ACE and the two STEREO spacecraft. Heavy ions at energies ≥10 MeV nucleon{sup –1} were well measured by SEP sensors on ACE and STEREO-B, allowing the longitudinal dependence of the event composition to be studied. Both spacecraftmore » observed significant enhancements in the Fe/O ratio at 12-33 MeV nucleon{sup –1}, with the STEREO-B abundance ratio (Fe/O = 0.69) being similar to that of the large, Fe-rich SEP events observed in solar cycle 23. The footpoint of the magnetic field line connected to the ACE spacecraft was longitudinally farther from the flare site (77° versus 58°), and the measured Fe/O ratio at ACE was 0.48, 44% lower than at STEREO-B but still enhanced by more than a factor of 3.5 over average SEP abundances. Only upper limits were obtained for the {sup 3}He/{sup 4}He abundance ratio at both spacecraft. Low upper limits of 0.07% and 1% were obtained from the ACE sensors at 0.5-2 and 6.5-11.3 MeV nucleon{sup –1}, respectively, whereas the STEREO-B sensor provided an upper limit of 4%. These characteristics of high, but longitudinally variable, Fe/O ratios and low {sup 3}He/{sup 4}He ratios are not expected from either the direct flare contribution scenario or the remnant flare suprathermal material theory put forth to explain the Fe-rich SEP events of cycle 23.« less
Xu, Jie; Pu, Yuan; Yang, Xiao Jin; Wan, Pingyu; Wang, Rong; Song, Peng; Fisher, Adrian
2017-09-05
Water contamination with chlorinated hydrocarbons such as chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl 3 , CCl 4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl 3 , CCl 4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al 13 Fe 4 , Fe 3 Al and FeAl 2 ) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.
Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0.
Cheng, Rong; Wang, Jian-Long; Zhang, Wei-xian
2007-06-01
Chlorophenols, as a kind of important contaminants in groundwater, are toxic and difficult to biodegrade. Laboratory tests were conducted to examine zero-valent iron as an enhancing agent in the dechlorination of chlorinated organic compounds. Nanoscale iron particles were synthesized from common precursors KBH(4) and FeSO(4). Batch experiments were performed to investigate the reduction of p-chlorophenol (4-CP) by both common Fe(0) and nanoscale Fe(0). Comparison of 300 mesh/100 mesh/commercial reductive iron powders showed that size of iron particles played an important role in reduction process. Initial concentration and pretreatment of iron particles also influenced the chlorination rate. Nanoscale Fe(0) offered much more advantages for treatment of 4-CP compared with common iron particles, such as stability and durability. And they can be used to treat contaminants in groundwater over a long time. Among different parts of synthesized nanoscale iron particle solution, the very fine particles were the major agent for treatment of pollutants. As for preservation of nanoscale Fe(0), ethanol was recommended.
Garg, Shikha; Wang, Kai; Waite, T David
2017-05-16
Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.
Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.
2009-01-01
Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.
Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia
NASA Astrophysics Data System (ADS)
Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don
2017-09-01
Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.
Mass-dependent and -independent fractionation of Fe isotopes in magnetotactic bacteria
NASA Astrophysics Data System (ADS)
Amor, M.; Busigny, V.; Louvat, P.; Gelabert, A.; Cartigny, P.; Durand-Dubief, M.; Ona-Nguema, G.; Alphandéry, E.; Chebbi, I.; Guyot, F. J.
2016-12-01
Magnetotactic bacteria (MTB) perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the oldest microorganisms capable of biomineralization on Earth, identification of their activity in the geological record remains poorly resolved because of the lack of reliable signatures. Here, we determined Fe isotope fractionation by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 to better understand Fe cycling in MTB and provide new signatures of the contribution of MTB to iron geochemistry. AMB-1 strain was cultivated with either Fe(III)-quinate or Fe(II)-ascorbate as Fe sources. Iron isotope composition of Fe sources, bacterial growth media after AMB-1 cultures, bacterial lysates (corresponding to AMB-1 cells devoid of magnetite) and magnetite samples were analyzed by MC-ICP-MS after column chromatography. In the two culture conditions, growth media after AMB-1 cultures were enriched in light Fe isotopes relative to Fe sources. Two distinct bacterial Fe reservoirs were characterized in AMB-1: (1) magnetite enriched in the light Fe isotopes by 1.5 to 2.5‰ in δ56Fe relative to Fe sources, and (2) lysate enriched in the heavy Fe isotopes by 0.3 to 0.8‰ relative to Fe sources. More importantly, mass-independent fractionations in odd (57Fe) but not in even isotopes (54Fe, 56Fe and 58Fe) were observed for the first time, highlighting a magnetic isotope effect. Magnetite samples were significantly enriched in 57Fe by 0.23‰ relative to 54Fe, 56Fe and 58Fe. Based on our results, we propose a model for Fe cycling and magnetite biomineralization in AMB-1, and propose to use this specific mass-independent signature of Fe isotopes to evaluate the contribution of MTB to the iron biogeochemistry of recent and ancient environmental samples.
Li, Tuo; Zhao, Zhenwen; Wang, Quan; Xie, Pengfei; Ma, Jiahai
2016-11-15
Quinone-hydroquinone analogues have been proven to be efficient promoters of Fenton reactions by accelerating the Fe(III)/Fe(II) redox cycle along with self-destruction. However, so far there is little information on non-quinone-hydroquinone cocatalyst for Fenton reactions. This study found that cysteine, a common aliphatic amino acid, can strongly enhance Fenton degradation of organic pollutants by accelerating Fe(III)/Fe(II) redox cycle, as quinone-hydroquinone analogues do. Further, cysteine is superior to quinone-hydroquinone analogues in catalytic activity, H 2 O 2 utilization and atmospheric limits. The cocatalysis mechanism based on the cycle of cysteine/cystine was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.; Rademacher, S. E.; Borak, T.; Carter, T. R.; Frankel, K. A.; Schimmerling, W.; Stronach, C. E.; Chatterjee, A. (Principal Investigator)
1997-01-01
We have obtained charge-changing cross sections and partial cross sections for fragmentation of 1.05 GeV/nucleon Fe projectiles incident on H, C, Al, Cu, and Pb nuclei. The energy region covered by this experiment is critical for an understanding of galactic cosmic ray propagation and space radiation biophysics. Surviving primary beam particles and fragments with charges from 12 to 25 produced within a forward cone of half-angle 61 mrad were detected using a silicon detector telescope to identify their charge and the cross sections were calculated after correction of the measured yields for finite target thickness effects. The cross sections are compared to model calculations and to previous measurements. Cross sections for the production of fragments with even-numbered nuclear charges are seen to be enhanced in almost all cases.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell.
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895
Zhou, Tao; Zhao, Motian; Wang, Jun; Lu, Hai
2008-01-01
Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.
The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview
NASA Astrophysics Data System (ADS)
Billing, M. G.
2015-07-01
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.
NASA Astrophysics Data System (ADS)
Rivard, Camille; Montargès-Pelletier, Emmanuelle; Vantelon, Delphine; Pelletier, Manuel; Karunakaran, Chithra; Michot, Laurent J.; Villieras, Frédéric; Michau, Nicolas
2013-02-01
In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.
NASA Astrophysics Data System (ADS)
Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.
2005-05-01
There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.
Preparation and characterization of V/TiO{sub 2} nanocatalyst with magnetic nucleus of iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feyzi, Mostafa; Rafiee, Hamid Reza, E-mail: rafieehr@yahoo.com; Ranjbar, Shahram
2013-11-15
Graphical abstract: - Highlights: • Fe-V/TiO{sub 2} nanocatalyst is prepared. • Combination of sol–gel and wetness impregnation methods. • Facile separation of catalyst from medium by magnet. - Abstract: A magnetic composite containing V/TiO{sub 2} was prepared by combination of sol–gel and wetness impregnation methods. The effects of synthesis temperature, different weight percents of Fe supported on TiO{sub 2}, vanadium loading and the heating rate of calcination on the structure and morphology of nanocatalyst were investigated. The optimum conditions for synthesized catalyst were 40 wt.% of Fe, 15 wt.% of V and synthesis temperature equal to 30 °C. Characterization ofmore » catalyst is carried out using XRD, TGA, DSC, SEM, FTIR and N{sub 2} physisorption measurements. The magnetic character of nanocatalyst was measured using VSM, which showed the typical paramagnetic behavior of sample at room temperature with a saturation magnetization value equal to 8.283 emu/g. The nanocatalyst has a particle size about 56 nm and can easily be separated from medium by a magnet.« less
NASA Astrophysics Data System (ADS)
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-01
SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
Current Fragmentation and Particle Acceleration in Solar Flares
NASA Astrophysics Data System (ADS)
Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.
2012-11-01
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.
Controlled Synthesis and Magnetic Properties of Uniform Hierarchical Polyhedral α-Fe2O3 Particles
NASA Astrophysics Data System (ADS)
Long, Nguyen Viet; Yang, Yong; Thi, Cao Minh; Phuc, Le Hong; Nogami, Masayuki
2017-06-01
The controlled synthesis of uniform hierarchical polyhedral iron (Fe) micro-/nanoscale oxide particles with the α-Fe2O3 structure is presented. The hierarchical polyhedral iron oxide particles were synthesized by modified polyol methods with sodium borohydride as a powerful and efficient reducing agent. A critical heat treatment process used during the synthesis allowed for the interesting formation of α-Fe2O3 hematite with a micro-/nanoscale structure. The structure and weak ferromagnetism of the α-Fe2O3 particles were investigated by x-ray diffraction with whole pattern fitting and Rietveld refinement, scanning electron microscopy, and by vibrating sample magnetometry. The as-prepared α-Fe2O3 particles and the three dimensional models presented have promising practical applications for energy storage and conversion in batteries, capacitors, and fuel cells, and related spintronic devices and technologies.
NASA Astrophysics Data System (ADS)
Fan, S.; Yu, S.; Lai, B.; Gao, Y.
