Science.gov

Sample records for accelerated 56fe particles

  1. Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice.

    PubMed

    Vlkolinsky, R; Titova, E; Krucker, T; Chi, B B; Staufenbiel, M; Nelson, G A; Obenaus, A

    2010-03-01

    Abstract An unavoidable complication of space travel is exposure to high-charge, high-energy (HZE) particles. In animal studies, exposure of the CNS to HZE-particle radiation leads to neurological alterations similar to those seen in aging or Alzheimer's disease. In this study we examined whether HZE-particle radiation accelerated the age-related neuronal dysfunction that was previously described in transgenic mice overexpressing human amyloid precursor protein (APP). These APP23 transgenic mice exhibit age-related behavioral abnormalities and deficits in synaptic transmission. We exposed 7-week-old APP23 transgenic males to brain-only (56)Fe-particle radiation (600 MeV/nucleon; 1, 2, 4 Gy) and recorded synaptic transmission in hippocampal slices at 2, 6, 9, 14 and 18-24 months. We stimulated Schaeffer collaterals and recorded field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) in CA1 neurons. Radiation accelerated the onset of age-related fEPSP decrements recorded at the PS threshold from 14 months of age to 9 months and reduced synaptic efficacy. At 9 months, radiation also reduced PS amplitudes. At 6 months, we observed a temporary deficit in paired-pulse inhibition of the PS at 2 Gy. Radiation did not significantly affect survival of APP23 transgenic mice. We conclude that irradiation of the brain with HZE particles accelerates Alzheimer's disease-related neurological deficits.

  2. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  3. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  4. Dietary modulation of the effects of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.

    On exploratory missions to other planets, astronauts will be exposed to galactic cosmic rays composed of protons and heavy particles, such as 56Fe. Long-term exposure to these particles can cause cancer. However, there are significant uncertainties in the risk estimates for the probability of developing heavy particle-induced cancer, and in the amount of shielding needed to provide an adequate level of radiation protection. The results of this preliminary study, using a ground-based model for exposure to cosmic rays, show reduced tumorigenesis in rats maintained on diets containing blueberry or strawberry extract prior to exposure to 56Fe particles. Because the study was not initially designed to evaluate tumorigenesis following exposure to 56Fe particles, additional research is needed to evaluate the effectiveness of strawberry and blueberry supplementation. However, the preliminary results presented in this study suggest that diets containing antioxidant phytochemicals can provide additional radiation protection on interplanetary voyages.

  5. Effects of lipopolysaccharide on 56Fe-particle radiation-induced impairment of synaptic plasticity in the mouse hippocampus.

    PubMed

    Vlkolinský, Roman; Krucker, Thomas; Smith, Anna L; Lamp, Tyra C; Nelson, Gregory A; Obenaus, Andre

    2007-10-01

    Space radiation, including high-mass, high-Z, high-energy particles (HZE; e.g. (56)Fe), represents a significant health risk for astronauts, and the central nervous system (CNS) may be a vulnerable target. HZE-particle radiation may directly affect neuronal function, or during immunological challenge, it may alter immune system-to-CNS communication. To test these hypotheses, we exposed mice to accelerated iron particles ((56)Fe; 600 MeV/nucleon; 1, 2, 4 Gy; brain only) and 1 month later prepared hippocampal slices to measure the effects of radiation on neurotransmission and synaptic plasticity in CA1 neurons. In a model of immune system-to-CNS communication, these electrophysiological parameters were measured in irradiated mice additionally challenged with the peripheral immunological stressor lipopolysaccharide (LPS) injected intraperitoneally 4 h before the slice preparation. Exposure to (56)Fe particles alone increased dendritic excitability and inhibited plasticity. In control mice (0 Gy), LPS treatment also inhibited synaptic plasticity. Paradoxically, in mice exposed to 2 Gy, the LPS treatment restored synaptic plasticity to levels similar to those found in controls (0 Gy, no LPS). Our results indicate that HZE-particle radiation alters normal electrophysiological properties of the CNS and the hippocampal response to LPS. PMID:17903042

  6. Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Evans, T. E.; Horng, M. F.

    2002-01-01

    The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.

  7. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  8. Protective effects of blueberry- and strawberry diets on neuronal stress following exposure to (56)Fe particles.

    PubMed

    Poulose, Shibu M; Bielinski, Donna F; Carrihill-Knoll, Kirsty L; Rabin, Bernard M; Shukitt-Hale, Barbara

    2014-12-17

    Particles of high energy and charge (HZE particles), which are abundant outside the magnetic field of the Earth, have been shown to disrupt the functioning of neuronal communication in critical regions of the brain. Previous studies with HZE particles, have shown that irradiation produces enhanced indices of oxidative stress and inflammation as well as altered neuronal function that are similar to those seen in aging. Feeding animals antioxidant-rich berry diets, specifically blueberries and strawberries, countered the deleterious effects of irradiation by reducing oxidative stress and inflammation, thereby improving neuronal signaling. In the current study, we examined the effects of exposure to (56)Fe particles in critical regions of brain involved in cognitive function, both 36h and 30 days post irradiation. We also studied the effects of antioxidant-rich berry diets, specifically a 2% blueberry or strawberry diet, fed for 8 weeks prior to radiation as well as 30 days post irradiation. (56)Fe exposure caused significant differential, neurochemical changes in critical regions of the brain, such as hippocampus, striatum, frontal cortex, and cerebellum, through increased inflammation, and increased oxidative stress protein markers. (56)Fe exposure altered the autophagy markers, and antioxidant-rich berry diets significantly reduced the accumulation of p62 in hippocampus, a scaffold protein that co-localizes with ubiquitinated protein at the 30 days post irradiation time-point. Exposure to (56)Fe particles increased the accumulation of disease-related proteins such as PHF-tau in the hippocampus of animals fed the control diet, but not in the irradiated animals fed the blueberry diet. These results indicate the potential protective effects of antioxidant-rich berry diets on neuronal functioning following exposure to HZE particles.

  9. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  10. Interaction Between Age and Exposure to 56Fe Particles on Behavior and Neurochemistry

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Carey, A. N.; Rabin, B. M.; Joseph, J. A.

    Previous research has shown that exposure to HZE particles and protons which will be encountered on long-term space missions can adversely affect the ability of rats to perform a variety of behavioral tasks This outcome has implications for an astronaut s ability to successfully complete requirements associated with these missions It has also been found that irradiation can lead to increases in oxidative stress similar to that seen in the aging brain Given that astronauts are often middle-aged or older it is important to determine if their age puts them at higher risk for the potentially hazardous effects of exposure to HZE particles Therefore we exposed young and old rats to either 1 or 2Gy of 56 Fe irradiation and evaluated performance in a spatial learning and memory task in addition to examining levels of dopamine DA release from superfused striatal slices Results indicated that exposure to 56 Fe particles can produce alterations in behavior and signaling and that these alterations may be more apparent in older organisms which suggests that the aging brain may be more susceptible to the deleterious effects of irradiation on performance Therefore age may be a factor for consideration in planning long-term missions into space Supported by NASA Grants NAG9-1190 and NAG9-1529

  11. Interaction between age and exposure to 56Fe particles on behavior and neurochemistry

    NASA Astrophysics Data System (ADS)

    Carey, Amanda N.; Shukitt-Hale, Barbara; Rabin, Bernard M.; Joseph, James A.

    Previous research has shown that exposure to HZE particles, which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut’s ability to successfully complete requirements associated with these missions. It has also been found that irradiation can lead to increases in oxidative stress, similar to that seen in the aging brain. Given that astronauts are often middle-aged or older it is important to determine if their age puts them at higher risk for the potentially hazardous effects of exposure to HZE particles. Therefore, we exposed young and old rats to either 1 or 2 Gy of 56Fe irradiation and evaluated performance in a spatial learning and memory task, in addition to examining levels of dopamine (DA) release from superfused striatal slices. Results indicated that exposure to 56Fe particles can produce alterations in behavior and neuronal signaling and that these alterations may be more apparent in older organisms, a finding which suggests that the aging brain may be more susceptible to the deleterious effects of irradiation on performance. Therefore, age may be a factor for consideration in planning long-term missions into space.

  12. Cognitive differences between male and female rats following exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Luskin, Katharine; Long, Lauren; Joseph, James

    On exploratory class missions astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of exposure to HZE particles on cognitive performance in female subjects. While previous research has shown that exposure to HZE particles disrupts cognitive performance in male rats it remains to be established whether or not similar effects will occur with female subjects because estrogen may act as a neuroprotectant. Ovariectomized (OVX) female rats were obtained from Taconic Farms. Thirty mm segments of silastic tubing containing either 180 pg l7-estradiol/mL in sesame oil or vehicle alone were implanted subcutaneously in the neck. Three days following surgery the rats were exposed to 56Fe particles (1000 MeV/n, 0-200 cGy) at the NSRL. Following irradiation the rats were shipped to UMBC for behavioral testing. The results indicated that the pattern of decrements in cognitive performance differed between male and female rats. In addition, for female rats, there were differences in performance as a function of the presence or absence of estradiol. In the vehicle implanted subjects exposure to 56Fe particles did not affect operant responding on an ascending fixed-ratio schedule; whereas irradiation did disrupt responding in OVX animals given estradiol. These results suggest that estrogen may not be protective following exposure to HZE particles. This research was supported by Grant NNX08AM66G from NASA.

  13. Hippocampal neurogenesis and neuroinflammation after cranial irradiation with (56)Fe particles.

    PubMed

    Rola, Radoslaw; Fishman, Kelly; Baure, Jennifer; Rosi, Susanna; Lamborn, Kathleen R; Obenaus, Andre; Nelson, Gregory A; Fike, John R

    2008-06-01

    Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus. We irradiated mice with 0.5-4 Gy of (56)Fe ions and 2 months later quantified neurogenesis and numbers of activated microglia as a measure of neuroinflammation in the dentate gyrus. Results showed that there were few changes after 0.5 Gy, but that there was a dose-related decrease in hippocampal neurogenesis and a dose-related increase in numbers of newly born activated microglia from 0.5-4.0 Gy. While those findings were similar to what was reported after X irradiation, there were also some differences, particularly in the response of newly born glia. Overall, this study showed that hippocampal neurogenesis was sensitive to relatively low doses of (56)Fe particles, and that those effects were associated with neuroinflammation. Whether these changes will result in functional impairments or if/how they can be managed are topics for further investigation.

  14. Hippocampal Neurogenesis and Neuroinflammation after Cranial Irradiation with 56Fe Particles

    PubMed Central

    Rola, Radoslaw; Fishman, Kelly; Baure, Jennifer; Rosi, Susanna; Lamborn, Kathleen R.; Obenaus, Andre; Nelson, Gregory A.; Fike, John R.

    2008-01-01

    Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus. We irradiated mice with 0.5–4 Gy of 56Fe ions and 2 months later quantified neurogenesis and numbers of activated microglia as a measure of neuroinflammation in the dentate gyrus. Results showed that there were few changes after 0.5 Gy, but that there was a dose-related decrease in hippocampal neurogenesis and a dose-related increase in numbers of newly born activated microglia from 0.5–4.0 Gy. While those findings were similar to what was reported after X irradiation, there were also some differences, particularly in the response of newly born glia. Overall, this study showed that hippocampal neurogenesis was sensitive to relatively low doses of 56Fe particles, and that those effects were associated with neuroinflammation. Whether these changes will result in functional impairments or if/how they can be managed are topics for further investigation. PMID:18494546

  15. Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Buhler, Lynn L.; Joseph, James A.; Shukitt-Hale, Barbara; Jenkins, Daniel G.

    2002-01-01

    On long-duration trips outside of the magnetosphere, astronauts will be exposed to protons and to heavy particles which can affect their performance of required tasks. It is essential to determine the range of behaviors that might be affected by exposure to these types of radiation in order to understand the nature of behavioral deficits and to develop effective countermeasures. The present experiment examined the ability of rats to make an operant response following exposure to protons (250 MeV, 4 Gy) or 56Fe particles (1 GeV/n, 1 or 2 Gy). Following irradiation, rats were trained to press a lever in order to obtain food reinforcement. They were then placed on an ascending fixed-ratio schedule from FR-1 (each lever press rewarded with a food pellet) through FR-35 (35 lever presses required for 1 food pellet). Rats exposed to 4 Gy of protons or 1 Gy of 56Fe particles responded similarly to controls, increasing their rate of responding as the ratio increased. However, rats exposed to 2 Gy of 56Fe particles failed to increase their rate of responding at ratios greater than FR-20, indicating that rats exposed to 2 Gy of 56Fe particles cannot respond appropriately to increasing work requirements.

  16. Amphetamine-Induced Taste Aversion Learning in Young and Old F-344 Rats Following Exposure to 56Fe Particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to 56Fe particles produces changes in dopaminergic function and in dopamine dependent behaviors, including amphetamine-induced conditioned taste aversion (CTA) learning. Because many of these changes are characteristic of the changes that accompany the aging process, the present study was ...

  17. Changes in Gene Expression in the Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-κB signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent

  18. Effects of exposure to 56Fe particles on the acquisition of a conditioned place preference in rats

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Shukitt-Hale, B.; Joseph, J. A.; Denissova, N.

    2001-01-01

    Exposure to low doses of 56Fe particles produces changes in neural function and behavior. The present experiments were designed to examine the effects of irradiation on the acquisition of a dopamine-mediated conditioned place preference (CPP). In the CPP procedure, rats are given an injection of the dopamine agonist amphetamine in one distinctive compartment and a saline injection in a different compartment of a three-compartment apparatus. Control rats develop a preference for the amphetamine-paired compartment. In contrast, rats exposed to 1 Gy of 56Fe particles fail to develop a similar preference. The results of the experiment indicate that exposure to low doses of heavy particles can disrupt the neural mechanisms that mediate the reinforcement of behavior.

  19. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  20. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  1. 56Fe accelerates development of atherosclerosis in apoE -/-mice

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Yu, Tao; Parks, Brian; Yu, Shaohua; Srivastava, Roshni; Gupta, Kiran; Wu, Xing; Khaled, Saman; Chang, Polly; Kabarowski, Janusz

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. For example, for women with early breast cancer, the benefit of radiotherapy can be nearly offset by the increased risk of mortality from cardiovascular disease. Head and neck cancer patients who undergo radiation treatment are at significantly elevated risk of stroke, even in a relatively young patient population that would not normally be at risk for atheroscle-rosis. Similarly, atomic bomb survivors had an increased incidence of mortality from coronary artery disease and stroke. Even radiation technologists working before 1950 (when occupational exposure was higher) had increased mortality due to circulatory diseases. Although much is known about the cardiovascular consequences these exposures to X-raus and gamma radiation, the response to the type of radiation likely to be encountered in prolonged space flight has not been determined. A key component of this cosmic radiation is 56Fe, which is particularly damaging to tissues. Using collimated beams, we selectively irradiated aortic arches and carotids (only) of the well-established apoE -/-atherosclerosis mouse model to test directly whether 56Fe exposure is a cardiovascular risk factor. Mice were sacrificed at 13 weeks post-irradiation and dissected, and aortas were divided into areas that had been targeted by the ion beam and those that were not. The area that was covered by plaques was then quantified. Plaque area at 13 weeks post-irradiation was significantly greater in targeted areas of mice that had received 5 Gy of 56Fe as compared to age-and sex-matched un-irradiated controls. In the carotid arteries and aortic roots, significantly greater atherosclerosis was apparent for a 2Gy exposure as well (the lowest dose tested). This demonstrates that even a single exposure to heavy ion radiation is capable of triggering events that culminate in cardiovascular disease, even long after the exposure has

  2. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  3. Age/Radiation Parallels in the Effects of 56Fe Particle Irradiation and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Joseph, James; Bielinski, Donna; Carrihill-Knoll, Kirsty; Rabin, Bernard; Shukitt-Hale, Barbara

    Exposing young rats to particles of high-energy and charge (HZE particles) enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals Previous research has shown that diets supplemented with 2% blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats, perhaps due to their antioxidant and anti-inflammatory properties. A subsequent study has shown that whole-body irradiation with 1.5 Gy of 1 GeV/n high-energy 56 Fe particles impaired performance in the Morris water maze and measures of dopamine release one month following radiation; these deficits were protected by the antioxidant diets. The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information, while the blueberry-supplemented animals showed enhanced learning that was dependent on striatal functioning. Additional experiments in cell models to examine possible mechanisms involved in these beneficial effects have shown that, in addition to the well known free radical scavenging effects of berries, it appears that berry fruit can directly reduce stress signaling and enhance protective signals, suggesting the involvement of multiple mechanisms in the beneficial effects observed. Enhancements of "protective" signals (e.g., extracellular signal regulated kinase, ERK) include those that are involved in neuronal communication, neurogenesis, and learning and memory. Reductions in stress signaling include inhibiting nuclear factor kappa B (NF-κB) and cytokines, among others, induced by oxidative and inflammatory stressors. We have found these changes in both BV2 mouse microglial and hippocampal cells. We believe that the possible addition of colorful fruits such as berry fruits to the diet can possibly

  4. Dynamic characteristics of 56Fe-particle radiation-induced alterations in the rat brain: magnetic resonance imaging and histological assessments.

    PubMed

    Huang, Lei; Smith, Anna; Badaut, Jerome; Obenaus, Andre

    2010-06-01

    56Fe-particle radiation-induced brain disturbances are a major health concern for astronauts during long-term space travel. The present study investigated temporal modifications within the brain after 56Fe-particle exposure using in vivo magnetic resonance imaging (MRI) correlated to histology. Male Sprague-Dawley rats were exposed to brain-only 56Fe-particle radiation. MRI including T2-weighted, diffusion-weighted, pre/postcontrast enhanced T1-weighted imaging was performed 0.25-18 months after exposure. T2 relaxation times and the apparent diffusion coefficient were quantified within the hippocampus, entorhinal cortex, retrosplenial cortex and thalamus, and correlative histopathology was then performed at each time. In the absence of visible lesions on MR images, the apparent diffusion coefficient and T2 relaxation times revealed 56Fe-particle-induced dynamic changes in all ROIs over the 18-month time course. The patterns of MR changes were spatially similar within the different regions. The temporal alterations in the apparent diffusion coefficient corresponded to the glial cell changes within the brain. Quantitative MRI provides a non-invasive approach to monitor spatio-temporal brain alterations after 56Fe-particle irradiation. The apparent diffusion coefficient appears to be a sensitive metric to reveal ongoing tissue modifications involving multiple cellular components in vivo.

  5. Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET (56)Fe particles or low-LET (137)Cs gamma radiation

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.

  6. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.

  7. Exposure to 56Fe Particles Produces Deficits in Spatial Learning and Memory in the Radial Arm Water Maze

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Miller, Marshall; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Previous research has shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut's ability to successfully complete requirements associated with these missions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. Therefore, in the present study, we used a combination of these two tests, the 8 arm radial water maze (RAWM), to measure spatial learning in rats which were irradiated at the NSRL with 0, 150cGy, or 200cGy of 56Fe radiation. Following irradiation the rats were shipped to the HNRCA and tested in the RAWM (2-3 months later) for 5 days, 3 trials/day. In this version of the RAWM, there were 4 hidden platforms that the rat needed to locate to successfully solve a trial. Once the rat located a platform, it was allowed to remain there for 15 sec before the platform sank, at which point the rat tried to locate the remaining ones. Reference (entering an arm that never contained the platform) and working (re-entering an arm in which the platform had already been found) memory errors were tabulated. Results showed that the irradiated rats had more reference and working memory errors while learning the maze, particularly on Day 3 of testing. Additionally, they utilized non-spatial strategies to solve the RAWM task whereas the control animals used spatial strategies. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by USDA Intramural and N.A.S.A. Grant NNX08AM66G

  8. Acute effects of exposure to 56Fe and 16O particles on learning and memory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it has been shown that exposure to HZE particles disrupts cognitive performance when tested 2-4 weeks after irradiation, it has not been determined whether exposure to HZE particles can exert acute effects on cognitive performance; i.e., effects within 4-48 hrs after exposure. The present ...

  9. Protective effects of blueberry and strawberry diets on neuronal stress following exposure to 56Fe particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particles of high energy and charge (HZE particles), which are abundant outside the magnetic field of the earth, have been shown to disrupt the functioning of neuronal communication in critical regions of the brain. Previous studies have shown that irradiation produces enhanced indices of oxidative ...

  10. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation. PMID:22312859

  11. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation.

  12. Interaction between age and exposure to 56Fe particles on behavior and neurochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that exposure to HZE particles, which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut's ability to successfully complete requirements associ...

  13. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    NASA Astrophysics Data System (ADS)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  14. (56)Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesis in Vivo.

    PubMed

    DeCarolis, Nathan A; Rivera, Phillip D; Ahn, Francisca; Amaral, Wellington Z; LeBlanc, Junie A; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal; Chen, Benjamin P C; Eisch, Amelia J

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreER(T2)/R26R:YFP mice, respectively). Mice were subjected to (56)Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2-3mo) post-irradiation. (56)Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, (56)Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. (56)Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, (56)Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, (56)Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These

  15. 56Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesis in Vivo

    PubMed Central

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal; Chen, Benjamin P.C.; Eisch, Amelia J.

    2014-01-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2–3mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  16. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes.

    PubMed

    Machida, Mayumi; Lonart, György; Britten, Richard A

    2010-11-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV (56)Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy (56)Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [(3)H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of (56)Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation.

  17. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes.

    PubMed

    Machida, Mayumi; Lonart, György; Britten, Richard A

    2010-11-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV (56)Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy (56)Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [(3)H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of (56)Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation. PMID:20726706

  18. Acute and fractionated exposure to high-LET (56)Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis.

    PubMed

    Rivera, Phillip D; Shih, Hung-Ying; Leblanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J; Decarolis, Nathan A; Chen, Benjamin P C; Eisch, Amelia J

    2013-12-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreER(T2)/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy (56)Fe-particle exposure or five fractionated 20 cGy (56)Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of (56)Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  19. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  20. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.

    PubMed

    Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A

    2012-10-01

    Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated

  1. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.

    PubMed

    Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A

    2012-10-01

    Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated

  2. Exposure to mission relevant doses of 1 GeV/Nucleon (56)Fe particles leads to impairment of attentional set-shifting performance in socially mature rats.

    PubMed

    Britten, Richard A; Davis, Leslie K; Jewell, Jessica S; Miller, Vania D; Hadley, Melissa M; Sanford, Larry D; Machida, Mayumi; Lonart, György

    2014-09-01

    Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon (56)Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon (56)Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon (56)Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u (56)Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon (56)Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon (56)Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 Ge

  3. Exposure to Mission Relevant Doses of 1 GeV/Nucleon 56Fe Particles Leads to Impairment of Attentional Set-Shifting Performance in Socially Mature Rats

    PubMed Central

    Britten, Richard A.; Davis, Leslie K.; Jewell, Jessica S.; Miller, Vania D.; Hadley, Melissa M.; Sanford, Larry D.; Machida, Mayumi; Lonart, György

    2014-01-01

    Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon 56Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon 56Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon 56Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u 56Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon 56Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon 56Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 GeV/nucleon 56

  4. Impaired Spatial Memory Performance in Adult Wistar Rats Exposed to Low (5-20 cGy) Doses of 1 GeV/n (56)Fe Particles.

    PubMed

    Britten, Richard A; Jewell, Jessica S; Miller, Vania D; Davis, Leslie K; Hadley, Melissa M; Wyrobek, Andrew J

    2016-03-01

    Prolonged deep space missions to planets and asteroids will expose astronauts to galactic cosmic radiation, comprised of low-linear energy transfer (LET) ionizing radiations, high-energy protons and high-Z and energy (HZE) particles, such as (56)Fe nuclei. In prior studies with rodents exposed to HZE particle radiation at doses likely to be encountered during deep space missions (<20 cGy) investigators reported impaired hippocampal-dependent neurocognitive performance and further observed substantial variation among the irradiated animals in neurocognitive impairment, ranging from no observable effects to severe impairment. These findings point to the importance of incorporating quantitative measures of interindividual variations into next generation risk assessment models of radiation risks on neurocognition. In this study, 269 male proven breeder Wistar rats were exposed to 1 GeV/n (56)Fe at doses of 0, 5, 10, 15 and 20 cGy, and tested for spatial memory performance on the Barnes maze at three months after exposure. The radiation response data were compared using changes in mean cohort performance and by the proportion of poor responders using the performance benchmark of two standard deviations below the mean value among the sham-irradiated cohort. Acute exposures to mission-relevant doses of 1 GeV/n (56)Fe reduced the mean spatial memory performance at three months after exposure (P < 0.002) and increased the proportions of poor performers, 2- to 3-fold. However, a substantial fraction of animals in all exposure cohorts showed no detectable change in performance, compared to the distribution of sham-irradiated animals. Our findings suggest that individualized metrics of susceptibility or resistance to radiation-induce changes in neurocognitive performance will be advantageous to the development of probabilistic risk assessment models for HZE-induced neurocognitive impairment.

  5. Impaired Spatial Memory Performance in Adult Wistar Rats Exposed to Low (5-20 cGy) Doses of 1 GeV/n (56)Fe Particles.

    PubMed

    Britten, Richard A; Jewell, Jessica S; Miller, Vania D; Davis, Leslie K; Hadley, Melissa M; Wyrobek, Andrew J

    2016-03-01

    Prolonged deep space missions to planets and asteroids will expose astronauts to galactic cosmic radiation, comprised of low-linear energy transfer (LET) ionizing radiations, high-energy protons and high-Z and energy (HZE) particles, such as (56)Fe nuclei. In prior studies with rodents exposed to HZE particle radiation at doses likely to be encountered during deep space missions (<20 cGy) investigators reported impaired hippocampal-dependent neurocognitive performance and further observed substantial variation among the irradiated animals in neurocognitive impairment, ranging from no observable effects to severe impairment. These findings point to the importance of incorporating quantitative measures of interindividual variations into next generation risk assessment models of radiation risks on neurocognition. In this study, 269 male proven breeder Wistar rats were exposed to 1 GeV/n (56)Fe at doses of 0, 5, 10, 15 and 20 cGy, and tested for spatial memory performance on the Barnes maze at three months after exposure. The radiation response data were compared using changes in mean cohort performance and by the proportion of poor responders using the performance benchmark of two standard deviations below the mean value among the sham-irradiated cohort. Acute exposures to mission-relevant doses of 1 GeV/n (56)Fe reduced the mean spatial memory performance at three months after exposure (P < 0.002) and increased the proportions of poor performers, 2- to 3-fold. However, a substantial fraction of animals in all exposure cohorts showed no detectable change in performance, compared to the distribution of sham-irradiated animals. Our findings suggest that individualized metrics of susceptibility or resistance to radiation-induce changes in neurocognitive performance will be advantageous to the development of probabilistic risk assessment models for HZE-induced neurocognitive impairment. PMID:26943453

  6. Accelerated heavy ions and the lens. IV. Biomicroscopic and cytopathological analyses of the lenses of mice irradiated with 600 MeV/amu sup 56 Fe ions

    SciTech Connect

    Worgul, B.V.; Medvedovsky, C.; Powers-Risius, P.; Alpen, E. )

    1989-11-01

    The lenses of mice exposed to 600 MeV/amu iron ions were evaluated by slit-lamp biomicroscopy and cytopathological analyses. The doses ranged from 0.05 to 1.6 Gy, and the lenses were assessed at several intervals postirradiation. Cataract, the development of which is dependent on both time and dose, is significantly more advanced in all of the exposed mice when compared to the unirradiated controls. The great difference between the severity of the cataracts caused by 0.05 Gy (the lowest dose used) and those that developed spontaneously in the control animals is an indication that 0.05 Gy may far exceed the threshold dose for the production of cataracts by accelerated iron ions. Cytopathologically, a similar dose dependence was observed for a number of end points including micronucleation, interphase death, and meridional row disorganization. In addition the exposure to the 56Fe ions produced a long-term effect on the mitotic population and a pronounced focal loss of epithelial cytoarchitecture. The microscopic changes support the view that the mechanism of heavy-ion-induced cataractogenesis is the same as that for cataracts caused by low-LET radiation.

  7. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  8. Effects of 17Beta-estradiol on cognitive performance of ovariectomized female rats exposed to 56Fe particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions to other planets astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of ...

  9. Low (20 cGy) doses of 1 GeV/u (56)Fe--particle radiation lead to a persistent reduction in the spatial learning ability of rats.

    PubMed

    Britten, Richard A; Davis, Leslie K; Johnson, Angela M; Keeney, Sonia; Siegel, Andrew; Sanford, Larry D; Singletary, Sylvia J; Lonart, György

    2012-02-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ∼50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells.

  10. Low (20 cGy) doses of 1 GeV/u (56)Fe--particle radiation lead to a persistent reduction in the spatial learning ability of rats.

    PubMed

    Britten, Richard A; Davis, Leslie K; Johnson, Angela M; Keeney, Sonia; Siegel, Andrew; Sanford, Larry D; Singletary, Sylvia J; Lonart, György

    2012-02-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ∼50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells. PMID:22077338

  11. Reductions of {sup 56}Fe heavy-particle irradiation-induced deficits in striatal muscarinic receptor sensitivity by selective cross-activation/inhibition of second-messenger systems

    SciTech Connect

    Joseph, J.A.; Villalobos-Molina, R.; Rabin, B.M.; Dalton, T.K.; Harris, A.; Kandasamy, S.

    1994-07-01

    Recent experiments have revealed radiation-induced losses of sensitivity of rodent neostriatal muscarinic receptors to stimulation by cholinergic agonists that appears as reduction in oxotremorine enhancement of K{sup +}-evoked dopamine release. These losses were postulated to be the result of radiation-induced alterations early in phosphoinositide-mediated signal transduction. Additional findings indicated that if the ligand-receptor-G protein interface was bypassed no radiation deficits were seen. In the present study, radiation-induced deficits in K{sup +}-evoked dopamine release were examined in perifused striatal tissue obtained from rats exposed to 0,0.1 or 1.0 Gy of {sup 56}Fe particles. Results showed that these deficits could be reduced by co-applying combinations of various pharmacological agents that were known to have differential effects on various second messengers such as 1,4,5-inositoltrisphosphate (IP{sub 3}). Combinations included oxotremorine-carbachol, and either oxotremorine or carbachol with arginine vasopressin or arachidonic acid. These results are discussed in terms of putative radiation-induced changes in receptor-containing membranes which alter receptor-G protein coupling/uncoupling. 49 refs., 4 figs.

  12. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  13. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  14. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  15. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  16. The response of a spherical tissue-equivalent proportional counter to 56-Fe particles from 200-1000 MeV/nucleon

    SciTech Connect

    Gersey, Bradford B.; Borak, Thomas B.; Guetersloh, Stephen B.; Zeitlin, Cary J.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.

    2001-09-04

    The radiation environment aboard the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 is considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPC) are used as active dosimeters on manned space flights. These TEPC's are further used to determine average quality factor for each space mission. A TEPC simulating a 1 micron diameter sphere of tissue was exposed as part of a particle spectrometer to iron-56 at energies from 200-1000 MeV/nucleon. The response of TEPC in terms of frequency-averaged lineal energy, dose-averaged lineal energy, as well as energy deposited at different impact parameters through detector was determined for six different incident energies of iron-56 in this energy range. Calculations determined that charged particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model and the results compared to experimental data.

  17. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  18. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  19. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  20. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20cGy of 1GeV/n (56)Fe particles.

    PubMed

    Britten, Richard A; Miller, Vania D; Hadley, Melissa M; Jewell, Jessica S; Macadat, Evangeline

    2016-08-01

    NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies. PMID:27662783

  1. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20 cGy of 1 GeV/n 56Fe particles

    NASA Astrophysics Data System (ADS)

    Britten, Richard A.; Miller, Vania D.; Hadley, Melissa M.; Jewell, Jessica S.; Macadat, Evangeline

    2016-08-01

    NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20 cGy 1 GeV/n 56Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.