2017-12-01
Iron is a limiting micronutrient element critical for the marine ecosystem. In the extensive high-nutrient low-chlorophyll (HNLC) regions of the Southern Ocean, the activities of phytoplankton are partly controlled by iron (Fe) from different sources, including atmospheric deposition. Among important properties of atmospheric Fe are the elemental composition and Fe oxidation state of Fe-containing aerosol particles, as these properties affect aerosol Fe solubility. To explore these issues, aerosol samples were collected at Palmer Station in West Antarctic Peninsula. Samples were analyzed by submicron synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) spectroscopy for the Fe oxidation state and elemental composition of aerosol particles. The morphological information of aerosol particles was also observed by the high-resolution fluorescence microscopy, revealing possible sources and formation processes of iron-containing particles. More detailed results will be discussed in this presentation.
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jing; Herman, M.; Ge, Zhigang
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
Qian, Jing; Herman, M.; Ge, Zhigang; ...
2017-09-13
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
Particle acceleration in solar flares
NASA Technical Reports Server (NTRS)
Ramaty, R.; Forman, M. A.
1987-01-01
The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.
Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.
Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong
2012-01-01
This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.
Liu, Junxi; Wang, Chuan; Shi, Jianying; Liu, Hong; Tong, Yexiang
2009-04-15
This work investigated the effect of co-existing organic matters on aqueous Cr(VI) reduction by electrodeposited zero-valent iron (ED Fe(0)) at neutral pH. The ED Fe(0) prepared in a solution containing mixture of saccharin, L-ascorbic acid and sodium dodecyl sulfate showed higher activity in reducing the aqueous Cr(VI) at neutral pH than that prepared without any organic presence. XRD and SEM indicated that the structure of ED Fe(0) was significantly improved to nano-scale by the presence of organic mixture in the preparation solution. Further, the ED Fe(0) activity in the Cr(VI) reduction at neutral pH was increased by the co-existence of citric acid or oxalic acid in the chromate solution. Electrochemical impedance spectroscopy (EIS) demonstrated that the corrosive current increased with the concentration of organic matter in the reaction solution. With the co-existing organic matters in the preparation solution, the ED Fe(0) corroded more rapidly due to its nano-size, thus the Cr(VI) reduction by the ferrous iron was accelerated. With the co-existing organic matters in the reaction solution, the Cr(VI) reduction was accelerated by a Fe(II) complex as the main electron donor, and a prevention of the passivation due to the Fe(III) and Cr(III) complexes also accelerated the Cr(VI) reduction.
Energy spectra of cosmic-ray nuclei from 50 to 2000 GeV per amu
NASA Technical Reports Server (NTRS)
Grunsfeld, John M.; L'Heureux, Jacques; Meyer, Peter; Muller, Dietrich; Swordy, Simon P.
1988-01-01
A direct measurement of the elemental composition of cosmic rays up to energies of several TeV/amu was performed during the Spacelab 2 flight of the Space Shuttle. Results on the spectral shape for the elements C, O, Ne, Mg, Si, and Fe, obtained from this experiment, are presented. It was found that the C and O energy spectra retain a power-law spectrum in energy with an exponent Gamma of about 2.65. The Fe spectrum is flatter (Gamma of about 2.55) up to a particle energy of about 10 to the 14th eV, indicating a steady increase in the relative abundance of iron in cosmic rays up to this energy. The energy spectra of Ne, Mg, and Si are steeper than anticipated. This behavior is unexpected within current models of cosmic-ray acceleration.
Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems.
Li, Weijun; Xu, Liang; Liu, Xiaohuan; Zhang, Jianchao; Lin, Yangting; Yao, Xiaohong; Gao, Huiwang; Zhang, Daizhou; Chen, Jianmin; Wang, Wenxing; Harrison, Roy M; Zhang, Xiaoye; Shao, Longyi; Fu, Pingqing; Nenes, Athanasios; Shi, Zongbo
2017-03-01
It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a "hotspot" of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the "smoking gun" for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere.
Structure and electromagnetic properties of FeSiAl particles coated by MgO
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhou, Ting-dong
2017-03-01
FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.
Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles
NASA Astrophysics Data System (ADS)
Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.
1987-04-01
Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.
Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.
Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K
2003-01-01
Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results.
Sio, Corliss Kin I.; Dauphas, Nicolas; Teng, Fang-Zhen; Chaussidon, Marc; Helz, Rosalind T.; Roskosz, Mathieu
2013-01-01
Mineral zoning is used in diffusion-based geospeedometry to determine magmatic timescales. Progress in this field has been hampered by the challenge to discern mineral zoning produced by diffusion from concentration gradients inherited from crystal growth. A zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for this study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes. Microdrilling of the phenocryst (∼300 μm drill holes) followed by MC-ICPMS analysis of the powders revealed negatively coupled Mg and Fe isotopic fractionations (δ26Mg from +0.1‰ to −0.2‰ and δ56Fe from −1.2‰ to −0.2‰ from core to rim), which can only be explained by Mg–Fe exchange between melt and olivine. The data can be explained with ratios of diffusivities of Mg and Fe isotopes in olivine scaling as D2/D1 = (m1/m2)β with βMg ∼0.16 and βFe ∼0.27. LA-MC-ICPMS and MC-SIMS Fe isotopic measurements are developed and are demonstrated to yield accurate δ56Fe measurements within precisions of ∼0.2‰ (1 SD) at spatial resolutions of ∼50 μm. δ56Fe and δ26Mg stay constant with Fo# in the rim (late-stage overgrowth), whereas in the core (original phenocryst) δ56Fe steeply trends toward lighter compositions and δ26Mg trends toward heavier compositions with higher Fo#. A plot of δ56Fe vs. Fo# immediately distinguishes growth-controlled from diffusion-controlled zoning in these two regions. The results are consistent with the idea that large isotopic fractionation accompanies chemical diffusion in crystals, whereas fractional crystallization induces little or no isotopic fractionation. The cooling timescale inferred from the chemical-isotope zoning profiles is consistent with the documented cooling history of the lava lake. In the absence of geologic context, in situ stable isotopic measurements may now be used to interpret the nature of mineral zoning. Stable isotope measurements by LA-MC-ICPMS and MC-SIMS can be used as standard petrologic tools to identify samples for diffusion-based geospeedometry.
Mass spectrometer calibration of Cosmic Dust Analyzer
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.; Gupta, Satish C.; Jyoti, G.; Beauchamp, J. L.
2003-02-01
The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10-8 to 10-5 times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N2 laser (1011 W/cm2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ~4.6 pC (mostly Al+1), whereas irradiation of a stainless steel target produces a ~2.8 pC (Fe+1) charge. Thus the present system yields ~10-5% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg+1), 27(Al+1), and 64 (Cu+1) and 56 (Fe+1), 58 (Ni+1), and 60 (Ni+1) dalton, respectively.
NASA Astrophysics Data System (ADS)
Das, Sananda; Sahoo, R. C.; Bera, K. P.; Nath, T. K.
2018-04-01
Doping at the post-transition metal site by trivalent rare-earth ions and 3d transition metal site by transition metal ions in perovskite lattice has observed a variety of magnetic and electronic orders with spatially correlated charge, spin and orbital degrees of freedom. Here, we report large ferromagnetism and enhanced dielectric constant (at ∼100 Hz) in chemically synthesized single phase multiferroic Bi1-xNdxFe1-yCoyO3 (x = 0, 0.10; y = 0, 0.10) nanoparticles (average particles size ∼45 nm). We have also examined the ferroelectric nature of our chemically synthesized samples. The Rietveld refinement of the XRD data reveals the structural symmetry breaking from distorted rhombohedral R3c structure of BiFeO3 to the triclinic P1 structure in Bi0.9Nd0.1Fe0.9Co0.1O3 (BNFCO) without having any iron rich impurity phase. The magnetization in these nanoceramics most likely originates from the coexistence of mixed valence states of Fe ion (Fe2+ and Fe3+). A high room temperature dielectric constant (∼1050) has been observed at 100 Hz of BNFCO sample. The frequency dependent anomalies near Neel temperature of antiferromagnet in temperature variation of dielectric study have been observed for all the doped and co-doped samples exhibiting typical characteristic of relaxor ferroelectrics. A spectacular enhancement of remanent magnetization MR (∼7.2 emu/gm) and noticeably large coercivity HC (∼17.4 kOe) at 5 K have been observed in this BNFCO sample. Such emergence of ferromagnetic ordering indicates the canting of the surface spins at the surface boundaries because of the reduction of particle size in nanodimension. We have also observed P-E hysteresis loops with a remanent polarization of 26 μC/cm2 and coercive field of 5.6 kV/cm of this sample at room temperature. From impedance spectroscopy study the estimated activation energy of 0.41 eV suggests the semiconducting nature of our nanoceramic BNCFO sample.
Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat
2018-03-05
In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
Different copolymer films on ZnFeCo particles: Synthesis and anticorrosion properties
NASA Astrophysics Data System (ADS)
Ozyilmaz, A. Tuncay; Avsar, Busra; Ozyilmaz, Gul; Karahan, İ. Hakkı; Camurcu, Taskin; Colak, Fatma
2014-11-01
Zinc-iron-cobalt (ZnFeCo) particles were electrochemically deposited on carbon steel (CS) electrode applying current of 3 mA with chronopotentiometry technique. ZnFeCo particles had homogenous, smooth with prismatic structure. It was shown that the ZnFeCo particles exhibited important barrier effect on CS substrate. Poly(aniline-co-o-anisidine), poly(aniline-co-pyrrole), poly(aniline-co-N-methylpyrrole) and poly(o-anisidine-co-pyrrole) copolymer films were obtained on CS/ZnFeCo electrode. Evaluation of anticorrosion performance of copolymer coatings in 3.5% NaCl solution was investigated by using AC impedance spectroscopy (EIS) technique, anodic polarization and the Eocp-time curves. Copolymer films exhibited significant physical barrier behavior on ZnFeCo plated carbon steel, in longer exposure time.
NASA Astrophysics Data System (ADS)
Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.
2018-06-01
Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.
NASA Astrophysics Data System (ADS)
Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.
2018-03-01
Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.
Britten, Richard A; Miller, Vania D; Hadley, Melissa M; Jewell, Jessica S; Macadat, Evangeline
2016-08-01
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Wyrobek, Andrew J; Britten, Richard A
2016-06-01
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Su, Jun; Zhu, Long; Guo, Chenchen
2018-05-01
Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration
Understanding of Particle Acceleration by Foreshock Transients (invited)
NASA Astrophysics Data System (ADS)
Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III
2017-12-01
Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth.s geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.
Understanding of Particle Acceleration by Foreshock Transients
NASA Astrophysics Data System (ADS)
Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III
2017-12-01
Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.
Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z
2016-11-15
Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of PO4 tetrahedron in LiFePO4 and FePO4 system.
Zeng, Yuewu
2015-06-01
Using high resolution transmission electron microscopy with image simulation and Fourier analysis, the Li1- x FePO4 (x < 0.01), Li1- x FePO4 (x ∼ 0.5), and FePO4 particles, prepared by charging or discharging the 053048 electrochemical cells (thickness: 5 mm, width: 30 mm, height: 48 mm) and dismantled inside an Ar-filled dry box, were investigated. The high resolution images reveal: (1) the solid solution of Li1- x FePO4 (x < 0.01) contains some missing Li ions leading PO4 group distorted around M1 tunnel of the unit cell; (2) the texture of the particles of Li1- x FePO4 (x ∼0.5) has homogeneously distributed compositional domains of LiFePO4 and FePO4 resulting from spinodal decomposition which promote Li ion easily getting into the particle due to uphill diffusion, (3) the particles of FePO4 formed in charging have heavily distorted lattice and contain some isolated LiFePO4 , (4) interface between LiFePO4 and FePO4 and between amorphous and crystal region provides the lattice distortion of small polarons. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Miller, Marshall G.; Shukitt-Hale, Barbara
2018-02-01
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16O, 48Ti, or 4He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56Fe particles, exposure to the higher LET 48Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16O or 4He particles. The threshold for the rats exposed to either 16O or 4He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions.
NASA Astrophysics Data System (ADS)
Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus
2018-05-01
Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.
Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation
Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.
2006-01-01
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.
Fractionation of Fe isotopes by soil microbes and organic acids
Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.
2001-01-01
Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.
2017-06-01
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.
Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias
2012-04-04
Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. Themore » mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.« less
Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex.
Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A; Barondeau, David P
2015-06-30
Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.
IBS and expected luminosity performance for RHIC beams at top energy with 56 MHz SRF cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov,A.
The purpose of RF system in RHIC is to capture injected bunches, accelerate them to the top energy, and store bunches at the top energy for many hours. The accelerating RF system operates at harmonic number h=360 of the particle revolution frequency f=78.196 kHz, which corresponds to 28.15MHz. The storage RF system accepts the shortened bunches at top energy and provides longitudinal focusing to keep these bunches short during the store time (collision mode). The storage system operates at harmonic number h=7x360=2520, which corresponds to an RF frequency of 197.05 MHz [1]. Recently, an upgrade of storage RF system withmore » a superconducting 56 MHz cavity was proposed [2]. This upgrade will provide significant increase in the acceptance of storage RF bucket. Presently, the short bunch length for collisions is obtained via RF gymnastics with bunch rotation (called re-bucketing), because the length of 197MHz bucket of 5 nsec is too short to accommodate long bunches otherwise. However, due to bucket non-linearity and hardware complications some increase in the longitudinal emittance occurs during re-bucketing. The 56MHz cavity will produce sufficiently short bunches which would allow one to operate without re-bucketing procedure. This Note summarizes simulation of beam evolution due to Intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvement is shown both for Au ions at 100 GeV/nucleon and for protons at 250 GeV.« less
Laser-driven magnetic reconnection in the multi-plasmoid regime
NASA Astrophysics Data System (ADS)
Totorica, Samuel; Abel, Tom; Fiuza, Frederico
2017-10-01
Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian, E-mail: snove418562@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081; Fan, Xi’an, E-mail: groupfxa@163.com
2015-11-15
Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{submore » 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.« less
Walschot, Lucas H B; Aquarius, René; Verdonschot, Nico; Buma, Pieter
2014-01-01
Background and purpose — The bone impaction grafting technique restores bone defects in total hip replacement. Porous titanium particles (TiPs) are deformable, like bone particles, and offer better primary stability. We addressed the following questions in this animal study: are impacted TiPs osteoconductive under loaded conditions; do released micro-particles accelerate wear; and are systemic titanium blood levels elevated after implantation of TiPs? Animals and methods — An AAOS type-III defect was created in the right acetabulum of 10 goats weighing 63 (SD 6) kg, and reconstructed with calcium phosphate-coated TiPs and a cemented polyethylene cup. A stem with a cobalt chrome head was cemented in the femur. The goats were killed after 15 weeks. Blood samples were taken pre- and postoperatively. Results — The TiP-graft layer measured 5.6 (SD 0.8) mm with a mean bone ingrowth distance of 2.8 (SD 0.8) mm. Cement penetrated 0.9 (0.3–1.9) mm into the TiPs. 1 reconstruction showed minimal cement penetration (0.3 mm) and failed at the cement-TiP interface. There were no signs of accelerated wear, metallic particle debris, or osteolysis. Median systemic titanium concentrations increased on a log-linear scale from 0.5 (0.3–1.1) parts per billion (ppb) to 0.9 (0.5–2.8) ppb (p = 0.01). Interpretation — Adequate cement pressurization is advocated for impaction grafting with TiPs. After implantation, calcium phosphate-coated TiPs were osteoconductive under loaded conditions and caused an increase in systemic titanium concentrations. However, absolute levels remained low. There were no signs of accelerated wear. A clinical pilot study should be performed to prove that application in humans is safe in the long term. PMID:25238431
Probing Galactic Center Cosmic-Rays in the X-ray Regime
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.
2017-08-01
The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.
Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch
NASA Astrophysics Data System (ADS)
Son, S.; Taheri, M.; Carpenter, E.; Harris, V. G.; McHenry, M. E.
2002-05-01
Nanocrystalline (NC) ferrite powders have been synthesized using a 50 kW-3 MHz rf thermal plasma torch for high-frequency soft magnet applications. A mixed powder of Ni and Fe (Ni:Fe=1:2), a NiFe permalloy powder with additional Fe powder (Ni:Fe=1:2), and a NiFe permalloy powder (Ni:Fe=1:1) were used as precursors for synthesis. Airflow into the reactor chamber was the source of oxygen for oxide formation. XRD patterns clearly show that the precursor powders were transformed into NC ferrite particles with an average particle size of 20-30 nm. SEM and TEM studies indicated that NC ferrite particles had well-defined polygonal growth forms with some exhibiting (111) faceting and many with truncated octahedral and truncated cubic shapes. The Ni content in the ferrite particles was observed to increase in going from mixed Ni and Fe to mixed permalloy and iron and finally to only permalloy starting precursor. The plasma-torch synthesized ferrite materials using exclusively the NiFe permalloy precursor had 40%-48% Ni content in the Ni-ferrite particle, differing from the NiFe2O4 ideal stoichiometry. EXAFS was used to probe the cation coordination in low Ni magnetite species. The coercivity and Neel temperature of the high Ni content ferrite sample were 58 Oe and ˜590 °C, respectively.
On the relationship between collisionless shock structure and energetic particle acceleration
NASA Technical Reports Server (NTRS)
Kennel, C. F.
1983-01-01
Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.
CLASHING BEAM PARTICLE ACCELERATOR
Burleigh, R.J.
1961-04-11
A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.
2014-12-01
Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring in the ocean (e.g., biological activity) instead of abiotic redox reactions on the continent. References: 1.Martin (1990) Paleoceanography. 2.Fantle and DePaolo (2004) EPSL. 3. Gaschnig et al. (2014) EPSL. 4. Dauphas et al. (2009) EPSL.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.
2015-12-01
Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring in the ocean (e.g., biological activity) instead of abiotic redox reactions on the continent. References: 1.Martin (1990) Paleoceanography. 2.Fantle and DePaolo (2004) EPSL. 3. Gaschnig et al. (2014) EPSL. 4. Dauphas et al. (2009) EPSL.
Analysis of 238Pu and 56Fe Evaluated Data for Use in MYRRHA
NASA Astrophysics Data System (ADS)
Díez, C. J.; Cabellos, O.; Martínez, J. S.; Stankovskiy, A.; Van den Eynde, G.; Schillebeeckx, P.; Heyse, J.
2014-04-01
A sensitivity analysis on the multiplication factor, keff, to the cross section data has been carried out for the MYRRHA critical configuration in order to show the most relevant reactions. With these results, a further analysis on the 238Pu and 56Fe cross sections has been performed, comparing the evaluations provided in the JEFF-3.1.2 and ENDF/B-VII.1 libraries for these nuclides. Then, the effect in MYRRHA of the differences between evaluations are analysed, presenting the source of the differences. With these results, recommendations for the 56Fe and 238Pu evaluations are suggested. These calculations have been performed with SCALE6.1 and MCNPX-2.7e.
NASA Astrophysics Data System (ADS)
Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong
2014-11-01
Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.
The acceleration of particles at propagating interplanetary shocks
NASA Astrophysics Data System (ADS)
Prinsloo, P. L.; Strauss, R. D. T.
2017-12-01
Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
Synthesis of FeCoB amorphous nanoparticles and application in ferrofluids
NASA Astrophysics Data System (ADS)
Zhao, Shuchun; Bian, Xiufang; Yang, Chuncheng; Yu, Mengchun; Wang, Tianqi
2018-03-01
Magnetic FeCoB amorphous nanoparticles were successfully synthesized by borohydride reduction in water/n-hexane (W/He) microemulsions. The as-prepared FeCoB alloys are amorphous and spherical nanoparticles with an average particle size about 10.7 nm, compared to FeCoB alloys with an average particle size about 304.2 nm which were synthesized by a conventional aqua-solution method. Furthermore, three kinds of FeCoB ferrofluids (FFs) were prepared by dispersing FeCoB particles into W/He microemulsion, water and silicone oil respectively. Results show that the W/He-based FeCoB FFs are superparamagnetic with saturation magnetization (Ms) reaching to 12.4 emu/g. Besides, compared to water-based and silicone oil-based FFs, W/He-based FeCoB FFs exhibit high stability, with magnetic weights decreasing slightly even under the magnetic field intensity of H = 210 mT. In the W/He-based FeCoB FFs, interfacial tensions of water phase and oil phase are supposed to prevent the agglomeration and sedimentation of FeCoB nanoparticles dispersed in different water droplets of the microemulsion, compared to the current stabilizing method of directly modifying the surface of particles.