  2. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  3. The 31- level in 56 Fe

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Nelson, R. O.

    2015-04-01

    The question whether the 3076.2-keV, (3-), or the 4509.6 keV, 3-, is the first 3- level in 56 Fe is important for reaction model calculations. The inclusion in the databases of the 3076.2-keV level will be discussed. A work by using the 56 Fe(n,n' γ) reaction and fast neutrons from a reactor, reported that the 3076.2-keV state does not exist and triggered the present work, where γ- γ coincidence data in 56 Fe, which are more definitive, were recorded with the GEANIE spectrometer comprised of 26 high-purity Ge detectors. The pulsed beam of the Los Alamos Neutron Science Center's WNR facility provided fast neutrons impinging on a 56 Fe target. As we reported in, our experiment supported the assignment of the 4509.6 keV level as the first 3- state, with no observation in the gated spectra of the two transitions that were reported to decay out of the 3076.2-keV level by. A plan to repeat the (p, γ) reaction that reported the observation of these two transitions will be discussed.

  4. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  5. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  6. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  7. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  8. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  9. Cognitive deficits induced by 56Fe radiation exposure.

    PubMed

    Shukitt-Hale, B; Casadesus, G; Cantuti-Castelvetri, I; Rabin, B M; Joseph, J A

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  10. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  11. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  12. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  13. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  14. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  15. Local factors modify the dose dependence of 56Fe-induced atherosclerosis.

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz; Yu, Shaohua

    2012-07-01

    Radiation exposure from a number of terrestrial sources is associated with an increased risk of cardiovascular disease, but evidence establishing whether high-LET radiation has similar effects has been lacking. We recently demonstrated that 600 MeV/n 56Fe induces atherosclerosis as well. Ten-week old male apolipoprotein-E deficient mice, a well-characterized atherosclerosis animal model, were exposed to 0 (control) 2, or 5Gy 56Fe targeted to the chest and neck. In these mice, 56Fe-induced atherosclerosis was similar in character to that induced by X-rays in the same mouse model and to that resulting from therapeutic radiation in cancer patients. Atherosclerosis was exacerbated by 56Fe only in targeted areas, however, suggesting a direct effect of the radiation on the arteries themselves. This is in contrast to some other risk factors, such as high cholesterol or tobacco use, which have systemic effects. The radiation dose required to accelerate development of atherosclerotic plaques, however, differed depending on the vessel that was irradiated and even the location within the vessel. For example, atherosclerosis in the aortic arch was accelerated only by the highest dose (5 Gy), while the carotid arteries and the aortic root showed effects at 2 Gy (a dose four- to eight-fold lower than the dose of X-rays that produces similar effects in this model). Since shear stress is disrupted in the area of the aortic root, it is likely that at least part of the site-specificity is due to additive or synergistic effects of radiation and local hydrodynamics. Other factors, such as local oxidative stress or gene expression may also have been involved. Since the pro-atherogenic effects of 56Fe depend on additional local factors, this suggests that radiation exposure, when unavoidable, might be mitigated by modification of factors unrelated to the radiation itself.

  16. Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Petrosian, V.

    Several new observations notably high spatial and spectral X-ray observations of impulsive phase of solar flares by YOHKOH and RHESSI, and Solar Energetic Particle (SEP) spectra by ACE have provided strong evidence in favor of stochastic acceleration of electrons, protons and other ions by plasma waves or turbulence. Theoretical arguments also favor such a model if the seed particles come from the background thermal plasma. I will describe these evidences and the theoretical framework for evaluation of the accelerated particle spectra, their transport and radiation. The predictions of the models will be compared with several features of the observations with specific emphasize on heating vs acceleration by turbulence, thermal vs nonthermal electron spectra, looptop vs footpoint emission fro flaring loops, electron vs proton acceleration rates and 3He vs 4He (and other ion) abundances in SEPs.

  17. Fermi acceleration of auroral particles.

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Heikkila, W. J.

    1972-01-01

    Review of a number of nighttime acceleration mechanisms proposed in the literature for the role of producing the keV nighttime auroral-particle fluxes. Parallel electric fields are rejected for several reasons, but particularly because of the observed simultaneous precipitation of electrons and protons. Acceleration in the neutral sheet is inadequate for producing the particle energies, the observed field-aligned pitch-angle distribution at high latitudes, and the spectral hardening toward lower latitudes. Neutral point mechanisms, although often suggested in principle, have never been demonstrated satisfactorily in theory or in practice. Pitch-angle scattering from a trapped population produced by transverse adiabatic compression is also incapable of producing the field-aligned distribution. It is therefore suggested that longitudinal or Fermi acceleration, which results from the known magnetospheric convection, is the main nighttime auroral acceleration mechanism. The argument is supported by data obtained with the soft-particle spectrometer on Isis 1.

  18. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  19. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  20. Naked singularities as particle accelerators

    SciTech Connect

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  1. A Fundamental Theorem on Particle Acceleration

    SciTech Connect

    Xie, Ming

    2003-05-01

    A fundamental theorem on particle acceleration is derived from the reciprocity principle of electromagnetism and a rigorous proof of the theorem is presented. The theorem establishes a relation between acceleration and radiation, which is particularly useful for insightful understanding of and practical calculation about the first order acceleration in which energy gain of the accelerated particle is linearly proportional to the accelerating field.

  2. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  3. Semiclassical geons at particle accelerators

    SciTech Connect

    Olmo, Gonzalo J.

    2014-02-01

    We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.

  4. Particle accelerators test cosmological theory

    SciTech Connect

    Schramm, D.N.; Steigman, G.

    1988-06-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs.

  5. Space experiments with particle accelerators

    SciTech Connect

    Obayashi, T.

    1981-11-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  6. Particle acceleration in solar flares

    NASA Astrophysics Data System (ADS)

    Klecker, Berndt; Cliver, Ed; Kahler, Steve; Cane, Hilary

    Particle acceleration in solar flares was the topic of a workshop held at the University of Tasmania in Hobart, Australia, January 24-26, 1990. The workshop was held in conjunction with the 21st International Cosmic Ray Conference in Adelaide, South Australia, January 6-19, 1990. Forty-six scientists participated in the workshop, which was organized by Hilary Cane and John Humble of the University of Tasmania; Marc Duldig, Australian Antarctic Division, University of Tasmania; Ed Cliver, Geophysics Laboratory, U.S. Air Force Systems Command; and Steve Kahler, Boston College, Mass.

  7. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  8. Beneficial effects of fruit extracts on neuronal function and behavior following 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.; Jenkins, D.; Rabin, B. M.

    Exposing young rats to particles of high energy and charge HZE particles enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals Previous research has shown that diets supplemented with 2 blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats perhaps due to their antioxidant and anti-inflammatory properties This study evaluated the efficacy of these diets on irradiation-induced deficits in these parameters by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to whole-body irradiation with 1 5 Gy of 1 GeV n high-energy 56 Fe particles Irradiation impaired performance in the Morris water maze and measures of dopamine release one month following radiation these deficits were protected by the antioxidant diets The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information a hippocampally-mediated behavior compared to controls The blueberry diet on the other hand seemed to improve reversal learning a behavior more dependent on intact striatal function These data suggest that 56 Fe particle irradiation causes deficits in behavior and signaling in rats which were ameliorated by an antioxidant diet and that the polyphenols in these fruits might be acting in different brain regions

  9. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  10. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The space experiments with particle accelerators (SEPAC) instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  11. Relativistic particle acceleration in plerions

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1994-01-01

    We discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized -- the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put approximately 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) varies as E(exp -2), where N(E)dE is the number of particles with energy between E and E+dE. The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be gamma(sub +/-)m(sub +/-)c squared = m(sub i)c squared gamma(sub 1)/Z(sub i), where gamma(sub 1) is the Lorentz factor of the upstream flow and Z(sub i) is the atomic number of the ions. The shock's spatial structure is shown to contain a series of 'overshoots' in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the 'wisps

  12. Relativistic Shocks: Particle Acceleration and Magnetization

    NASA Astrophysics Data System (ADS)

    Sironi, L.; Keshet, U.; Lemoine, M.

    2015-10-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

  13. Observations of particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1979-01-01

    Solar flares provide several examples of nonthermal particle acceleration. The paper reviews the information gained about these processes via X-ray and gamma-ray astronomy, which can presently distinguish among three separate particle-acceleration processes at the sun: an impulsive accelerator of more than 20 keV electrons, a gradual accelerator of more than 20 keV electrons, and a gradual accelerator of more than 10 MeV ions. The acceleration energy efficiency (total particle energy divided by total flare energy) of any of these mechanisms cannot be less than about 0.1%, although the gradual acceleration does not occur in every flare. The observational material suggests that both the impulsive and gradual accelerations take place preferentially in closed magnetic-field structures, but that the electrons decay in these traps before they can escape. The ions escape very efficiently.

  14. Particle acceleration on Galactic scales

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The history of and current ideas concerning the origin of cosmic rays in the Galaxy and in extragalactic sources are surveyed. The observed properties of Galactic cosmic rays and shock acceleration are discussed. It is argued that shock acceleration in various guises is an essential and conceptually the most economical acceleration mechanism.

  15. Effect of behavioral testing on spine density of basal dendrites in the CA1 region of the hippocampus modulated by (56)Fe irradiation.

    PubMed

    Raber, Jacob; Allen, Antiño R; Weber, Sydney; Chakraborti, Ayanabha; Sharma, Sourabh; Fike, John R

    2016-04-01

    A unique feature of the space radiation environment is the presence of high-energy charged particles, including (56)Fe ions, which can present a significant hazard to space flight crews during and following a mission. (56)Fe irradiation-induced cognitive changes often involve alterations in hippocampal function. These alterations might involve changes in spine morphology and density. In addition to irradiation, performing a cognitive task can also affect spine morphology. Therefore, it is often hard to determine whether changes in spine morphology and density are due to an environmental challenge or group differences in performance on cognitive tests. In this study, we tested the hypothesis that the ability of exploratory behavior to increase specific measures of hippocampal spine morphology and density is affected by (56)Fe irradiation. In sham-irradiated mice, exploratory behavior increased basal spine density in the CA1 region of the hippocampus and the enclosed blade of the dentate gyrus. These effects were not seen in irradiated mice. In addition, following exploratory behavior, there was a trend toward a decrease in the percent stubby spines on apical dendrites in the CA3 region of the hippocampus in (56)Fe-irradiated, but not sham-irradiated, mice. Other hippocampal regions and spine measures affected by (56)Fe irradiation showed comparable radiation effects in behaviorally naïve and cognitively tested mice. Thus, the ability of exploratory behavior to alter spine density and morphology in specific hippocampal regions is affected by (56)Fe irradiation. PMID:26801826

  16. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  17. Particle Accelerators Test Cosmological Theory.

    ERIC Educational Resources Information Center

    Schramm, David N.; Steigman, Gary

    1988-01-01

    Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)

  18. Particle acceleration at collisionless shocks: An overview

    SciTech Connect

    Zank, G.P.; Li Gang; Webb, G.M.; Le Roux, J.A.; Florinski, V.; Ao, X.; Rice, W.K.M.

    2005-08-01

    An overview of shock acceleration is presented, focusing primarily on interplanetary shocks and the termination shock as examples. An extended discussion of recent advances in modeling real solar energetic particle (SEP) and energetic storm particle (ESP) events is presented. When the energy of accelerated particles becomes very large, their back reaction on the flow can result in a shock that is significantly mediated, and as an example, we consider some results for the termination shock.

  19. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  20. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  1. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating. PMID:25215682

  2. (56)Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus.

    PubMed

    Allen, Antiño R; Raber, Jacob; Chakraborti, Ayanabha; Sharma, Sourabh; Fike, John R

    2015-12-01

    A unique feature of the space radiation environment is the presence of high-energy charged particles, which can be significantly hazardous to space flight crews who are exposed during a mission. Health risks associated with high-LET radiation exposure include cognitive injury. The pathogenesis of this injury is unknown but may involve modifications to dendritic structure and/or alterations in dendritic spine density and morphology. In this study, 24 two-month-old C57BL6/J male mice were either whole-body irradiated with 0.5 Gy (56)Fe (600 MeV/n; n = 12) or sham irradiated (n = 12). Three months postirradiation animals were tested for locomotor activity and habituation. After behavioral testing, animals were euthanized and the brains were flash frozen. Compared to sham-irradiated mice, irradiated mice moved less when first introduced to the environment, although they did recognize the environment when re-exposed to it one day later. Exposure to (56)Fe radiation significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal tri-synaptic network. To our knowledge, these data represents the first reported evidence that high-LET radiation has deleterious effects on mature neurons associated with hippocampal learning and memory. PMID:26579941

  3. Visions for the future of particle accelerators

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The ambitions of accelerator based science, technology and applications far exceed the present accelerator possibilities. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results and visions for the future in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. The main subject is however the vision for the future of particle accelerators and next generation light sources.

  4. Single particle dynamics in circular accelerators

    SciTech Connect

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  5. Space experiments with particle accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The SEPAC instruments consist of an electron accelerator, a plasma accelerator, a neutral gas (N2) release device, particle and field diagnostic instruments, and a low light level television system. These instruments are used to accomplish multiple experiments: to study beam-particle interactions and other plasma processes; as probes to investigate magnetospheric processes; and as perturbation devices to study energy coupling mechanisms in the magnetosphere, ionosphere, and upper atmosphere.

  6. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  7. Particle acceleration by the sun

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1986-01-01

    A review is given of the analysis of new observations of energetic particles and energetic secondary emissions obtained over the solar maxium (approx. 1980) by the Solar Maximum mission, Hinotori, the international Sun-Earth Explorer, Helios, Explorer satellites, and Voyager spacecraft. Solar energetic particle events observed in space, He(3)- rich events, solar gamma rays and neutrons, and solar neutrinos are discussed.

  8. Lasers and new methods of particle acceleration

    SciTech Connect

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements.

  9. Effects of whole body (56)Fe radiation on contextual freezing and Arc-positive cells in the dentate gyrus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Rosi, Susanna; Sharma, Sourabh; Dayger, Catherine; Davis, Matthew J; Fike, John R

    2013-06-01

    The space radiation environment contains high-energy charged particles such as (56)Fe, which could pose a significant hazard to hippocampal function in astronauts during and after the mission(s). The mechanisms underlying impairments in cognition are not clear but might involve alterations in the percentage of neurons in the dentate gyrus expressing the plasticity-related immediate early gene Arc. Previously, we showed effects of cranial (56)Fe irradiation on hippocampus-dependent contextual freezing and on the percentage of Arc-positive cells in the enclosed, but not free, blade. Because it is unclear whether whole body (56)Fe irradiation causes similar effects on these markers of hippocampal function, in the present study we quantified the effects of whole body (56)Fe irradiation (600MeV, 0.5 or 1Gy) on hippocampus-dependent and hippocampus-independent cognitive performance and determined whether these effects were associated with changes in Arc expression in the enclosed and free blades of the dentate gyrus. Whole body (56)Fe irradiation impacted contextual but not cued fear freezing and the percentage of Arc-positive cells in the enclosed and free blades. In mice tested for contextual freezing, there was a correlation between Arc-positive cells in the enclosed and free blades. In addition, in mice irradiated with 0.5Gy, contextual freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive cells in the enclosed blade. In mice tested for cued freezing, there was no correlation between Arc-positive cells in the enclosed and free blades. In contrast, cued freezing in the presence or absence of aversive stimuli correlated with Arc-positive cells in the free blade. In addition, in mice irradiated with 1Gy cued freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive neurons in the free blade. These data indicate that while whole body (56)Fe radiation affects contextual freezing and Arc-positive cells

  10. Applications of particle accelerators in medicine.

    PubMed

    Silari, Marco

    2011-07-01

    There are nearly 20,000 particle accelerators in operation worldwide, about half of them employed for biomedical uses. This paper focuses on some recent advances in the two main medical domains where accelerators find their use, radionuclide production and radiation therapy. The paper first discusses the use of high-energy electron and proton accelerators for the potential, future production of (99)Mo, which is presently provided by fission reactors. Next, it reviews the rationale for the use of protons and carbon ions in cancer therapy, discussing the requirements imposed on accelerator technology and looking at some recent developments.

  11. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  12. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  13. Level density and mechanism of deuteron-induced reactions on 54,58,56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Byun, Y.; Brune, C. R.; Massey, T. N.; Akhtar, S.; Dhakal, S.; Parker, C. E.

    2015-07-01

    Deuteron elastic cross sections, as well as neutron, proton, and α -particle emission spectra, from d + 54,58,56Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 57Co, 55Co, 57Fe, 55Fe, 52Mn, 54Mn have been deduced from the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)], 10.1016/0375-9474(92)90278-R was found to have a good agreement with our results.

  14. Scalar fields and particle accelerators

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-06-01

    The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked

  15. Observation of particle acceleration in laboratory magnetosphere

    SciTech Connect

    Kawazura, Y.; Yoshida, Z.; Nishiura, M.; Saitoh, H.; Yano, Y.; Nogami, T.; Sato, N.; Yamasaki, M.; Kashyap, A.; Mushiake, T.

    2015-11-15

    The self-organization of magnetospheric plasma is brought about by inward diffusion of magnetized particles. Not only creating a density gradient toward the center of a dipole magnetic field, the inward diffusion also accelerates particles and provides a planetary radiation belt with high energy particles. Here, we report the first experimental observation of a “laboratory radiation belt” created in the ring trap 1 device. By spectroscopic measurement, we found an appreciable anisotropy in the ion temperature, proving the betatron acceleration mechanism which heats particles in the perpendicular direction with respect to the magnetic field when particles move inward. The energy balance model, including the heating mechanism, explains the observed ion temperature profile.

  16. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  17. Kinetic Simulations of Particle Acceleration at Shocks

    SciTech Connect

    Caprioli, Damiano; Guo, Fan

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  18. Solar Particle Acceleration Radiation and Kinetics (SPARK). A mission to understand the nature of particle acceleration

    NASA Astrophysics Data System (ADS)

    Matthews, Sarah A.; Williams, David R.; Klein, Karl-Ludwig; Kontar, Eduard P.; Smith, David M.; Lagg, Andreas; Krucker, Sam; Hurford, Gordon J.; Vilmer, Nicole; MacKinnon, Alexander L.; Zharkova, Valentina V.; Fletcher, Lyndsay; Hannah, Iain G.; Browning, Philippa K.; Innes, Davina E.; Trottet, Gerard; Foullon, Clare; Nakariakov, Valery M.; Green, Lucie M.; Lamoureux, Herve; Forsyth, Colin; Walton, David M.; Mathioudakis, Mihalis; Gandorfer, Achim; Martinez-Pillet, Valentin; Limousin, Olivier; Verwichte, Erwin; Dalla, Silvia; Mann, Gottfried; Aurass, Henri; Neukirch, Thomas

    2012-04-01

    Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, γ-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in

  19. Particle Acceleration in Shock-Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    2015-04-01

    Collisionless shock waves play a crucial role in producing high energy particles. One of the most plausible acceleration mechanisms is the first order Fermi acceleration in which non-thermal particles statistically gain energy while scattered by MHD turbulence both upstream and downstream of a shock. Indeed, X-ray emission from energetic particles accelerated at supernova remnant shocks is often observed [e.g., Uchiyama et al., 2007]. Most of the previous studies on shock acceleration assume the presence of a single shock. In space, however, two shocks frequently come close to or even collide with each other. For instance, it is observed that a CME (coronal mass ejection) driven shock collides with the earth's bow shock [Hietala et al., 2011], or interplanetary shocks pass through the heliospheric termination shock [Lu et al., 1999]. Colliding shocks are observed also in high power laser experiments [Morita et al., 2013]. It is expected that shock-shock interactions efficiently produce high energy particles. A previous work using hybrid simulation [Cargill et al., 1986] reports efficient ion acceleration when supercritical two shocks collide. In the hybrid simulation, however, the electron dynamics cannot be resolved so that electron acceleration cannot be discussed in principle. Here, we perform one-dimensional full Particle-in-Cell (PIC) simulations to examine colliding two symmetric oblique shocks and the associated electron acceleration. In particular, the following three points are discussed in detail. 1. Energetic electrons are observed upstream of the two shocks before their collision. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). 2. The reflected electrons excite large amplitude upstream waves. Electron beam cyclotron instability [Hasegawa, 1975] and electron fire hose instability [Li et al., 2000] appear to occur. 3. The large amplitude waves can scatters energetic electrons in

  20. RFQ device for accelerating particles

    DOEpatents

    Shepard, Kenneth W.; Delayen, Jean R.

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  1. Non-accelerator particle physics

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

  2. RFQ device for accelerating particles

    DOEpatents

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  3. Automation of particle accelerator control

    SciTech Connect

    Silbar, R.R.; Schultz, D.E.

    1988-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a 'mouseable' representation of a typical beamline. This responds actively to changes input from the mouse or keyboard, giving an updated display of the beamline itself, its optical properties, and the instrumentation and control devices as seen by the operator. We have incorporated the Fortran beam optics code TRANSPORT for simulation of the beam. The paper describes the experience gained in this process and discusses plans to extend the work so that it is usable, in real-time, on an operating beamline. 11 refs., 2 figs.

  4. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Supanpaiboon, Wisa; Whorton, Elbert

    Different types of galactic cosmic rays (GCR) are present in space and have large mass and energy (HZE particles). Among these, stripped 56 Fe ions are of major concern. Although HZE particles are approximately 1% of GCR, their contribution to health risk could be significant because of (1) their high linear energy transfer (LET) resulting in a larger amount of energy being deposited in the hit cells, and (2) the lack of information on the effectiveness of these particles in cancer induction. To better protect astronauts in space environments, it is essential that we improve our understanding of the 56 Fe-ion-induced damage associated with the increased risk of late occurring diseases (such as cancer). It has been well established that acute myeloid leukemia (AML) is one of the major malignancies associated with exposure to ionizing radiation in both human beings and in mice. It is therefore one of the most important cancers related to space flights. For these reasons, it is important to investigate 56 Fe ion-induced damage in in vivo systems, especially in those cells that are known to be at risk for health problems associated with radiation, such as hematopoietic cells, the known target cell for radiation-induced leukemia. Since in vivo studies of humans are not possible, animal studies are critically important. It has been widely suggested that elevation of delayed chromosomal damage (normally known as genomic instability) is associated with cancer risk. We therefore determined dose-response relationships for the frequencies of micronuclei (MN) in mouse blood erythrocytes as a measure of both initial radiation damage and the induction of genomic instability. The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and immature polychromatic-erythrocytes (MN-PCEs). These measurements were made as a function of radiation dose, radiation quality, time after irradiation and the genetic background of exposed mice. Blood samples were

  5. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  6. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    SciTech Connect

    Plettner, T.; Gaume, R.; Wisdom, J.; Spencer, J.; /SLAC

    2005-06-07

    Laser driven particle accelerators require sub-micron control of the laser field as well as precise electron-beam guiding so fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such next generation machines. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003[1] but with a variety of complications on the laser side. However, fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss the advantages such as the range of materials available and ways to implement them followed by some different test examples we been considered. One important goal is an integrated system that avoids having to inject either laser or particle pulses into these structures.

  7. Origin and acceleration of suprathermal particles

    NASA Astrophysics Data System (ADS)

    Desai, Mihir I.; Dayeh, Maher A.; Ebert, Robert W.

    2016-03-01

    Observations over the last decade have shown that suprathermal ions with energies above that of the core or bulk solar wind protons (i.e., ~1-2 keV/nucleon) are an important constituent of the overall seed population that is accelerated in solar and interplanetary events. Despite the recent recognition of their importance, the origin of these populations and the method of their acceleration remains poorly understood. This is partly due to the fact that these particles exist in the so-called tail regions of the corresponding solar wind distributions where high temporal and sensitivity measurements are sparse. Moreover, observations comprising long-term averages (between hours to more than a day) show conflicting results. For instance, below ~40 keV/nucleon the ion differential intensities in the solar wind frame appear to exhibit a near-constant power-law spectral slope of ~1.5, perhaps indicating a universal acceleration mechanism. In contrast, at energies greater than ~40 keV/nucleon, the ion composition changes with solar activity, and the energy spectra are significantly steeper, perhaps indicating that the suprathermal pool of material also comprises lower-energy particle populations accelerated in corotating interaction regions, interplanetary shocks, and solar energetic particle events. This paper discusses key observations of suprathermal ions and electrons in terms of state-of-the-art theories and models that have been put forward to account for their origin and acceleration.

  8. Seventy Five Years of Particle Accelerators

    SciTech Connect

    Andy Sessler

    2008-04-04

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  9. Seventy Five Years of Particle Accelerators

    ScienceCinema

    Andy Sessler

    2016-07-12

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  10. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  11. Measurements of Materials Shielding Properties with 1 GeV/nuc56Fe

    SciTech Connect

    Zeitlin, Cary; Guetersloh, Stephen B.; Heilbronn, Lawrence H.; Miller, Jack

    2006-05-15

    The design of future spacecraft such as the Crew ExplorationVehicle must take into account the radiation shielding properties of boththe structural components as well as dedicated shielding materials. Sincemodest depths of shielding stop the vast majority of Solar EnergeticParticles (SEP), the greater challenge is posed by the need to shieldcrew from the Galactic Cosmic Rays (GCR), which include highly-chargedand highly-energetic particles. Here, we report on results from testsperformed with beams of 1 GeV/nuc 56Fe at the Brookhaven NationalLaboratory. A wide variety of targets, both elemental and composite, wereplaced in the particle beams, and the spectra of particles emerging fromthe targets were measured using a stack of silicon detectors. Results arepresented primarily in terms of dose reduction per g cm-2 of targetmaterial, and support the conclusions of an earlier calculation by Wilsonet al. showing that performance improves as the shield's mass numberdecreases, with hydrogen being by far the most effective. The data alsoshow that, as depth increases, the incremental benefit of addingshielding decreases, particularlyfor aluminum and other elements withhigher atomic mass numbers.

  12. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  13. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  14. Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle

    NASA Astrophysics Data System (ADS)

    Konter, Jasper G.; Pietruszka, Aaron J.; Hanan, Barry B.; Finlayson, Valerie A.; Craddock, Paul R.; Jackson, Matthew G.; Dauphas, Nicolas

    2016-09-01

    Several magmatic processes contribute to the Fe isotope composition of igneous rocks. Most basalts fall within a limited range of δ56Fe (+ 0.10 ± 0.05 ‰), although more differentiated lavas trend towards slightly elevated values (up to + 0.3 ‰). New data for basalts and olivine crystals from the Samoan Islands show higher δ56Fe values than have previously been reported for basalts worldwide. Common magmatic processes - from partial melting of average mantle to subsequent differentiation of melts - cannot sufficiently fractionate the Fe isotopes to explain the elevated δ56Fe values (∼ + 0.3 ‰) in rejuvenated Samoan lavas. Instead, a mantle source with an elevated δ56Fe value - in conjunction with effects due to common magmatic processes - is required. The Samoan mantle source is known to be unique in its radiogenic isotope composition and indications that melting of the Samoan mantle source can generate elevated δ56Fe values in lavas comes from: (1) High fO2 values of Samoan lavas and their likely sources affecting Fe isotope fractionation during melting; (2) Metasomatism that caused elevated δ56Fe in the Samoan mantle, as observed in xenoliths; and (3) Involvement of a pyroxenite source lithology, based on the Zn/Fe ratios and TiO2 (and other high field-strength element) abundances of the lavas, that can generate melts with elevated δ56Fe values. Two models are presented to explain the elevated δ56Fe values in Samoan lavas: a metasomatized source (∼ + 0.07 ‰) or the presence of a pyroxenite source component (∼ + 0.12 ‰). Both models subsequently elevate δ56Fe values with both partial melting (∼ + 0.14 ‰) and fractional crystallization (∼ + 0.1 ‰). These processes may be related to an upwelling mantle plume with a pyroxenite component, or melting of previously metasomatized upper mantle.

  15. Evidence for the dipole nature of the low-energy γ enhancement in 56Fe.

    PubMed

    Larsen, A C; Blasi, N; Bracco, A; Camera, F; Eriksen, T K; Görgen, A; Guttormsen, M; Hagen, T W; Leoni, S; Million, B; Nyhus, H T; Renstrøm, T; Rose, S J; Ruud, I E; Siem, S; Tornyi, T; Tveten, G M; Voinov, A V; Wiedeking, M

    2013-12-13

    The γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11  MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  16. Solving radiation problems at particle accelerators

    SciTech Connect

    Nikolai V. Mokhov

    2001-12-11

    At high-intensity high-energy particle accelerators, consequences of a beam-induced radiation impact on machine and detector components, people, environment and complex performance can range from negligible to severe. The specifics, general approach and tools used at such machines for radiation analysis are described. In particular, the world leader Fermilab accelerator complex is considered, with its fixed target and collider experiments, as well as new challenging projects such as LHC, VLHC, muon collider and neutrino factory. The emphasis is on mitigation of deleterious beam-induced radiation effects and on the key role of effective computer simulations.

  17. Self-force on an accelerated particle

    NASA Astrophysics Data System (ADS)

    Linz, Thomas M.; Friedman, John L.; Wiseman, Alan G.

    2014-07-01

    We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (nongeodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. We use a Lorentz gauge for the electromangetic and gravitational cases. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the A and B terms) and that all terms of higher order in ℓ vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.

  18. Transient particle acceleration associated with solar flares.

    PubMed

    Chupp, E L

    1990-10-12

    Understanding how individual charged particles can be accelerated to extreme energies (10(20) electron volts), remains a foremost problem in astrophysics. Within our solar system, the active sun is capable of producing, on a short time scale, ions with energies higher than 25 gigaelectron volts. Satellite and ground-based observation over the past 30 years have greatly increased our knowledge of the properties of transient bursts of energetic particles emitted from the sun in association with solar flares, but a real understanding of the solar flare particle acceleration process requires greatly refined experimental data. On the practical side, it is also imperative that this problem be solved if man is to venture, for long periods of time, beyond the protective umbrella of Earth's magnetic field, which excludes much of the biologically damaging solar energetic particles. It is only through an understanding of the basic acceleration problem that we can expect to be able to predict the occurrence of a solar flare with lethal solar radiations. For our knowledge of these effects to advance, a new space mission dedicated to studying the high-energy aspects of solar flares at high spatial and energy resolution will be required.

  19. TOPICS IN THE PHYSICS OF PARTICLE ACCELERATORS

    SciTech Connect

    Sessler, A.M.

    1984-07-01

    High energy physics, perhaps more than any other branch of science, is driven by technology. It is not the development of theory, or consideration of what measurements to make, which are the driving elements in our science. Rather it is the development of new technology which is the pacing item. Thus it is the development of new techniques, new computers, and new materials which allows one to develop new detectors and new particle-handling devices. It is the latter, the accelerators, which are at the heart of the science. Without particle accelerators there would be, essentially, no high energy physics. In fact. the advances in high energy physics can be directly tied to the advances in particle accelerators. Looking terribly briefly, and restricting one's self to recent history, the Bevatron made possible the discovery of the anti-proton and many of the resonances, on the AGS was found the {mu}-neutrino, the J-particle and time reversal non-invariance, on Spear was found the {psi}-particle, and, within the last year the Z{sub 0} and W{sup {+-}} were seen on the CERN SPS p-{bar p} collider. Of course one could, and should, go on in much more detail with this survey, but I think there is no need. It is clear that as better acceleration techniques were developed more and more powerful machines were built which, as a result, allowed high energy physics to advance. What are these techniques? They are very sophisticated and ever-developing. The science is very extensive and many individuals devote their whole lives to accelerator physics. As high energy experimental physicists your professional lives will be dominated by the performance of 'the machine'; i.e. the accelerator. Primarily you will be frustrated by the fact that it doesn't perform better. Why not? In these lectures, six in all, you should receive some appreciation of accelerator physics. We cannot, nor do we attempt, to make you into accelerator physicists, but we do hope to give you some insight into the

  20. Naked singularities as particle accelerators. II.

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-01

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. DPRVDAQ1550-7998 82, 104049 (2010).10.1103/PhysRevD.82.104049] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  1. Naked singularities as particle accelerators. II

    SciTech Connect

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  2. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  3. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  4. Stochastic particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droege, W.; Schlickeiser, R.