Garnier, J; Garnier, J-M; Vieira, C L; Akerman, A; Chmeleff, J; Ruiz, R I; Poitrasson, F
2017-01-01
The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δ 56 Fe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l -1 ) and δ 56 Fe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δ 56 Fe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Δ 56 Fe≈-1.15‰ was obtained, taking the average of all the δ 56 Fe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rouxel, O. J.; Gueguen, B.
2016-12-01
Ferromanganese (Fe-Mn) crusts are potential archive of the Fe isotope composition of deep seawater through time. Here, we report Fe isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of the Fe isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. The results show that, despite different growth rates, diagenetic history, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Fe isotope compositions over the last 17 Ma, yielding average δ56Fe values of -0.22 ± 0.20‰ (1sd, n = 54). The results also show striking correlations between Fe and Pb isotope ratios, indicating that local mixing between water masses is the main factor controlling Fe isotope composition in FeMn crusts. Recently, Horner et al. (2015) reported a range of δ56Fe values from -1.12‰ to 1.54‰ along a 76 Ma-old FeMn crust from the central pacific. However, secular variations of Fe isotopes inferred from other FeMn crusts in the Central North Pacific and Western Pacific (Yang and Rouxel, unpublished) show different patterns over the last 40 Ma, with δ56Fe ranging from -0.07 to -0.61‰ (n=81). Hence, the application of Fe isotopes as paleoceanographic proxies to trace deeply sourced iron at the scale of oceanic basins should be used with caution, prompting for an integrative approach combining diverse yet complimentary geochemical proxies.
Thermodynamic Properties of α-Fe 2O 3 and Fe 3O 4 Nanoparticles
Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; ...
2015-04-21
Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe 2O 3 (hematite) and Fe 3O 4 (magnetite) nanoparticles. In addition to 9 nm Fe 3O 4, three α-e 2O 3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e 2O 3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e 2O 3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INSmore » spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less
Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems
Li, Weijun; Xu, Liang; Liu, Xiaohuan; Zhang, Jianchao; Lin, Yangting; Yao, Xiaohong; Gao, Huiwang; Zhang, Daizhou; Chen, Jianmin; Wang, Wenxing; Harrison, Roy M.; Zhang, Xiaoye; Shao, Longyi; Fu, Pingqing; Nenes, Athanasios; Shi, Zongbo
2017-01-01
It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a “hotspot” of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the “smoking gun” for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere. PMID:28275731
NASA Astrophysics Data System (ADS)
Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin
2011-01-01
We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.
NASA Astrophysics Data System (ADS)
Ahmad, Hasan; Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar; Minami, Hideto; Tauer, Klaus; Gafur, Mohammad Abdul; Rahman, Mohammad Mahbubor
2016-08-01
A combination of maghemite polypyrrole (PPy/γ-Fe2O3) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe2O3 nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl3 as a oxidant and p-toluene sulfonic acid (p-TSA) as a dopant. In the reaction system FeCl3 functioned as a source of Fe(III) for the formation of γ-Fe2O3. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl2. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water.
Fe embedded in ice: The impacts of sublimation and energetic particle bombardment
NASA Astrophysics Data System (ADS)
Frankland, Victoria L.; Plane, John M. C.
2015-05-01
Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch
We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with thosemore » in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.« less
Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective
NASA Astrophysics Data System (ADS)
Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang
2017-12-01
The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Guttormsen, M.; Blasi, N.
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...
2017-04-24
Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less
NASA Astrophysics Data System (ADS)
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antiño R.; Latendresse, John; Olsen, Reid H. J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2015-11-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.
2013-01-01
Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antino R.; Latendresse, John; Olsen, Reid H.J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2015-01-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation). Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. PMID:26553631
Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K
2005-01-01
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees. c2005 Published by Elsevier Ltd on behalf of COSPAR.
He, Lei; Li, Zhiyang; Fu, Jing; Deng, Yan; He, Nongyue; Wang, Zhifei; Wang, Hua; Shi, Zhiyang; Wang, Zunliang
2009-10-01
SiO2/(PMMA/Fe3O4) composite particles were prepared from linolenic acid (LA) instead of oleic acid (OA) modified Fe3O4 nanoparticles by miniemulsion polymerization. LA has three unsaturated double bonds with which it can polymerizate more easily than OA. And coating Fe3O4 with polymethyl methacrylate (PMMA) polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. Finally, the resulting PMMA/Fe3O4 nanoparticles were coated with silica, forming SiO2/(PMMA/Fe3O4) core-shell structure particles. The sizes of nanoparticles with core-shell structure were in the range from 300 to 600 nm. The nanoparticles were spherical particles and had consistent size. The result of magnetic measurement showed that the composite particles had superparamagnetic property.
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
The Role of Fluid Compression in Particle Energization during Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, H.; Li, S.
2017-12-01
Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
High field gradient particle accelerator
Nation, John A.; Greenwald, Shlomo
1989-01-01
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
Qin, G W; Pei, W L; Ren, Y P; Shimada, Y; Endo, Y; Yamaguchi, M; Okamoto, S; Kitakami, O
2011-12-01
Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.
Metallicity Differences in Type Ia Supernova Progenitors Inferred from Ultraviolet Spectra
NASA Astrophysics Data System (ADS)
Foley, Ryan J.; Kirshner, Robert P.
2013-05-01
Two "twin" Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower 56Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities (ΔMV ≈ 0.6 mag), which correspond to different 56Ni yields: M_11fe(^{56}Ni) / M_11by(^{56}Ni) = 1.7^{+0.7}_{-0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in 56Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.
NASA Astrophysics Data System (ADS)
Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan
2015-04-01
In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the diffusivity ratio of 54Fe and 56Fe (i.e., D54Fe/D56Fe) is very similar to that of 24Mg and 26Mg, despite the smaller relative mass difference for the 54Fe-56Fe pair. This study demonstrates that a combined investigation of Fe-Mg chemical and isotopic zoning in olivine provides additional and more reliable information on magma evolution than chemical zoning alone.
Composition distributions in FePt(Au) nanoparticles
NASA Astrophysics Data System (ADS)
Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.
2010-08-01
Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.
Nucleosynthesis by Type Ia Supernova for different Metallicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Takuya; Umeda, Hideyuki; Nomoto, Ken'ichi
2006-07-12
We calculate nucleosynthesis by type Ia supernova for various metallicity. We adopt two typical hydrodynamical models, carbon deflagration and delayed detonation. The two main points of this research are to see that (1)how the ejected mass of 56Ni changes and (2)how abundance of each element (especially Fe-group elements) is influenced by varying metallicity. We find that (1)56Ni mass changes about 15% in the range of Z = 0.001 - 0.05 and insufficient to explain all of the observed variety of SNe Ia peak luminosity, and (2)[Mn/Fe] and [Ni/Fe] show fairy dependence on metallicity (especially for delayed detonation model) while [Cr/Fe]more » or [{alpha}/Fe] do not.« less
Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization.
Joshi, Prachi; Gorski, Christopher A
2016-07-19
When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.
Improving particle beam acceleration in plasmas
NASA Astrophysics Data System (ADS)
C. de Sousa, M.; L. Caldas, I.
2018-04-01
The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.
Particle acceleration at shocks in the inner heliosphere
NASA Astrophysics Data System (ADS)
Parker, Linda Neergaard
This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations
Microstructural Evolution during the Dynamic Deformation of High Strength Navy Steels
2008-05-19
phase particles (Figures 23d,e). These include carbides as well as copper precipitates that are of the order of 10 nm or less in size. These particles ...Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - I pure Fe: Acta Metallurgica 30(1982)323. 22. Y. Inokuti...and B. Cantor, Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - II Fe-Ni alloys : Acta
Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements
NASA Astrophysics Data System (ADS)
Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick
2017-09-01
Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.
Beta decay of exotic TZ = -1, -2 nuclei: the interesting case of 56Zn
NASA Astrophysics Data System (ADS)
Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; Fujita, H.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.
2014-03-01
The β decay properties of the Tz = -2, 56Zn isotope and other proton-rich nuclei in the fp-shell have been investigated in an experiment performed at GANIL. The ions were produced in fragmentation reactions and implanted in a double-sided silicon strip detector surrounded by Ge EXOGAM clovers. Preliminary results for 56Zn are presented .The 56Zn decay proceeds mainly by β delayed proton emission, but β delayed gamma rays were also detected. Moreover, the exotic β delayed gamma-proton decay was observed for the first time. The 56Zn half-life and the energy levels populated in the 56Cu daughter have been determined. Knowledge of the gamma de-excitation of the mirror states in 56Co and the comparison with the results of the mirror charge exchange process, the 56Fe(3He,t) reaction (where 56Fe has Tz = +2), were important in the interpretation of the 56Zn decay data. The absolute Fermi and Gamow-Teller strengths have been deduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loria R.; Guida P.; Loria, R.
2010-09-07
Space exploration is associated with exposure to 1-3 Gy solar particle radiation and galactic cosmic radiation that could increase cancer rates. Effective nontoxic countermeasures to high linear energy transfer (LET) radiation exposure are highly desirable but currently not available. The aim was to determine whether a single subcutaneous injection of androstenediol ({Delta}(5) androsten-3{beta}, 17{beta}-diol [AED]) could mitigate and restore the mouse hematopoetic system from the radiation-mediated injury of 3 Gy whole-body high LET (56)Fe(26+) exposure. The findings show that postradiation AED treatment has an overall positive and significant beneficial effect to restore the levels of hematopoeitic elements (p < 0.001).more » Androstenediol treatment significantly increased monocyte levels at days 4, 7, and 14 and, similarly, increased red blood cell, hemoglobin, and platelet counts. Flow cytometry analysis 14 days after radiation and AED treatment demonstrated an increase (p < 0.05) in bone marrow cells counts. Ex vivo osteoclastogenesis studies show that AED treatment is necessary and advantageous for the development and restoration of osteoclastogenesis after radiation exposure. These findings clearly show that androstenediol functions as a countermeasure to remedy hematopoeitic injury mediated by high LET iron ion radiation. Presently, no other agent has been shown to have such properties.« less
NASA Astrophysics Data System (ADS)
Ding, Wei; Jiang, Longtao; Liao, Yaqin; Song, Jiabin; Li, Bingqing; Wu, Gaohui
2015-03-01
Fe/silicate glass soft magnetic composites (SMC) were fabricated by powder metallurgy with 1000 MPa pressure at room temperature, and then annealed at 700 °C for 90 min. The iron particles distributed uniformly in the composites, and have been separated from each other by a continuous silicate glass insulating layer. Fe/glass interface was well bonded and a quasi-continuous layer Fe3O4 and FeO exited. Very fine crystalline phases Na12Ca3Fe2(Si6O18)2 were formed in silicate glass. Composite containing 57 vol% 75 μm iron particles demonstrated highest resistivity of 7.8×10-3 Ω m. The μm, Bs and Bt increased while Hc of Fe/silicate glass composites decreased with the increase of average size of iron particles. The composite with highest amount (82 vol%) and largest average size (140 μm) of iron particles demonstrated best μm, Bs and Bt and Hc, which were 622, 1.57 T, 1.43 T, 278 A/m, respectively. The composite containing 57 vol% 75 μm iron particles demonstrated minimum core loss of 3.5 W/kg at 50 Hz and 28.1 W/kg at 400 Hz, while the composite containing 82 vol% 140 μm iron particles exhibited maximum core loss of 5.2 W/kg at 50 Hz and 67.7 W/kg at 400 Hz.
Method and apparatus for varying accelerator beam output energy
Young, Lloyd M.
1998-01-01
A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.
NASA Astrophysics Data System (ADS)
Pulišová, P.; Kováč, J.; Voigt, A.; Raschman, P.
2013-09-01
Nano-particles of CoFe2O4, NiFe2O4 and Co0.5Ni0.5Fe2O4 were synthesized by a two step microemulsion precipitation where inverse micelles of water in hexanol were stabilized using cetyltrimethylammonium bromide. Powder X-ray diffraction analysis and Transmission electron microscopy measurements provided data to clarify the crystal structure and size of the produced nano-particles. Different measurements of magnetic properties at low temperatures of 2 K revealed that nano-particles of NiFe2O4 represent magnetically soft ferrite with a coercivity ∼40 kA/m, whereas nano-particles of CoFe2O4 and Co0.5Ni0.5Fe2O4 were magnetically harder with a coercivity of 815 and 947 kA/m, respectively. Additionally zero field cooling and field cooling measurements provided data for estimating the blocking temperature of the materials produced. For NiFe2O4 this temperature is lower, 23 K. The blocking temperature of CoFe2O4 of 238 K and Co0.5Ni0.5Fe2O4 of 268 K are higher in comparison with NiFe2O4.
Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography
Wise, Anna M.; Weker, Johanna Nelson; Kalirai, Sam; ...
2016-02-26
Understanding Fe deposition in fluid catalytic cracking (FCC) catalysis is critical for the mitigation of catalyst degradation. We employ soft X-ray ptychography to determine at the nanoscale the distribution and chemical state of Fe in an aged FCC catalyst particle. We also show that both particle swelling due to colloidal Fe deposition and Fe penetration into the matrix as a result of precracking of large organic molecules occur. Furthermore, the application of ptychography allowed us to provide direct visual evidence for these two distinct Fe-based deactivation mechanisms, which have so far been proposed only on the basis of indirect evidence.
Efficient particle acceleration in shocks
NASA Astrophysics Data System (ADS)
Heavens, A. F.
1984-10-01
A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, G.; Li, H.
2016-12-01
Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle acceleration and plasma energization. However, the role of compression in particle acceleration during magnetic reconnection is unclear. We use two approaches to study this issue. First, using fully kinetic simulations, we quantitatively calculate the effect of compression in energy conversion and particle energization during magnetic reconnection for a range of plasma beta and guide field. We show that compression has an important contribution for the energy conversion between the bulk kinetic energy and the internal energy when the guide field is smaller than the reconnecting component. Based on this result, we then study the large-scale reconnection acceleration by solving the Parker's transport equation in a background reconnecting flow provided by MHD simulations. Due to the compression effect, the simulations suggest fast particle acceleration to high energies in the reconnection layer. This study clarifies the nature of particle acceleration in reconnection layer, and may be important to understand particle acceleration and plasma energization during solar flares.
Particle acceleration at a reconnecting magnetic separator
NASA Astrophysics Data System (ADS)
Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.
2015-02-01
Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.
Oxidation of Fe(II) to Fe(III) is an important reaction in drinking water treatment and distribution systems, and the ferric particles that form are a major source of consumer complaints of colored water. Ferrous iron is found naturally in many ground waters and can be released ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ningning; He, Cuicui; Liu, Jianbing
2014-11-15
Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights: • Three Fe{sub 2}O{sub 3} particles with different morphologies (polyhedral, oval and granular) were prepared by the hydrothermal method. • Thermal behaviors of thermites Al/Fe{sub 2}O{sub 3} are studied upon DSC data. • Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} on the combustion properties of the AP/HTPB composite propellant are first investigated.« less
Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems
NASA Astrophysics Data System (ADS)
Stuff, M.; Schuessler, J. A.; Wilke, M.
2015-12-01
Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000) Geochim. Cosmochim. Acta 64, 849-865.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
NASA Technical Reports Server (NTRS)
Cane, H. V.; Reames, D. V.; Von Rosenvinge, T. T.
1991-01-01
The abundances of elements in large solar energetic-particle events in the energy range of 2-12 MeV per nucleon are examined. It is confirmed that the abundances relative to mean values vary approximately monotonically as a function of mass, except for He-4; some events show a gradual depletion of heavy ions, whereas a small number displays a gradual increase. A further organization of abundance data is shown, which depends on the longitude of the source region. Enhancements in Fe/C and other heavy elements relative to C occur when source regions are near west 60 deg; the enhancements are attributed to the sampling of a flare-heated material. Depletions of these elements are found to be greatest for source regions near central meridian; they are matched by a steepening of the spectrum and can be understood in terms of diffusive shock acceleration.
Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Lynn, Jacob William
We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.
Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity
NASA Astrophysics Data System (ADS)
Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.
Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves placing mice in a plexiglass box fitted with arrays of photocells. A mouse placed in the box exhibits exploratory behavior that diminishes to a low level over the course of about 20 min. Iron particle irradiation caused dose related reductions in locomotor activity stimulated by cocaine, as evidenced by the group data presented here. The impairments after HZE radiation appeared to be persistent. Irradiation using a 137Co source also led to alterations in cocaine-stimulated locomotion at early times, but, unlike the situation for HZE radiation, these disappeared at later times. These studies were very recently terminated and data analysis is not yet complete. For example, spontaneous activity was also monitored, and it is possible that comparison of stimulated and spontaneous locomotion for each animal may expose larger changes. Most of the mice were sacrificed and their brains stored for histology and neurochemistry. Ex vivo determination of dopamine transporter status in striata of some of the mice indicated no large decrease in this marker of pre-synaptic dopamine terminals, supporting an earlier pilot study in rats.
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
2017-08-29
A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes themore » particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.« less
High-current, relativistic electron-beam transport in metals and the role of magnetic collimation.
Storm, M; Solodov, A A; Myatt, J F; Meyerhofer, D D; Stoeckl, C; Mileham, C; Betti, R; Nilson, P M; Sangster, T C; Theobald, W; Guo, Chunlei
2009-06-12
High-resolution coherent transition radiation (CTR) imaging diagnoses electrons accelerated in laser-solid interactions with intensities of approximately 10;{19} W/cm;{2}. The CTR images indicate electron-beam filamentation and annular propagation. The beam temperature and half-angle divergence are inferred to be approximately 1.4 MeV and approximately 16 degrees , respectively. Three-dimensional hybrid-particle-in-cell code simulations reproduce the details of the CTR images assuming an initial half-angle divergence of approximately 56 degrees . Self-generated resistive magnetic fields are responsible for the difference between the initial and measured divergence.
Novel Electro-Analytical Tools for Phase-Transformation Electrode Materials
2009-08-13
words) We measured and compared phase transformation accommodation energy (AE) for Li4Ti5O12 and LiFePO4 with different particle size by using...larger than next cycles due to inducing of defects; Because of smaller volume difference, AE of Li4Ti5O12 was lower than that of LiFePO4 ; AE of... LiFePO4 with small particle size was lower than that of LiFePO4 with large particle size. By plugging the AE measured by GITT into mixed control
Accelerated heavy particles and the lens. VII: The cataractogenic potential of 450 MeV/amu iron ions
NASA Technical Reports Server (NTRS)
Worgul, B. V.; Brenner, D. J.; Medvedovsky, C.; Merriam, G. R. Jr; Huang, Y.
1993-01-01
PURPOSE. To determine the cataractogenic potential dose of high velocity iron ions as a fixation of dose administered singly or fractionated. The dose is critical to risk assessment and to theories of radiation action and cataractogenesis. METHODS. Twenty-eight-day-old rats were examined by slit-lamp biomicroscopy on a weekly-bi-weekly basis for more than 2 yr after radiation exposure. For the acute exposure study doses of 1, 2, 5, 25, and 50 cGy were evaluated. The fractionated regimens involved total doses of 2, 25, and 50 cGy. The reference radiation consisted of 50, 100, 200, or 700 cGy of 250 kilovolt (peak) x-rays. RESULTS. In accordance with previous findings in the rat using 570 MeV/amu 40Ar ions, the relative biologic effectiveness increased rapidly with decreasing dose, reaching values as high as 100. Unlike 40Ar ions, fractionation of the 56Fe doses did not produce a consistent enhancement at any of the doses examined. CONCLUSIONS. The data support the previous findings of a high cataractogenic potential for high linear energy transfer (LET) radiation. The effectiveness for the production of cataracts increases with decreasing dose relative to x-rays and is independent of dose protraction. Although the present study did not reveal a consistent enhancement of effect when the ions were applied in fractions, the results are consistent with at least one theory of the inverse dose-rate effect observed for high-LET radiation.