    1985-01-01

    It is proposed that particles during the second phase of solar flares are accelerated by stochastic resonant scattering off hydromagnetic waves and first order Fermi acceleration in shock waves generated in the impulsive phase of the flare. Solutions allow arbitrary power law momentum dependences of the momentum diffusion coefficient as well as the momentum diffusion coefficient as well as the momentum loss time. The acceleration time scale to a characteristic energy approximately 100 keV for protons can be as short as 5s. The resulting electron spectra show a characteristic double power law with a transition around 200 keV and are correlated to the proton spectra evaluated under equal boundary conditions, indicating that electrons and protons are accelerated by the same mechanism. The correlation between the different spectral indices in the electron double power law and between electron and proton spectra are governed by the ratio of first to second order acceleration and therefore allow a determination of the Alfven Mach number of the shock wave.

  5. Proceedings of the 1987 IEEE particle accelerator conference: Volume 2

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This report contains papers from the IEEE particle accelerator conference. This second volume of three covers the following main topics: Instrumentation and control, accelerators for medium energies and nuclear physics, high current accelerators, and beam dynamics. (LSP)

  6. Channeled particle acceleration by plasma waves in metals

    SciTech Connect

    Chen, P.; Noble, R.J.

    1987-01-01

    A solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal is presented. Acceleration gradients of order 100 GV/cm are theoretically possible. Particle dechanneling due to electron multiple scattering can be eliminated with a sufficiently high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed.

  7. Microwaves and particle accelerators: a fundamental link

    SciTech Connect

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  8. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.

    2015-09-01

    As a consequence of the evolutionary conditions [28; 29], shock waves can generate high levels of downstream vortical turbulence. Simulations [32-34] and observations [30; 31] support the idea that downstream magnetic islands (also called plasmoids or flux ropes) result from the interaction of shocks with upstream turbulence. Zank et al. [18] speculated that a combination of diffusive shock acceleration (DSA) and downstream reconnection-related effects associated with the dynamical evolution of a “sea of magnetic islands” would result in the energization of charged particles. Here, we utilize the transport theory [18; 19] for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets to investigate a combined DSA and downstream multiple magnetic island charged particle acceleration mechanism. We consider separately the effects of the anti-reconnection electric field that is a consequence of magnetic island merging [17], and magnetic island contraction [14]. For the merging plasmoid reconnection- induced electric field only, we find i) that the particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory, and ii) that the solution is constant downstream of the shock. For downstream plasmoid contraction only, we find that i) the accelerated particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory; ii) for a given energy, the particle intensity peaks downstream of the shock, and the peak location occurs further downstream of the shock with increasing particle energy, and iii) the particle intensity amplification for a particular particle energy, f(x, c/c0)/f(0, c/c0), is not 1, as predicted by DSA theory, but increases with increasing particle energy. These predictions can be tested against observations of electrons and ions accelerated at interplanetary shocks and the heliospheric

  9. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  10. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  11. Radiation from Shock-Accelerated Particles

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-ichi; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration, generation of magnetic fields , and associated radiation. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. The shock structure depends on the composition of the jet and ambient plasma (electron-positron or electron-ions). Strong electromagnetic fields are generated in the reverse , jet shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The detailed properties of the radiation are important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jet shocks, and supernova remnants

  12. Space experiments with particle accelerators. [Spacelab

    NASA Technical Reports Server (NTRS)

    Obayashi, T.

    1981-01-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  13. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, Tatsuzo

    1988-01-01

    The purpose of Space Experiments with Particle Accelerators (SEPAC) on the Atmospheric Laboratory for Applications and Science (ATLAS 1) mission, is to carry out active and interactive experiments on and in the earth's ionosphere, atmosphere, and magnetosphere. The instruments to be used are an electron beam accelerator (EBA), plasma contactor, and associated instruments the purpose of which is to perform diagnostic, monitoring, and general data taking functions. Four major classes of investigations are to be performed by SEPAC. They are: beam plasma physics, beam-atmosphere interactions, the use of modulated electron beams as transmitting antennas, and the use of electron beams for remote sensing of electric and magnetic fields. The first class consists mainly of onboard plasma physics experiments to measure the effects of phenomena in the vicinity of the shuttle. The last three are concerned with remote effects and are supported by other ATLAS 1 investigations as well as by ground-based observations.

  14. Effects of 28Si Ions, 56Fe Ions, and Protons on the Induction of Murine Acute Myeloid Leukemia and Hepatocellular Carcinoma

    PubMed Central

    Weil, Michael M.; Ray, F. Andrew; Genik, Paula C.; Yu, Yongjia; McCarthy, Maureen; Fallgren, Christina M.; Ullrich, Robert L.

    2014-01-01

    Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members. PMID:25126721

  15. Toward automatic control of particle accelerator beams

    SciTech Connect

    Schultz, D.E.; Silbar, R.R.

    1988-01-01

    We describe a program aiming toward automatic control of particle accelerator beams. A hybrid approach is used, combining knowledge- based system programming techniques and traditional numerical simulations. We use an expert system shell for the symbolic processing and have incorporated the FORTRAN beam optics code TRANSPORT for numerical simulation. The paper discusses the symbolic model we built, the reasoning components, how the knowledge base accesses information from an operating beamline, and the experience gained in merging the two worlds of numeric and symbolic processing. We also discuss plans for a future real-time system. 6 refs., 6 figs.

  16. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38acceleration of charged-particles, mainly protons and {alpha}-particles, that in turn can by interaction with the stellar material modify the surface content.The present contribution explores to what extent the spallation processes resulting from the interaction of the stellar material with stellar energetic particle can by themselves only explain the abundances determined by observation at the surface of HD101065. We show that specific parametric simulations can explain many different observational aspects, and in particular that a significant production of Z>30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  17. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  18. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.

    1994-01-01

    The scientific emphasis of this contract has been on the physics of beam ionosphere interactions, in particular, what are the plasma wave levels stimulated by the Space Experiments with Particle Accelerators (SEPAC) electron beam as it is ejected from the Electron Beam Accelerator (EBA) and passes into and through the ionosphere. There were two different phenomena expected. The first was generation of plasma waves by the interaction of the DC component of the beam with the plasma of the ionosphere, by wave particle interactions. The second was the generation of waves at the pulsing frequency of the beam (AC component). This is referred to as using the beam as a virtual antenna, because the beam of electrons is a coherent electrical current confined to move along the earth's magnetic field. As in a physical antenna, a conductor at a radio or TV station, the beam virtual antenna radiates electromagnetic waves at the frequency of the current variations. These two phenomena were investigated during the period of this contract.

  19. Charged particle acceleration in nonuniform plasmas

    SciTech Connect

    Bulanov, S.V.; Naumova, N.M.; Dudnikova, G.I.; Vshivkov, V.A.; Pegoraro, F.; Pogorelsky, I.V.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a {much_gt} 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order {lambda}{sub p}. The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations.

  20. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  1. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  2. The acceleration and propagation of solar flare energetic particles

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Ramaty, R.; Zweibel, E. G.; Holzer, T. E. (Editor); Mihalas, D. (Editor); Sturrock, P. A. (Editor); Ulrich, R. K. (Editor)

    1982-01-01

    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented.

  3. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  4. Neutral and inertial particle acceleration in strained turbulence

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Min; Gylfason, Armann; Perlekar, Prasad; Toschi, Federico

    2015-11-01

    Turbulence influences the transport and mixing of particles. We study the dynamics of particles in turbulent flows undergoing asymmetrically expanding straining by means of direct numerical simulations. We investigate the accelerations of tracer and inertial particles. We find a good agreement between tracer acceleration variance and the prediction of rapid distortion theory. Furthermore we study how particle acceleration probability density functions depend on the strain rate, the Stokes number, and the Reynolds number. Accelerations variances of inertial particles are discussed in the context of the formal solution of the equation of particle motion, and we show that in strong straining the acceleration variance of particles with small Stokes numbers can exceed that of tracer particles.

  5. Space Experiments with Particle Accelerators (SEPAC)

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.

    1982-01-01

    Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.

  6. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  7. Model-independent particle accelerator tuning

    SciTech Connect

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.

  8. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  9. CUSP Energetic Particles: Confinement, Acceleration and Implications

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng

    1999-01-01

    The cusp energetic particle (CEP) event is a new magnetospheric phenomenon. The events were detected in the dayside cusp for hours, in which the measured helium ions had energies up to 8 MeV. All of these events were associated with a dramatic decrease and large fluctuations in the local magnetic field strength. During January 1999 - December 1999 covered by this report, I have studied the CEP events by analyzing the POLAR, GEOTAIL, and WIND particle and magnetic field data measured during the geomagnetic quiet periods in 1996 and one geomagnetic storm period in 1998. The simultaneous observations indicated that the ion fluxes in the CEP events were higher than that in both the upstream and the downstream from the bow shock. The pitch angle distribution of the helium ions in the CEP events was found to peak around 90 deg. It was found that the mirror parameter, defined as the ratio of the square root of the integration of the parallel turbulent power spectral component over the ultra-low frequency (ULF) ranges to the mean field in the cusp, is correlated with the intensity of the cusp MeV helium flux, which is a measure of the influence of mirroring interactions and an indication of local effect. It was also found that the turbulent power of the local magnetic field in the ultra-low frequency (ULF) ranges is correlated with the intensity of the cusp energetic helium ions. Such ULF ranges correspond to periods of about 0.33-500 seconds that cover the gyroperiods, the bounce periods, and the drift periods of the tens keV to MeV charged particles when they are temporarily confined in the high-altitude dayside cusp. These observations represent a discovery that the high-altitude dayside cusp is a new acceleration and dynamic trapping region of the magnetosphere. The cusp geometry is connected via gradient and curvature drift of these energized ions to the equatorial plasma sheet as close as the geostationary orbit at local midnight. It implies that the dayside cusp is

  10. Model-independent particle accelerator tuning

    DOE PAGESBeta

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  11. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  12. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  13. Multiwavelength studies of Galactic TeV particle accelerators

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    Our Milky Way galaxy is host to a variety of astrophysical objects capable of accelerating particles to TeV energies, including supernova remnants and pulsar wind nebulae. I will review recent multiwavelength results on Galactic TeV sources and discuss the implications for particle acceleration and diffusion in these systems.

  14. Proceedings of the 1987 IEEE particle accelerator conference: Volume 1

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This book contains papers from the IEEE conference on particle accelerators. The general areas covered in this first of three volumes are: high energy accelerators; colliders; novel methods; free electron lasers; low energy accelerators; ion sources; synchrotron light source; radiation sources; instrumentation and control. Individual papers are separately indexed.

  15. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  16. PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK

    SciTech Connect

    Hoshino, Masahiro

    2013-08-20

    Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

  17. Earth's Most Powerful Natural Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Rowland, Doug

    2012-01-01

    Thunderstorms launch antimatter, gamma rays, and highly energetic electrons and neutrons to the edge of space. This witches' brew of radiation is generated at the edge of the stratopause, by the strong electric fields associated with lightning discharges. In less than a quarter millisecond, an explosive feedback process takes an initial seed population of electrons, perhaps produced by cosmic rays from dying stars, and amplifies them a billion billion-fold in the rarefied air over high altitude thunderheads. The electrons generate gamma radiation as they travel through the stratosphere and lower mesosphere, momentarily brighter and of harder spectrum than cosmic gamma ray bursts. These electrons ultimately are absorbed by the atmosphere, but the gamma rays continue on, into the upper reaches of the atmosphere, where they in turn generate a new population of electrons, positrons, and energetic neutrons. These secondary electrons and positrons move along the magnetic field, and can reach near-earth space, streaming through the inner radiation belts, and possibly contributing to the trapped populations there. First postulated by Wilson in 1925, and serendipitously discovered by the Compton Gamma Ray Observatory in 1994 [Fishman et al.], these events, known as "Terrestrial Gamma ray Flashes" (TGFs), represent the most intense episodes of particle acceleration on or near the Earth, resulting in electrons with energies up to 100 MeV. Recent observations by the RHESSI [Smith et al., 2004], Fermi [Briggs et al., 2010], and AGILE [Tavani et al., 2011] satellites, and theoretical and computational modeling, have suggested that the relativistic runaway electron avalanche (RREA) mechanism [Gurevich, 1992], and important modifications, such as the relativistic feedback discharge (RFD) model [Dwyer 2012] can best explain the observations at present. In these models, strong thunderstorm electric fields drive seed electrons, generated from cosmic ray interactions, into a runaway

  18. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  19. Magnesium activation of GTP hydrolysis or incubation in S-adenosyl-l-methionine reverses iron-56-particle-induced decrements in oxotremorine enhancement of K+-evoked striatal release of dopamine.

    PubMed

    Joseph, J A; Shukitt-Hale, B; McEwen, J; Rabin, B

    1999-12-01

    Previous research has determined that the deficits in motor behavior seen in aged animals irradiated with (56)Fe particles involved alterations in muscarinic receptor sensitivity. In the present experiments, we determined whether increasing either membrane fluidity by exposure of striatal slices from irradiated ((56)Fe particles) animals to S-adenosyl-l-methionine (SAM) or GTP hydrolysis with Mg(2+) would reverse this (56)Fe-particle-induced loss of muscarinic receptor sensitivity, as has been observed in aged animals. Results indicated that, while increasing Mg(2+) concentrations in the incubation medium was effective in reducing the radiation effects, SAM was able to effect some reversal of the radiation effects only at the lower concentration (200 microM). These results suggest that similar mechanisms may be involved in the deficits in signal transduction seen after (56)Fe-particle irradiation to those seen in aging, and that these may include changes in the membrane structure or composition that could alter subsequent responsiveness of transduction pathways. The results further suggest that, as has been reported previously, (56)Fe-particle irradiation may accelerate brain aging, and that since these HZE particles contribute at least 1% of the dose that astronauts would receive from cosmic rays, long-term exposure on extended space flights (e.g. to Mars) may produce similar deficits that could have immediate or delayed effects on behavior. PMID:10581534

  20. Particle Acceleration in Dissipative Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  1. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  2. Application of particle accelerators in research.

    PubMed

    Mazzitelli, Giovanni

    2011-07-01

    Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented.

  3. Validation of Geant4 physics models for 56Fe ion beam in various media

    NASA Astrophysics Data System (ADS)

    Jalota, Summit; Kumar, Ashavani

    2012-11-01

    The depth-dose distribution of a 56Fe ion beam has been studied in water, polyethylene, nextel, kevlar and aluminum media. The dose reduction versus areal depth is also calculated for 56Fe ions in carbon, polyethylene and aluminum using the Monte Carlo simulation toolkit Geant4. This study presents the validation of physics models available in Geant4 by comparing the simulated results with the experimental data available in the literature. Simulations are performed using binary cascade (BIC), abrasion-ablation (AA) and quantum molecular dynamics (QMD) models; integrated into Geant4. Deviations from experimental results may be due to the selection of simple geometry. This paper also addresses the differences in the simulated results from various models.

  4. Consistent Data Assimilation of Structural Isotopes: 23Na and 56Fe

    SciTech Connect

    Giuseppe Palmiotti

    2010-09-01

    A new approach is proposed, the consistent data assimilation, that allows to link the integral data experiment results to basic nuclear parameters employed by evaluators to generate ENDF/B point energy files in order to improve them. Practical examples are provided for the structural materials 23Na and 56Fe. The sodium neutron propagation experiments, EURACOS and JANUS-8, are used to improve via modifications of 23Na nuclear parameters (like scattering radius, resonance parameters, Optical model parameters, Statistical Hauser-Feshbach model parameters, and Preequilibrium Exciton model parameters) the agreement of calculation versus experiments for a series of measured reaction rate detectors slopes. For the 56Fe case the EURACOS and ZPR3 assembly 54 are used. Results have shown inconsistencies in the set of nuclear parameters used so that further investigation is needed. Future work involves comparison of results against a more traditional multigroup adjustments, and extension to other isotope of interest in the reactor community.

  5. Analysis of 238Pu and 56Fe Evaluated Data for Use in MYRRHA

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.; Stankovskiy, A.; Van den Eynde, G.; Schillebeeckx, P.; Heyse, J.

    2014-04-01

    A sensitivity analysis on the multiplication factor, keff, to the cross section data has been carried out for the MYRRHA critical configuration in order to show the most relevant reactions. With these results, a further analysis on the 238Pu and 56Fe cross sections has been performed, comparing the evaluations provided in the JEFF-3.1.2 and ENDF/B-VII.1 libraries for these nuclides. Then, the effect in MYRRHA of the differences between evaluations are analysed, presenting the source of the differences. With these results, recommendations for the 56Fe and 238Pu evaluations are suggested. These calculations have been performed with SCALE6.1 and MCNPX-2.7e.

  6. Particle Acceleration at Low Coronal Compression Regions and Shocks

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Lee, M. A.; Gorby, M.; Lugaz, N.; Spence, H. E.; Desai, M.; Török, T.; Downs, C.; Linker, J.; Lionello, R.; Mikić, Z.; Riley, P.; Giacalone, J.; Jokipii, J. R.; Kota, J.; Kozarev, K.

    2015-09-01

    We present a study on particle acceleration in the low corona associated with the expansion and acceleration of coronal mass ejections (CMEs). Because CME expansion regions low in the corona are effective accelerators over a finite spatial region, we show that there is a rigidity regime where particles effectively diffuse away and escape from the acceleration sites using analytic solutions to the Parker transport equation. This leads to the formation of broken power-law distributions. Based on our analytic solutions, we find a natural ordering of the break energy and second power-law slope (above the break energy) as a function of the scattering characteristics. These relations provide testable predictions for the particle acceleration from low in the corona. Our initial analysis of solar energetic particle observations suggests a range of shock compression ratios and rigidity dependencies that give rise to the solar energetic particle (SEP) events studied. The wide range of characteristics inferred suggests competing mechanisms at work in SEP acceleration. Thus, CME expansion and acceleration in the low corona may naturally give rise to rapid particle acceleration and broken power-law distributions in large SEP events.

  7. PARTICLE ACCELERATION AT LOW CORONAL COMPRESSION REGIONS AND SHOCKS

    SciTech Connect

    Schwadron, N. A.; Lee, M. A.; Gorby, M; Lugaz, N.; Spence, H. E.; Desai, M.; Török, T.; Downs, C.; Linker, J.; Lionello, R.; Mikić, Z.; Riley, P.; Giacalone, J.; Jokipii, J. R.; Kota, J.; Kozarev, K.

    2015-09-10

    We present a study on particle acceleration in the low corona associated with the expansion and acceleration of coronal mass ejections (CMEs). Because CME expansion regions low in the corona are effective accelerators over a finite spatial region, we show that there is a rigidity regime where particles effectively diffuse away and escape from the acceleration sites using analytic solutions to the Parker transport equation. This leads to the formation of broken power-law distributions. Based on our analytic solutions, we find a natural ordering of the break energy and second power-law slope (above the break energy) as a function of the scattering characteristics. These relations provide testable predictions for the particle acceleration from low in the corona. Our initial analysis of solar energetic particle observations suggests a range of shock compression ratios and rigidity dependencies that give rise to the solar energetic particle (SEP) events studied. The wide range of characteristics inferred suggests competing mechanisms at work in SEP acceleration. Thus, CME expansion and acceleration in the low corona may naturally give rise to rapid particle acceleration and broken power-law distributions in large SEP events.

  8. (56)Fe ion irradiation induced apoptosis through Nrf2 pathway in mouse testis.

    PubMed

    Zhao, Qiuyue; Mao, Aihong; Yan, Jiawei; Si, Jing; Zhou, Rong; Gan, Lu; Liu, Yang; Zhang, Hong

    2016-07-15

    The phenomenon has raised the concerns about the safety of an extended manned mission into deep space due to the high potential for exposure to high-LET radiation during space missions. Heavy ions such as (56)Fe are main radiation sources in deep space, which could pose a significant hazard to space flight crews during and after missions. Since the testis is a radiosensitive organ, which may be susceptible to space radiation-induced changes. In this study, we investigated the effect and potential mechanisms of (56)Fe irradiation on mouse testis. Pathological characteristics were measured following whole-body irradiation with 0.5 and 1Gy (56)Fe irradiation. Flow cytometry and terminal dUTP nick end-labeling (TUNEL) were performed to detect apoptotic cells. Western blot was applied to identify potential biomarkers. Immunofluorescence was used to investigate protein localization. We found that pathologic changes and apoptosis cells were significantly higher in 1Gy group than those in 0Gy groups. In addition, protein expression and localization studies confirmed Nrf2 was involved in this acute injury. Nrf2 and its target genes HO-1 and NQO1 were up-regulated in the irradiated testis in a dose-dependent manner. Nrf2 may be useful molecular markers in radiation-induced cellular responses and is important for detecting abnormal spermatogenesis following exposure to space radiation. PMID:27259810

  9. Suppression of Fermi acceleration in composite particles

    NASA Astrophysics Data System (ADS)

    Siqueira, Kellen Manoela; de Aguiar, Marcus Aloizio Martinez

    2016-09-01

    We study the motion of a composite particle in a one-dimensional billiard with a moving wall. The particle is modeled by two point masses coupled by a harmonic spring. We show that the energy gained by the composite particle is greatly reduced with respect to a single point particle. We show that the amount of energy transferred to the system at each collision with the walls is independent of the spring constant. However, the presence of the spring is responsible for the energy suppression because it diminishes the number of collisions by storing part of the system's energy and reducing the velocity of the particle's center of mass.

  10. Particle Acceleration in the Low Corona Over Broad Longitudes: Coupling MHD and 3D Particle Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.; Schwadron, N.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Titov, V. S.; Mikic, Z.; Riley, P.; Desai, M. I.; Dayeh, M. A.

    2014-12-01

    Recent work on the coupling between the Energetic Particle Radiation Environment Module (EPREM, a 3D energetic particle model) and Magnetohydrodynamics Around a Sphere (MAS, an MHD code developed at Predictive Science, Inc.) has demonstrated the efficacy of compression regions around fast coronal mass ejections (CMEs) for particle acceleration low in the corona (˜ 3 - 6 solar radii). These couplings show rapid particle acceleration over a broad longitudinal extent (˜ 80 degrees) resulting from the pile-up of magnetic flux in the compression regions and their subsequent expansion. The challenge for forming large SEP events in such compression-acceleration scenarios is to have enhanced scattering within the acceleration region while also allowing for efficient escape of accelerated particles downstream (away from the Sun) from the compression region. We present here the most recent simulation results including energetic particle and CME plasma profiles, the subsequent flux and dosages at 1AU, and an analysis of the compressional regions as efficient accelerators.

  11. Acceleration of solid particles by gaseous detonation products

    SciTech Connect

    Gavrilenko, T.P.; Grigoriev, V.V.; Zhdan, S.A.; Nikolaev, Y.A.; Boiko, V.M.; Papyrin, A.N.

    1986-11-01

    This investigation is concerned with a theoretical and experimental study of acceleration dynamics of spherically inert solid particles (100 ..mu..m nominal diameter) in flows of gaseous detonation products. The experiments were conducted in a detonation channel 1.5 m long with a 20 x 20 mm/sup 2/ cross section and one open end. Particle motion was observed with the method of multiexposure photographic recording and a laser stroboscopic light source. The character of velocity variation of individual particles inside and outside of the channel was investigated for different initial positions of particles. Under certain conditions the accelerated particles are destroyed. A mathematical model based on two-phase multivelocity continuum mechanics has been formulated to describe the detonation wave propagation, outflow of detonation products from the channel, and interaction between particles and a nonstationary flow of detonation products. The model includes chemical equilibrium of detonation products, particle acceleration, heat exchange between phases and channel walls, particle melting, and fragmentation of droplets if the Weber number exceeds some critical value. Particle destruction has been correlated with the initial position, diameter, and physical properties of particles. Comparison of computer and experimental results shows that the model satisfactorily describes acceleration, heating, and fragmentation of particles.

  12. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  13. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  14. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  15. PARTICLE ACCELERATION IN SUPERLUMINAL STRONG WAVES

    SciTech Connect

    Teraki, Yuto; Ito, Hirotaka; Nagataki, Shigehiro

    2015-06-01

    We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them using numerical methods in the context of the termination shocks of pulsar wind nebulae. We pursue the orbit of electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of a primary SLS and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave for electrons moving nearly along the wavevector changes very slowly compared with the oscillation of the wave, which is “phase-locked,” and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in pre-shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. However, when the amplitude of the secondary waves is not extremely weaker than that of the primary wave, the typical frequency can be estimated from synchro-Compton theory using the secondary waves. The primary wave does not contribute to the radiation because the SLSW accelerates electrons almost linearly. This radiation can be observed as a radio knot at the upstream of the termination shocks of the pulsar wind nebulae without counterparts in higher frequency ranges.

  16. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  17. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  18. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy

    2016-07-12

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  19. Acceleration of energetic charged particles: Shocks, reconnection or turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    2012-05-01

    Acceleration of energetic charged charged particles, most-often with power-law energy spectra occurs everywhere is space where particle-particle collision mean free paths are significantly larger than their gyro-radii. Shocks, reconnection events and turbulence have variously been proposed as acceleration mechanisms, and each must currently be considered a viable mechanism. Shocks have the advantage that they produce naturally power-law spectra in the observed range which are not very sensitive to the parameters. They are usually also fast accelerators. I first discuss the constraints which observations place on the acceleration mechanisms and show that there are both temporal and spatial constraints. Stochastic acceleration tends to be slow, so the rate of acceleration is important. In the inner heliosphere, this rate must exceed the rate of adiabatic cooling ~ 2Vw/r, where Vw is the radial solar-wind velocity. Acceleration of anomalous cosmic rays (ACR) in the heliosheath must occur on a time scale of on year to avoid producing too many multiply charged ACR. It is shown that here, stochastic acceleration has difficulties in the inner heliosheath. Reconnection events are essentially incompressible, so the divergence of the flow velocity is nearly zero, and the Parker equation would give little acceleration. Acceleration at reconnection therefore must go beyond the Parker equation - either by invoking large pitch-angle anisotropies or by extending the equation to higher order in the flow speed relative to the particle speed. An approach to using an extension of Parker's equation is discussed. Diffusive shock acceleration at the heliospheric termination shock is also discussed. It is suggested that inclusion of upstream turbulence and shock geometry provides reasonable solutions to the perceived problems with this mechanism. Finally, observation evidence is presented which suggests, strongly, that the acceleration of the ACR occurs in the inner heliosphere, not far

  20. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  1. Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics.

    PubMed

    Naranjo, B; Valloni, A; Putterman, S; Rosenzweig, J B

    2012-10-19

    Regarding the laser-driven acceleration of charged particles in photonic systems, a central unmet challenge is the achievement of simultaneous transverse and longitudinal stability at nonultrarelativistic energies. At such energies, Earnshaw's theorem [S. Earnshaw, Trans. Cambridge Philos. Soc. 7, 97 (1842)] indicates that a synchronous accelerating wave gives a defocusing effect. We present a scheme in which particles are accelerated by interaction with a resonant spatial harmonic and are focused by strong ponderomotive interaction with nonresonant spatial harmonics. We show that this scheme exhibits net transverse focusing and longitudinal stability, and we discuss its use in a compact laser accelerator.

  2. STOCHASTIC PARTICLE ACCELERATION AND THE PROBLEM OF BACKGROUND PLASMA OVERHEATING

    SciTech Connect

    Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

    2012-11-10

    The origin of hard X-ray (HXR) excess emission from clusters of galaxies is still an enigma, whose nature is debated. One of the possible mechanisms to produce this emission is the bremsstrahlung model. However, previous analytical and numerical calculations showed that in this case the intracluster plasma had to be overheated very fast because suprathermal electrons emitting the HXR excess lose their energy mainly by Coulomb losses, i.e., they heat the background plasma. It was concluded also from these investigations that it is problematic to produce emitting electrons from a background plasma by stochastic (Fermi) acceleration because the energy supplied by external sources in the form of Fermi acceleration is quickly absorbed by the background plasma. In other words, the Fermi acceleration is ineffective for particle acceleration. We revisited this problem and found that at some parameter of acceleration the rate of plasma heating is rather low and the acceleration tails of nonthermal particles can be generated and exist for a long time while the plasma temperature is almost constant. We showed also that for some regime of acceleration the plasma cools down instead of being heated up, even though external sources (in the form of external acceleration) supply energy to the system. The reason is that the acceleration withdraws effectively high-energy particles from the thermal pool (analog of Maxwell demon).

  3. Gamma-Ray Bursts and Particle Acceleration

    SciTech Connect

    Asano, Katsuaki

    2008-08-28

    Gamma-ray bursts (GRBs) are possible sources of ultra-high-energy cosmic rays (UHE-CRs). To test the GRB origin of UHECRs, it is essential to search for characteristic, proton-induced signatures of secondary radiation. In this paper we present our recent results of Monte Carlo simulations that model the broadband prompt emission of GRBs including various processes associated with electrons and protons accelerated to high energies. The most notable effect of accelerated protons on the high-energy spectra is the synchrotron emission from secondary electron-positron pairs injected by photomeson interactions. Secondary photons tend to make the spectra flat, so a spectral flattening in the GeV-TeV bands may serve as a signature of UHECR acceleration. In some cases, the proton-induced photons overwhelm the photon field, resulting in a spectral peak due to inverse Compton emission from secondary pairs located around 10{sup 7} eV. We can expect to detect synchrotron photons from protons or muons. Observations with GLAST or with atmospheric Cerenkov telescopes can provide useful estimates of the bulk Lorents factor and can constrain the proton acceleration efficiency.

  4. Particle Acceleration and Associated Emission from Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishkawa, Ken-Ichi

    2009-01-01

    Five talks consist of a research program consisting of numerical simulations and theoretical development designed to provide an understanding of the emission from accelerated particles in relativistic shocks. The goal of this lecture is to discuss the particle acceleration, magnetic field generation, and radiation along with the microphysics of the shock process in a self-consistent manner. The discussion involves the collisionless shocks that produce emission from gamma-ray bursts and their afterglows, and producing emission from supernova remnants and AGN relativistic jets. Recent particle-in-cell simulation studies have shown that the Weibel (mixed mode two-stream filamentation) instability is responsible for particle (electron, positron, and ion) acceleration and magnetic field generation in relativistic collisionless shocks. 3-D RPIC code parallelized with MPI has been used to investigate the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields. In this lecture we will present brief tutorials of RPIC simulations and RMHD simulations, a brief summary of recent RPIC simulations, mechanisms of particle acceleration in relativistic shocks, and calculation of synchrotron radiation by tracing particles. We will discuss on emission from the collisionless shocks, which will be calculated during the simulation by tracing particle acceleration self-consistently in the inhomogeneous magnetic fields generated in the shocks. In particular, we will discuss the differences between standard synchrotron radiation and the jitter radiation that arises in turbulent magnetic fields.

  5. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGESBeta

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  6. Particle Acceleration and Heating by Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  7. Particle Acceleration and Heating by Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  8. Precision Measurement of 56Fe(n,n γ) Cross Sections Using 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Koltick, David

    2016-03-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe are reported. The experimental technique takes advantage of the 1.5 nanosecond coincidence timing resolution between the neutron production time and the gamma ray detection time to reject noise, together with the large 30% solid angle gamma ray coverage. The scattering angle coverage with respect to the neutron beam direction extends from 60 degrees to 120 degrees. The neutron flux is measured using the detected associated alpha-particle from the D-T fusion reaction produced using an associated particle neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. The more accurate technique used in these measurements can distinguish between the differences in the present reported results at higher neutron energies. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  9. Particle acceleration from reconnection in the geomagnetic tail

    SciTech Connect

    Birn, J.; Borovsky, J.E.; Thomsen, M.F.; McComas, D.J.; Reeves, G.D.; Belian, R.D.; Hesse, M.; Schindler, K.