NASA Astrophysics Data System (ADS)
Worgul, B. V.; Smilenov, L.; Brenner, D. J.; Vazquez, M.; Hall, E. J.
Previous studies have shown that the eyes of ATM heterozygous mice exposed to low-LET radiation (X-rays) are significantly more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to high-LET radiation damage. Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 mGy of 1 GeV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per lens epithelial cell nuclear area. Controls consisted of irradiated wildtype as well as unirradiated wildtype and heterozygous mice. Prevalence analyses for stage 0.5-3.0 cataracts indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the ATM gene. The data show that heterozygosity for the ATM gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that ATM heterozygotes in the human population may also be radiosensitive. This may have to be considered in the selection of individuals who will be exposed to both HZE particles and low-LET radiation as they may be predisposed to increased late normal tissue damage.
Synthesis, structural and magnetic properties of Mg0.6Zn0.4CrxFe2-xO4 (0.0 ≤ x ≤ 2.0) nano ferrite
NASA Astrophysics Data System (ADS)
Verma, R.; Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Modak, S. S.; Mazaleyrat, F.
2018-05-01
Present study reports, effect on structural, magnetic properties of Cr doped Mg-Zn nano-ferrite: Mg0.6Zn0.4CrxFe2-xO4 (0.0≤ x≤2.0), synthesized by sol-gel auto combustion method. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were utilized to monitor the effect of Cr substitution on structural, magnetic properties, and correlation between them. XRD confirms the formation of single phase spinel nano ferrite with particle size ranging between 3.9 - 40.5 nm, whereas EDS confirms the formation of the estimated ferrite composition. Distribution of Mg, Zn, Cr, Fe cations on tetrahedral (A), octahedral (B) site show mixed spinel structure. Increase of Cr content leads to increase of specific surface area (4.35 - 28.28 m2/g), decrease of experimental saturation magnetization at 300 K (varies between 0.57 - 40.95 Am2/kg), and theoretical magnetization at 0 K (range between 13.37 - 56.77 Am2/kg). Observed changes in coercivity values reflect soft magnetic nature of the studied ferrites.
The Particle Adventure | What is fundamental? | Fundamental
Quiz - What particles are made of The four interactions How does matter interact? The unseen effect structure Rutherford's result Rutherford's analysis How physicists experiment Deflected probe Detecting the Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles
Spatial learning and memory deficits induced by exposure to iron-56-particle radiation
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.
2000-01-01
It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.
Rabin, Bernard M; Carrihill-Knoll, Kirsty L; Miller, Marshall G; Shukitt-Hale, Barbara
2018-02-01
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16 O, 48 Ti, or 4 He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56 Fe particles, exposure to the higher LET 48 Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16 O or 4 He particles. The threshold for the rats exposed to either 16 O or 4 He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.
From iron(III) precursor to magnetite and vice versa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotic, M., E-mail: gotic@irb.hr; Jurkin, T.; Music, S.
2009-10-15
The syntheses of nanosize magnetite particles by wet-chemical oxidation of Fe{sup 2+} have been extensively investigated. In the present investigation the nanosize magnetite particles were synthesised without using the Fe(II) precursor. This was achieved by {gamma}-irradiation of water-in-oil microemulsion containing only the Fe(III) precursor. The corresponding phase transformations were monitored. Microemulsions (pH {approx} 12.5) were {gamma}-irradiated at a relatively high dose rate of {approx}22 kGy/h. Upon 1 h of {gamma}-irradiation the XRD pattern of the precipitate showed goethite and unidentified low-intensity peaks. Upon 6 h of {gamma}-irradiation, reductive conditions were achieved and substoichiometric magnetite ({approx}Fe{sub 2.71}O{sub 4}) particles with insignificantmore » amount of goethite particles found in the precipitate. Hydrated electrons (e{sub aq}{sup -}), organic radicals and hydrogen gas as radiolytic products were responsible for the reductive dissolution of iron oxide in the microemulsion and the reduction Fe{sup 3+} {yields} Fe{sup 2+}. Upon 18 h of {gamma}-irradiation the precipitate exhibited dual behaviour, it was a more oxidised product than the precipitate obtained after 6 h of {gamma}-irradiation, but it contained magnetite particles in a more reduced form ({approx}Fe{sub 2.93}O{sub 4}). It was presumed that the reduction and oxidation processes existed as concurrent competitive processes in the microemulsion. After 18 h of {gamma}-irradiation the pH of the medium shifted from the alkaline to the acidic range. The high dose rate of {approx}22 kGy/h was directly responsible for this shift to the acidic range. At a slightly acidic pH a further reduction of Fe{sup 3+} {yields} Fe{sup 2+} resulted in the formation of more stoichiometric magnetite particles, whereas the oxidation conditions in the acidic medium permitted the oxidation Fe{sup 2+} {yields} Fe{sup 3+}. The Fe{sup 3+} was much less soluble in the acidic medium and it hydrolysed and recrystallised as goethite. The {gamma}-irradiation of the microemulsion for 25 h at a lower dose rate of 16 kGy/h produced pure substoichiometric nanosize magnetite particles of about 25 nm in size and with the stoichiometry of Fe{sub 2.83}O{sub 4}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.t
2016-11-15
The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggestsmore » that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.« less
Interplanetary energetic particle observations of the March 1989 events
NASA Technical Reports Server (NTRS)
Sarris, E. T.; Krimigis, S. M.
1989-01-01
The IMP-8 spacecraft placed in an elongated orbit of approximately R(sub E) x R(sub E) orbit around the Earth was the only monitor of the energetic particle environment of the near interplanetary space during the period of the solar particle events associated with the Active Region 5395 in March 1989. Measurements of energetic ion and electron intensities were obtained in a series of channels within the energy range: 0.3 to 440 MeV for photons, 0.6 to 52 MeV/nuc for alpha particles, 0.7 to 3.3 MeV/nuc for nuclei with Z greater than or equal to 3, 3 to 9 MeV/nuc with Z greater than or equal to 20, and 0.2 to 2.5 MeV for electrons. The responses of selected energy channels during the period 5 to 23 March 1989 are displayed. It is clearly noted that the most prominent energetic ion intensity enhancements in that time interval were associated with the interplanetary shock wave of March 13 (07:42 UT) as well as that of March 8 (17:56 UT), which have distinct particle acceleration signatures. These shock waves play a major role in determining the near Earth energetic ion intensities during the above period by accelerating and modulating the ambient solar energetic particle population, which was already present in high intensities in the interplanetary medium due to the superposition of a series of solar flare particle events originating in AR 5395. The differential ion intensities at the lowest energy channel of the CPME experiment, which were associated with the March 13 shock wave, reached the highest level in the life of the IMP-8 spacecraft at this energy. At high energies, the shock associated intensity peak was smaller by less than a factor of 3 than the maxima of solar flare particle intensities from some other major flares, in particular from those with sites well connected to the Earth's magnetic flux tubes.
AN ATTEMPT TO LOCATE INTERMETALLIC PARTICLES IN ZIRCONIUM ALLOYS USING A BITTER FIGURE TECHNIQUE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, B.; Harder, B.R.
1961-10-01
The compound ZrFe/sub 2/ is known to be ferromagnetic, and an attempt to locate particles of magnetic material in zircaloy-2 and dilute Zr- Fe alloys by a Bitter figure technlque is described. An Fe/sub 3/O/sub 4/ sol in water-soluble plastic was used to prepare Bitter figures of the alloy surfaces in the form of replicas, which were then examined in an electron microscope. No magnetic particles were located in either zircaloy-2 or a Zr-O.3% Fe alloy. Subsequent work on specimens of ZrFe/sub 2/ showed that the failure to detect it in the dilute alloys arose because the size of themore » intermetallic particles in the latter was smaller than the size of the magnetic domains. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billing, M. G.; Conway, J. V.; Crittenden, J. A.
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less
Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...
2016-04-28
Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less
Piezoelectric particle accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.
2017-08-29
A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R; Pathak, Rupak; Allen, Antiño R; Latendresse, John; Olsen, Reid H J; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor
2015-11-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
Accelerator Science: Circular vs. Linear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.
Introduction to Particle Acceleration in the Cosmos
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.
2005-01-01
Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadwaj, K.S.K.; Panigrahi, M.K.; Ghose, J.
2004-11-01
Diol capped {gamma}-Fe{sub 2}O{sub 3} nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5nm) and 1,5-pentanediol (15nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673K) are {gamma}-Fe{sub 2}O{sub 3} and the 773K-sintered sample is Fe{sub 3}O{sub 4}. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to {alpha}-Fe{sub 2}O{sub 3} at higher lasermore » power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of {gamma}-Fe{sub 2}O{sub 3} sample with large particle size (15.4nm) is more than the sample with small particle size (10.2nm). Fe{sub 3}O{sub 4} having a particle size of 48nm is however less stable than the smaller {gamma}-Fe{sub 2}O{sub 3} nanoparticles.« less
Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip.
Adar, Sara Dubowsky; Adamkiewicz, Gary; Gold, Diane R; Schwartz, Joel; Coull, Brent A; Suh, Helen
2007-04-01
Airborne particles have been linked to pulmonary oxidative stress and inflammation. Because these effects may be particularly great for traffic-related particles, we examined associations between particle exposures and exhaled nitric oxide (FE(NO)) in a study of 44 senior citizens, which involved repeated trips aboard a diesel bus. Samples of FE(NO) collected before and after the trips were regressed against microenvironmental and ambient particle concentrations using mixed models controlling for subject, day, trip, vitamins, collection device, mold, pollen, room air nitric oxide, apparent temperature, and time to analysis. Although ambient concentrations were collected at a fixed location, continuous group-level personal samples characterized microenvironmental exposures throughout facility and trip periods. In pre-trip samples, both microenvironmental and ambient exposures to fine particles were positively associated with FE(NO). For example, an interquartile increase of 4 microg/m(3) in the daily microenvironmental PM(2.5) concentration was associated with a 13% [95% confidence interval (CI), 2-24%) increase in FE(NO). After the trips, however, FE(NO) concentrations were associated pre-dominantly with microenvironmental exposures, with significant associations for concentrations measured throughout the whole day. Associations with exposures during the trip also were strong and statistically significant with a 24% (95% CI, 15-34%) increase in FE(NO) predicted per interquartile increase of 9 microg/m(3) in PM(2.5). Although pre-trip findings were generally robust, our post-trip findings were sensitive to several influential days. Fine particle exposures resulted in increased levels of FE(NO) in elderly adults, suggestive of increased airway inflammation. These associations were best assessed by microenvironmental exposure measurements during periods of high personal particle exposures.