    1997-08-01

    Acceleration of charged particles in the near geomagnetic tail, associated with a dynamic magnetic reconnection process, was investigated by a combined effort of data analysis, using Los Alamos data from geosynchronous orbit, MHD modeling of the dynamic evolution of the magnetotail, and test particle tracing in the electric and magnetic fields obtained from the MHD simulation.

  10. Stochastic particle acceleration in multiple magnetic islands during reconnection.

    PubMed

    Hoshino, Masahiro

    2012-03-30

    A nonthermal particle acceleration mechanism involving the interaction of a charged particle with multiple magnetic islands is proposed. The original Fermi acceleration model, which assumes randomly distributed magnetic clouds moving at random velocity V(c) in the interstellar medium, is known to be of second-order acceleration of O(V(c)/c)(2) owing to the combination of head-on and head-tail collisions. In this Letter, we reconsider the original Fermi model by introducing multiple magnetic islands during reconnection instead of magnetic clouds. We discuss that the energetic particles have a tendency to be distributed outside the magnetic islands, and they mainly interact with reconnection outflow jets. As a result, the acceleration efficiency becomes first order of O(V(A)/c), where V(A) and c are the Alfvén velocity and the speed of light, respectively.

  11. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials. PMID:24483561

  12. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  13. Accelerators for heavy-charged-particle radiation therapy.

    PubMed

    Coutrakon, George B

    2007-08-01

    This paper focuses on current and future designs of medical hadron accelerators for treating cancers and other diseases. Presently, five vendors and several national laboratories have produced heavy-particle medical accelerators for accelerating nuclei from hydrogen (protons) up through carbon and oxygen. Particle energies are varied to control the beam penetration depth in the patient. As of the end of 2006, four hospitals and one clinic in the United States offer proton treatments; there are five more such facilities in Japan. In most cases, these facilities use accelerators designed explicitly for cancer treatments. The accelerator types are a combination of synchrotrons, cyclotrons, and linear accelerators; some carry advanced features such as respiration gating, intensity modulation, and rapid energy changes, which contribute to better dose conformity on the tumor when using heavy charged particles. Recent interest in carbon nuclei for cancer treatment has led some vendors to offer carbon-ion and proton capability in their accelerator systems, so that either ion can be used. These features are now being incorporated for medical accelerators in new facilities.

  14. Turbulence Evolution and Shock Acceleration of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Chee, Ng K.

    2007-01-01

    We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

  15. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  16. Supernova neutrino induced inclusive reactions on {sup 56}Fe in terrestrial detectors

    SciTech Connect

    Athar, M. Sajjad; Ahmad, Shakeb; Singh, S.K.

    2005-04-01

    The calculations for the neutrino absorption cross sections for supernova neutrinos in {sup 56}Fe have been done in the local density approximation (LDA) taking into account Pauli blocking and Fermi motion effects. The renormalization of weak transition strengths in the nuclear medium and the effect of Coulomb distortion of the final lepton are taken into account. The numerical results for the cross sections averaged over the Michel spectrum of neutrinos and various supernova neutrino spectra are presented and compared with other theoretical results.

  17. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma rays. Part I. Experimental observations.

    PubMed

    Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M

    2009-04-01

    Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.

  18. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  19. Advanced visualization technology for terascale particle accelerator simulations

    SciTech Connect

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-11-16

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements.

  20. Particle Acceleration at Reconnecting 3D Null Points

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Browning, P.; Gordovskyy, M.; Dalla, S.

    2012-12-01

    Hard X-ray observations from the RHESSI spacecraft indicate that a significant fraction of solar flare energy release is in non-thermal energetic particles. A plausible acceleration mechanism for these are the strong electric fields associated with reconnection, a process that can be particularly efficient when particles become unmagnetised near to null points. This mechanism has been well studied in 2D, at X-points within reconnecting current sheets; however, 3D reconnection models show significant qualitative differences and it is not known whether these new models are efficient for particle acceleration. We place test particles in analytic model fields (eg. Craig and Fabling 1996) and numerical solutions to the the resistive magnetohydrodynamic (MHD) equations near reconnecting 3D nulls. We compare the behaviour of these test particles with previous results for test particle acceleration in ideal MHD models (Dalla and Browning 2005). We find that the fan model is very efficient due to an increasing "guide field" that stabilises particles against ejection from the current sheet. However, the spine model, which was the most promising in the ideal case, gives weak acceleration as the reconnection electric field is localised to a narrow cylinder about the spine axis.

  1. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  2. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  3. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  4. Particle Acceleration at the Sun and in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.

  5. Charged spinning black holes as particle accelerators

    SciTech Connect

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-11-15

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  6. Particle acceleration and reconnection in the solar wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Webb, G. M.; Khabarova, O.; Cummings, A. C.; Stone, E. C.; Decker, R. B.

    2016-03-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a "sea of magnetic islands" in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.

  7. Schwarzschild black hole as particle accelerator of spinning particles

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-05-01

    It is shown that in the Schwarzschild background there exists a direct counterpart of the Bañados-Silk-West effect for spinning particles. This means that if two particles collide near the black-hole horizon, their energy in the centre-of-mass frame can grow unbounded. In doing so, the crucial role is played by the so-called near-critical trajectories when the particle parameters are almost fine-tuned. A direct scenario of the collision under discussion is possible with restriction on the energy-to-mass ratio E/m<\\frac{1}{2\\sqrt{3}} only. However, if one takes into account multiple scattering, this becomes possible for E≥ m as well.

  8. Differential Effects of X-Rays and High-Energy {sup 56}Fe Ions on Human Mesenchymal Stem Cells

    SciTech Connect

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li Song; Wang Daojing

    2009-03-01

    Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) {sup 56}Fe ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and {sup 56}Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and {sup 56}Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and {sup 56}Fe ions, with more significant effects from {sup 56}Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy {sup 56}Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: {sup 56}Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation.

  9. First-order particle acceleration in magnetically driven flows

    DOE PAGESBeta

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  10. Stochastic acceleration of charged particle in nonlinear wave field

    NASA Astrophysics Data System (ADS)

    He, Kaifen

    2003-04-01

    Possibility of stochastic acceleration of charged particle by nonlinear waves is investigated. Spatially regular (SR) and spatiotemporal chaotic (STC) wave solutions evolving from saddle steady wave are tested as the fields. In the non-steady SR field the particle is finally trapped by the wave and averagely gains its group velocity, while in the STC field the particle motion displays trapped-free phases with its averaged velocity larger or smaller than the group velocity depending on the charge sign. A simplified model is established to investigate the acceleration mechanism. By analogy with motor protein, it is found that the virtual pattern of saddle steady wave plays a role of asymmetric potential, which and the nonlinear varying perturbation wave are the two sufficient ingredients for the acceleration in our case.

  11. Particle acceleration by a solar flare termination shock.

    PubMed

    Chen, Bin; Bastian, Timothy S; Shen, Chengcai; Gary, Dale E; Krucker, Säm; Glesener, Lindsay

    2015-12-01

    Solar flares--the most powerful explosions in the solar system--are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.

  12. Particle acceleration by a solar flare termination shock.

    PubMed

    Chen, Bin; Bastian, Timothy S; Shen, Chengcai; Gary, Dale E; Krucker, Säm; Glesener, Lindsay

    2015-12-01

    Solar flares--the most powerful explosions in the solar system--are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares. PMID:26785486

  13. Medical physics--particle accelerators--the beginning.

    PubMed

    Ganz, Jeremy C

    2014-01-01

    This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.

  14. Energetic particle acceleration at corotating interaction regions: Ulysses results

    SciTech Connect

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Gosling, J.T.

    1997-07-01

    We present here statistical properties of energetic ions (tilde 1 MeV) accelerated by corotating interaction regions observed at the Ulysses spacecraft. We have correlated the tilde 1 MeV proton intensity measured near the trailing edges of the interaction regions with their compression ratio. We interpret our results in terms of the plasma conditions experienced at Ulysses and identify a likely source of the low energy seed particles accelerated at the interaction regions.

  15. High frequency single mode traveling wave structure for particle acceleration

    NASA Astrophysics Data System (ADS)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  16. A Plasma Drag Hypervelocity Particle Accelerator (HYPER)

    NASA Technical Reports Server (NTRS)

    Best, Steve R.; Rose, M. Frank

    1998-01-01

    Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.

  17. Explaining the accelerated expansion of the Universe by particle creation

    NASA Astrophysics Data System (ADS)

    Singh, Ibotombi N.; Devi, Bembem Y.

    2016-04-01

    A spatially flat FRW Universe in the context of particle creation has been discussed by assuming a variable deceleration parameter which is a function of scale factor. A dust model in which creation of particles giving a negative creation pressure has been studied. Treating the Universe as an open adiabatic system, it is supposed that matter creation takes place out of gravitational energy. In this model, the Universe shows an accelerating phase of its expansion. Total number of particles increases while number of particle density decreases. Some physical implications of this model are investigated.

  18. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  19. Particle bursts from thunderclouds: Natural particle accelerators above our heads

    SciTech Connect

    Chilingarian, Ashot; Hovsepyan, Gagik; Hovhannisyan, Armen

    2011-03-15

    Strong electrical fields inside thunderclouds give rise to fluxes of high-energy electrons and, consequently, gamma rays and neutrons. Gamma rays and electrons are currently detected by the facilities of low orbiting satellites and by networks of surface particle detectors. During intensive particle fluxes, coinciding with thunderstorms, series of particle bursts were detected by the particle detectors of Aragats Space Environmental Center at an altitude of 3250 m. We classify the thunderstorm ground enhancements in 2 categories, one lasting microseconds, and the other lasting tens of minutes. Both types of events can occur at the same time, coinciding with a large negative electric field between the cloud and the ground and negative intracloud lightning. Statistical analysis of the short thunderstorm ground enhancement bursts sample suggests the duration is less than 50 {mu}s and spatial extension is larger than 1000 m{sup 2}. We discuss the origin of thunderstorm ground enhancements and its connection to the terrestrial gamma flashes detected by orbiting gamma-ray observatories.

  20. Anomalous/Fractional Diffusion in Particle Acceleration Processes.

    NASA Astrophysics Data System (ADS)

    Bian, Nicolas

    2016-07-01

    This talk is aimed at reviewing a certain number of theoretical aspects concerning the relation between stochastic acceleration and anomalous/fractional transport of particles. As a matter of fact, anomalous velocity-space diffusion is required within any stochastic acceleration scenario to explain the formation of the ubiquitous power-law tail of non-thermal particles, as observed e.g. in the accelerated distribution of electrons during solar flares. I will establish a classification scheme for stochastic acceleration models involving turbulence in magnetized plasmas. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the spatial transport (possibly fractional) of charged particles in the acceleration region. I will also discuss recent attempts to obtain spatially non-local and fractional diffusion equations directly from first principles, starting either from the Fokker-Planck equation in the large mean free-path regime or the Boltzmann equation involving velocity-space relaxation toward the kappa distribution instead of the standard Maxwellian distribution.

  1. Stochastic particle acceleration and statistical closures

    SciTech Connect

    Dimits, A.M.; Krommes, J.A.

    1985-10-01

    In a recent paper, Maasjost and Elsasser (ME) concluded, from the results of numerical experiments and heuristic arguments, that the Bourret and the direct-interaction approximation (DIA) are ''of no use in connection with the stochastic acceleration problem'' because (1) their predictions were equivalent to that of the simpler Fokker-Planck (FP) theory, and (2) either all or none of the closures were in good agreement with the data. Here some analytically tractable cases are studied and used to test the accuracy of these closures. The cause of the discrepancy (2) is found to be the highly non-Gaussian nature of the force used by ME, a point not stressed by them. For the case where the force is a position-independent Ornstein-Uhlenbeck (i.e., Gaussian) process, an effective Kubo number K can be defined. For K << 1 an FP description is adequate, and conclusion (1) of ME follows; however, for K greater than or equal to 1 the DIA behaves much better qualitatively than the other two closures. For the non-Gaussian stochastic force used by ME, all common approximations fail, in agreement with (2).

  2. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  3. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    SciTech Connect

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-11-04

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  4. Magnetic control of particle injection in plasma based accelerators.

    PubMed

    Vieira, J; Martins, S F; Pathak, V B; Fonseca, R A; Mori, W B; Silva, L O

    2011-06-01

    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.

  5. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Fishman, G. J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.

    2012-01-01

    We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jets propagating into an unmagnetized plasmas. Strong magnetic fields generated in the trailing shock contribute to the electrons transverse deflection and acceleration. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants

  6. Charged Dilation Black Holes as Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-07-01

    We examine the possibility of arbitrarily high energy in the Center-of-mass frame of colliding neutral particles in the vicinity of the horizon of a charged dilation black hole(BH). We show that it is possible to achieve the infinite energy in the background of the dilation black hole without fine-tuning of the angular momentum parameter. It is found that the center-of-mass energy (E_{cm}) of collisions of particles near the infinite red-shift surface of the extreme dilation BHs are arbitrarily large while the non-extreme charged dilation BHs have the finite energy. We have also compared the E_{cm} at the horizon with the ISCO(Innermost Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for extremal RN BH and Schwarzschild BH. We find that for extreme RN BH the inequality becomes E_{cm}mid_{r_{+}}>E_{cm}mid_{r_{mb}}> E_{cm}mid_{r_{ISCO}} i.e. E_{cm}mid_{r_{+}=M}: E_{cm}mid_{r_{mb}= ({3+√{5}}/{2})M} : E_{cm}mid_{r_{ISCO}=4M} =∞ : 3.23 : 2.6 . While for Schwarzschild BH the ratio of CM energy is E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=4M} : E_{cm}mid_{r_{ISCO}=6M} = √{5} : √{2} : {√{13}}/{3}. Also for Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) BHs the ratio is being E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=2M} : E_{cm}mid_{r_{ISCO}=2M}=∞ : ∞ : ∞.

  7. Exploring Particle Acceleration in Gamma-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Rieger, F. M.

    2012-08-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma ray binaries. In this work, we explore, in the context of gamma ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream medium; magnetic reconnection, by itself possibly insufficient to reach very high energies, could perhaps facilitate such a conditions. Further theoretical developments, and a better source characterization, are needed to pinpoint the dominant acceleration mechanism, which need not be one and the same in all sources.

  8. Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Brennan, Mike

    2013-04-01

    One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.

  9. Particle Acceleration in SN1006 Shock Waves

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Raymond, John C.

    2004-01-01

    The FUSE data have been reduced, and a paper on the results is in progress. The main results have been presented in a poster at the January 2004 AAS meeting and an ApJ paper in press. The primary result is that the widths of the 0 VI lines in the NW filament are a bit less than the width expected if the oxygen kinetic temperature is 16 times the proton temperature (mass proportional heating). This is at variance with measurements of shocks in the heliosphere, where preferential heating of oxygen and other heavy species is observed. The paper discusses the theoretical implications for collisionless shock wave physics. A secondary result is that no O VI emission was observed from the NE filament. While the very different particle distribution in that region can partially account for the weakness of the O VI lines, the simplest interpretation is that the pre-shock density in the NE is less than 0.22 times the density in the NW.

  10. Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et

  11. 50 years of research on particle acceleration in the heliosphere

    NASA Astrophysics Data System (ADS)

    Fisk, L. A.

    2015-09-01

    In 1965, and through the late 1960s, the heliosphere was considered to be a passive place, an impediment to the information on the galaxy contained in galactic cosmic ray observations, and on the Sun, from solar energetic particles. All this changed in the early 1970s with the discovery of the Anomalous Cosmic Rays (ACRs), and the subsequent acceptance that the ACRs are ionized interstellar neutral gas that is accelerated in the heliosphere by four orders of magnitude in energy. In the mid-1970s, Pioneer 10 & 11 observations provided direct evidence of acceleration. In 1977-78, diffusive shock acceleration was introduced, and subsequently developed in detail, providing compelling explanations for, e.g., the observed acceleration in co-rotating interaction regions, and a likely explanation for the acceleration of ACRs at the termination shock of the solar wind. In 2004 and 2008, the Voyagers crossed the termination shock, did not observe the acceleration of the ACRs, but did observe that low- energy particles, up to a few MeV/nucleon, had identical spectra downstream from the termination shock, a distribution function that is a power law in particle speed with a spectral index of -5. When Voyager 1 reached ∼120 AU, where the high-energy ACRs are at peak intensity, the ACR spectrum is also a -5 spectrum. Moreover, observations of suprathermal tails in the solar wind in the inner solar system have a -5 spectrum, often peaking downstream, but not at shocks. These observations led to the development of a new acceleration mechanism, the pump acceleration mechanism of Fisk & Gloeckler, which can account for all the observed -5 spectra.

  12. Experimental and calculated excitation functions for discrete-line gamma-ray production due to 1-40 MeV neutron interactions with sup 56 Fe

    SciTech Connect

    Dickens, J.K.; Fu, C.Y.; Hetrick, D.M.; Larson, D.C.; Todd, J.H.

    1991-01-01

    Measuring cross sections for gamma-ray production from tertiary reactions is one of the ways to gain experimental information about these reactions. To this end, inelastic and other nonelastic neutron interactions with {sup 56}Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studies were {sup 56}Fe(n,n{prime}){sup 56}Fe, {sup 56}Fe(n,p){sup 56}Mn, {sup 56}Fe(n,2n){sup 55}Fe, {sup 56}Fe(n,d + n,np){sup 55}Mn, {sup 56}Fe(n, t + n, nd + n,2np){sup 54}Mn, {sup 56}Fe(n,{alpha}){sup 53}Cr, {sup 56}Fe(n,n{alpha}){sup 52}Cr, and {sup 56}Fe(n,3n){sup 54}Fe. Experimental excitation functions have been compared with cross sections calculated using the nuclear reaction model code TNG, with generally favorable results. 24 refs., 2 figs.

  13. A New Analytical Model for Trans-Relativistic Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2011-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic particles due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the local thermal background, which is typically a non-relativistic gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the particles and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. Since the existing analytical models are not able to address this situation, workers have had to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. The results can be used to model the acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed.

  14. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Particle acceleration in cosmic plasmas – paradigm change?

    SciTech Connect

    Lytikov, Maxim; Guo, Fan

    2015-07-21

    The presentation begins by considering the requirements on the acceleration mechanism. It is found that at least some particles in high-energy sources are accelerated by magnetic reconnection (and not by shocks). The two paradigms can be distinguished by the hardness of the spectra. Shocks typically produce spectra with p > 2 (relativistic shocks have p ~ 2.2); non-linear shocks & drift acceleration may give p < 2, e.g. p=1.5; B-field dissipation can give p = 1. Then collapse of stressed magnetic X-point in force-free plasma and collapse of a system of magnetic islands are taken up, including Island merger: forced reconnection. Spectra as functions of sigma are shown, and gamma ~ 109 is addressed. It is concluded that reconnection in magnetically-dominated plasma can proceed explosively, is an efficient means of particle acceleration, and is an important (perhaps dominant for some phenomena) mechanism of particle acceleration in high energy sources.

  16. Analytic Method to Estimate Particle Acceleration in Flux Ropes

    NASA Technical Reports Server (NTRS)

    Guidoni, S. E.; Karpen, J. T.; DeVore, C. R.

    2015-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy emission in solar flares is not well understood. Drake et al. (2006) proposed a kinetic mechanism for accelerating electrons in contracting magnetic islands formed by reconnection. In this model, particles that gyrate around magnetic field lines transit from island to island, increasing their energy by Fermi acceleration in those islands that are contracting. Based on these ideas, we present an analytic model to estimate the energy gain of particles orbiting around field lines inside a flux rope (2.5D magnetic island). We calculate the change in the velocity of the particles as the flux rope evolves in time. The method assumes a simple profile for the magnetic field of the evolving island; it can be applied to any case where flux ropes are formed. In our case, the flux-rope evolution is obtained from our recent high-resolution, compressible 2.5D MHD simulations of breakout eruptive flares. The simulations allow us to resolve in detail the generation and evolution of large-scale flux ropes as a result of sporadic and patchy reconnection in the flare current sheet. Our results show that the initial energy of particles can be increased by 2-5 times in a typical contracting island, before the island reconnects with the underlying arcade. Therefore, particles need to transit only from 3-7 islands to increase their energies by two orders of magnitude. These macroscopic regions, filled with a large number of particles, may explain the large observed rates of energetic electron production in flares. We conclude that this mechanism is a promising candidate for electron acceleration in flares, but further research is needed to extend our results to 3D flare conditions.

  17. Nonthermal Particle Acceleration and Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Werner, Gregory

    2015-11-01

    Many spectacular and violent phenomena in the high-energy universe exhibit nonthermal radiation spectra, from which we infer power-law energy distributions of the radiating particles. Relativistic magnetic reconnection, recognized as a leading mechanism of nonthermal particle acceleration, can efficiently transfer magnetic energy to energetic particles. We present a comprehensive particle-in-cell study of particle acceleration in 2D relativistic reconnection in both electron-ion and pair plasmas without guide field. We map out the power-law index α and the high-energy cutoff of the electron energy spectrum as functions of three key parameters: the system size (and initial layer length) L, the ambient plasma magnetization σ, and the ion/electron mass ratio (from 1 to 1836). We identify the transition between small- and large-system regimes: for small L, the system size affects the slope and extent of the high-energy spectrum, while for large enough L, α and the cutoff energy are independent of L. We compare high energy particle spectra and radiative (synchrotron and inverse Compton) signatures of the electrons, for pair and electron-ion reconnection. The latter cases maintain highly relativistic electrons, but include a range of different magnetizations yielding sub- to highly-relativistic ions. Finally, we show how nonthermal acceleration and radiative signatures alter when the radiation back-reaction becomes important. These results have important implications for assessing the promise and the limitations of relativistic reconnection as an astrophysically-important particle acceleration mechanism. This work is funded by NSF, DOE, and NASA.

  18. Terrestrial gamma-ray flashes as powerful particle accelerators.

    PubMed

    Tavani, M; Marisaldi, M; Labanti, C; Fuschino, F; Argan, A; Trois, A; Giommi, P; Colafrancesco, S; Pittori, C; Palma, F; Trifoglio, M; Gianotti, F; Bulgarelli, A; Vittorini, V; Verrecchia, F; Salotti, L; Barbiellini, G; Caraveo, P; Cattaneo, P W; Chen, A; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Piano, G; Picozza, P; Pilia, M; Pucella, G; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Sabatini, S; Scalise, E; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D

    2011-01-01

    Strong electric discharges associated with thunderstorms can produce terrestrial gamma-ray flashes (TGFs), i.e., intense bursts of x rays and γ rays lasting a few milliseconds or less. We present in this Letter new TGF timing and spectral data based on the observations of the Italian Space Agency AGILE satellite. We determine that the TGF emission above 10 MeV has a significant power-law spectral component reaching energies up to 100 MeV. These results challenge TGF theoretical models based on runaway electron acceleration. The TGF discharge electric field accelerates particles over the large distances for which maximal voltages of hundreds of megavolts can be established. The combination of huge potentials and large electric fields in TGFs can efficiently accelerate particles in large numbers, and we reconsider here the photon spectrum and the neutron production by photonuclear reactions in the atmosphere. PMID:21231775

  19. Terrestrial gamma-ray flashes as powerful particle accelerators.

    PubMed

    Tavani, M; Marisaldi, M; Labanti, C; Fuschino, F; Argan, A; Trois, A; Giommi, P; Colafrancesco, S; Pittori, C; Palma, F; Trifoglio, M; Gianotti, F; Bulgarelli, A; Vittorini, V; Verrecchia, F; Salotti, L; Barbiellini, G; Caraveo, P; Cattaneo, P W; Chen, A; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Piano, G; Picozza, P; Pilia, M; Pucella, G; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Sabatini, S; Scalise, E; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D

    2011-01-01

    Strong electric discharges associated with thunderstorms can produce terrestrial gamma-ray flashes (TGFs), i.e., intense bursts of x rays and γ rays lasting a few milliseconds or less. We present in this Letter new TGF timing and spectral data based on the observations of the Italian Space Agency AGILE satellite. We determine that the TGF emission above 10 MeV has a significant power-law spectral component reaching energies up to 100 MeV. These results challenge TGF theoretical models based on runaway electron acceleration. The TGF discharge electric field accelerates particles over the large distances for which maximal voltages of hundreds of megavolts can be established. The combination of huge potentials and large electric fields in TGFs can efficiently accelerate particles in large numbers, and we reconsider here the photon spectrum and the neutron production by photonuclear reactions in the atmosphere.

  20. Terrestrial Gamma-Ray Flashes as Powerful Particle Accelerators

    SciTech Connect

    Tavani, M.; Marisaldi, M.; Labanti, C.; Fuschino, F.; Trifoglio, M.; Gianotti, F.; Bulgarelli, A.; Di Cocco, G.; Morelli, E.; Rossi, E.; Argan, A.; De Paris, G.; Trois, A.; Costa, E.; Del Monte, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.

    2011-01-07

    Strong electric discharges associated with thunderstorms can produce terrestrial gamma-ray flashes (TGFs), i.e., intense bursts of x rays and {gamma} rays lasting a few milliseconds or less. We present in this Letter new TGF timing and spectral data based on the observations of the Italian Space Agency AGILE satellite. We determine that the TGF emission above 10 MeV has a significant power-law spectral component reaching energies up to 100 MeV. These results challenge TGF theoretical models based on runaway electron acceleration. The TGF discharge electric field accelerates particles over the large distances for which maximal voltages of hundreds of mega volts can be established. The combination of huge potentials and large electric fields in TGFs can efficiently accelerate particles in large numbers, and we reconsider here the photon spectrum and the neutron production by photonuclear reactions in the atmosphere.

  1. ENERGY SPECTRUM OF ENERGETIC PARTICLES ACCELERATED BY SHOCK WAVES: FROM FOCUSED TRANSPORT TO DIFFUSIVE ACCELERATION

    SciTech Connect

    Zuo Pingbing; Zhang Ming; Gamayunov, Konstantin; Rassoul, Hamid; Luo Xi

    2011-09-10

    The focused transport equation (FTE) includes all the necessary physics for modeling the shock acceleration of energetic particles with a unified description of first-order Fermi acceleration, shock drift acceleration, and shock surfing acceleration. It can treat the acceleration and transport of particles with an anisotropic distribution. In this study, the energy spectrum of pickup ions accelerated at shocks of various obliquities is investigated based on the FTE. We solve the FTE by using a stochastic approach. The shock acceleration leads to a two-component energy spectrum. The low-energy component of the spectrum is made up of particles that interact with shock one to a few times. For these particles, the pitch angle distribution is highly anisotropic, and the energy spectrum is variable depending on the momentum and pitch angle of injected particles. At high energies, the spectrum approaches a power law consistent with the standard diffusive shock acceleration (DSA) theory. For a parallel shock, the high-energy component of the power-law spectrum, with the spectral index being the same as the prediction of DSA theory, starts just a few times the injection speed. For an oblique or quasi-perpendicular shock, the high-energy component of the spectrum exhibits a double power-law distribution: a harder power-law spectrum followed by another power-law spectrum with a slope the same as the spectral index of DSA. The shock acceleration will eventually go into the DSA regime at higher energies even if the anisotropy is not small. The intensity of the energy spectrum given by the FTE, in the high-energy range where particles get efficient acceleration in the DSA regime, is different from that given by the standard DSA theory for the same injection source. We define the injection efficiency {eta} as the ratio between them. For a parallel shock, the injection efficiency is less than 1, but for an oblique shock or a quasi-perpendicular shock it could be greater.

  2. Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma<0.001), or if the pre-shock field is nearly aligned with the shock direction of propagation (quasi-parallel shocks). Relativistic shocks in PWNe, GRBs and AGN jets are usually thought to be appreciably magnetized (sigma>0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of

  3. Acceleration and Radiation Model of Particles in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole

    2006-08-01

    Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.

  4. Particle acceleration by turbulent magnetohydro-dynamic reconnection

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Ambrosiano, J. J.; Goldstein, M. L.

    1984-01-01

    Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time.

  5. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  6. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    SciTech Connect

    Barletta, William A.

    2009-03-10

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  7. The United States Particle Accelerator School: Educating the next generation of accelerator scientists and engineers

    SciTech Connect

    Barletta, William A.; /MIT

    2008-09-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, crossdisciplinary research areas such as high energy density physics.

  8. Particle Acceleration at Corotating Interaction Regions in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This "cross-shock" gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of "preacceleration" for the generation of anomalous cosmic rays.

  9. Particle acceleration at corotating interaction regions in the heliosphere

    SciTech Connect

    Tsubouchi, K.

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This 'cross-shock' gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of 'preacceleration' for the generation of anomalous cosmic rays.

  10. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  11. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-01

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states. PMID:19935645

  12. Acceleration PDFs of particles in rotating turbulent convection

    NASA Astrophysics Data System (ADS)

    Clercx, Herman; Perlekar, Prasad; Lavezzo, Valentina; Toschi, Federico

    2012-11-01

    Particle dispersion in buoyancy-driven rotating turbulent flows has direct relevance for many industrial and environmental applications. We have used a Lattice Boltzmann Method coupled with Lagrangian particle tracking algorithm to investigate the behaviour of passive and inertial particles released in turbulent rotating Rayleigh-Bénard (RB) convection. The flow domain is horizontally periodic and vertically confined. Both the gravity and the rotation vector are oriented in the vertical direction. Here we present the results of the acceleration PDFs of particles in both non-rotating and strongly rotating RB convection. It is found that the bulk acceleration PDF in non-rotating RB turbulence is like in homogeneous isotropic turbulence whereas rotation introduces anisotropy similar to acceleration PDFs obtained from experiments in (isothermal) forced rotating turbulence. These results and those obtained for inertial particles will be discussed. PP and VL were financially supported by the Foundation for Fundamental Research on Matter (FOM), which is part of NWO. This work was sponsored by NWO-NCF (SH-176).

  13. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  14. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  15. Stochastic Particle Acceleration in Turbulence Generated by Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2016-05-01

    We investigate stochastic particle acceleration in accretion flows. It is believed that magnetorotational instability (MRI) generates turbulence inside accretion flows and that cosmic rays (CRs) are accelerated by the turbulence. We calculate equations of motion for CRs in the turbulent fields generated by MRI with the shearing box approximation and without back reaction to the field. Our results show that the CRs randomly gain or lose their energy through interaction with the turbulent fields. The CRs diffuse in the configuration space anisotropically: the diffusion coefficient in the direction of the unperturbed flow is about 20 times higher than the Bohm coefficient, while those in the other directions are only a few times higher than the Bohm. The momentum distribution is isotropic and its evolution can be described by the diffusion equation in momentum space where the diffusion coefficient is a power-law function of the CR momentum. We show that the shear acceleration works efficiently for energetic particles. We also cautiously note that in the shearing box approximation, particles that cross the simulation box many times along the radial direction undergo unphysical runaway acceleration by the Lorentz transformation, which needs to be taken into account with special care.

  16. Laser Absorption and Particle Acceleration at the Critical Surface

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Mori, W. B.; Fiuza, F.; Fonseca, R.; Silva, L. O.

    2014-10-01

    Using high intensity lasers (I >= 5 ×1019 W /cm2) to accelerate particles at the critical surface offers the potential to deliver high fluence particle beams into dense matter. Potential applications include Fast Ignition Inertial Confinement Fusion, Radiation Pressure Acceleration, and probing high-density matter for basic plasma research. In order to tailor the beam characteristics of laser conversion efficiency, energy spectrum, beam divergence, and accelerated species (ions or electrons) to the given application - and of course to interpret the results of experiments - it is key to have an understanding of the underlying absorption and acceleration mechanisms. Much theoretical and simulation work has been done on this regime in recent years, and although it has become clear that mechanisms often invoked at lower intensities (i.e. JxB and Bruenel heating) are less or unimportant in these systems, debate still exists as to exactly what mechanisms will play the dominant role in laboratory relevant scenarios. We present recent results of simulations with the Particle-in-Cell code OSIRIS which sheds light on these issues. The authors acknowledge the support of the DOE Fusion Science Center for Extreme States of Matter and Fast Ignition Physics under DOE Contract No. FC02-04ER54789 and DOE contracts DE-NA0001833 and DE-SC-0008316, and NSF grant ACI-13398893.

  17. Observational Evidence of Particle Acceleration Associated with Plasmoid Motions

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Asai, Ayumi; Isobe, Hiroaki; Shibata, Kazunari

    2016-09-01

    We report a strong association between the particle acceleration and plasma motions found in the 2010 August 18 solar flare. The plasma motions are tracked in the extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and the Extreme UltraViolet Imager (EUVI) on the Solar Terrestrial Relations Observatory spacecraft Ahead, and the signature of particle acceleration was investigated by using Nobeyama Radioheliograph data. In our previous paper, we reported that in EUV images many plasma blobs appeared in the current sheet above the flare arcade. They were ejected bidirectionally along the current sheet, and the blobs that were ejected sunward collided with the flare arcade. Some of them collided or merged with each other before they were ejected from the current sheet. We discovered impulsive radio bursts associated with such plasma motions (ejection, coalescence, and collision with the post flare loops). The radio bursts are considered to be the gyrosynchrotron radiation by nonthermal high energy electrons. In addition, the stereoscopic observation by AIA and EUVI suggests that plasma blobs had a three-dimensionally elongated structure. We consider that the plasma blobs were three-dimensional plasmoids (i.e., flux ropes) moving in a current sheet. We believe that our observation provides clear evidence of particle acceleration associated with the plasmoid motions. We discuss possible acceleration mechanisms on the basis of our results.

  18. Plasma jet acceleration of dust particles to hypervelocities

    SciTech Connect

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-10-15

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10{sup 22} m{sup -3} or higher, and low temperature {approx}1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  19. New modes of particle acceleration, techniques & sources symposium. Summary report

    SciTech Connect

    Parsa, Z.

    1996-12-31

    A Symposium on {open_quotes}New Modes of Particle Acceleration Technique and Sources{close_quotes} was held August 19-23, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was the first of the 3 symposia hosted by the ITP and supported by its sponsor the National Science Foundation, as part of our {open_quotes}New Ideas for Particle Accelerators{close_quotes} program. The symposia was organized and chaired by Dr. Zohreh Parsa of ITP/Brookhaven National Laboratory. This Symposium provided a perspective on the future direction of the Advanced Accelerator Research. The experimental study of elementary particles has become concentrated at a few large laboratories throughout the world because of the size and cost of the accelerator facilities needed for this work. For example, the Large Hadron Collider (LHC) at CERN, currently under construction, is 27 km in circumference and is being financed by the European membership of CERN plus contributions from non-member nations. An evolutionary approach to construction of ever higher energy colliders will only continue this trend towards high cost and large size.

  20. Applications of large-scale computation to particle accelerators

    SciTech Connect

    Herrmannsfeldt, W.B.

    1991-05-01

    The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

  1. Resonance, particle dynamics, and particle transmission in the micro-accelerator platform

    SciTech Connect

    McNeur, J.; Hazra, K. S.; Liu, G.; Sozer, E. B.; Travish, G.; Yoder, R. B.

    2012-12-21

    We describe particle dynamics in the Micro-Accelerator Platform (MAP), a slab-symmetric dielectric laser accelerator (DLA), and model the expected performance of recently fabricated MAP structures. The quality of the structure resonances has been characterized optically, and results are compared with simulation. 3D trajectory analysis is used to model acceleration in those same structures 'as built.' Results are applied to ongoing beam transmission and acceleration tests at NLCTA/E-163, in which transmission of 60 MeV injected electrons through the beam channel of the MAP was clearly observed, despite the overfilling of the structure by the beam.

  2. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  3. An expert system for tuning particle-beam accelerators

    SciTech Connect

    Lager, D.L.; Brand, H.R.; Maurer, W.J.; Searfus, R.M.; Hernandez, J.E.

    1989-01-12

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script. 4 refs., 5 figs.

  4. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  5. PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON-ION SHOCKS

    SciTech Connect

    Sironi, Lorenzo; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2011-01-10

    We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5-dimensional particle-in-cell simulations with ion-to-electron mass ratios (m{sub i} /m{sub e} ) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In 'subluminal' shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via the first-order Fermi process. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains {approx}5% of ions and {approx}30% of ion energy. Its slope is -2.1 {+-} 0.1. The scattering is provided by short-wavelength non-resonant modes produced by Bell's instability, whose growth is seeded by the current of shock-accelerated ions that propagate ahead of the shock. Upstream electrons enter the shock with lower energy than ions (albeit by only a factor of {approx}5 << m{sub i} /m{sub e} ), so they are more strongly tied to the field. As a result, only {approx}1% of the incoming electrons are accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5 {+-} 0.1). For 'superluminal' shocks, where relativistic particles cannot outrun the shock along the field, the self-generated turbulence is not strong enough to permit efficient Fermi acceleration, and the ion and electron downstream spectra are consistent with thermal distributions. The incoming electrons are heated up to equipartition with ions, due to strong electromagnetic waves emitted by the shock into the upstream. Thus, efficient electron heating ({approx}>15% of the upstream ion energy) is the universal property of relativistic electron-ion shocks, but significant nonthermal acceleration of electrons ({approx}>2% by number, {approx}>10% by energy, with slope flatter than -2.5) is hard to achieve in

  6. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  7. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  8. Support vector machine based on adaptive acceleration particle swarm optimization.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  9. Proceedings of the 1987 IEEE particle accelerator conference: Accelerator engineering and technology

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This book contains over 600 selections. Some of the titles are: The SPS Collider: Status and Outlook; Overview of Plasma Based Accelerating Schemes; A Low Voltage Repeater for Studies of E-Beam Wave Interactions; The Sideband Instability in Free Electron Laser; Three Bunch Energy Stabilization for the SLC Injector; and Particle Tracking in a Small Electron Storage Ring.

  10. Particle acceleration and gamma-emission from solar flares

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty; Gan, W. Q.; Troitskaia, E. V.

    Experiments on SMM, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics in flares and to the ambient abun-dance of the corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measure-ments (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays). A number of different plausible assump-tions are considered concerning the details of underlying physical processes during large flares: existence of a steeper distribution of surrounding medium density, enhanced content of the 3He isotope, formation of magnetic trap with specific properties etc. Possible implications of these results are briefly discussed. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and ener-getic particle observations during the same event. We especially note several promising lines for the further studies: 1) resonant acceleration of the 3He ions in the corona; 2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; 3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); 4) modeling of self-consistent time scenario of the event. Keywords: Sun: atmosphere density, solar flares; Particle acceleration

  11. GPU-accelerated adaptive particle splitting and merging in SPH

    NASA Astrophysics Data System (ADS)

    Xiong, Qingang; Li, Bo; Xu, Ji

    2013-07-01

    Graphical processing unit (GPU) implementation of adaptive particle splitting and merging (APS) in the framework of smoothed particle hydrodynamics (SPH) is presented. Particle splitting and merging process are carried out based on a prescribed criterion. Multiple time stepping technology is used to reduce computational cost further. Detailed implementations on both single- and multi-GPU are discussed. A benchmark test that is a flow past fixed periodic circles is simulated to investigate the accuracy and speed of the algorithm. Comparable precision with uniformly fine simulation is achieved by APS, whereas computational demand is reduced considerably. Satisfactory speedup and acceptable scalability are obtained, demonstrating that GPU-accelerated APS is a promising tool to speed up large-scale particle-based simulations.

  12. On the acceleration of charged particles at relativistic shock fronts

    NASA Technical Reports Server (NTRS)

    Kirk, J. G.; Schneider, P.

    1987-01-01

    The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.

  13. Extreme Particle Acceleration via Magnetic Reconnection in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoit; Uzdensky, D. A.; Begelman, M. C.

    2012-01-01

    The discovery by Agile and Fermi of intense day-long synchrotron gamma-ray flares above 100 MeV in the Crab Nebula challenges classical models of pulsar wind nebulae and particle acceleration. We argue that the flares are powered by magnetic reconnection in the nebula. Using relativistic test-particle simulations, we show that particles are naturally focused into a thin fan beam, deep inside the reconnection layer where the magnetic field is small. The particles then suffer less from synchrotron losses and pile up at the maximum energy given by the electric potential drop in the layer. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum above 100 MeV is consistent with the September 2010 flare observations. No detectable emission is expected at other wavelengths. This scenario provides a viable explanation for the Crab Nebula gamma-ray flares.

  14. AKR breakup and auroral particle acceleration at substorm onset

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Tsuchiya, F.; Misawa, H.; Yumoto, K.; Parks, G. K.; Anderson, R. R.; Menietti, J. D.; Donovan, E. F.; Honary, F.; Spanswick, E.

    2008-09-01

    The dynamical behavior of auroral kilometric radiation (AKR) is investigated in connection with auroral particle acceleration at substorm onsets using high-time-resolution wave spectrograms provided by Polar/PWI electric field observations. AKR develops explosively at altitudes above a preexisting low-altitude AKR source at substorm onsets. This "AKR breakup" suggests an abrupt formation of a new field-aligned acceleration region above the preexisting acceleration region. The formation of the new acceleration region is completed in a very short time (amplitude increases 10,000 times in 30 seconds), suggesting that the explosive development is confined to a localized region. AKR breakups are usually preceded (1-3 minutes) by the appearance and/or gradual enhancement of the low-altitude AKR. This means that the explosive formation of the high-altitude electric field takes place in the course of the growing low-altitude acceleration. The development of the low-altitude acceleration region is thus a necessary condition for the ignition of the high-altitude bursty acceleration. The dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to substorm onsets, the quasi-DC component begins a negative excursion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR, indicating a precursor-like behavior for the substorm. This negative variation of dH/dt suggests an exponentially increasing ionospheric current induced by the upward field-aligned current. At substorm onsets, the decrease in the quasi-DC variation of dH/dt further accelerates, indicating a sudden reinforcement of the field-aligned current.

  15. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  16. Connecting inflation with late cosmic acceleration by particle production

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-04-01

    A continuous process of creation of particles is investigated as a possible connection between the inflationary stage with late cosmic acceleration. In this model, the inflationary era occurs due to a continuous and fast process of creation of relativistic particles, and the recent accelerating phase is driven by the nonrelativistic matter creation from the gravitational field acting on the quantum vacuum, which finally results in an effective equation of state (EoS) less than ‑ 1. Thus, explaining recent results in favor of a phantom dynamics without the need of any modifications in the gravity theory has been proposed. Finally, we confront the model with recent observational data of type Ia Supernova, history of the Hubble parameter, baryon acoustic oscillations (BAOs) and the cosmic microwave background (CMB).

  17. Single particles accelerate final stages of capillary break-up

    NASA Astrophysics Data System (ADS)

    Lindner, Anke; Fiscina, Jorge Eduardo; Wagner, Christian

    2015-06-01

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite-time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well-known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  18. Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon (56)Fe ions.

    PubMed

    Weil, Michael M; Bedford, Joel S; Bielefeldt-Ohmann, Helle; Ray, F Andrew; Genik, Paula C; Ehrhart, Eugene J; Fallgren, Christina M; Hailu, Fitsum; Battaglia, Christine L R; Charles, Brad; Callan, Matthew A; Ullrich, Robert L

    2009-08-01

    Abstract Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the leukemogenic efficacy of one such HZE species, 1 GeV (56)Fe ions, a component of space radiation, in a mouse model for radiation-induced acute myeloid leukemia. CBA/CaJ mice were irradiated with 1 GeV/nucleon (56)Fe ions or (137)Cs gamma rays and followed until they were moribund or to 800 days of age. We found that 1 GeV/nucleon (56)Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia (AML). However, (56)Fe-ion-irradiated mice had a much higher incidence of hepatocellular carcinoma (HCC) than gamma-irradiated mice, with an estimated RBE of approximately 50. These data suggest a difference in the effects of HZE iron ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. PMID:19630525

  19. Recent advances in UHV techniques for particle accelerators

    SciTech Connect

    M. G. Rao

    1995-01-01

    The ultrahigh vacuum (UHV) requirements for storage rings and accelerators, and the development of the science and technology of UHV for particle accelerators and magnetic fusion devices have been recently reviewed by N.B. Mistry and H.F. Dylla respectively. In this paper, the latest developments in the advancement of UHV techniques for the vacuum integrity of Continuous Electron Beam Accelerator Facility (CEBAF) and for successfully dealing with the synchrotron radiation related beam line vacuum problem encountered in the design of the SSC are reviewed: the review includes developments in extreme sensitivity He leak detection technique based on the dynamic adsorption and desorption of He, operation of ionization gauges at Lhe temperatures, metal sponges for the effective cryopumping of H{sup 2} and He to pressures better than 10{sup -14} torr, and low cost and high He sensitivity RGA's. The details of a new extreme sensitivity He leak detector system are also discussed here.

  20. Particle acceleration via reconnection processes in the supersonic solar wind

    SciTech Connect

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-10

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle

  1. Kerr black holes as particle accelerators to arbitrarily high energy.

    PubMed

    Bañados, Máximo; Silk, Joseph; West, Stephen M

    2009-09-11

    We show that intermediate mass black holes conjectured to be the early precursors of supermassive black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators with collisions, in principle, at arbitrarily high center-of-mass energies in the case of Kerr black holes. While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility of a unique probe of Planck-scale physics.

  2. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  3. Wave and particle dynamics of the beat-wave accelerator

    SciTech Connect

    Gibbon, P. )

    1989-10-15

    We present two-dimensional wave-envelope studies of the interaction between a plasma beat-wave and the laser pumps which drive it. A new method of focusing is demonstrated which requires the plasma wave to be driven slightly below its resonant frequency. Test particles are employed to investigate possible means of extending the accelerator stage length. {copyright} 1989 American Institute of Physics

  4. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  5. Planetary spin period acceleration of particles in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Dessler, A. J.; Hill, T. W.

    1976-01-01

    A four-step mechanism is proposed for the acceleration of energetic protons and relativistic electrons in Jupiter's magnetosphere. According to this mechanism, photoelectrons and ions from the Jovian ionosphere are: (1) ejected along magnetic-field lines toward the equator by the centrifugal force of corotation; (2) accelerated by magnetic-field annihiliation in the magnetotail, which process is modulated at Jupiter's rotational frequency; (3) trapped on closed field lines in the reconnection process, convected inward toward Jupiter from the merging region, and subjected to adiabatic compression; and (4) diffused inward by the conventional radial-diffusion process through a violation of the third adiabatic invariant. It is shown that the proposed mechanism produces magnetic moments much larger than those available from inward diffusion of solar-wind particles or motional emf acceleration at the Galilean satellites, provides a natural explanation for the 10-hr periodicity of the energetic particle fluxes observed inside the magnetosphere by the Pioneer spacecraft, and also produces a 10-hr periodicity in the energetic particle flux from the magnetosphere into interplanetary space in such a way that the phase of interplanetary flux variations is locked to the rotational phase of Jupiter

  6. Knowledge engineering for PACES, the particle accelerator control expert system

    NASA Astrophysics Data System (ADS)

    Lind, P. C.; Poehlman, W. F. S.; Stark, J. W.; Cousins, T.

    1992-04-01

    The KN-3000 used at Defense Research Establishment Ottawa is a Van de Graaff particle accelerator employed primarily to produce monoenergetic neutrons for calibrating radiation detectors. To provide training and assistance for new operators, it was decided to develop an expert system for accelerator operation. Knowledge engineering aspects of the expert system are reviewed. Two important issues are involved: the need to encapsulate expert knowledge into the system in a form that facilitates automatic accelerator operation and to partition the system so that time-consuming inferencing is minimized in favor of faster, more algorithmic control. It is seen that accelerator control will require fast, narrowminded decision making for rapid fine tuning, but slower and broader reasoning for machine startup, shutdown, fault diagnosis, and correction. It is also important to render the knowledge base in a form conducive to operator training. A promising form of the expert system involves a hybrid system in which high level reasoning is performed on the host machine that interacts with the user, while an embedded controller employs neural networks for fast but limited adjustment of accelerator performance. This partitioning of duty facilitates a hierarchical chain of command yielding an effective mixture of speed and reasoning ability.

  7. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  8. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    NASA Astrophysics Data System (ADS)

    Curtis, J. H.; Michelotti, M. D.; Riemer, N.; Heath, M. T.; West, M.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.

  9. Accelerating particle-in-cell simulations using multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2015-11-01

    Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.

  10. Cosmic bullets as particle accelerators and radio sources

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Kang, Hyesung; Tregillis, I. L.

    1994-01-01

    We have simulated in two dimensions the dynamical evolution of dense gas clouds(`cosmic bullets') moving supersonically through a uniform low-density medium. The diffusive shock acceleration of relativistic protons (cosmic rays) and their dynamical feedback on the background flow are included by the two-fluid model for this process. The acceleration of relativistic electrons is approximated by a test-particle model, and a passive magnetic field is followed by a simple advection scheme. Strong bow shocks, with Mach numbers similar to that of a bullet's motion, are the most important particle accelerators in the flow, while tail shocks and shocks inside the bullets do not play generally significant roles in this regard. For our simulation parameters, approximately greater than 10% of the initial bullet kinetic energy is converted to a combination of internal energy of gas and cosmic-ray protons by the time the bullets begin to be disrupted. Characteristically, the cosmic rays gain several percent of the available kinetic energy. Bullet destruction on timescales only a little larger than the ram pressure bullet crushing time begins in response to Kelvin-Helmholtz and especially to Rayleigh-Taylor instabilities along the forward bullet surface. For dense bullets this happens before the bullet is stopped by ram pressure. According to our simple model for synchrotron emission from relativistic electrons accelerated and transported within the flows, that emission increases rapidly as the bullet begins to fragment, when it is strongly dominated by field enhancement in sheared flows. Synchrotron emission from the acceleration region within the bow shock is, by contrast, much weaker.

  11. Particle acceleration and plasma energization in substorms: MHD and test particle studies

    SciTech Connect

    Birn, Joachim

    2015-07-16

    The author organizes his slide presentation under the following topics: background, MHD simulation, orbit integration, typical orbits, spatial and temporal features, acceleration mechanisms, source locations, and source energies. Field-­aligned energetic particle fluxes are shown for 45-keV electrons and 80-keV protons. It is concluded that the onset from local thin current sheet is electron tearing. Acceleration is mainly from field collapse, governed by Ey = -vxXBz: importance of localization; betatron acceleration (similar if nonadiabatic); 1st order Fermi, type B (or A; current sheet acceleration). There are two source regions (of comparable importance in magnetotail): - flanks, inner tail - drift entry - early, higher energy - outer plasma sheet - reconnection entry - later, lower energy. Both thermal and suprathermal sources are important, with limited energy range for acceleration

  12. Particle acceleration near X-type magnetic neutral lines

    NASA Technical Reports Server (NTRS)

    Deeg, Hans-Jorg; Borovsky, Joseph E.; Duric, Nebojsa

    1991-01-01

    The behavior of charged particles near X-type magnetic neutral lines is investigated. The magnetic field is taken to be hyperbolic and time stationary, with a uniform electric field perpendicular to the magnetic field. The general properties of the orbits of noninteracting particles in that field geometry are examined. Approximate analytic solutions to the orbit equations are derived by considering a magnetic-insulation picture where there is a hole in the magnetic insulation around the neutral line. Scaling laws for the dependence of the energy gain on strengths of the magnetic and electric fields are derived. The kinetic-energy distribution function for accelerated particles is derived for particles flowing past the neutral line. These analytic derivations are supported by computer simulations, in which the relativistic equations of motion for single test particles are numerically solved and the orbits and kinetic-energy gains of the particles are obtained. A number of simulations were performed and one parameter at a time was varied. Applications of the results to magnetic-neutral-line regions in space physics and astrophysics are possible.

  13. Alterations in gene expression in rat skin exposed to 56Fe ions and dietary vitamin A acetate.

    PubMed

    Zhang, Ronghe; Burns, Fredric J; Chen, Haobin; Chen, Shuaili; Wu, Feng

    2006-05-01

    The purpose of the present work was to examine gene expression patterns in rat skin exposed to a beam of (56)Fe ions, a surrogate for the high-energy, heavy-ion galactic radiation background, as a basis for obtaining a better understanding of the possible mechanism(s) behind the radioprotective activity of vitamin A. A 2 x 4-cm rectangle of dorsal rat skin was exposed to 1.01 GeV/nucleon (56)Fe ions generated by the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Gene expression patterns were monitored in either the presence or absence of a 250-ppm dietary supplement of vitamin A acetate in powdered lab chow. Although vitamin A and other retinoids show anti-carcinogenic activity in several animal models, the underlying changes in gene expression have not been examined extensively. At either 1 or 7 day after irradiation, a 1-cm square of irradiated and control rat skin was excised and analyzed using the Affymetrix rat microarray (RG_U34A) system. Microarray responses were displayed and processed by GeneSpring 7.0 and GOTree software. At 1 day after 3 Gy of (56)Fe-ion irradiation, the expression of 110 genes was significantly up-regulated (P < = 0.05) in comparison to levels in control rat skin, while no genes were altered by the vitamin A acetate supplement alone. Combined with (56)Fe-ion radiation, the vitamin A acetate supplement blocked the expression of 88 (80%) of the 110 genes and eliminated 16 of 18 gene categories that were significantly altered (all increased) by the (56)Fe-ion radiation. Categories with large numbers of genes eliminated by the retinoid included response to stress, 33 genes; response to biotic stimulus, 38 genes; signal transduction, 35 genes; and regulation of cellular/physiological process, 40 genes. Even for immune response and response to biotic stimulus, the only two categories that remained significantly altered in the presence of the vitamin, the combined number of altered genes was reduced from 74 to 13. No

  14. Nuclear Deexcitation Gamma Ray Lines from Accelerated Particle Interactions

    NASA Astrophysics Data System (ADS)

    Murphy, R. J.; Kozlovsky, B.; Ramaty, R.

    2001-12-01

    Since the comprehensive treatment of nuclear deexcitation gamma-ray line emission by Ramaty, Kozlovsky and Lingenfelter in 1979, many new laboratory measurements of the cross sections have become available. Such new measurements allow improved theoretical evaluations of cross sections and the addition of more lines in the analyses of gamma-ray data. For example, the inclusion of lines produced by energetic 3He will provide unique information about its abundance. We present these improved cross sections as a function of the projectile energy for proton, alpha and 3He reactions with He, C, N, O, Ne, Mg, Al, Si, S, Ca and Fe. We also present calculations of gamma-ray line yields based on these cross sections and show how line ratios depend on the assumed ambient and accelerated-particle abundances and on the accelerated-particle energy spectrum. Such calculations are essential for interpretation of gamma-ray line observations of astrophysical sites that contain significant fluxes of energetic particles such as solar flares, the Earth's atmosphere, planetary atmospheres and surfaces, the interstellar medium and galactic nebulae. Part of the research reported here was supported by NASA DPR S92680F and W19977.

  15. Proceedings of the 22nd Particle Accelerator Conference (PAC'07)

    SciTech Connect

    N /A

    2007-08-01

    The twenty-second Particle Accelerator Conference, PAC'07, took place at the Albuquerque Convention Centre in Albuquerque, the largest city in New Mexico, from Monday to Friday, 2007 June 25 to 29. It was attended by over 1350 delegates from 25 different countries (63% North America, 24% Europe, 11% Asia and 2% Other), and was held under the auspices of the two professional societies that oversee and make holding this series of conferences possible, the Division of Physics of Beams within APS, and the Nuclear and Plasma Sciences Society within IEEE. As host of the conference, Los Alamos National Laboratory (LANL) is especially thanked for their many contributions and assistance both prior to and during the conference. The Convention Center was an ideal location for information sharing and discussions between the interdisciplinary aspects of the accelerator community, as well as for related meetings and ad-hoc 'rump' sessions.

  16. The Particle Accelerator Simulation Code PyORBIT

    SciTech Connect

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT is an open source code accessible to the public through the Google Open Source Projects Hosting service.

  17. Test particle acceleration in a magnetotail reconnection configuration

    SciTech Connect

    Sachsenweger, D.; Scholer, M.; Mobius, E. )

    1989-09-01

    AMPTE/IRM measurements during a period of strong magnetic activity on April 8, 1985 exhibit a significant hardening of the energy spectra of all detected ion species (H{sup +}, He{sup 2+}, He{sup +}, O{sup +}) following substorm expansion. In order to explain these observations in the framework of the substorm neutral line model, single-particle trajectories of various ions (H{sup +}, He{sup 2+}, O{sup +}) are followed numerically in the time-dependent electric and magnetic fields obtained from a two-dimensional magnetohydrodynamic simulation of magnetotail reconnection. Current sheet acceleration of a suitable plasma sheet ion distribution can explain the observed ordering of the flux increase of the various species in energy per charge. Starting from a cold lobe population, however, current sheet acceleration cannot account for the differential ion intensities observed after substorm expansion. {copyright} American Geophysical Union 1989

  18. STOCHASTIC ACCELERATION OF SUPRATHERMAL PARTICLES UNDER PRESSURE BALANCE CONDITIONS

    SciTech Connect

    Antecki, T.; Schlickeiser, R.; Zhang, M. E-mail: rsch@tp4.rub.de

    2013-02-10

    The acceleration of suprathermal charged particles in the heliosphere under pressure balance conditions including for the first time the radial spatial particle diffusion and convection in the solar wind is investigated. The physical conditions are derived for which the stationary phase space distribution of suprathermal particles approaches the power-law distribution f{proportional_to}p {sup -5}, which is often seen in spacecraft observations. For separable source distributions in momentum and position we analytically solve the stationary particle transport equation for a radially constant solar wind speed V {sub 0} and a momentum-independent radial spatial diffusion coefficient. The resulting stationary solution at any position within the finite heliosphere is the superposition of an infinite sum of power laws in momentum below and above the (assumed mono-momentum) injection momentum p{sub I} . The smallest spatial eigenvalue determines the flattest power law, to which the full stationary solution approaches at large and small enough momenta. Only for the case of a reflecting inner and a free-escape outer spatial boundary, does one small eigenvalue exist, yielding the power-law distribution f{proportional_to}p {sup -5} at sufficiently large momentum values. The other three spatial boundary conditions imply steeper momentum spectra. Momentum spectra and radial profiles of suprathermal particles are calculated by adopting a uniform outer ring spatial source distribution.

  19. DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS

    SciTech Connect

    Summerlin, Errol J.; Baring, Matthew G. E-mail: baring@rice.edu

    2012-01-20

    Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.

  20. Particle acceleration in the vacuum gaps in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Ptitsyna, K.; Neronov, A.

    2016-08-01

    Aims: We consider particle acceleration in the vacuum gaps in magnetospheres of black holes powered by the Blandford-Znajek mechanism and embedded in the radiatively-inefficient accretion flow (RIAF) environment. In this situation, the gap height is limited by the onset of gamma-gamma pair production on the infrared photons originating in the RIAF. Methods: We numerically calculated the acceleration and propagation of charged particles by taking the detailed structure of the electric and magnetic fields in the gap and in the entire black hole magnetosphere into account, as well as the radiative energy losses and interactions of γ-rays produced by the propagated charged particles with the background radiation field of the RIAF. Results: We show that the presence of the vacuum gap has clear observational signatures. The spectra of emission from gaps embedded in a relatively high-luminosity RIAF are dominated by the inverse Compton emission with a sharp, super-exponential cut-off in the very-high-energy gamma-ray band. The cut-off energy is determined by the properties of the RIAF and is largely independent of the structure of magnetosphere and geometry of the gap. The spectra of the gap residing in low-luminosity RIAFs are dominated by synchrotron or curvature emission with the spectra extending into 1-100 GeV energy range. We also consider the effect of possible acceleration of protons in the gap and find that proton energies could reach the ultra-high-energy cosmic ray (UHECR) range only in extremely low-luminosity RIAFs.

  1. Accelerated heavy particles and the lens. 1. Cataracogenic potential

    SciTech Connect

    Merriam, G.R.; Worgul, B.V.; Medvedovsky, C.; Zaider, M.; Rossi, H.H.

    1984-04-01

    The effect of varying doses of accelerated (570 MeV/amu) argon ions on the rat lens is described with detailed observations on the sequence of development of the cataracts, the time-dose relationship, and the analysis of their cataractogenic potential. The relative biological effectiveness (RBE) of the heavy particles for cataract production, compared to low linear energy transfer (LET) radiation (X-rays), has been established. These data indicate that, as with neutrons, the RBE increases with decreasing dose and that at a dose of 0.05 Gy an RBE of about 40 was observed.

  2. New modes of particle accelerations techniques and sources. Formal report

    SciTech Connect

    Parsa, Z.

    1996-12-31

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  3. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    Observations of plasmas and electric field activity within regions of auroral particle acceleration have verified the existence of electric fields with components parallel to the magnetic field over large altitude regions. Evidence is presented which indicates that small-ampliatude double layers along the auroral magnetic field lines may provide a mechanism for the maintenance of auroral ion potential. Evidence is also presented of downward-directed parallel electric fields along the magnetic field lines in the return current region. It is suggested that the downward electric fields may have significant effects on ion trajectories, and further theoretical investigation of the effects of downward parallel electric fields on ion conic formation is recommended.

  4. Black holes are neither particle accelerators nor dark matter probes.

    PubMed

    McWilliams, Sean T

    2013-01-01

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  5. Decreased RXRα is Associated with Increased β-Catenin/TCF4 in 56Fe-Induced Intestinal Tumors

    PubMed Central

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J.; Datta, Kamal

    2015-01-01

    Although it is known that accumulation of oncogenic β-catenin is critical for intestinal tumorigenesis, the underlying mechanisms have not yet been fully explored. Post-translational β-catenin level is regulated via the adenomatous polyposis coli (APC)-dependent as well as the APC-independent ubiquitin–proteasome pathway (UPP). Employing an APC-mutant mouse model (APCMin/+) the present study aimed to investigate the status of RXRα, an APC-independent factor involved in targeting β-catenin to UPP for degradation, in tumor-bearing and tumor-free areas of intestine after exposure to energetic 56Fe ions. APCMin/+ mice were exposed to energetic 56Fe ions (4 or 1.6 Gy) and intestinal tumor samples and tumor-free normal intestinal samples were collected 100–110 days after exposure. The status of TCF4, β-catenin, cyclin D1, and RXRα was examined using immunohistochemistry and immunoblots. We observed increased accumulation of the transcription factor TCF4 and its co-activator β-catenin as well as their downstream oncogenic target protein cyclin-D1 in 56Fe ion-induced intestinal tumors. Further, decreased expression of RXRα in tumors as well as in adjacent normal epithelium was indicative of perturbations in β-catenin proteasomal-targeting machinery. This indicates that decreased UPP targeting of β-catenin due to downregulation of RXRα can contribute to further accumulation of β-catenin and to 56Fe-induced tumorigenesis. PMID:26500891

  6. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  7. Multi-Spacecraft Observations of Interplanetary Shock Accelerated Particle Events

    NASA Technical Reports Server (NTRS)

    Ho, G. C.; Lario, D.; Decker, R. B.; Desai, M. I.; Hu, Q.; Kasper, J.