Cheng, Zihang; Fu, Fenglian; Dionysiou, Dionysios D; Tang, Bing
2016-06-01
In this study, mesoporous iron/aluminum (Fe/Al) bimetallic particles were synthesized and employed for the removal of aqueous As(III). Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) analysis method, Vibrating-sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the Fe/Al bimetals before and after reaction with As(III). The physical properties, compositions, and structures of Fe/Al bimetallic particles as well as the As(III) removal mechanism were investigated. The characterization of the bimetallic particles after the reaction has revealed the removal of As(III) is a complex process including surface adsorption and oxidation, and intraparticle reduction. The good As(III) removal capability and stability of the Fe/Al bimetallic particles exhibited its great potential as an effective and environmental friendly agent for As(III) removal from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach
Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang
2016-01-01
We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732
Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char
Sung Phil Mun; Zhiyong Cai; Jilei Zhang
2013-01-01
Wood char,a by-product from the fast-pyrolysis process of southern yellow pine wood for bio-oil production, was carbonized with Fenano particles (FeNPs) as a catalyst to prepare carbon-encapsulated Fe nanoparticles. A magnetic separation method was tested to isolate carbon-encapsulated Fe nano particles from the carbonized char. X-ray diffraction pattern clearly shows...
The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron
NASA Astrophysics Data System (ADS)
Xu, Mingqin; Wang, Lu; Lu, Wenquan; Zeng, Long; Nadendla, Hari-Babu; Wang, Yun; Li, Jun; Hu, Qiaodan; Xia, Mingxu; Li, Jianguo
2018-03-01
The nucleation potency of iron oxides was verified experimentally through nucleation undercooling of liquid iron using aerodynamic levitation technology for minimized container contaminations. Steady undercooling values were subsequently obtained from multiple melting and freezing thermal cycles, with the average undercooling values of 223 K ± 3 K and 75 K ± 6 K (223 °C ± 3 °C and 75 °C ± 6 °C) for FeO-contained liquid and Fe3O4-contained liquid, respectively. The statistical results showed a negligible difference in the sizes and numbers of particles between FeO and Fe3O4 particles, indicating that the nucleation potency difference is attributed to the nature of nucleants rather than particle size or numbers. Furthermore, high-resolution transmission electron microscopy analysis showed that the potential nucleation interfaces can be assumed as { 1 1 0}_{{δ {{-Fe}}}} //( 0 0\\bar{2})_{FeO} and { 1 1 2}_{{δ {{-Fe}}}} //(\\bar{2} 0 2 )_{{{Fe}3 {O}4 }} , based on the detected exposed crystal planes of the oxide particles. Both the interfaces have relatively large values of lattice misfit, consistent with the experimentally measured undercooling based on Turnbull's lattice matching theory.
Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.
2016-01-01
New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.
Decontamination System Utilizing Hydrogen Peroxide, UV Light and Catalytic Surfaces
1992-02-01
Min %DMO RecoveredDisk# Catalyst (relative to control) 1 Ag 2 0 5.4 2 Ag2 0 10.1 4 FeTiO3 56 5 FeTio3 48 7 None 558 None 56 Control None 100 Ag 2 0...Std. Ag2 0 44 FeTiO3 Std. FeTiO3 100 Reference 87 - 36 - Table 9g. Experiment U, 1-09-91, 50% H2 02 , No UV Light, Run Time - 40 Min % DMO...Ag 2 0 2 7.8 44 1-09 T FeTiO3 2 52 100 1-09 U MnO 2 59 921-09 U Mn304 2 62 89 1-21 Y Ag 2 S/CaCO3 2 36 103 1-21 Y Ag 2 S 2 39 100 1-21 Z FeS2 2 6.0
Acceleration technologies for charged particles: an introduction
NASA Astrophysics Data System (ADS)
Carter, Richard G.
2011-01-01
Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan
2016-03-11
The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycolmore » and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.« less
Dudina, Dina V.; Bokhonov, Boris B.; Mukherjee, Amiya K.
2016-01-01
A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500–650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe–Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe–Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C. PMID:28773498
Surface catalysis of uranium(VI) reduction by iron(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liger, E.; Charlet, L.; Van Cappellen, P.
1999-10-01
Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less
NASA Astrophysics Data System (ADS)
Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.
1987-04-01
An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.
Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys
NASA Astrophysics Data System (ADS)
Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio
Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.
Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W.; Brown, Paul D.; Dunin-Borkowski, Rafal E.
2014-01-01
Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information. PMID:25300366
Almeida, Trevor P; Kasama, Takeshi; Muxworthy, Adrian R; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W; Brown, Paul D; Dunin-Borkowski, Rafal E
2014-10-10
Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information.
NASA Astrophysics Data System (ADS)
Wu, Ying
2009-11-01
The development of a prototype compact neutron generator for the application of associated particle imaging (API) to be used for explosive and contraband detection will be presented. The API technique makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (^2D(^3T,n)^4α) fusion reaction to determine the direction of the neutrons and reduce background noise. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. In this work an axial type neutron generator was designed and built with a predicted neutron yield of 10^8 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. It was shown that the measured yield for a D/D gas filled generator was 2x10^5n/s, which scales to 2x10^7 n/s if a D/T gas fill is used. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of > 80% can be obtained with only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the acceleration column, to suppress secondary backscattered electrons produced at the target. Initial measurements of the neutron generator performance including the beam spot size and neutron yield under sealed operation will be discussed, along with suggestions for future improvements.
Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks
NASA Astrophysics Data System (ADS)
Malkov, Mikhail; Diamond, Patrick
2008-11-01
Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.
A model for Cryogenian iron formation
NASA Astrophysics Data System (ADS)
Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross
2016-01-01
The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, G.T.; Jackson, J.W.
1990-03-19
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, Gordon T.; Jackson, John W.
1991-01-01
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.
NASA Astrophysics Data System (ADS)
Mullane, E.; Russell, S. S.; Gounelle, M.; Mason, T. F. D.
2003-04-01
Introduction: We have studied the petrography and Fe-isotope composition of seven chondrules, four from Allende (CV3) and three from Chainpur (LL3.4). A range of textural-chemical chondrule types are represented, allowing us to examine the Fe-isotope signature in material with different thermal histories, with a view to constraing the chondrule forming process and elucidating the nature of chondrule precursor material. Analytical procedures are detailed elsewhere [1,2,3] Fe-isotope Fractionation: The overall variation in δ56Fe is 1.98 ppm and in δ57Fe is 2.87 ppm. EM-1 (non-porphyritic) is most isotopically heavy and EM-3 (porphyritic) is most isotopically light, with all other chondrules falling in a mass fractionation line between these two end-members. This line is defined by the equation δ57Fe = (1.450±0.050)δ56Fe - (0.009±0.016) (R^2 = 0.9995). Discussion: The Fe-fractionation exhibited here is less than would be expected during open system evaporation. This suggests that Rayleigh conditions were not fulfilled during chondrule melting. Chainpur chondrules exhibit less fractionation than Allende chondrules, a total of 0.46 ppm (δ56Fe) in contrast to 1.98 ppm (δ56Fe), respectively, suggesting that Chainpur may be more equilibrated than Allende. Chainpur Fe-isotopes may have been increasingly homogenised by later addition of Fe, either from the nebular reservoir or parent body alteration. Porphyritic and nonporphyritic chondrules have differing thermal histories. The former are a product of incomplete melting, whereas the latter derive from almost total/complete melting of precursor material. However, Fe-isotope fractionation does not appear to vary systematically with texture. We conclude that chondrule Fe-isotopic signatures represent that of the precursor material, with later equilibration of the Chainpur chondrules. Melting history may also influence the Fe-isotopic signature. The isotopically heaviest chondrules (e.g. EM-1 &EC-3) may derive from a melt which attained liquidus temperatures more than once. The precursor to EM-2 (isotopically lightest), may not have been subject to as many aggressive heating events. References: [1] Mullane et al. (2001) LPS XXXII, Abs. #1545. [2] Mullane et al. (2002) In: Plasma Source Mass Spec. Royal Soc. Chem. (in press). [3] Mullane et al. (2002) Met. Plan. Sci. 37, 105 Abs. [4] Alexander C.M.O'D. &Wang J. (2001) Met. Plan. Sci. 36, 419--428.
Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying
2018-01-01
HIGHLIGHTS Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated. Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g -1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water.
Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying
2018-01-01
HIGHLIGHTS Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated. Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g−1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water. PMID:29468153
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Zank, G. P.
2013-01-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dynan, William S.
The goal of this study was to examine long-term effects of low-dose radiation exposure. One of the hypotheses was that radiation exposure would accelerate the normal aging process. The study was jointly funded by NASA and examined both low-LET radiation (γ-rays) and high-LET radiation (1000 MeV/nucleon 56Fe ions) at doses of 0.1 Gy and up. The work used the Japanese medaka fish (Oryzias latipes), as a vertebrate model organism that can be maintained in large numbers at low cost for lifetime studies. Like other small laboratory fish, Japanese medaka share many anatomical and histological characteristics with other vertebrates, and amore » variety of genetic and genomic resources are available. Some work also used the zebrafish (Danio rerio), another widely used laboratory model organism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Daniel; Nakar, Ehud; Piran, Tsvi, E-mail: daniel.kagan@mail.huji.ac.il
The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region withmore » and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.« less
Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries
Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.