    2006-01-01

    We use simultaneous measurements from the Wind and ACE spacecraft to determine the spatial properties of both interplanetary (IP) shocks and the shock-associated energetic particle events. We combine plasma, magnetic field and energetic particle data from ACE and Wind for 124 energetic storm particle (ESP) events from 1998 to 2003 and examine the spatial and temporal variations of these events in the Earth's vicinity. We find that even though the two spacecraft were occasionally separated by more than 400 RE, the plasma, field, and energetic particle time-intensity profiles during the events were very similar. In addition, we find that the ion composition and energy spectra in individual IP shock events are identical at the two spacecraft locations. We also use the fitted shock velocity along the normal from ACE and estimate the shock transit time to Wind location. In general, there is poor agreement between the estimated transit time and the actual measured transit time. Hence, our assumptions that a) the IP shock at 1 AU propagates radially, and/or b) the IP shock is spherically symmetric at 1 AU are not valid. In this paper, we will also study, for the first time, the anisotropy measurements of low-energy IP shock-associated ions at both ACE and Wind. We will then compare these new anisotropy analyses with locally measured shock parameters and identify possible signatures of different shock acceleration processes as predicted by the first-order Fermi and shock-drift models.

  8. Particle acceleration and transport in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard

    2016-07-01

    During periods of sporadic flare activity, the Sun releases energy stored in the magnetic field into the plasma of the solar atmosphere. This is an extremely efficient process, with a large fraction of the magnetic energy going into plasma particles. The solar flares are accompanied by prompt electromagnetic emission virtually over the entire electromagnetic spectrum from gamma-rays down to radio frequencies. The Sun, through its activity, also plays a driving role in the Sun-Earth system that substantially influences geophysical space. Solar flare energetic particles from the Sun are detected in interplanetary space by in-situ measurements making them a vital component of the single Sun-Earth system. Although a qualitative picture is generally agreed upon, many processes solar flare processes are poorly understood. Specifically, the processes of acceleration and propagation of energetic particles interacting on various physical scales remain major challenges in solar physics and basic plasma physics. In the talk, I will review the current understanding of solar flare energetic particles focusing on recent observational progress, which became possible due to the numerous spacecraft and ground-based observations.

  9. Induced radioactivity in and around high-energy particle accelerators.

    PubMed

    Vincke, Helmut; Theis, Chris; Roesler, Stefan

    2011-07-01

    Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses. The second part of the paper concentrates on the analytic calculation of activation and the Monte Carlo approach as it is implemented in the FLUKA code. Techniques used to obtain, on the one hand, estimates of radioactivity in Becquerel and, on the other hand, residual dose rates caused by the activated material are discussed. The last part of the paper focuses on experiments that allow for benchmarking FLUKA activation calculations and on simulations used to predict activation in and around high-energy proton machines. In that respect, the paper addresses the residual dose rate that will be induced by proton-proton collisions at an energy of two times 7 TeV in and around the Compact Muon Solenoid (CMS) detector. Besides activation of solid materials, the air activation expected in the CMS cavern caused by this beam operation is also discussed. PMID:21697180

  10. Aging of organic materials around high-energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Tavlet, Marc

    1997-08-01

    Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

  11. Induced radioactivity in and around high-energy particle accelerators.

    PubMed

    Vincke, Helmut; Theis, Chris; Roesler, Stefan

    2011-07-01

    Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses. The second part of the paper concentrates on the analytic calculation of activation and the Monte Carlo approach as it is implemented in the FLUKA code. Techniques used to obtain, on the one hand, estimates of radioactivity in Becquerel and, on the other hand, residual dose rates caused by the activated material are discussed. The last part of the paper focuses on experiments that allow for benchmarking FLUKA activation calculations and on simulations used to predict activation in and around high-energy proton machines. In that respect, the paper addresses the residual dose rate that will be induced by proton-proton collisions at an energy of two times 7 TeV in and around the Compact Muon Solenoid (CMS) detector. Besides activation of solid materials, the air activation expected in the CMS cavern caused by this beam operation is also discussed.

  12. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  13. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    1985-05-01

    In the 1970's major advances in the understanding of auroral processes were brought about by observations of plasmas and electric fields within the regions of space responsible for auroral particle acceleration. The major contribution of these observations was the verification of the existence of electric fields with components parallel to the magnetic field over large regions of altitude (1000 to 20000 kilometers). These electric fields constitute potential drops of several kilovolts, accelerating magnetospheric electrons downward to form the aurora and ionospheric ions upward, where they contribute significantly to the magnetospheric hot ion population. Perpendicular spatial scales of about 100 kilometers are most common, although finer scales have been observed embedded, and individual small amplitude double layers occur on much smaller parallel spatial scales. More recently, the same data sets have revealed the existance of about 100 V electric potential drops directed downward in return current regions. Downward electric fields are in a direction to accelerate electrons out of the ionsphere and tend to retard the propagation of ions upward. An association between upflowing electron beams and transversely heated ions at low altitude has been noted, and a casual relationship between downward electric fields and ion conics is suggested.

  14. Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2016-10-01

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transport of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen & Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched (3He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.

  15. Particle Acceleration and Plasma Heating in the Chromosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  16. The Detection of Coronal Suprathermal Particles Required to Seed Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Moses, J.; Laming, J. M.; Tylka, A.; Ko, Y.; Rakowski, C.; Ng, C. K.

    2012-12-01

    An extensive body of evidence identifies shocks driven by very fast coronal mass ejections (CMEs) starting within a few solar radii of the Sun as the primary particle accelerators in large, gradual solar energetic particles (SEP) events. These large SEP events are major radiation hazards for astronauts and for space borne instrumentation, making a reliable SEP predictive capability a high priority for Heliophysics research. Diverse lines of evidence indicate that the rapid production of large intensities of high-energy particles is greatly enhanced when the pre-event environment has been primed with a population of suprathermal ions having energies well above the typical thermal particle energy, usually in the range from a few to tens of keV in the solar corona. However, at present we have no direct evidence that suprathermal ions actually exist in the corona in numbers sufficient to serve as "seed particles" for diffusive shock acceleration (DSA). We will review the evidence indicating seed particles are required to produce energetic SEPs on the observed time scales. One technique with the potential for directly observing these seed particles is the use of high-throughput UV spectroscopy to quantify broadening of the Ly-α line resulting from charge exchange between suprathermal protons and neutral atoms in the corona. Attempts to use this technique with SOHO UVCS have not produced clear evidence for the detection of coronal suprathermals. We will present revised spectroscopic computations of the influence of seed particles on the Ly-α line spectrum and describe the instrumental requirements for observing this line broadening.

  17. Analytical description of nonlinear particle transport in slab turbulence: High particle energies and stochastic acceleration

    SciTech Connect

    Shalchi, A.

    2012-10-15

    Pitch-angle scattering, parallel spatial diffusion, and stochastic acceleration of cosmic rays are investigated analytically. Based on a second-order quasilinear theory, we derive analytical expressions for the aforementioned transport parameters for all possible magnetic field strengths and particle energies. This work complements previous work where only parallel diffusion for low energetic particles was considered. Furthermore, we compute the first time the momentum diffusion coefficient. It is also shown that the relation between the momentum diffusion coefficient and the parallel spatial diffusion coefficient is more complicated than assumed in previous work.

  18. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  19. Feature-based Analysis of Plasma-based Particle Acceleration Data

    SciTech Connect

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  20. Feature-based analysis of plasma-based particle acceleration data.

    PubMed

    Rübel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2014-02-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss.

  1. Feature-based Analysis of Plasma-based Particle Acceleration Data.

    PubMed

    Rubel, Oliver; Geddes, Cameron G R; Chen, Min; Cormier-Michel, Estelle; Bethel, E Wes

    2013-08-01

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  2. Symplectic maps and chromatic optics in particle accelerators

    NASA Astrophysics Data System (ADS)

    Cai, Yunhai

    2015-10-01

    We have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive analytically their settings for the local chromatic compensation. As a result, the cell becomes nearly perfect up to the third-order of the momentum deviation.

  3. The Mysterious Universe - Exploring Our World with Particle Accelerators

    SciTech Connect

    Brau, James E

    2010-11-23

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  4. Kinetic Simulations of SNR Shocks- Prospects for Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra

    2006-02-01

    Recent kinetic simulations of supercritical, quasi-perpendicular shocksyield time varying shock solutions that cyclically reform on thespatio-temporal scales of the incoming protons. Whether a shock solution isstationary or reforming depends upon the plasma parameters which, for SNRshocks are ill defined but believed to be within thetime-dependent regime. We will first review the structure and evolution ofthe time dependentsolutions, and the acceleration processes of the ions and electrons inthese time dependent fields, for a proton-electron plasma. We will thenpresent recent results for a three component plasma: backgroundprotons; electrons; and a second heavier ion population. These accelerationmechanisms may generate a suprathermalïnjection$quot; population - a seed population for subsequentacceleration at the shock, which can in turn generate particles at cosmicray energies.

  5. Symplectic maps and chromatic optics in particle accelerators

    DOE PAGESBeta

    Cai, Yunhai

    2015-07-06

    Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less

  6. The Mysterious Universe - Exploring Our World with Particle Accelerators

    ScienceCinema

    Brau, James E [University of Oregon

    2016-07-12

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  7. Symplectic maps and chromatic optics in particle accelerators

    SciTech Connect

    Cai, Yunhai

    2015-07-06

    Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.

  8. 3D reconstruction and particle acceleration properties of Coronal Shock Waves During Powerful Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Vourlidas, Angelos; Tylka, Allan J.; Pinto, Rui; Rouillard, Alexis; Tirole, Margot

    2016-07-01

    Identifying the physical mechanisms that produce the most energetic particles is a long-standing observational and theoretical challenge in astrophysics. Strong pressure waves have been proposed as efficient accelerators both in the solar and astrophysical contexts via various mechanisms such as diffusive-shock/shock-drift acceleration and betatron effects. In diffusive-shock acceleration, the efficacy of the process relies on shock waves being super-critical or moving several times faster than the characteristic speed of the medium they propagate through (a high Alfven Mach number) and on the orientation of the magnetic field upstream of the shock front. High-cadence, multipoint imaging using the NASA STEREO, SOHO and SDO spacecrafts now permits the 3-D reconstruction of pressure waves formed during the eruption of coronal mass ejections. Using these unprecedented capabilities, some recent studies have provided new insights on the timing and longitudinal extent of solar energetic particles, including the first derivations of the time-dependent 3-dimensional distribution of the expansion speed and Mach numbers of coronal shock waves. We will review these recent developments by focusing on particle events that occurred between 2011 and 2015. These new techniques also provide the opportunity to investigate the enigmatic long-duration gamma ray events.

  9. Preformed transient gas channels for laser wakefield particle acceleration

    SciTech Connect

    Wood, W.M.

    1994-11-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10{sup 17} W/cm{sup 2} are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10{sup 17} cm{sup {minus}3} are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas.

  10. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    SciTech Connect

    Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  11. Relativistically strong CO{sub 2} laser driver for plasma-channeled particle acceleration

    SciTech Connect

    Pogorelsky, I.V.

    1995-12-31

    Long-wavelength, short-duration laser pulses are desirable for plasma wakefield particle acceleration and plasma waveguiding. The first picosecond terawatt CO{sub 2} laser is under development to test laser-driven electron acceleration schemes.

  12. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  13. Nonresonant Charged-Particle Acceleration by Electrostatic Waves Propagating across Fluctuating Magnetic Field.

    PubMed

    Artemyev, A V; Neishtadt, A I; Vasiliev, A A; Zelenyi, L M

    2015-10-01

    In this Letter, we demonstrate the effect of nonresonant charged-particle acceleration by an electrostatic wave propagating across the background magnetic field. We show that in the absence of resonance (i.e., when particle velocities are much smaller than the wave phase velocity) particles can be accelerated by electrostatic waves provided that the adiabaticity of particle motion is destroyed by magnetic field fluctuations. Thus, in a system with stochastic particle dynamics the electrostatic wave should be damped even in the absence of Landau resonance. The proposed mechanism is responsible for the acceleration of particles that cannot be accelerated via resonant wave-particle interactions. Simplicity of this straightforward acceleration scenario indicates a wide range of possible applications. PMID:26550729

  14. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain

    SciTech Connect

    Haley, Gwendolen E.; Villasana, Laura; Dayger, Catherine; Davis, Matthew J.; Raber, Jacob

    2012-11-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.

  15. Beta decay of nuclides 56Fe, 62Ni, 64Ni and 68Ni in the crust of magnetars

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Kang, Xiao-Ping; Hao, Liang-Huan; Feng, Hao; Liu, Dong-Mei; Li, Chang-Wei; Zeng, Xiang-Ming

    2016-11-01

    By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 68Ni in magnetars, which are powered by magnetic field energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases by more than seven orders of magnitude in the presence of SMFs.

  16. Particle Acceleration At Small-Scale Flux Ropes In The Heliosphere

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, G.; Webb, G. M.; Khabarova, O.; Cummings, A. C.; Stone, E. C.; Decker, R. B.

    2015-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands or flux roped. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We discuss the basic physics of particle acceleration by single magnetic islands and describe how to incorporate these ideas in a distributed "sea of magnetic islands". We describe briefly some observations, selected simulations, and then introduce a transport approach for describing particle acceleration at small-scale flux ropes. We discuss particle acceleration in the supersonic solar wind and extend these ideas to particle acceleration at shock waves. These models are appropriate to the acceleration of both electrons and ions. We describe model predictions and supporting observations.

  17. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  18. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  19. Particle densities within the acceleration region of a solar flare

    SciTech Connect

    Krucker, Säm; Battaglia, Marina

    2014-01-01

    The limb flare SOL2012-07-19T05:58 (M7.7) provides the best example of a non-thermal above-the-loop-top hard X-ray source with simultaneous observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. By combining the two sets of observations, we present the first direct measurement of the thermal proton density and non-thermal electron density within the above-the-loop-top source where particle acceleration occurs. We find that both densities are of the same order of magnitude of a few times 10{sup 9} cm{sup –3}, about 30 times lower than the density in the underlying thermal flare loops. The equal densities indicate that the entire electron population within the above-the-loop-top source is energized. While the derived densities depend on the unknown source depth and filling factor, the ratio of these two densities does not. Within the uncertainties, the ratio is one for a low energy cutoff of the non-thermal electron spectrum between 10 and 15 keV. RHESSI observations only constrain the cutoff energy to below ∼15 keV, leaving the spectral shape of the electrons within the above-the-loop-top source at lower energies unknown. Nevertheless, these robust results strongly corroborate earlier findings that the above-the-loop-top source is the acceleration region where a bulk energization process acts on all electrons.

  20. Short-term effects of whole-body exposure to (56)fe ions in combination with musculoskeletal disuse on bone cells.

    PubMed

    Yumoto, Kenji; Globus, Ruth K; Mojarrab, Rose; Arakaki, Joy; Wang, Angela; Searby, Nancy D; Almeida, Eduardo A C; Limoli, Charles L

    2010-04-01

    Space travel and prolonged bed rest cause bone loss due to musculoskeletal disuse. In space, radiation fields may also have detrimental consequences because charged particles traversing the tissues of the body can elicit a wide range of cytotoxic and genotoxic lesions. The effects of heavy-ion radiation exposure in combination with musculoskeletal disuse on bone cells and tissue are not known. To explore this, normally loaded 16-week-old male C57BL/6 mice were exposed to (56)Fe ions (1 GeV/nucleon) at doses of 0 cGy (sham), 10 cGy, 50 cGy or 2 Gy 3 days before tissue harvest. Additional mice were hindlimb unloaded by tail traction continuously for 1 week to simulate weightlessness and exposed to (56)Fe-ion radiation (0 cGy, 50 cGy, 2 Gy) 3 days before tissue harvest. Despite the short duration of this study, low-dose (10, 50 cGy) irradiation of normally loaded mice reduced trabecular volume fraction (BV/TV) in the proximal tibiae by 18% relative to sham-irradiated controls. Hindlimb unloading together with 50 cGy radiation caused a 126% increase in the number of TRAP(+) osteoclasts on cancellous bone surfaces relative to normally loaded, sham-irradiated controls. Together, radiation and hindlimb unloading had a greater effect on suppressing osteoblastogenesis ex vivo than either treatment alone. In sum, low-dose exposure to heavy ions (50 cGy) caused rapid cancellous bone loss in normally loaded mice and increased osteoclast numbers in hindlimb unloaded mice. In vitro irradiation also was more detrimental to osteoblastogenesis in bone marrow cells that were recovered from hindlimb unloaded mice compared to cells from normally loaded mice. Furthermore, irradiation in vitro stimulated osteoclast formation in a macrophage cell line (RAW264.7) in the presence of RANKL (25 ng/ml), showing that heavy-ion radiation can stimulate osteoclast differentiation even in the absence of osteoblasts. Thus heavy-ion radiation can acutely increase osteoclast numbers in cancellous

  1. Possible production of actinide spontaneous fission activities in damped collisions of /sup 209/Bi+/sup 56/Fe

    SciTech Connect

    Viola, V.E. Jr.; Mignerey, A.C.; Breuer, H.; Wolf, K.L.; Glagola, B.G.; Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Hilscher, D.; Birkelund, J.R.

    1980-07-01

    Results of recent nuclear reaction studies on the /sup 209/Bi+/sup 56/Fe system are analyzed in order to investigate the cross sections for production of spontaneously fissioning species with 90 < or = Z < or = 100. This reaction is nearly identical to those used as the basis for identification of new elements with Z=104 --107, reported to be spontaneous fission emitters. Evidence is presented which indicates that actinide elements are formed with primary yields of the order of millibarns in strongly damped collisions of 464 MeV /sup 56/Fe with /sup 209/Bi. Although strongly depleted by fission competition, final yields of possible spontaneous fission activities /sup 240en-dash244/Am/sup f/, /sup 234en-dash238/Cf, and /sup 242en-dash246/Fm are calculated to be of the order of nanobarns. These results suggest that the spontaneous fission activities observed in similar reactions may be due at least in part to fission decay of actinide elements rather than elements with Z=104 --107.

  2. Associations of Accelerating CMEs with Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Sheeley, N.; Reames, D.

    2001-05-01

    Gradual solar energetic particle (SEP) events are well associated with fast coronal mass ejections (CMEs). The times of significant E > 10 MeV SEP events observed with the Goddard Space Flight Center EPACT detector on the Wind spacecraft have been compared with CME observations from the Lasco coronagraph on the SOHO spacecraft. As earlier studies have shown, a correlation exists between peak SEP intensities and the measured speeds of associated CMEs. Of the CMEs associated with SEP events in the period 1996 to 2000, we find 9 CMEs for which the height-time plots of the leading edges show accelerations of at least 13 m/s/s. The heights at which those CMEs attained speeds of 600 km/s ranged from 7 to 20 Ro. The peak 20 MeV intensities of the 9 SEP events are relatively low compared with all gradual SEP events of the same period. We compare the energy spectra and solar event associations of these 9 SEP events with those of the SEP events associated with CMEs of uniform speeds.

  3. Particle Acceleration: From Galaxies to Large Scale Structure

    SciTech Connect

    Biermann, Peter L.; Bisnovatyi-Kogan, Gennady; Moiseenko, Sergej

    2005-09-28

    In this brief review we discuss current efforts to understand the origin of energetic particles, focussing here on the recent work on the physics of supernova explosions. Acceleration to the highest energy may come from jets and hot spots emanating from massive black holes. If the sky remains smooth in the arrival directions of ultrahigh energy cosmic rays to the highest energies, then we need new sources, and one extreme speculation would be to invoke Lorentz Invariance Violation, with proton decay, neutron survival, and no strong photomeson interaction to higher energy. For the Galactic cosmic rays explosions of red supergiant stars and Wolf Rayet stars may provide much of the cosmic rays. This is intimately connected with the physics of their explosion, and implies that the magneto-rotational mechanism is the main one chosen by Nature. This offers a consistent picture for the X-ray fans of Cas A, and gamma ray bursts. Each of these concepts leads to clear predictions. It will be quite an achievement to prove this or any other proposal -- none is without difficulties. We do have potentially a full theory to account for cosmic rays at all energies; crucial tests will be performed with the current new instruments.

  4. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

    2011-09-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  5. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  6. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  7. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  8. IEEE Transactions on Nuclear Science. Volume NS-30, no. 4, part 2: 1983 Particle Accelerator Conference

    NASA Astrophysics Data System (ADS)

    Shea, R. F.

    1983-08-01

    This second part of the conference proceedings on particle accelerators completes the two part set. Abstracts of individual items from the conference were prepared separately for the data base. Topics include: reactor technology, particle accelerators, cryogenics, superconductors, spin dynamics and plasma physics.

  9. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  10. Review of Basic Physics of Laser-Accelerated Charged-Particle Beams

    SciTech Connect

    Suk, H.; Hur, M. S.; Jang, H.; Kim, J.

    2007-07-11

    Laser-plasma wake wave can accelerate charged particles, especially electrons with an enormously large acceleration gradient. The electrons in the plasma wake wave have complicated motions in the longitudinal and transverse directions. In this paper, basic physics of the laser-accelerated electron beam is reviewed.

  11. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  12. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  13. Studying astrophysical particle acceleration mechanisms with colliding magnetized laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Deng, W.; Bhattacharjee, A.; Fiksel, G.; Nilson, P.; Haberberger, D.; Chang, P.-Y.; Barnak, D.

    2015-11-01

    Significant particle energization is observed to occur in many astrophysical environments, and in the standard models this acceleration occurs as a part of the energy conversion processes associated with collisionless shocks or magnetic reconnection. A recent generation of laboratory experiments conducted using magnetized laser-produced plasmas has opened opportunities to study these particle acceleration processes in the laboratory. Ablated plasma plumes are externally magnetized using an externally-applied magnetic field in combination with a low-density background plasma. Colliding unmagnetized plasmas demonstrated ion-driven Weibel instability while colliding magnetized plasmas drive magnetic reconnection. Both magnetized and unmagnetized colliding plasma are modeled with electromagnetic particle-in-cell simulations which provide an end-to-end model of the experiments. Using particle-in-cell simulations, we provide predictions of particle acceleration driven by reconnection, resulting from both direct x-line acceleration and Fermi-like acceleration at contracting magnetic fields lines near magnetic islands.

  14. Chaotic motion of particles in the accelerating and rotating black holes spacetime

    NASA Astrophysics Data System (ADS)

    Chen, Songbai; Wang, Mingzhi; Jing, Jiliang

    2016-09-01

    We have investigated the motion of timelike particles along geodesic in the background of accelerating and rotating black hole spacetime. We confirm that chaos exists in the geodesic motion of the particles by Poincaré sections, the frequency spectrum and the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram. Moreover, we probe the effects of the acceleration and rotation parameters on the chaotic behavior of a timelike geodesic particle in the black hole spacetime. Our results show that the acceleration brings richer physics for the geodesic motion of particles.

  15. Particle Acceleration by Multiple Shock Waves: A model for Solar Flares

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.

    We study the acceleration, the transport and radiation of energetic particles (electrons and ions) inside an active region. The acceleration of particles is due to the presence of an ensemble of oblique shock waves inside an evolving active region and is based on the shock drift mechanism. The high-energy particles are transported inside a chaotic magnetic field and are subject to Coulomb collisions and radiation. We calculate the energy distribution of the particles, their acceleration time and their maximum energy as a function to the number of shock waves present. Preliminary results on the the duffusive nature of the process are presented. Finally we compare our results with the observations.

  16. Exposure to heavy charged particles affects thermoregulation in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Harris, A.H.; Rabin, B.M. |

    1994-09-01

    Rats exposed to 0.1-5 Gy of heavy particles ({sup 56}Fe, {sup 40}Ar, {sup 20}Ne or {sup 4}He) showed dose-dependent changes in body temperature. Lower doses of all particles produced hyperthermia, and higher doses of {sup 20}Ne and {sup 56}Fe produced hypothermia. Of the four HZE particles, {sup 56}Fe particles were the most potent and {sup 4}He particles were the least potent in producing changes in thermoregulation. The {sup 20}Ne and {sup 40}Ar particles produced an intermediate level of change in body temperature. Significantly greater hyperthermia was produced by exposure to 1 Gy of {sup 20}Ne, {sup 40}Ar and {sup 56}Fe particles than by exposure to 1 Gy of {sup 60}Co {gamma} rays. Pretreating rats with the cyclo-oxygenase inhibitor indomethacin attenuated the hyperthermia produced by exposure to 1 Gy of {sup 56}Fe particles, indicating that prostaglandins mediate {sup 56}Fe-particle-induced hyperthermia. The hypothermia produced by exposure to 5 Gy of {sup 56}Fe particles is mediated by histamine and can be attenuated by treatment with the antihistamines mepyramine and cimetidine. 15 refs., 4 figs.

  17. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  18. Embryonic effects transmitted by male mice irradiated with 512 MeV/u {sup 56}Fe nuclei

    SciTech Connect

    Wiley, L.M.; Van Beek, M.E.A.B.; Raabe, O.G.

    1994-06-01

    High-energy, high-charge nuclei may contribute substantially to the yearly equivalent dose in space flight from galactic cosmic radiation (GCR) at solar minimum. The largest single heavy-ion component is {sup 56}Fe. We used the mouse embryo chimera assay to test 512 MeV/u {sup 56}Fe nuclei for effects on the rate of proliferation of embryonic cells transmitted by sperm from irradiated mice. Male CD1 mice were acutely irradiated with 0.01, 0.05, or 0.1 Gy (LET, 184 keV/{mu}m; fluence, 3.5 x 10{sup 4}-3.3 x 10{sup 5} nuclei/cm{sup 2}; average dose rate, 0.02 Gy/min) at the Lawrence Berkeley Laboratory BEVATRON/BEVALAC Facility in Berkeley, CA. Irradiated males were bred weekly for 7 weeks to nonirradiated females and their four-cell embryos were paired with control embryos, forming aggregation chimeras. After 30-35 h of culture, chimeras were dissociated to obtain {open_quotes}proliferation ratios{close_quotes} (number of cells contributed by the embryo from the irradiated male/total number of cells in the chimera). Significant dose-dependent decreases in proliferation ratios were obtained across all three dose groups for postirradiation week 2 (P < 0.05 to P < 0.003). The 0.01- and 0.05-Gy dose groups also produced significant decreases in proliferation ratios for postirradiation week 1 (P < 0.05 to P < 0.01) and the 0.05-Gy dose group produced significant decreases in proliferation ratios for postirradiation week 6 (P < 0.05). Postirradiation weeks 1, 2 and 6 correspond to irradiation of epididymal sperm, testicular spermatids and spermatogonia, respectively. We calculate that only about 5% of sperm in the 0.1-Gy, 2.5% in the 0.05-Gy and 0.5% in the 0.01-Gy dose groups sustained direct hits from {sup 56}Fe nuclei. However, up to 47% of sperm during postirradiation weeks 1 and 2 transmitted proliferation ratios that were at or below one standard deviation from control mean proliferation ratios. 26 refs., 4 figs., 10 tabs.

  19. Picosecond CO{sub 2} laser for relativistic particle acceleration

    SciTech Connect

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-06-01

    A table-top 20-GW 50-ps CO{sub 2} laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO{sub 2} laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported.

  20. Cross sections for production of 70 discrete-energy gamma rays created by neutron interactions with sup 56 Fe for E sub n to 40 MeV: Tabulated data

    SciTech Connect

    Dickens, J.K.; Todd, J.H.; Larson, D.C.

    1990-09-01

    Inelastic and nonelastic neutron interactions with {sup 56}Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studied were {sup 56}Fe(n,n{prime}){sup 56}Fe, {sup 56}Fe(n,p){sup 56}Mn, {sup 56}Fe(n,2n){sup 55}Fe, {sup 56}Fe(n,d + n,np){sup 55}Mn, {sup 56}Fe(n,t + n,nd + n,2np){sup 54}Mn, {sup 56}Fe(n,{alpha}){sup 53}Cr, {sup 56}Fe(n,n{alpha}){sup 52}Cr, and {sup 56}Fe(n,3n){sup 54}Fe. Values obtained for production cross sections as functions of incident neutron energy are presented in tabular form. 38 refs., 7 figs., 12 tabs.

  1. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.

  2. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1.

    PubMed

    Williams, G R; Lett, J T

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency. PMID:11538988

  3. Measurement of 56Fe activity produced in inelastic scattering of neutrons created by cosmic muons in an iron shield.

    PubMed

    Krmar, M; Jovančević, N; Nikolić, D

    2012-01-01

    We report on the study of the intensities of several gamma lines emitted after the inelastic scattering of neutrons in (56)Fe. Neutrons were produced via nuclear processes induced by cosmic muons in the 20tons massive iron cube placed at the Earth's surface and used as a passive shield for the HPGe detector. Relative intensities of detected gamma lines are compared with the results collected in the same iron shield by the use of the (252)Cf neutrons. Assessment against the published data from neutron scattering experiments at energies up to 14MeV is also provided. It allowed us to infer the qualitative information about the average energy of muon-created neutrons in the iron shield.

  4. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  5. Accelerated algorithm for computing the motion of solid particles suspended in fluid.

    PubMed

    Ding, E J

    2009-08-01

    A fast algorithm for computing the motion of solid particles suspended in fluid is presented. The motion of solid particles suspended in Stokes flow can be calculated without fully calculating the fluid motion. When the steady-state simulation is sufficient, this algorithm can greatly accelerate the simulation of solid particle suspension in Stokes flow.

  6. Nonthermal ion acceleration in magnetic reconnection: Results from magnetospheric observations and particle simulations

    NASA Astrophysics Data System (ADS)

    Hirai, Mariko; Hoshino, Masahiro

    Nonthermal ion acceleration in magnetic reconnection is investigated by using spacecraft ob-servations in the Earth's magnetotail and particle-in-cell (PIC) simulations. Magnetic recon-nection is believed to be an efficient particle accelerator in various environments in space, such as the pulsar magnetosphere, the solar corona and the Earth's magnetosphere. The Earth's magnetosphere particularly gives crucial clues to understand particle acceleration in magnetic reconnection since precise information on both fields and particles is available from spacecraft observations. Several nonthermal electron acceleration mechanisms, including the acceleration around the X-point and the magnetic pile-up region in the downstream, have been proposed and tested by recent PIC simulations as well as spacecraft observations. However nonthermal ion acceleration in magnetic reconnection still remains to be poorly understood in both ob-servational and simulation studies. We report on the first ever direct observational evidence of nonthermal ion acceleration in magnetic reconnection in the Earth's magnetotail based on the Geotail observations. Nonthermal protons accelerated up to several hundreds keV exhibit a power-law energy spectrum with a typical spectrum index 3-5. By conducting a statistical study on reconnection events in the Earth's magnetotail, we found efficient ion acceleration when the reconnection electric field is strong. On the other hand, the statistical study indicates that the efficiency of electron acceleration is rather controlled by the thickness of the reconnec-tion current sheet. We also performed PIC simulations of driven reconnection to investigate in detail acceleration mechanisms of both ions and electrons. Acceleration mechanisms as well as conditions necessary for the efficient particle acceleration are discussed based on these results.

  7. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  8. Particle physicist's dreams about PetaelectronVolt laser plasma accelerators

    SciTech Connect

    Vesztergombi, G.

    2012-07-09

    Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

  9. Particle Acceleration At Shock Waves and Downstream Small-Scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    Zank, Gary; Hunana, Peter; Mostafavi, Parisa; le Roux, Jakobus; Webb, Gary; Khabarova, Olga; Li, Gang; Cummungs, Alan; Stone, Edward; Decker, Robert

    2016-04-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands or flux ropes. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We discuss the basic physics of particle acceleration by single magnetic islands and describe how to incorporate these ideas in a distributed "sea of magnetic islands" by developing a transport formalism. We discuss particle acceleration in the supersonic solar wind and extend these ideas to particle acceleration at shock waves. Shock waves generate naturally vortical turbulence and particle acceleration at shocks is likely therefore to be a combination of classical diffusive shock acceleration and acceleration by downstream magnetic islands or flux ropes. These models are appropriate to the acceleration of both electrons and ions. We describe model predictions and supporting observations made at the heliospheric termination shock.

  10. CO{sub 2} laser technology for advanced particle accelerators

    SciTech Connect

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO{sub 2} lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of {lambda}=10 {mu}m CO{sub 2} laser radiation over the more widely exploited solid state lasers with {lambda}{approximately}1 {mu}m are based on a {lambda}{sup 2}-proportional ponderomotive potential, {lambda}-proportional phase slippage, and {lambda}-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO{sub 2} laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF`s experimental program of testing far-field, near-field, and plasma accelerator schemes.

  11. CO{sub 2} laser technology for advanced particle accelerators

    SciTech Connect

    Pogorelsky, I.V.; Van Steenbergen, A.; Fernow, R.; Kimura, W.D.; Bulanov, S.V.

    1996-10-01

    Short-pulse, high-power C0{sub 2} lasers open new prospects for development of high-gradient laser-driven electron accelerators. The advantages of {lambda}=10 {mu}m CO{sub 2} laser radiation over the more widely exploited solid state lasers with {lambda}{approx}1 {mu}m are based on a {lambda}{sup 2}-proportional ponderomotive potential, {lambda}-proportional phase slippage distance, and %-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt C0{sub 2} laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATFs experimental program of testing far-field, near-field, and plasma accelerator schemes.

  12. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  13. Electrostatic double layers as auroral particle accelerators - a problem

    NASA Astrophysics Data System (ADS)

    Bryant, D. A.; Courtier, G. M.

    2015-04-01

    A search of the Annales Geophysicae database shows that double layers and other quasi-static electric potential structures have been invoked hundreds of times since the year 2000 as being the agents of auroral electron acceleration. This is despite the fact that energy transfer by conservative fields has been known for some 200 years to be impossible. Attention is drawn to a long-standing interpretation of the acceleration process in terms of the dynamic fields of electrostatic waves.

  14. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions.

    PubMed

    Tucker, James D; Marples, Brian; Ramsey, Marilyn J; Lutze-Mann, Louise H

    2004-06-01

    Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern.

  15. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions.

    PubMed

    Tucker, James D; Marples, Brian; Ramsey, Marilyn J; Lutze-Mann, Louise H

    2004-06-01

    Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern. PMID:15161355

  16. Stochastic Acceleration of Dust Particles in Tokamak Edge Plasmas

    SciTech Connect

    Marmolino, C.; De Angelis, U.; Ivlev, A. V.; Morfill, G. E.

    2008-10-15

    Stochastic heating of dust particles resulting from dust charge fluctuations is considered in the conditions of the scrape-off-layer (SOL) in tokamak plasmas. It is shown that kinetic energies corresponding to velocities of {approx_equal}Km/s can be reached in times of order {approx_equal}1 ms by micron-size dust particles interacting with a background of stochastically heated nano-size dust particles.

  17. Non-linear interactions of plasma waves in the context of solar particle acceleration

    NASA Astrophysics Data System (ADS)

    Gallegos-Cruz, A.; Perez-Peraza, J.

    2001-08-01

    Stochastic particle acceleration in plasmas by means of MHD turbulence in-volves a wide range of alternatives according to, the specific wave mode, the frequency regime of the turbulence, the kind of particles to be accelerated, the assumed plasma model and so on. At present most of the alternatives have been studied with relatively deepness, though some features are not yet com-pletely understood. One of them is the delimitation of the real importance of non-lineal effects of turbulence waves in the process of particle acceleration. In this work we analyse such effects taking into account the temporal evolution of the turbulence. For illustration we exemplify our analysis with the fast MHD mode. Our results show that in some specific stages of the turbulence evolu-tion, non-linear interactions have important effects in the process of particle acceleration.

  18. PARTICLE ACCELERATION AND WAVE EXCITATION IN QUASI-PARALLEL HIGH-MACH-NUMBER COLLISIONLESS SHOCKS: PARTICLE-IN-CELL SIMULATION

    SciTech Connect

    Kato, Tsunehiko N.

    2015-04-01

    We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale, particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfvénic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossings of the protons. This process is a “fast” process in the sense that the time required for most of the accelerated protons to complete one cycle of the acceleration process is much shorter than the diffusion time. A fraction of the electrons are also accelerated by the same mechanism, and have a power-law-like energy distribution. However, the injection does not enter a steady state during the simulation, which may be related to the intermittent activity of the upstream waves. Upstream of the shock, a fraction of the electrons are pre-accelerated before reaching the shock, which may contribute to steady electron injection at a later time.

  19. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  20. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Nalewajko, Krzysztof; Cerutti, Benoit; Begelman, Mitchell C.

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  1. Particle Acceleration at Filamentary Structures Downstream of Collisionless Shocks in the Heliosphere.

    NASA Astrophysics Data System (ADS)

    Kucharek, H.; Pogorelov, N. V.; Gamayunov, K. V.

    2015-12-01

    Collisionless shocks are an important feature in astrophysical, heliospheric and magnetospheric settings. At these structures plasma is heated, the properties of flows are changed, and particles are accelerated to high energies. Particles are accelerated throughout the heliosphere. There are no times or conditions where suprathermal ions forming tails are not present on the solar wind ion distribution, and given the low speeds of these particles they must be accelerated locally in the heliosphere. Coronal mass ejections (CMEs) and co-rotating interaction regions (CIRs) accelerate particles up to 10s of MeV/nucleon. The termination shock of the solar and the heliosheath produce energetic particles including the Anomalous Cosmic Rays (ACRs), with energies in excess of 100 MeV. In the last few years' very interesting observations at low energies showing power laws that cannot be explained with commonly accepted acceleration mechanisms and thus increased the need for alternative acceleration processes. Fully consistent kinetic particle simulations such as hybrid simulations appear to be a powerful tool to investigated ion acceleration. Nowadays these simulations can be performed in 3D and relative large simulation domains covering up to hundreds of ion inertial length in size and thus representing the MHD scale. These 3D hybrid simulations show filamentary magnetic and density structures, which could be interpreted as small-scale flux ropes. The growth of these small-scale structures is also associated with ion acceleration. In this talk we will discuss properties of these filamentary structures, their spatial and temporal evolution and the particle dynamics during the acceleration process. The results of this study may be of particular importance for future high resolution magnetospheric and heliospheric mission such as THOR.

  2. APT related papers presented at the 1997 particle accelerator conference, Vancouver, May 12--16, 1997

    SciTech Connect

    Lawrence, G.

    1997-07-01

    Tritium is essential for the US nuclear weapons to function, but because it is radioactive with a half-life of 12.3 years, the supply must be periodically replenished. Presently, only reactor or accelerator systems can be used to produce tritium. This report is a compilation of 31 papers given at the 1997 Particle Accelerator Conference which dealt with the accelerator production of tritium. The papers are grouped into two categories, invited and contributed.

  3. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  4. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  5. Particle acceleration and transport in a chaotic magnetic field

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Dasgupta, B.

    2012-12-01

    Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

  6. Practical aspects of shielding high-energy particle accelerators

    SciTech Connect

    Thomas, R.H. |

    1993-09-01

    The experimental basis of shielding design for high-energy accelerators that has been established over the past thirty years is described. Particular emphasis is given to the design of large accelerators constructed underground. The first data obtained from cosmic-ray physics were supplemented by basic nuclear physics. When these data proved insufficient, experiments were carried out and interpreted by several empirical formulae -- the most successful of which has been the Moyer Model. This empirical model has been used successfully to design the shields of most synchrotrons currently in operation, and is still being used in preliminary design and to check the results of neutron transport calculations. Accurate shield designs are needed to reduce external radiation levels during accelerator operations and to minimize environmental impacts such as {open_quotes}skyshine{close_quotes} and the production of radioactivity in groundwater. Examples of the cost of minimizing such environmental impacts are given.

  7. Current and future uses of accelerators in particle astrophysics

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.

    1990-01-01

    Beams of artificially accelerated heavy ions, protons, antiprotons, electrons, and positrons currently available at (and planned for) numerous facilities around the world are a valuable resource to the Cosmic Ray community. Such beams have been used to test detector concepts, calibrate balloon-borne and space flight experiments and to measure fundamental nuclear physics parameter necessary for the interpretation of Cosmic Ray data. As new experiments are flown the quality and extent of Cosmic Ray measurements will continue to improve. It will be necessary to increase activity at ground based accelerators in order to test/calibrate these new instruments and to maintain (or possibly improve) the ability to interpret these data. In this area, the newly formed Transport Collaboration, supported by NASA, will be providing new nuclear interaction cross section measurements for beams with Z less than or = 58 and supporting new instrument calibrations at the Lawrence Berkeley Laboratory Bevalac accelerator.

  8. Charged-particle acceleration through decreasing refractive index

    NASA Astrophysics Data System (ADS)

    Kong, Ling-Bao; Chen, Zhaoyang; Liu, Pu-Kun; Yu, Ming Young

    2015-02-01

    We propose a mechanism for electron acceleration in which circularly polarized electromagnetic waves (CPEMW) propagate along a uniform magnetic field in a medium with a tapered refractive index. Results show that with a decreasing refractive index and a moderate CPEMW electric field, e.g., 1.20 × 108 V/m, the relativistic factor of an electron can go above 14 after it travels 10 cm in the direction of CPEMW propagation. Without tapering of the refractive index, the maximum value of the relativistic factor is less than 2.92 under the same wave and guiding magnetic field conditions. Similar acceleration efficiency is found for electrons with different initial velocities.

  9. Particle Acceleration at Oblique CME-driven Shock Using Improved PATH Model

    NASA Astrophysics Data System (ADS)

    Hu, J.; Li, G.; Parker, L. N.; Zank, G. P.

    2015-12-01

    .Gradual solar energetic particle (SEP) events are generally accepted to be caused by particle acceleration at coronal mass ejection(CME)-driven shocks. In this work we improved the PATH(Particle Acceleration and Transport in the Heliosphere) model by initiating a 2D CME-driven shock to investigate particle acceleration at different locations of an oblique CME-drive shock, where the shock has different obliquity angle(θBN). Thus we can study problems like whether quasi-perpendicular or quasi-parallel shock is more efficient in particle acceleration.The PATH model is based on the diffusive shock acceleration mechanism. The core of the model consists of a 3D Zeus module, which computes numerically the background solar wind and the CME-drive shock as inputs; and a shell module where the convection and diffusion of accelerated particles within the shock complex are followed. The 2D CME-driven shock is generated by perturbing the boundary condition of a steady background solar wind in certain patterns.

  10. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  11. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.

    PubMed

    Ayyalasomayajula, S; Gylfason, A; Collins, L R; Bodenschatz, E; Warhaft, Z

    2006-10-01

    We describe Lagrangian measurements of water droplets in grid generated wind tunnel turbulence at a Taylor Reynolds number of R(lambda)=250 and an average Stokes number (St) of approximately 0.1. The inertial particles are tracked by a high speed camera moving along the side of the tunnel at the mean flow speed. The standardized acceleration probability density functions of the particles have spread exponential tails that are narrower than those of a fluid particles (St approximately 0) and there is a decrease in the acceleration variance with increasing Stokes number. A simple vortex model shows that the inertial particles selectively sample the fluid field and are less likely to experience regions of the fluid undergoing the largest accelerations. Recent direct numerical simulations compare favorably with these first measurements of Lagrangian statistics of inertial particles in highly turbulent flows.

  12. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    NASA Technical Reports Server (NTRS)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  13. Teaching Electromagnetism to High-School Students Using Particle Accelerators

    ERIC Educational Resources Information Center

    Sinflorio, D. A.; Fonseca, P.; Coelho, L. F. S.; Santos, A. C. F.

    2006-01-01

    In this article we describe two simple experiments using an ion accelerator as an aid to the teaching of electromagnetism to high-school students. This is part of a programme developed by a Brazilian State funding agency (FAPERJ) which aims to help scientifically minded students take their first steps in research.

  14. High-energy particle acceleration in the shell of a supernova remnant.

    PubMed

    Aharonian, F A; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Bolz, O; Boisson, C; Borgmeier, C; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chitnis, V R; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Guy, J; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemoine, M; Lemière, A; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pohl, M; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rivoal, M; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Théoret, C G; Tluczykont, M; Van Der Walt, D J; Vasileiadis, G; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2004-11-01

    A significant fraction of the energy density of the interstellar medium is in the form of high-energy charged particles (cosmic rays). The origin of these particles remains uncertain. Although it is generally accepted that the only sources capable of supplying the energy required to accelerate the bulk of Galactic cosmic rays are supernova explosions, and even though the mechanism of particle acceleration in expanding supernova remnant (SNR) shocks is thought to be well understood theoretically, unequivocal evidence for the production of high-energy particles in supernova shells has proven remarkably hard to find. Here we report on observations of the SNR RX J1713.7 - 3946 (G347.3 - 0.5), which was discovered by ROSAT in the X-ray spectrum and later claimed as a source of high-energy gamma-rays of TeV energies (1 TeV = 10(12) eV). We present a TeV gamma-ray image of the SNR: the spatially resolved remnant has a shell morphology similar to that seen in X-rays, which demonstrates that very-high-energy particles are accelerated there. The energy spectrum indicates efficient acceleration of charged particles to energies beyond 100 TeV, consistent with current ideas of particle acceleration in young SNR shocks.

  15. Particle Acceleration Affected by the Evolving Velocity Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2015-12-01

    It is accepted that high-energy particles are efficiently generated during their crossing of shocks in space, where the diffusive shock acceleration is the most standard process to explain the observed energy spectrum beyond the order of a gigaelectronvolt. In contrast, recent spacecraft observations have shown different characteristics in a lower energy range (a kilo- to megaelectronvolt): particles in the heliosphere have a power-law spectrum in particle speed with a spectral index of -5, which is commonly found in any solar wind conditions. This is a puzzling result that the shocks are not a necessary element responsible for accelerating particles. The alternative mechanism, a pump acceleration, is proposed where particles are accelerated in a region containing large-scale compressions and expansions (e.g., Fisk and Gloeckler, JGR 2014). In the present study, we elucidate the validity of this mechanism by performing hybrid simulations to investigate the particle, particularly pickup ions, dynamics in various situations of non-uniform velocity field, such as a simple fast/slow flow interaction, sinusoidal structures, or random profiles, and to compare the velocity spectrum of suprathermal particles in each case. We also study the scale dependence of acceleration processes by comparing the spectrum of the energetic H+, He+, and O+.

  16. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

    NASA Astrophysics Data System (ADS)

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antiño R.; Latendresse, John; Olsen, Reid H. J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2015-11-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.

  17. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS)

    NASA Technical Reports Server (NTRS)

    Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  18. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS).

    PubMed

    Burns, F J; Zhao, P; Xu, G; Roy, N; Loomis, C

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  19. Interaction of Electron Neutrinos with {sup 56}Fe in the LSD for E{sub {nu}{sub e}} {<=} 50 MeV

    SciTech Connect

    Gaponov, Yu.V.; Ryazhskaya, O.G.; Semenov, S.V.

    2004-11-01

    The neutrino pulses detected by the LSD (Liquid Scintillator Detector) on February 23, 1987, are analyzed on the basis of a two-stage model of supernova explosion. The number of events due to the electron-neutrino interaction with {sup 56}Fe in the LSD is calculated. The obtained number of signals is in agreement with experimental data.

  20. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  1. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    SciTech Connect

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H.; Dmitruk, P.; Greco, A.

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  2. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  3. Consequences of wave-particle interactions on chaotic acceleration

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1991-01-01

    The recent model of Ashour-Abdalla et al. (1991) has proposed that the earth's plasma sheet can be formed by chaotic acceleration in a magnetotail-like field configuration. The ion velocity distributions created by chaotic acceleration have unstable features and represent robust free energy sources for kinetic plasma waves that can modify the original distributions. In the plasma sheet boundary layer, field-aligned ion beamlets are formed which drive a host of instabilities creating a broadbanded noise spectrum and cause thermal spreading of the beamlets. In addition, there is strong heating of any cold background plasma that may be present. In the central plasma sheet, ion antiloss cone distributions are created which are unstable to very low frequency waves that saturate by filling the antiloss cone.

  4. Reaction mechanism coexistence in the 123 MeV {sup 19}F+{sup 56}Fe reaction

    SciTech Connect

    Brondi, A.; Kildir, M.; La Rana, G.; Moro, R.; Vardaci, E.; Pirrone, S.; Porto, F.; Sambataro, S.; Politi, G.; Figuera, P.

    1996-10-01

    Mass and charge identified ejectiles, spanning from {sup 11}B to {sup 22}Ne, have been detected in the 123 MeV {sup 19}F+{sup 56}Fe reaction. The coexistence of deep inelastic collision (DIC) and incomplete fusion (IF) mechanisms has been observed. The shape of the energy spectra and their behavior with angle allowed us to identify two components: The less dissipative one was dominating near the grazing angle. For both components experimental optimum {ital Q} values were derived. Two approaches based on the sum rule (SR) model of Wilczy{acute n}ski were used to calculate DIC and IF contributions to the complex fragment cross sections. Both prescriptions fit reasonably well experimental ejectile cross sections and {ital Q} optimum values. Results of the present investigation support the idea that the DIC can be treated on the same footing as IF in the SR model once the first process is confined in an inner angular momentum window, starting from the maximum fusion angular momentum, with respect to quasielastic processes. {copyright} {ital 1996 The American Physical Society.}

  5. High average power lasers for future particle accelerators

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Crane, John K.; Messerly, Michael J.; Prantil, Matthew A.; Pax, Paul H.; Sridharan, Arun K.; Allen, Graham S.; Drachenberg, Derrek R.; Phan, Henry H.; Heebner, John E.; Ebbers, Christopher A.; Beach, Raymond J.; Hartouni, Edward P.; Siders, Craig W.; Spinka, Thomas M.; Barty, C. P. J.; Bayramian, Andrew J.; Haefner, Leon C.; Albert, Felicie; Lowdermilk, W. Howard; Rubenchik, Alexander M.; Bonanno, Regina E.

    2012-12-01

    Lasers are of increasing interest to the accelerator community and include applications as diverse as stripping electrons from hydrogen atoms, sources for Compton scattering, efficient high repetition rate lasers for dielectric laser acceleration, peta-watt peak power lasers for laser wake field and high energy, short pulse lasers for proton and ion beam therapy. The laser requirements for these applications are briefly surveyed. State of the art of laser technologies with the potential to eventually meet those requirements are reviewed. These technologies include diode pumped solid state lasers (including cryogenic), fiber lasers, OPCPA based lasers and Ti:Sapphire lasers. Strengths and weakness of the various technologies are discussed along with the most important issues to address to get from the current state of the art to the performance needed for the accelerator applications. Efficiency issues are considered in detail as in most cases the system efficiency is a valuable indicator of the actual ability of a given technology to deliver the application requirements.

  6. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  7. Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation

    NASA Astrophysics Data System (ADS)

    Arthur, A. D.; le Roux, J. A.

    2015-12-01

    Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the

  8. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  9. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  10. Solar gamma-ray lines as probes of accelerated particle directionalities in flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Crannell, C. J.

    1975-01-01

    Anisotropies of charged particles accelerated in solar flares were studied by observing Doppler shifts of selected gamma-ray lines. The spectral shape was calculated of the 6.1-MeV line of O-16. If the accelerated particles are isotropic, the line remains centered at e sub 0 = 6129.4 keV, and its width (FWHM) is about 100 keV. For particle anisotropies that may be produced in solar flares, the line is shifted to lower energies by about 30 to 40 keV.

  11. PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS

    SciTech Connect

    Guo, F.; Jokipii, J. R.; Kota, J. E-mail: jokipii@lpl.arizona.ed

    2010-12-10

    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field have been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because the perpendicular diffusion coefficient {kappa}{sub perpendicular} is generally much smaller than the parallel diffusion coefficient {kappa}{sub ||}, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the 'hot spots' of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the 'hot spot' regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager observations in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, galactic cosmic rays accelerated by supernova blast waves, etc.

  12. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  13. A new magnetic pumping accelerator of charged particles in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Mu, J.-L.

    1993-07-01

    This paper proposes an acceleration mechanism to explain the observations of energetic particles in the inner magnetosphere of Jupiter. In the inner magnetosphere particles are convected towards and away from the Io plasma torus by the centrifugally driven interchange mode or by the longitudinal asymmetry of the magnetosphere and the Io plasma torus. They experience a varying (space-dependent in Jupiter's frame of reference) magnetic field and are subject to pitch-angle scattering by wave-particle interactions. Thus, an e-fold magnetic pumping acceleration is expected in the system. The calculations show that the accelerator can generate up to one MeV energy particles in about 10-15 times the characteristic convection time.

  14. Detecting chaos in particle accelerators through the frequency map analysis method

    SciTech Connect

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  15. Particle energization during solar maximum: Diffusive shock acceleration at multiple shocks

    SciTech Connect

    Neergaard Parker, L.; Zank, G. P.

    2014-08-01

    We present a model for the acceleration of particles at multiple shocks using an approach related to box models. A distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles out of the box by either the method used in Melrose and Pope and Pope and Melrose or by the approach introduced in Zank et al. where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E{sub max}) appropriate for quasi-parallel and quasi-perpendicular shocks. We provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum.

  16. Particle Energization during Solar Maximum: Diffusive Shock Acceleration at Multiple Shocks

    NASA Astrophysics Data System (ADS)

    Neergaard Parker, L.; Zank, G. P.

    2014-08-01

    We present a model for the acceleration of particles at multiple shocks using an approach related to box models. A distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles out of the box by either the method used in Melrose & Pope and Pope & Melrose or by the approach introduced in Zank et al. where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E max) appropriate for quasi-parallel and quasi-perpendicular shocks. We provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum.

  17. In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions

    SciTech Connect

    Billinge S. J.; Redmond, E.L.; Setzler, B.P.; Juhas, P.; Fullera, T.F.

    2012-05-01

    An in-situ method to measure changes in catalyst particle size at the cathode of a proton exchange membrane fuel cell is demonstrated. Synchrotron X-rays, 58 keV, were used to measure the pair distribution function on an operating fuel cell and observe the growth of catalyst particles under accelerated degradation conditions. The stability of Pt/C and PtCo/C with different initial particle sizes was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycles. The most stable electrocatalyst was found to be the alloyed PtCo with the larger initial particle size.

  18. Particle acceleration at quasi-perpendicular shock waves: Theory and observations at 1 AU

    SciTech Connect

    Parker, L. Neergaard; Zank, G. P.; Hu, Q.

    2014-02-10

    The injection of particles into the diffusive shock acceleration mechanism at highly perpendicular (where θ {sub Bn} > 70°) interplanetary shocks is investigated. This extends the previous study of Neergaard Parker and Zank which focused on the injection problem at quasi-parallel interplanetary shocks. We use observations at 1 AU to construct upstream Maxwellian and κ-distributions that are then diffusively accelerated by the shock, thus yielding the downstream accelerated particle distribution. We compare the theoretical accelerated particle distribution to observations at 1 AU using Advanced Composition Explorer data. We classify our results for quasi-perpendicular shocks into three subcategories: those with ratios of the theoretical spectral index to observed power law of >1, ∼ 1, and <1, and compare the magnetic power spectral density plots of these categories. We find that in general the assumed upstream particle distribution that best fits the energetic particle observations is best represented by a κ-distribution, with κ = 4. The magnetic field fluctuations were representative of quasi-perpendicular shocks and showed no particular bias toward our spectral ratio subcategories. The subcategory with spectral ratio <0.9 yielded the largest injection energies for all groups. In all but two of the cases in this study, there were enough particles in the solar wind thermal core to account for the accelerated distribution, thereby giving a lower limit to the required injection energy needed to diffusively accelerate particles at a quasi-perpendicular interplanetary shock. In the remaining two cases, an additional population of particles was required to match the appropriate amplitude of the spectral index. For these cases, we used a low energy (1-50 keV) v {sup –5} spectrum advocated by Fisk and Gloeckler.

  19. General stationary charged black holes as charged particle accelerators

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Wu, Shao-Feng; Liu, Yu-Xiao; Jiang, Ying

    2011-08-01

    We study the possibility of getting infinite energy in the center-of-mass frame of colliding charged particles in a general stationary charged black hole. For black holes with twofold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For nondegenerate black holes, the ultrahigh center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultrahigh center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame-dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.

  20. Diffusive Acceleration of Cosmic-Ray Particles in Quasi-Parallel Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    1994-05-01

    The diffusion-convection equation has been solved numerically in order to study the injection and acceleration of cosmic-ray particles at quasi-parallel shocks. Our previous numerical code has been improved to include realistic momentum-dependent diffusion coefficient. The particle distribution function is solved in the grid whose size is chosen in a momentum-dependent way, so that a fixed number of zones are contained in a diffusion length. Injection of the suprathermal particles is approximated through the diffusive scattering process itself, that is, the diffusion and acceleration of the thermal particles near the Maxwellian tail across the shock front. We show how the acceleration process is dependent on the details of the injection, the momentum-dependent diffusion, and the escaping high energy particles. The simulated particle spectrum from our calculation will be compared with that of a Monte-Carlo simulation of the particle acceleration at earth's bow shock by Ellison, Mobius and Paschmann (1990). Support for this work at the University of Minnesota is provided through the NSF, NASA and the University of Minnesota Supercomputer Institute. HK is supported in part by the Korea Research Foundation through the Brain Pool Program. { References: Ellison, D. C., Mobius, E., & Paschmann, G. 1990, Ap. J., 352, 376. }

  1. Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures.

    PubMed

    Staude, Isabelle; McGuinness, Christopher; Frölich, Andreas; Byer, Robert L; Colby, Eric; Wegener, Martin

    2012-02-27

    The quest for less costly and more compact high-energy particle accelerators makes research on alternative acceleration mechanisms an important enterprise. From the multitude of suggested concepts, the photonic accelerator design by B. M. Cowan [Phys. Rev. ST Accel. Beams 11, 011301 (2008)] stands out by its distinct potential of creating an accelerator on a chip [Proposal E-163, SLAC (2001)]. Herein, electrons are accelerated by the axial electric field of a strongly confined optical mode of an air waveguide within a silicon-based three-dimensional photonic band-gap material. Using a combination of direct laser writing and silicon double inversion, we here present the first experimental realization of this complex structure. Optical spectroscopy provides unambiguous evidence for the existence of an accelerating waveguide mode with axial polarization.

  2. Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?

    NASA Astrophysics Data System (ADS)

    Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.

    2010-04-01

    Aims: We study the particle acceleration at a magnetic null point in the solar corona, considering self-consistent magnetic fields, plasma flows and the corresponding convective electric fields. Methods: We calculate the electromagnetic fields by 3-D magnetohydrodynamic (MHD) simulations and expose charged particles to these fields within a full-orbit relativistic test-particle approach. In the 3-D MHD simulation part, the initial magnetic field configuration is set to be a potential field obtained by extrapolation from an analytic quadrupolar photospheric magnetic field with a typically observed magnitude. The configuration is chosen so that the resulting coronal magnetic field contains a null. Driven by photospheric plasma motion, the MHD simulation reveals the coronal plasma motion and the self-consistent electric and magnetic fields. In a subsequent test particle experiment the particle energies and orbits (determined by the forces exerted by the convective electric field and the magnetic field around the null) are calculated in time. Results: Test particle calculations show that protons can be accelerated up to 30 keV near the null if the local plasma flow velocity is of the order of 1000 km s-1 (in solar active regions). The final parallel velocity is much higher than the perpendicular velocity so that accelerated particles escape from the null along the magnetic field lines. Stronger convection electric field during big flare explosions can accelerate protons up to 2 MeV and electrons to 3 keV. Higher initial velocities can help most protons to be strongly accelerated, but a few protons also run the risk to be decelerated. Conclusions: Through its convective electric field and due to magnetic nonuniform drifts and de-magnetization process, the 3-D null can act as an effective accelerator for protons but not for electrons. Protons are more easily de-magnetized and accelerated than electrons because of their larger Larmor radii. Notice that macroscopic MHD

  3. THE ROLE OF PRESSURE ANISOTROPY ON PARTICLE ACCELERATION DURING MAGNETIC RECONNECTION

    SciTech Connect

    Schoeffler, K. M.; Drake, J. F.; Swisdak, M.; Knizhnik, K.

    2013-02-20

    Voyager spacecraft observations have revealed that contrary to expectations, the source of anomalous cosmic rays (ACRs) is not at the local termination shock. A possible mechanism of ACR acceleration is magnetic reconnection in the heliosheath. Using a particle-in-cell code, we investigate the effects of {beta} on reconnection-driven particle acceleration by studying island growth in multiple interacting Harris current sheets. Many islands are generated, and particles are dominantly heated through Fermi reflection in contracting islands during island growth and merging. There is a striking difference between the heating of electrons versus the heating of ions. There is a strong dependence of {beta} on electron heating, while the ion heating is insensitive to {beta}. Anisotropies develop with T {sub Parallel-To} {ne} T for both electrons and ions. The electron anisotropies support the development of a Weibel instability that suppresses the Fermi acceleration of the electrons. Since the Weibel instability develops at a larger T {sub Parallel-To }/T in lower {beta} systems, electrons are able to accelerate more efficiently by the Fermi mechanism at low {beta}. The variance in anisotropy implies less electron acceleration in higher {beta} systems, and thus less heating. This study sheds light on particle acceleration mechanisms within the sectored magnetic field regions of the heliosheath and the dissipation of turbulence such as that produced by the magnetorotational instability in accreting systems.

  4. Analysis of chromosomal damage after in vivo exposure to 56Fe ions by means of mFISH and micronucleus methods

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn Noy; Supanpaiboon, Wisa; Honikel, Louise; Whorton, Elbert B.

    In this study, we examined the induction of chromosomal damage at day 7 following whole-body exposure of male CBA/CaJ mice to different doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5, and 1.0 Gy) or 137Cs γ rays as the reference radiation (0, 0.5, 1.0, and 3.0 Gy, using a GammaCell40). Two cytogenetic assays were used to evaluate dose-response relationships for the induction of chromosomal damage. These include: (1) the whole-genome multi-color fluorescence in situ hybridization (mFISH) technique to examine chromosomal damage in metaphases prepared from bone marrow (BM) cells and (2) the mouse in vivo micronucleus (MN) assay to evaluate chromosomal damage (induced in the bone marrow) in blood erythrocytes. By means of the mFISH method, we detected all types of aberrations from mice exposed to either 56Fe ions or 137Cs γ rays. These were translocations (Robertsonian, reciprocal and incomplete one-way types), dicentrics and breaks (both chromatid- and chromosome-types). Each type of radiation-induced significant dose-dependent increases ( ANOVA, p < 0.01) in the frequencies of chromosomal damage (including the numbers of abnormal cells). Our data indicated that the 56Fe ions were more effective (per unit dose) than 137Cs γ rays in inducing damage: about four times for abnormal cells or breaks (both chromatid- and chromosome-types), and 1.6 times for exchanges (all types). Complex chromosome rearrangements were also found in BM cells of mice exposed to 1.0 Gy of 56Fe ions or 3.0 Gy of 137Cs γ rays, but their frequencies were low. Moreover, the frequencies of complex exchanges found at day 7 after exposure of mice to 1.0 Gy of 56Fe ions or 3.0 Gy of 137Cs γ rays were similar. By means of the blood MN assay, we detected dose-dependent increases in the frequencies of MN in normochromatic erythrocytes (NCE or mature red blood cells) at day 7 following in vivo exposure to 56Fe ions or 137Cs γ rays. In contrast, only a slight increase in the frequency of MN in

  5. A theory of two-beam acceleration of charged particles in a plasma waveguide

    SciTech Connect

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  6. Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Cohen, C. M.; Li, G.; Mason, G. M.; Smith, C. W.; von Rosenvinge, T. T.; Vourlidas, A.