2013-01-01
Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817
On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp
The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less
Accelerator Science: Circular vs. Linear
Lincoln, Don
2018-06-12
Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilabâs Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.
Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas
Fox, W.; Park, J.; Deng, W.; ...
2017-08-11
Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less
NASA Technical Reports Server (NTRS)
Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth
2017-01-01
Exposure to space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized exposure to ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-week old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 mega electron volts per nucleon) or high-LET (sup 56) Fe ions (600 mega electron volts per nucleon) using either low (5 or 10 centigrays) or high (50 or 200 centigrays) doses at NASAs Space Radiation Lab at Brookhaven National Lab (NSRL/BNL). Tissues were harvested 5 weeks or 1 year after irradiation and bones were analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed for select groups by RT-PCR (Reverse Transcription-Polymerase Chain Reaction) during the proliferative phase or the mineralizing phase, and differentiation was analyzed by imaging mineralized nodules (percentage surface area). Representative genes were selected for expression analyses, including cell proliferation (PCNA, Cdk2, p21, p53), differentiation (Runx2, Alpl, Bglap), oxidative metabolism (Catalase, GPX, MnSOD, CuZnSOD, iNos, Foxo1), DNA-damage repair (Gadd45), or apoptosis (Caspase 3). As expected, a high dose (200 centigrays), but not low doses, of either (sup 56) Fe or protons caused a loss of cancellous bone volume per total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; (sup 56) Fe (200 centigrays) inhibited median nodule area by more than 90 percent at 5 weeks and 1 year post-irradiation, compared to controls. At 5 weeks post exposure, irradiation with protons or (sup 56) Fe caused few changes in gene expression levels during osteoblastogenesis, although a high dose of (sup 56) Fe (200 centigrays) increased levels of Catalase and Gadd45. In addition, supplementing cell culture media with SOD protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET ((sup 137) Cs gamma) if irradiated in vitro, but had limited protective effects on high-LET (sup 56) Fe-exposed cells. In sum, exposure of mice to either protons or (sup 56) Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET (sup 56) Fe increased expression of redox-related genes and inhibited osteoblastogenesis, albeit to a limited extent. We conclude that high-LET irradiation impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss.
Double-layer neutron shield design as neutron shielding application
NASA Astrophysics Data System (ADS)
Sariyer, Demet; Küçer, Rahmi
2018-02-01
The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.
Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei
2014-05-07
The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and themore » coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.« less
Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y
2000-02-01
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.
Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.
Ylivainio, Kari
2010-10-01
In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.
2015-09-01
The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for paleoenvironment, our work demonstrates that depositional setting is paramount in governing the Fe isotopic composition of iron formations irrespective of what Fe-bearing minerals precipitated.
New Constraints on the Abundance of 60Fe in the Early Solar System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas
Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less
New Constraints on the Abundance of 60Fe in the Early Solar System
NASA Astrophysics Data System (ADS)
Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; Telus, Myriam; Savina, Michael R.; Pardo, Olivia; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Huss, Gary R.
2018-04-01
Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). Here we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS. Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/58Ni versus 56Fe/58Ni yields an initial 60Fe/56Fe ratio for this chondrule of (3.8 ± 6.9) × 10‑8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system’s initial amount of 60Fe.
New Constraints on the Abundance of 60Fe in the Early Solar System
Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; ...
2018-04-19
Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less
Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You
2009-07-01
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.
2017-08-01
Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.
SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it
2015-12-10
The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and wemore » compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.« less
Debris and meteoroid proportions deduced from impact crater residue analysis
NASA Technical Reports Server (NTRS)
Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet
1995-01-01
This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood of detection of residues as the velocities involved are lower.
NASA Astrophysics Data System (ADS)
Arun prakash, V. R.; Rajadurai, A.
2016-10-01
In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Gallegos, A.
1985-01-01
Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
Zhang, Ming; Schlickeiser, Reinhard
2012-08-22
Recently, it was demonstrated that stochastic acceleration of particles going through a series of compressive plasma waves can be efficient and fast. It could be too fast so that the pressure built up by the accelerated particles may in turn modify the amplitude of waves to prevent the particles from having an exploding pressure. We call this condition pressure balance. In this paper, we take into account the fact that active acceleration of particles only occupies a limited volume of space due to a possible intermittent nature of plasma waves or turbulence. We also develop a bimodal acceleration theory thatmore » treats the populations of particles in the active and inactive acceleration regions separately and allows the two populations to exchange particles efficiently. We show that the system automatically produces a solution of v -5 steady state distribution for the accelerated particles, under the requirement of the pressure balance condition. It is found that the v -5 distribution is more robust and easier to achieve with a small volume of intense particle acceleration. These properties explain why the v -5 distribution is commonly observed in space. We apply our model to pickup ion propagation and acceleration throughout the entire heliosphere. These results can reproduce various observations in some great detail. We also found that this mechanism could be responsible for producing anomalous cosmic rays deep in the heliosheath.« less
Identification of deposit types of natural corundum by PIXE
NASA Astrophysics Data System (ADS)
Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.
2014-07-01
Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.
Guo, Lingyu; Liu, Yan; Shen, Kechang; Song, Chaoqun; Yang, Min; Kim, Kibuem; Wang, Weimin
2015-01-01
The AA6061-T6 aluminum alloy samples including annealed Fe78Si9B13 particles were prepared by friction stir processing (FSP) and investigated by various techniques. The Fe78Si9B13-reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200) plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE) for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe78Si9B13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe78Si9B13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure. PMID:28793492
NASA Astrophysics Data System (ADS)
Conway, Tim M.; John, Seth G.
2015-09-01
Dissolved stable isotope ratios of the transition metals provide useful information, both for understanding the cycling of these bioactive trace elements through the oceans, and tracing their marine sources and sinks. Here, we present seawater dissolved Fe, Zn and Cd concentration and stable isotope ratio (δ56Fe, δ66Zn, and δ114Cd) profiles from two stations in the Pacific Ocean, the SAFe Station (30°N 140°W) in the subtropical North East Pacific from the GEOTRACES IC2 cruise, and the marginal San Pedro Basin (33.8°N 118.4°W) within the South California Bight. These data represent, to our knowledge, the first full-water column profiles for δ66Zn and δ56Fe from the open-ocean North Pacific, and the first observations of dissolved δ66Zn and δ114Cd in a low-oxygen marginal basin. At the SAFe station, δ56Fe is isotopically lighter throughout the water column (-0.6 to +0.1‰, relative to IRRM-014) compared to the North Atlantic, suggesting significant differences in Fe sources or Fe cycling between these two ocean basins. A broad minimum in δ56Fe associated with the North Pacific oxygen minimum zone (OMZ; <75 μmol kg-1 dissolved oxygen; ∼550-2000 m depth) is consistent with reductive sediments along the California margin being an important source of dissolved Fe to the North Pacific. Other processes which may influence δ56Fe at SAFe include biological cycling in the upper ocean, and input of Fe from hydrothermal vents and oxic sediments below the OMZ. Zn and Cd concentration profiles at both stations broadly match the distribution of the macronutrients silicate and phosphate, respectively. At SAFe, δ114Cd increases towards the surface, reflecting the biological preference for assimilation of lighter Cd isotopes, while negative Cd∗ (-0.12) associated with low oxygen waters supports the recently proposed hypothesis of water-column CdS precipitation. In contrast to δ114Cd, δ66Zn at SAFe decreases towards the surface ocean, perhaps due to scavenging of isotopically heavy Zn, while at intermediate depths δ66Zn provides further evidence of a mid-depth dissolved δ66Zn maximum. We suggest this may be a global feature of Zn biogeochemistry related to either regeneration of heavy adsorbed Zn, or to ZnS formation and removal within the water column. Data from San Pedro shows that anoxic sediments can be a source of isotopically light Zn to the water column (δ66Zn of ∼-0.3‰ relative to JMC Lyon), though evidence of this signal is not observed being transported to SAFe. Within North Pacific Intermediate Water at SAFe (NPIW; ∼500 m) elevated Cd∗ and Zn∗ and a focused minimum in δ56Fe suggest possible transport of Fe, Zn, and Cd over thousands of km from subpolar waters, meaning that NPIW may have a strong influence on the subsurface distribution of trace metals throughout the North Pacific.
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.
Dall'Osto, Manuel; Beddows, D C S; Harrison, Roy M; Onat, Burcu
2016-04-19
Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 μm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles.
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
NASA Astrophysics Data System (ADS)
Nealley, W. H. Harrison; Nakano, Anna; Nakano, Jinichiro; Bennett, James P.
2018-05-01
Alumina-supported Cu/Fe spinel particles were exposed to oxidation/reduction atmospheres at 800°C. Structural changes of the particles subjected to gas cycles between air and 10 vol.% CO-90 vol.% Ar were studied from physical data and real-time images collected using a confocal scanning laser microscope equipped with a heating chamber. Overall particle volume slowly expanded with cycles while surface roughness decreased. Cross-sections of the exposed particles showed segregation of Cu and Fe to the edges of inner grains, which may have acted as oxygen carriers during the exposures. The particles remained whole during the cyclic exposures without any noticeable structural breakdown.
Particle acceleration magnetic field generation, and emission in Relativistic pair jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.
2005-01-01
Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.
Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2014-04-15
The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less
Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T
2010-02-01
Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.
Recent results of studies of acceleration of compact toroids
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Hartmen, C. W.; Eddleman, J.
1984-03-01
The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yifu; Liu Xinghai, E-mail: liuxh@whu.edu.c; Nie Jiaorong
2011-02-15
Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like {alpha}-Fe{sub 2}O{sub 3} particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3},more » sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which show that {alpha}-Fe{sub 2}O{sub 3}-C core-shell composites have higher catalytic activity than that of {alpha}-Fe{sub 2}O{sub 3}. -- Graphical abstract: The catalytic performance of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C on the thermal decomposition of ammonium perchlorate (AP). Display Omitted Research highlights: {yields} Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value. {yields} A novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C core-shell structured composite) has been successfully synthesized using sphere-like {alpha}-Fe{sub 2}O{sub 3} particles as the cores and glucose as the source of carbon. {yields} The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which shows that these materials have high catalytic activity.« less