    2015-12-01

    Why is the Sun No Longer Accelerating Particles to High Energy in Solar Cycle 24?Measurements by ACE, STEREO, and GOES show that the number of large Solar Energetic Particle (SEP) events in solar cycle 24 is reduced by a factor of ~2 compared to this point of solar cycle 23, while the fluences of >10 MeV/nuc ions from H to Fe are reduced by factors ranging from ~4 to ~10. Compared to solar Cycle 22 and 23, the fluence of >100 MeV protons is reduced by factors of ~7 to ~10 in the current cycle. A common element of these observations is that the observed Cycle-24 energy spectra have "breaks" that suddenly steepen 2 to 4 times lower in energy/nucleon than in Cycle 23. We investigate the origin of these cycle-to-cycle spectral differences by evaluating possible factors that control the maximum energy of CME-shock-accelerated particles in the two cycles, including seed-particle densities of suprathermal ions, the interplanetary magnetic field strength and turbulence level, and properties of the associated CMEs. The effect of these conditions will be evaluated in the context of existing SEP acceleration models by comparing SEP data with simulations and with analytic evaluations of the maximum kinetic energy to which CME shocks can accelerate solar energetic ions from H to Fe. Understanding the properties that control the maximum kinetic energy of CME-shock accelerated particles has important implications for predicting future solar activity.

  7. Particle acceleration by Majumdar-Papapetrou di-hole

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Joshi, Pankaj S.

    2014-10-01

    We explore the multi-black hole spacetimes from the perspective of the ultra-high energy particle collisions. Such a discussion is limited to the spacetimes containing a single black hole so far. We deal with the Majumdar-Papapetrou solution representing a system consisting of two identical black holes in the equilibrium. In order to identify the conditions suitable for the process of high energy collisions, we consider particles confined to move on the equatorial plane towards the axis of symmetry with the zero angular momentum. We consider collision between the particles moving in opposite directions at the location midway between the black holes on the axis. We show that the center of mass energy of collision between the particles increases with the decrease in the separation between the black holes and shows divergence in the limit where the separation goes to zero. We estimate the size of the region close to the central point on the equatorial plane where it would be possible to have high energy collisions and show that this region has a reasonably large spatial extent. We further explore the process of high energy collisions with the general geodesics with arbitrary angular momentum on the equatorial plane away from the central point. Although in this paper we deal with theMajumdar-Papapetrou spacetime which serves as a toy example representing multiple black holes, we speculate on the possibility that the ultra-high energy collisions would also occur in the more general setting like colliding black holes, when distance between the black holes is extremely small, which can in principle be verified in the numerical relativity simulations.

  8. GPU acceleration of particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Meiser, Dominic

    2015-11-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).

  9. Particle acceleration during interactions between transient ion foreshock phenomena and Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Turner, Drew; Angelopoulos, Vassilis; Wilson, Lynn; Hietala, Heli; Omidi, Nick; Masters, Adam

    2014-05-01

    Foreshocks are regions upstream of supercritical astrophysical shock waves that are in communication with the shock via suprathermal charged particles that have been energized and reflected by the shock and are counter-streaming into the incident plasma. These regions form upstream of the quasi-parallel region of the shock, in which the angle between the magnetic field in the incident plasma and the shock normal direction is less than ~40 deg. The relative drift between the reflected suprathermal particles and the incident bulk flow is a source of free energy, which is capable of producing a variety of kinetic plasma instabilities and enhanced wave activity. Simulations and observations of Earth's and other planetary foreshocks have shown that large-scale transient phenomena can also develop due to nonlinear processes and interactions between foreshock particles and discontinuities in the incident solar wind. Several of these transient ion foreshock phenomena (TIFP), such as short large-amplitude magnetic structures (SLAMS), hot flow anomalies (HFAs), and foreshock bubbles (FBs), can result in the development of nonlinear wave activity and additional shocks upstream of the main bow shock. We present in situ observations, made by NASA's THEMIS mission, of ion and electron distributions from within and without SLAMS, HFAs, and FBs, examining the particle heating and acceleration taking place within those TIFP. The observations are compared to theoretical expectations for shock-drift acceleration, Fermi acceleration, and energy diffusion via wave-particle interactions. Our preliminary results show that SLAMS, HFAs, and FBs can be ideal particle accelerators. Finally, we develop an understanding for the upper energy limits for ion and electron acceleration in each of these TIFP at Earth's bow shock and use this to investigate how TIFP may accelerate particles at other astrophysical shocks, such as planetary and astrospherical bow shocks, shocks in stellar winds, and

  10. AM Herculis binaries - Particle acceleration, radio emission and synchronization

    NASA Technical Reports Server (NTRS)

    Chanmugam, G.; Dulk, G. A.

    1983-01-01

    It has been suggested that the recently discovered radio emission from AM Her arises as a result of gyrosynchrotron radiation from electrons at energies approximately 400 keV in the magnetosphere of the white dwarf. However, no mechanism for producing such energetic electrons was discussed. In this paper, it is argued that small departures from synchronous rotation can cause the companion star to act as a unipolar inductor. This leads to high voltages being produced across the companion star, which provides the necessary acceleration mechanism. This also implies that if the magnetic white dwarf was formed with a rapid rotation, synchronization would be achieved on a time scale approximately 10,000 yr.

  11. Particle acceleration for delivery deoxyribonucleic acid vaccine into skin in vivo

    NASA Astrophysics Data System (ADS)

    Xinglong, Yu; Xiwen, Zhang; Yuan, Wang; Junshi, Xie; Pengfei, Hao

    2001-08-01

    Skin represents an important immunogenic inductive site, 3%-4% epidermis cells are special antigen-presenting cells. Deoxyribonucleic acid (DNA) vaccine can elicit vigorous immune responses in epidermis cells. The means of delivering DNA vaccine into epidermis cells becomes an important step in DNA vaccine applications. This article presents a new type of gene gun based on the principle of two-stage injector acceleration. DNA coated particles are attached on an screen-type carrier located at the negative pressure inlet, the particles will be sucked into the accelerating channel by negative pressure and be accelerated at a great speed. FLUENT, a computation fluid dynamic application software is used to simulate the flow condition of the injector. Distribution of Mach number, total pressure on exit cross section, and negative pressure on negative pressure inlet are analyzed, by which the process of acceleration of particles is determined. We also measured these parameters in this study. The data show that the particle velocity can be up to 500 m/s and the particles distribute evenly over a circle of Φ 20 mm. The numerical simulation results coincide with experimental data well. Therefore, the results of numerical simulation can be served as guidance for an optimal design of the gene gun and for practical operations. When gene coated particles are distributed evenly, they can penetrate into or even through epidermis cells where the gene can be expressed and subsequently elicits host immune responses. This device may be evaluated in human objects in future.

  12. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  13. On the transport and acceleration of solar flare particles in a coronal loop

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lee, Martin A.

    1991-01-01

    The turbulent environment of a flaring solar coronal loop directly affects the population of particles to be accelerated or already accelerated. Under the assumption of a uniform turbulent MHD wave field within the loop, the behavior of a particle distribution as it interacts with the turbulence is discussed, including particle precipitation to the footpoints of the loop and the evolution of the energy distribution as the particles undergo second-order stochastic acceleration. Two cases are discussed in detail: (1) particles spatially diffusing within the loop and precipitating with minimal acceleration in the short time scale of an impulsive event and (2) particles diffusing in both real and momentum space in a long duration event. Collisional losses due to ambient electrons are included. The gamma-ray flare of June 3, 1982 is modeled, and good agreement is obtained between predicted and observed time profiles if the loop length is 100,000 km with an intrinsic spatial diffusion time of 100-450 s. It follows that the production of high-energy neutrons and pi mesons extends over a time scale of 1000 s as observed.

  14. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-06-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  15. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes. PMID:25723200

  16. Trauma-Induced Alterations in Cognition and Arc Expression are Reduced by Previous Exposure to 56Fe Irradiation

    PubMed Central

    Rosi, Susanna; Belarbi, Karim; Ferguson, Ryan A.; Fishman, Kelly; Obenaus, Andre; Raber, Jacob; Fike, John R.

    2013-01-01

    Exposure to ionizing irradiation may affect brain functions directly, but may also change tissue sensitivity to a secondary insult such as trauma, stroke or degenerative disease. To determine if a low dose of particulate irradiation sensitizes the brain to a subsequent injury, C56BL6 mice were exposed to brain only irradiation with 0.5 Gy of 56Fe ions. Two months later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Three weeks after trauma animals received multiple BrdU injections and 30 days later were tested for cognitive performance in the Morris water maze. All animals where able to locate the visible and hidden platform during training; however, treatment effects were seen when spatial memory retention was assessed in the probe trial (no platform). While sham and irradiated animals showed spatial memory retention, mice that received trauma alone did not. When trauma was preceded by irradiation, performance in the water maze was not different from sham-treated animals, suggesting that low dose irradiation had a protective effect in the context of a subsequent traumatic injury. Measures of hippocampal neurogenesis showed that combined injury did not induce any changes greater that those seen after trauma or radiation alone. After trauma there was a significant decrease in the percentage of neurons expressing the behaviorally-induced immediate early gene Arc in both hemispheres, without associated neuronal loss. After combined injury there were no differences relative to sham-treated mice. Our results suggest that combined injury resulted in decreased alterations of our endpoints compared to trauma alone. While the underlying mechanisms are not yet known, these results resemble a preconditioning, adaptive, or inducible-like protective response, where a sublethal or potentially injurious stimulus (i.e. irradiation) induces tolerance to a subsequent and potentially more damaging insult (trauma). PMID:21192069

  17. The 'toothbrush-cluster': probing particle acceleration by merger induced shock waves

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2012-09-01

    We have discovered a spectacular merging galaxy cluster hosting a 2-Mpc elongated radio source, suggesting particle acceleration at merger shocks. The large straight extent is however very difficult to explain with current merger scenarios and a very high Mach number of 4.5 is required to explain the radio spectral index. We therefore argue that this cluster is a key object to test current models of shock acceleration and cluster formation. The proposed Chandra+EVLA observations will address the following: (i) is there a compelling need for a more sophisticated particle acceleration mechanism than standard diffusive shock acceleration? And (ii) are we witnessing a very special configuration consisting of multiple merger events that collectively conspire to yield such a linear shock?

  18. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    NASA Astrophysics Data System (ADS)

    Zharkova, V.; Khabarova, O.

    2015-04-01

    Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS) or in a front of interplanetary coronal mass ejections (ICMEs) often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons) measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC) simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012). The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR), which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS) are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic suprathermal

  19. Directionality Of Flare-Accelerated Particles From Gamma-Ray Lines

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.; Kiener, J.; de Sereville, N.; Tatischeff, V.

    2001-12-01

    The energies and widths of gamma-ray lines emitted by ambient nuclei excited by flare-accelerated proton and alpha particles provide information on the particles' angular distributions, compositions, and spectra, and on the uniformity of the interaction region. We have measured the energies and widths of strong lines from de-excitations of 12C, 16O, and 20Ne in solar flares as a function of heliocentric angle. The line energies from all three nuclei exhibit ~1% redshifts at small heliocentric angles, but are not significantly shifted near the limb. The lines at all heliocentric angles have widths from ~2.5 to 4% (FWHM) of their rest energies. These results are suggestive of accelerated particles with a broad angular distribution that preferentially interact in the downward direction. We compare the 12C line measurements with calculations based on recent accelerator measurements and an optical model at higher energies. This work is supported by NASA DPR W-18,995.

  20. Shock acceleration of energetic particles in corotating interaction regions in the solar wind

    SciTech Connect

    Fisk, L.A.; Lee, M.A.

    1980-04-15

    A simple shock model for the acceleration of energetic particles in corotating interaction regions (CIRs) in the solar wind is presented. Particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.

  1. NON-STANDARD ENERGY SPECTRA OF SHOCK-ACCELERATED SOLAR PARTICLES

    SciTech Connect

    Kocharov, Leon; Vainio, Rami; Pomoell, Jens; Valtonen, Eino; Klassen, Andreas; Young, C. Alex

    2012-07-01

    We consider a numerical model for the shock acceleration of energetic ions in the magnetic environment of the solar corona. The model is motivated by observations of the deka-to-hecto-MeV proton energy spectra, ion and electron timing, and abundances in the beginning of major solar energetic particle (SEP) events, prior to the event's main phase associated with coronal mass ejection (CME) driven shock in the solar wind. Inasmuch as the obliquity of the CME-liftoff-associated shocks in solar corona and hence the seed-particle supply for the shock acceleration are essentially time dependent, a steady state energy spectrum of accelerated protons near the shock could not be attained. Energy spectrum of the SEP emission depends on the spatial and energy distribution of seed particles for the coronal shock acceleration, on the shock wave history, and on the location and scenario of the energetic particle escape into the interplanetary medium. We use a numerical model of the shock acceleration on a semicircular magnetic field line to learn a significance of different effects. If the shock geometry in a particular magnetic tube changes from nearly parallel to perpendicular, the resulting SEP spectrum in most distant sections of the tube, e.g., at the top of a transequatorial loop, resembles a wide beam, which is very different from the standard power-law spectrum that would be expected in a steady state. Possible escape of the shock-accelerated particles from more than one coronal location, stochastic re-acceleration, and the magnetic tube expansion can make the SEP spectra even more complicated.

  2. Baryon Loading Efficiency and Particle Acceleration Efficiency of Relativistic Jets: Cases for Low Luminosity BL Lacs

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.

    2016-09-01

    Relativistic jets launched by supermassive black holes, so-called active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have {P}B/{P}e˜ 6.3× {10}-3 and the radiative efficiency {ɛ }{{rad,jet}}˜ 6.7× {10}-4, where P B and P e is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as {P}{{jet}}/{L}{{Edd}}˜ 0.18, where {P}{{jet}} and {L}{{Edd}} is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have a jet production efficiency of {η }{{jet}}˜ 1.5 and a mass loading efficiency of {ξ }{{jet}}≳ 5× {10}-2. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have particle acceleration efficiencies of {η }g˜ {10}4.5, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should not be the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.

  3. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  4. Chromospheric-coronal coupling during solar flares: Current systems and particle acceleration

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.; Mckean, M. E.; Dulk, G. A.

    1989-01-01

    Two-dimensional (three velocity) electrostatic particle simulations are used to investigate the particle heating and acceleration associated with the impulsive phase of a solar flare. A crossfield current in the high corona (which is presumably driven by reconnection processes) is used to initiate the flare. Due to the differential motion of the electrons and ions, currents, and associated quasi-static electric fields are generated with the primary current and balancing return current being on adjacent field lines. These currents extend from the corona down into the chromosphere. Electrons can be accelerated to energies exceeding 100 keV on short time scales via the quasi-static fields and wave-particle interactions. The spectra of these electrons has a broken power-law distribution which hardens in time. The spatially separate primary and return currents are closed by the cross-field acceleration of the ambient ions into the primary current regions. These ions are then accelerated upwards into the corona by the same quasi-static electric field accelerating the electrons downwards. This acceleration can account for the broadened stationary and weak blue shifted component seen in soft x ray line emissions and enhancements in heavy ion abundances seen in the solar wind in associations with solar flares.

  5. Fastest Electropolishing Technique on Niobium for Particle Accelerators

    SciTech Connect

    A.T. Wu, S. Jin, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium (Nb) superconducting radio frequency (SRF) cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results [1] seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3nm up to 460nm. A home-made scanning field emission microscope (SFEM) was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The experimental results could be understood by a simple model calculation based on classic electromagnetic theory as shown in Ref.1. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  6. Advances in understanding particle acceleration and loss from Cluster observations

    NASA Astrophysics Data System (ADS)

    Escoubet, C. Philippe; Laakso, Harri; Goldstein, Mevlyn; Masson, Arnaud

    2016-07-01

    The main science targets of the Cluster mission, originally proposed in 1982, were the bow shock, the cusp, the magnetopause and the plasmasheet. The inner magnetosphere was not a prime target and thanks to the low perigee, around 4 RE geocentric distance, that decreased down to a few 100s of kilometers altitude in 2011, this region could be studied for the first time with four spacecraft. We will present science highlights obtained both in the plasmasphere and in the radiation belts such as the localization of the source of non-thermal continuum radiation both through triangulation and through the tilt of one spacecraft, plasmasphere density structures, interplanetary shock electron acceleration in the inner magnetosphere, discovery of the plasmaspheric wind, interaction between the plasmasphere and the radiation belts, multi-point observations of equatorial noise as well as many multi-point observations of chorus emissions. We will also present the distribution of data through the Cluster Science Data System (CSDS), and the Cluster Science Archive (CSA). CSA was implemented to provide, for the first time for a plasma physics mission, a permanent and public archive of all the high-resolution data from all instruments.

  7. Visual phenomena induced by cosmic rays and accelerated particles

    NASA Technical Reports Server (NTRS)

    Tobias, C. A.; Budinger, T. F.; Leith, J. T.; Mamoon, A.; Chapman, P. K.

    1972-01-01

    Experiments, conducted at cyclotrons together with observations by Apollo astronauts, suggest with little doubt that cosmic nuclei interacting with the visual apparatus cause the phenomenon of light flashes seen on translunar and transearth coast over the past four Apollo missions. Other experiments with high and low energy neutrons and a helium ion beam suggest that slow protons and helium ions with a stopping power greater than 10 to the 8th power eV/gram sq cm can cause the phenomenon in the dark adapted eye. It was demonstrated that charged particles induced by neutrons and helium ions can stimulate the visual apparatus. Some approaches to understanding the long term mission effects of galactic cosmic nuclei interacting with man and his nervous system are outlined.

  8. A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES

    SciTech Connect

    Masson, S.; Antiochos, S. K.; DeVore, C. R.

    2013-07-10

    We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

  9. Small-scale magnetic islands near the heliospheric current sheet and their role in particle acceleration

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga; Zank, Gary; Li, Gang; le Roux, Jakobus A.; Webb, Gary M.; Dosch, Alexander; Malandraki, Olga E.; Zharkova, Valentina V.

    2015-04-01

    Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller current sheets in the solar wind (Zharkova & Khabarova, ApJ, 2012), of which a consequence is particle energization by the dynamically evolving secondary current sheets and magnetic islands (Zank et al., ApJ, 2014; Drake et al., JRL, 2006). The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field, and experience first-order Fermi acceleration in contracting magnetic islands (Zank et al., ApJ, 2014). We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  10. Effects of 40Ar and 56Fe ions on retinal photoreceptor cells of the rabbit: implications for manned missions to Mars

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.

    1994-01-01

    Losses of photoreceptor cells (rods) from the retinas of New Zealand white (NZW) rabbits were detectable within 2 years after localized acute irradiation of optic and proximal tissues with > or = 7 Gy of 530 MeV u-1 40Ar ions or > or = 2 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition. Those limits were determined only from an analysis of variance of dose groups because the shapes of the dose response curves at early post-irradiation times are not known, a concern being addressed by experiments in progress. Losses of photoreceptor cells for the period 0.5-2.5 years post-irradiation, determined by provisional linear regression analysis, were approximately 1.7% Gy-1 and 2.5% Gy-1 for 40Ar and 56Fe ions, respectively.

  11. Neutrino-induced reactions on {sup 56}Fe and {sup 56}Ni, and production of {sup 55}Mn in population III stars

    SciTech Connect

    Suzuki, Toshio; Honma, Michio; Higashiyama, Koji; Yoshida, Takashi; Umeda, Hideyuki; Kajino, Toshitaka; Otsuka, Takaharu; Nomoto, Ken'ichi

    2009-06-15

    Neutrino-induced reactions on {sup 56}Fe and {sup 56}Ni are investigated based on a new shell-model Hamiltonian for pf shell. The calculated charged current reaction cross section on {sup 56}Fe induced by decay-at-rest (DAR) neutrinos is shown to be consistent with the observation. The Gamow-Teller strength in {sup 56}Ni is found to be more spread compared to previous calculations and result in a considerably large branching ratio for the proton knock-out channel. As a consequence of this, the production yields of heavy elements such as {sup 55}Mn in population III stars are shown to be enhanced for the new Hamiltonian.

  12. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    NASA Astrophysics Data System (ADS)

    Ostrovsky, A. O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity, the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  13. On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures

    SciTech Connect

    Ostrovsky, A.O.

    1993-09-01

    This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

  14. Extreme Particle Acceleration in Reconnection Layers and Gamma-ray Flares in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoit; Uzdensky, D. A.; Begelman, M. C.

    2011-09-01

    The Fermi and Agile gamma-ray space telescopes recently discovered short and powerful gamma-ray flares in the Crab Nebula. These events presumably originate from a tiny region of the nebula where electrons are accelerated to PeV energies and radiate >100 MeV synchrotron radiation in a milli-Gauss magnetic field. In classical models of particle acceleration, where the accelerating electric field is smaller than the magnetic field, the synchrotron radiation cannot exceed 100 MeV because radiative losses balance the acceleration rate. We propose that particles are efficiently accelerated to PeV energies in a magnetic reconnection layer. We find that ultrarelativistic electron orbits are trapped and collapse rapidly deep into the current layer where the magnetic field becomes small. After a few days of acceleration by the reconnection electric field, electrons are accelerated to PeV energies and are focused into a tight, narrow beam. This mechanism provides a viable explanation to the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in AGN.

  15. A Shot Parameter Specification Subsystem for automated control of PBFA (Particle Beam Fusion Accelerator) II accelerator shots

    SciTech Connect

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes.

  16. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  17. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  18. Test particle acceleration in a numerical MHD experiment of an anemone jet

    NASA Astrophysics Data System (ADS)

    Rosdahl, K. J.; Galsgaard, K.

    2010-02-01

    Aims: To use a 3D numerical MHD experiment representing magnetic flux emerging into an open field region as a background field for tracing charged particles. The interaction between the two flux systems generates a localised current sheet where MHD reconnection takes place. We investigate how efficiently the reconnection region accelerates charged particles and what kind of energy distribution they acquire. Methods: The particle tracing is done numerically using the Guiding Center Approximation on individual data sets from the numerical MHD experiment. Results: We derive particle and implied photon distribution functions having power law forms, and look at the impact patterns of particles hitting the photosphere. We find that particles reach energies far in excess of those seen in observations of solar flares. However the structure of the impact region in the photosphere gives a good representation of the topological structure of the magnetic field. Three movies are only available in electronic form at http://www.aanda.org

  19. GEANT4 SIMULATIONS OF GAMMA-RAY EMISSION FROM ACCELERATED PARTICLES IN SOLAR FLARES

    SciTech Connect

    Tang Shichao; Smith, David M.

    2010-10-01

    Gamma-ray spectroscopy provides diagnostics of particle acceleration in solar flares, but care must be taken when interpreting the spectra due to effects of the angular distribution of the accelerated particles (such as relativistic beaming) and Compton reprocessing of the radiation in the solar atmosphere. In this paper, we use the GEANT4 Monte Carlo package to simulate the interactions of accelerated electrons and protons and study the effects of these interactions on the gamma rays resulting from electron bremsstrahlung and pion decay. We consider the ratio of the 511 keV annihilation-line flux to the continuum at 200 keV and in the energy band just above the nuclear de-excitation lines (8-15 MeV) as a diagnostic of the accelerated particles and a point of comparison with data from the X17 flare of 2003 October 28. We also find that pion secondaries from accelerated protons produce a positron annihilation line component at a depth of {approx}10 g cm{sup -2} and that the subsequent Compton scattering of the 511 keV photons produces a continuum that can mimic the spectrum expected from the 3{gamma} decay of orthopositronium.

  20. Particle acceleration in three-dimensional reconnection of flux-tube disconnection

    NASA Astrophysics Data System (ADS)

    Akbari, Z.; Hosseinpour, M.; Mohammadi, M. A.

    2016-11-01

    "Flux-tube disconnection" is a type of steady-state three-dimensional magnetic reconnection with O-point at the origin of the resistive diffusion region. Magnetic reconnection is accepted as a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. By using the static magnetic and electric fields for flux-tube disconnection, features of test particle acceleration with input parameters for the solar corona are investigated. We show that a proton injected close to origin of the diffusion region can be accelerated to a very high kinetic energy along the magnetic field lines. The efficient acceleration takes place at the radial point where the electric drift velocity has its maximum magnitude. However, a proton injected at radial distances far away from the origin is not accelerated efficiently and even may be trapped in the field lines. The final kinetic energy of the particle depends significantly on the amplitude of the electric field rather than the amplitude of magnetic field.

  1. Shock and statistical acceleration of energetic particles in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Valdes-Galicia, J. F.; Moussas, X.; Quenby, J. J.; Neubauer, F. M.; Schwenn, R.

    1985-01-01

    Definite evidence for particle acceleration in the solar wind came around a decade ago. Two likely sources are known to exist: particles may be accelerated by the turbulence resulting from the superposition of Alfven and Magnetosonic waves (Statistical Acceleration) or they may be accelerated directly at shock fronts formed by the interaction of fast and slow solar wind (CIR's) or by traveling shocks due to sporadic coronal mass ejections. Naurally both mechanisms may be operative. In this work the acceleration problem was tackled numerically using Helios 1 and 2 data to create a realistic representation of the Heliospheric plasma. Two 24 hour samples were used: one where there are only wave like fluctuations of the field (Day 90 Helios 1) and another with a shock present in it (Day 92 of Helios 2) both in 1976 during the STIP 2 interval. Transport coefficients in energy space have been calculated for particles injected in each sample and the effect of the shock studied in detail.

  2. Reconnection-Powered Extreme Particle Acceleration and Gamma-Ray Flares in Crab Nebula

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Cerutti, Benoit; Begelman, Mitchell

    2011-11-01

    Recent discovery of gamma-ray flares in the Crab Nebula challenges traditional relativistic particle acceleration models. These flares are presumably produced by PeV electrons radiating >100 MeV synchrotron photons in a milli-gauss magnetic field. In traditional models, where the accelerating electric field is smaller than the magnetic field, synchrotron radiation cannot exceed 100 MeV because radiative losses balance the acceleration rate. We propose that linear electric acceleration in a magnetic reconnection layer can resolve this difficulty. The gyroradii of PeV electrons are so large that their motion is insensitive to small-scale turbulent structures and is controlled only by large-scale fields. As these particles are accelerated by the reconnection electric field, their relativistic Speiser-like orbits collapse deep into the layer and get focused into a tight beam. Furthermore, since perpendicular magnetic field is small inside the layer, the radiation reaction there is suppressed, so the particles can reach higher energies and emit synchrotron radiation in excess of the 100 MeV limit, resolving the Crab gamma-ray flare paradox.

  3. Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun

    NASA Astrophysics Data System (ADS)

    Henkes, C.; Olivier, H.

    2014-04-01

    The quality of thermal sprayed coatings depends on many factors which have been investigated and are still in scientific focus. Mostly, the coating material is inserted into the spray device as solid powder. The particle condition during the spray process has a strong effect on coating quality. In some cases, higher particle impact energy leads to improved coating quality. Therefore, a computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension with a nozzle transforms the detonation gun process into an intermittent shock tunnel process in which the particles are accelerated in a high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation with nozzle in which the device generates very high particle velocities up to a frequency of 5 Hz. A variable particle injection system allows injection of the powder at any point along the nozzle axis to control particle temperature and velocity. A hydrogen/oxygen mixture is used in the experiments. Operation performance and nozzle outflow are characterized by time resolved pressure measurements. The particle conditions inside the nozzle and in the nozzle exit plane are calculated with a quasi-one-dimensional WENO-code of high order. For the experiments, particle velocity is obtained by particle image velocimetry, and particle concentration is qualitatively determined by a laser extinction method. The powders used are WC-Co(88/12), NiCr(80/20), Al2O3, and Cu. Different substrate/powder combinations for varying particle injection positions have been investigated by light microscopy and measurements of microhardness.

  4. Observations of Particle Acceleration Associated with Small-Scale Magnetic Islands Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-04-01

    We have recently shown both theoretically (Zank et al. 2014, 2015; le Roux et al. 2015) and observationally (Khabarova et al. 2015) that dynamical small-scale magnetic islands play a significant role in local particle acceleration in the supersonic solar wind. We discuss here observational evidence for particle acceleration at shock waves that is enhanced by the recently proposed mechanism of particle energization by both island contraction and the reconnection electric field generated in merging or contracting magnetic islands downstream of the shocks (Zank et al. 2014, 2015; le Roux et al. 2015). Both observations and simulations suppose formation of magnetic islands in the turbulent wake of heliospheric or interplanetary shocks (ISs) (Turner et al. 2013; Karimabadi et al. 2014; Chasapis et al. 2015). A combination of the DSA mechanism with acceleration by magnetic island dynamics explain why the spectra of energetic particles that are supposed to be accelerated at heliospheric shocks are sometimes harder than predicted by DSA theory (Zank et al. 2015). Moreover, such an approach allows us to explain and describe other unusual behaviour of accelerated particles, such as when energetic particle flux intensity peaks are observed downstream of heliospheric shocks instead of peaking directly at the shock according to DSA theory. Zank et al. (2015) predicted the peak location to be behind the heliospheric termination shock (HTS) and showed that the distance from the shock to the peak depends on particle energy, which is in agreement with Voyager 2 observations. Similar particle behaviour is observed near strong ISs in the outer heliosphere as observed by Voyager 2. Observations show that heliospheric shocks are accompanied by current sheets, and that IS crossings always coincide with sharp changes in the IMF azimuthal angle and the IMF strength, which is typical for strong current sheets. The presence of current sheets in the vicinity of ISs acts to magnetically

  5. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  6. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  7. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    SciTech Connect

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-08-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of {approx}2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to {approx}2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock.

  8. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  10. Particle injection and acceleration at earth's bow shock - Comparison of upstream and downstream events

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Moebius, Eberhard; Paschmann, Goetz

    1990-01-01

    The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.

  11. Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong

    2014-01-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to 56Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose 56Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to 56Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to 56Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to 56Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the

  12. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    SciTech Connect

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  13. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGESBeta

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature driftmore » of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  14. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk

    NASA Technical Reports Server (NTRS)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.

    1992-01-01

    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  15. PARTICLE ACCELERATION IN THE EXPANDING BLAST WAVE OF {eta} CARINA'S GREAT ERUPTION OF 1843

    SciTech Connect

    Ohm, S.; Domainko, W.; Hinton, J. A. E-mail: wilfried.domainko@mpi-hd.mpg.d

    2010-08-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV {<=} E {<=} 100 GeV) {gamma}-ray emission in the direction of {eta} Carina has been recently detected using the INTEGRAL, AGILE, and Fermi satellites. So far this emission has been interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars. However, the existence of a very fast moving blast wave which originates in the historical 1843 'Great Eruption' provides an alternative particle acceleration site in this system. Here, we explore an alternate scenario and find that inverse Compton emission from electrons accelerated in the blast wave can naturally explain both the flux and spectral shape of the measured hard X-ray and HE {gamma}-ray emission. This scenario is further supported by the lack of significant variability in the INTEGRAL and Fermi measured fluxes.

  16. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  17. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas.more » At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.« less

  18. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  19. Plasma flow and fast particles in a hypervelocity accelerator - A color presentation. [micrometeoroid simulation

    NASA Technical Reports Server (NTRS)

    Igenbergs, E. B.; Cour-Palais, B.; Fisher, E.; Stehle, O.

    1975-01-01

    A new concept for particle acceleration for micrometeoroid simulation was developed at NASA Marshall Space Flight Center, using a high-density self-luminescent fast plasma flow to accelerate glass beads (with a diameter up to 1.0 mm) to velocities between 15-20 km/sec. After a short introduction to the operation of the hypervelocity range, the eight-converter-camera unit used for the photographs of the plasma flow and the accelerated particles is described. These photographs are obtained with an eight-segment reflecting pyramidal beam splitter. Wratten filters were mounted between the beam splitter and the converter tubes of the cameras. The photographs, which were recorded on black and white film, were used to make the matrices for the dye-color process, which produced the prints shown.

  20. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.